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Abstract

The large discrepancy between the values of the free energy for DNA dinucleotides (or

dimers) measured by different teams has raised a debate, yet unsettled. Here the free energy is

fitted by a three parameter empiric formula derived in the framework of the crystal basis

model of genetic code. Approximate sum rules are derived and compared satisfactorily with

the data. On the basis of theoretical and phenomenological arguments, a relation between the

correlation functions of dimer distribution and the free energy is assumed. From consistency

conditions, sum rules are derived. A check of these conditions with different samples of

experimental data is performed, allowing us to argue on the self-consistency and the reliability

of the different sets of experimental data.
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1. Introduction

The importance of computation of free energy DG0 and enthalpy DH0 for DNA
dinucleotides or dimers was recognized in the eighties by many authors and several
experimental measures have been performed. The experimental values however
range in an unacceptably wide range. The basic model for computation of
thermodynamical quantities for DNA and RNA is the nearest-neighbour model
(NN), proposed in the sixties, which assumes that the thermodynamics is mainly
governed by the interaction of two nearest nucleotides. However, a crucial point is
the procedure to assign the corresponding value to the dimer, from the measured
values of the thermodynamical quantities for different sequence combinations of
oligomers and polymers. It was already pointed out in 1970 [1] that constraints that
reduces the number of independent quantities in the NN model have to be taken into
account. A turning point has been the introduction in Ref. [2] of a fictitious
nucleotide mimicking the effect of the beginning and end of the sequences. Taking
into account this idea, a detailed discussion of the number of constraints, both in
single and double strand DNA, has been performed given in Ref. [3]. Moreover, the
computation of the free energy of nucleotides sequences depends also on the helix
initiation. A few years ago, SantaLucia [4] has performed an accurate analysis and
comparison of the data from seven laboratories (see Table 8 taken from Ref. [4],
where we have replaced the original values of the column Benight [5] with the more
recent ones [6]), with the aim of presenting all the data in the same format. He
reached the conclusion that six of the studies were actually in agreement and
provided explanations for the discrepancies, even if the self-consistency of the data
and the consistency between different data sets still remain debatable, and indeed
urged for further experimental determination. In an attempt to settle, by the
thermodynamics arguments, the controversy, Miramontes and Cocho [7] have
analysed quite recently the same set of data by assuming a relation between the
correlation function of the dimers and their free energy, reaching the conclusion that
the most reliable set of values is just the one which was excluded by SantaLucia.
Indeed, in Ref. [7] a linear relation between the correlation function for the dimer
and the corresponding free energy was postulated, which allowed these authors to
determine which set of experimental data was in better agreement with the
postulated relation. A shortcoming of this analysis is that the sum of the free energies
for strong dimers does not satisfy an identity derived from the postulated
equation.The main purpose of this work is to come back to this controversial
question. It is not our aim to analyse the methods used to derive the NN parameters,
which is a complex and interesting subject widely discussed in the literature, but to
look for reasonable criteria to evaluate the consistency of the data and,
consequently, their reliability. First, we propose a theoretical formula to compute
the free energy, from which sum rules are derived and compared with the values of
experimental data. Second, we motivate the assumption of a relation between the
correlation function and the free energy, different from the one assumed in Ref. [7],
which satisfies trivial identities required by the definition of the correlation functions.
We make several consistency checks and we try to determine the reliability of the
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experimental values, comparing with the calculated values of the correlation matrix
in Ref. [7].
2. Fit for the free energy

Let us recall that a mathematical framework in which the codons appear as
composite states of nucleotides was proposed [8]. In order to make this paper self-
contained, we briefly recall in the Appendix the main properties of Uq!0ðslð2ÞÞ;
referring for more details to [8] or, for a more rigorous and mathematical discussion,
to the original paper [9]. The four nucleotides are assigned to the fundamental
irreducible representation of the quantum group Uqðslð2ÞH � slð2ÞV Þ in the limit
q! 0—the indices H and V distinguish the two slð2Þ—as follows:

slð2ÞH

C ! cð1=2;1=2ÞH ;ð1=2;1=2ÞV
 ! U ! cð1=2;�1=2ÞH ;ð1=2;1=2ÞV

slð2ÞV l l slð2ÞV

G! cð1=2;1=2ÞH ;ð1=2;�1=2ÞV
 ! A! cð1=2;�1=2ÞH ;ð1=2;�1=2ÞV

:

slð2ÞH

(1)

A sequence of N nucleotides is then described by a pure state in the N-fold tensor
product of the fundamental representation. In particular, dimers or dinucleotides are
obtained as the two-fold tensor product, the labels which specify the irreducible
representation to which they belong are given in Table 1 (see Appendix for details
about the computation of the entries of this table). In Ref. [8] we have fitted old
experimental data of the free energy DG0

37 (for simplicity we will omit the
temperature label in the following) for RNA dinucleotides with a four parameter
formula built up with the generators of Uq!0ðslH ð2Þ � slV ð2ÞÞ and in Ref. [10] the
more recent data of [11] have been fitted with the following two parameter formula:

DG0 ¼ aþ bðCH þ CV ÞJ3H , (2)

where J3X (X ¼ H or V) stands for the diagonalized slð2ÞX generator and CX is the
Casimir operator of Uq!0ðslð2ÞX Þ for the considered dimer ij. Let us recall that the
Table 1

Dimer representation content

Dimer JH JV J3H J3V Dimer JH JV J3H J3V

CC 1 1 1 1 GC 1 1 1 0

CT 0 1 0 1 GT 0 1 0 0

CG 1 0 1 0 GG 1 1 1 �1

CA 0 0 0 0 GA 0 1 0 �1

TC 1 1 0 1 AC 1 1 0 0

TT 1 1 �1 1 AT 1 1 �1 0

TG 1 0 0 0 AG 1 1 0 �1

TA 1 0 �1 0 AA 1 1 �1 �1
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Casimir operator eigenvalue in the J-representation is JðJ þ 1Þ (see formulae (40)
and (41) of Appendix). In order not to overload the notation, here and in the
following, we will not explicitly write the labels of the dimer, if not necessary to
identify a specific dimer.

Here we propose for the DNA dinucleotides a three parameter formula, which is a
generalisation of Eq. (2):

DG0 ¼ a0 þ a1J3H þ a2ðJ3V Þ
2
ð2J3H þ 1Þ . (3)

Using Table 1, this equation leads to theoretical values of the dimer-free energies
DG0 in terms of the parameters a0; a1; a2; which are reported in Table 2.

A best-fit procedure allows one to evaluate these parameters. Indeed, one
considers the square mean deviation between the theoretical and experimental dimer
free energies DG0 given by

s2 ¼
1

N

X
dimers

ðDG0
th � DG0

expÞ
2 , (4)

where N is the number of points (here N ¼ 10), the values of DG0
th are given by Table

2 and the DG0
exp correspond to a given set of experimental data. Minimizing the

function s2 with respect to the parameters ai leads to the following expressions of
these parameters:

a0 ¼
1

116
ð14N1 þ 4N2 � 6N3Þ; a1 ¼

1

116
ð4N1 þ 26N2 � 10N3Þ,

a2 ¼
1

116
ð�6N1 � 10N2 þ 15N3Þ ð5Þ

where (we specify by a couple of indices the free energy of a dinucleotide)

N1 ¼ DG0
GG þ DG0

CG þ DG0
GC þ DG0

CT þ DG0
GA þ DG0

GT þ DG0
CA þ DG0

TA

þ DG0
AT þ DG0

AA,

N2 ¼ DG0
GG þ DG0

GC þ DG0
CG � DG0

AA � DG0
AT � DG0

TA,

N3 ¼ 3DG0
GG þ DG0

CT þ DG0
GA � DG0

AA. ð6Þ

In Eq. (6) the dimer-free energies correspond to the given set of experimental values
DG0

exp: Hence we get in Table 3 for the different studies, see Table 8, the best-fit
values of the parameters a0; a1; a2: The last two rows correspond to the square mean
Table 2

Theoretical values of the dimer free energies DG0

AA=TT a0 � a1 � a2 CT=GA a0 þ a2

AT=TA a0 � a1 GA=CT a0 þ a2

TA=AT a0 � a1 CG=GC a0 þ a1

CA=GT a0 GC=CG a0 þ a1

GT=CA a0 GG=CC a0 þ a1 þ 3a2
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Table 3

Best-fit values of the a parameters for different studies

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

[12] [13] [14] [15] [16] [17] [18] [6]

a0 0.98 1.37 1.89 1.24 1.53 1.71 1.47 1.35

a1 0.70 0.60 0.99 0.61 0.66 0.81 0.73 0.54

�a2 0.14 0.12 0.18 0.09 0.15 0.16 0.14 0.03

s2 0.0015 0.0011 0.1577 0.0014 0.0114 0.0199 0.0070 0.0069

w2 0.0243 0.0099 1.0001 0.0167 0.0753 0.0992 0.0821 0.0590
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deviation s2 and to w2 ¼
P
ðDG0

exp � DG0
thÞ

2=DG0
th: Evaluation of the incomplete

Gamma function, which is an estimate of the goodness-of-fit, shows that the fit is
good with a confidence level greater than 95%. Table 9 gives the fitted absolute
values for dimer-free energy parameters DG0 corresponding to the different samples,
using formula (3) and the best-fit values of the parameters a0; a1; a2 for each sample
given by Table 3. From an inspection of the values of s2 and w2; one sees that Eq. (3)
is well fitted by the different sets of experimental data, except by the ones from
Breslauer.
3. Sum rules

We derive from Eq. (3), a set of identities and sum rules. Let us first of all point out
that the following sum rules are, of course, expected to be only approximately
satisfied, as they are derived by empirical fitting formulae, not by a rigorous
mathematical derivation from a theory. First, it is clear that

DG0
ij ¼ DG0

ji and
X

j¼A;C;G;T

DG0
ij ¼

X
j¼A;C;G;T

DG0
ji . (7)

In particular, we getX
j¼A;C;G;T

DG0
Cj ¼

X
j¼A;C;G;T

DG0
Gj ¼ 4a0 þ 2a1 þ 4a2 , (8)

X
j¼A;C;G;T

DG0
Aj ¼

X
j¼A;C;G;T

DG0
Tj ¼ 4a0 � 2a1 , (9)

X
i;j¼A;C;G;T

DG0
ij ¼ 16 a0 þ 8 a2 . (10)

In Table 4 we report the experimental values computed using the values of Table 8.
Note that in Ref. [7] the existence of the sum rules Eqs. (8) and (9) was already
remarked, but the two equations should have the same values, which is actually not
the case.
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Table 4

Experimental values of the sums of free energies [see Eq. (7)]

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified BenightP
i DG0

Ci
4.72 6.16 9.18 5.78 6.72 8.10 6.74 6.54

P
i DG0

Gi
4.77 6.20 8.11 5.80 6.94 7.40 6.82 6.26

P
i DG0

Ti
2.55 4.27 5.63 3.68 5.08 5.30 4.33 4.45

P
i DG0

Ai
2.51 4.21 5.33 3.74 4.51 5.10 4.60 4.27

Table 5

Sum rules for free energies [see Eqs. (16)–(17)]

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

S1 �0.07 0.08 2.19 0.10 �0.09 0.50 0.09 �0.32

S2 �0.22 0.24 3.30 �0.14 0.34 0.60 0.52 0.36
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Due to the complementarity rule, one hasX
i¼A;C;G;T

DG0
Ci ¼

X
i¼A;C;G;T

DG0
iG and

X
i¼A;C;G;T

DG0
Gi ¼

X
i¼A;C;G;T

DG0
iC , (11)

X
i¼A;C;G;T

DG0
Ai ¼

X
i¼A;C;G;T

DG0
iU and

X
i¼A;C;G;T

DG0
Ui ¼

X
i¼A;C;G;T

DG0
iA . (12)

Now we derive also news sum rules

DG0
CG þ DG0

TA ¼ 2DG0
TG ¼ 2DG0

AC , (13)

DG0
CC þ DG0

TT ¼ 2DG0
TC ¼ 2DG0

GA , (14)

DG0
CC þ DG0

AA ¼ 2DG0
TC ¼ 2DG0

AG . (15)

We report in Table 5 a comparison with the experimental data, making an average of
the different experimental values, theoretically equal due to Eq. (3), i.e.,

S1 ¼ DG0
CG þ DG0

TA þ DG0
GC þ DG0

AT � DG0
TG � DG0

GT � DG0
AC � DG0

CA ¼ 0 ,

(16)

S2 ¼ DG0
CC þ DG0

TT þ DG0
GG þ DG0

AA � DG0
CT � DG0

TC � DG0
AG � DG0

GA ¼ 0 .

(17)
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As it can be seen the sum rules are reasonably well satisfied, except for the data of
Breslauer. However we cannot make any statement on the reliability of the different
experimental data on the basis of the accuracy by which they fit our empirical
formula Eq. (3).
4. Dinucleotide distribution

In order for our analysis to settle on more theoretical ground, we consider the
dimer correlation function. In [7] the dimer distribution was characterized by the
correlation function

Gij ¼ f ij � f if j , (18)

where the labels i; j denote the nucleotides, i; j 2 fA;C;G;Tg; and f i (f ij) denote the
frequency of the i nucleotide (ij dinucleotide). From Eq. (18), it follows thatX

i¼A;C;G;T

Gij ¼
X

j¼A;C;G;T

Gij ¼ 0 . (19)

In [7] the following relation between Gij and the free energy DG0 was assumed:

Gij ¼ aþ bDG0
ij . (20)

where a and b are biological species dependent parameters. Inserting Eq. (3) into
Eq. (19) one gets the identity

4aþ b
X

j¼A;C;G;T

DG0
ij ¼ 0)

X
j¼A;C;G;T

DG0
ij ¼ const: for all i . (21)

In Ref. [7], from the data reported in Table 8, except the last column which was
not considered, the authors show that Eq. (21) was satisfied by the weak dimers
only, i.e., with label i 2 fA;Tg: Let us remark: (i) that the statistical mechanics
motivation which led the authors to postulate Eq. (20) holds for an isolated
system, which is not the case for a dimer inserted in a DNA strand; (ii) the computed
values of the correlation matrix, see Table 3 of [7], for the same biological species,
show in many cases, a much larger variation than the corresponding variation
of the free energy, changing the ij dimer; (iii) our empirical formula Eq. (3) predicts
the dimers ij and ji to have the same free energy, which is approximately true (see
Table 8), while on the contrary the correlation function Gij is generally non
symmetric. From the above remarks we assume the following relation between Gij

and DG0
ij :

Gij ¼ aþ b DG0
ij �

1

4

X
k¼A;C;G;T

ðDG0
ki þ DG0

jkÞ

 !
þ ð1� dijÞhij , (22)

where hij are biological species-dependent real coefficients. The complementarity
implies that the coefficients hij and h|̄{̄ are equal for two complementary dimers ij

(from 50 to 30) and |̄{̄ (from 30 to 50), so there is only 8 coefficients hij :
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The corrective term in the free energy can be considered as a ‘‘penalty’’ due to the
interaction of the nucleotides of the dimer with the two nearest neighbour
nucleotides in the strand, assumed uniformly distributed.

Since the correlation coefficient Gij has to satisfy the sum rule (19) by definition,
one is led to the constraints (8j)

0 ¼ 4aþ b
X

i¼A;C;G;T

ðDG0
ij � DG0

jiÞ �
b

4

X
k;i¼A;C;G;T

DG0
ki þ

X
i¼A;C;G;T

ð1� dijÞhij

¼ 4aþ b
X

i¼A;C;G;T

ðDG0
ji � DG0

ijÞ �
b

4

X
k;i¼A;C;G;T

DG0
ik þ

X
i¼A;C;G;T

ð1� dijÞhij .

ð23Þ

Eqs. (7)–(10) imply for any pair ði; jÞ of nucleotides

2bð2a0 þ a2Þ � 4a ¼
X

k¼A;C;G;T

ð1� dikÞhik ¼
X

k¼A;C;G;T

ð1� dkjÞhkj . (24)

As Eq. (24) gives 4 independent relations, we are left with 4 parameters hij : We
remark that in Eq. (22) only the following combinations of a, b and ai parameters
appear in the free energy term:

x ¼ a� ba0 and y ¼ ba2 . (25)

We then deduce from the 4 constraints (24) the following relations among the
coefficients hij (we choose hCA; hCT ; hCG ; hAC ; hTC ; hGC ; hAT ; hAT )

hCG þ hGC � hAT � hTA ¼ 0 , (26)

hTC � hCT þ hGC � hAT ¼ 0 , (27)

hCA � hAC þ hCT � hTC þ hCG � hGC ¼ 0 . (28)

Using Eq. (22) we can replace the following equations by sum rules for the
corresponding correlation coefficients:

GCG þ GGC � GAT � GTA ¼ �4y ¼ 2ðGAA � GCCÞ , (29)

GCT � GTC þ GCG � GTA ¼ �2y ¼ GAA � GCC , (30)

GCA � GAC þ GCT � GTC þ GCG � GGC ¼ 0 . (31)

The above equations are well satisfied (within o5%) by the experimental data, see
Table 3 of [7]. Therefore we conclude that our parametrisation (22) for the
correlation function is satisfactory and we can carry on our analysis.

Consider the following differences of the correlation coefficients: GCT � GTC ;
GTT � GCC and GAT � GGC : Inserting the theoretical expression (22) of Gij ; one gets
for each of the three differences:

GCT � GTC ¼ ZCT�TCbþ hCT � hTC , (32)

GTT � GCC ¼ ZTT�CCbþ hTT � hCC , (33)
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GAT � GGC ¼ ZAT�GCbþ hAT � hGC , (34)

where the coefficients Z are functions of the free energies DG0; computed from
Eq. (22). Summing up the three above equations, one gets that the l.h.s. is vanishing,
due to Eq. (19) and the equality of the correlation coefficients for complementary
dimers, which implies, using Eq. (27), that the coefficients Z are related:

ZCT�TC þ ZTT�CC þ ZAT�GC ¼ 0 . (35)

Let us emphasize that this relation is biological species independent, by virtue of
Eq. (27), valid for each biological species, and by the complementarity rule for Gij :

Note also that relation (35) is automatically satisfied when plugging the theoretical
expressions of the free energies of the dimers (i.e., in terms of the parameters a0; a1

and a2).
Analogously using Eq. (28) and the complementarity rule we get

ZCA�GT þ ZCT�GA þ ZCG�GC ¼ 0 . (36)

Note that Eq. (29) is satisfied identically from the parametrization (22) and the
constraint (26).

We report in Tables 6 and 7 the values of the coefficients Z and their sum,
calculated with the experimental free energies given by the different authors (see
Table 8). As it can be seen, most of the values of the sums are quite close to zero,
except for Breslauer, SantaLucia and Sugimoto.
Table 6

Values of the coefficients Z of Eq. (35)

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

ZCT�TC �0.123 �0.115 0.133 0.060 �0.498 0.125 0.027 0.005

ZTT�CC 0.318 0.220 0.492 0.160 0.268 0.375 0.318 0.080

ZAT�GC �0.285 �0.205 0.145 �0.180 �0.560 0 �0.155 0.015

sum �0.090 �0.100 0.770 0.040 �0.790 0.500 0.190 0.100

Table 7

Values of the coefficients Z of Eq. (36)

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

ZCA�AC �0.013 0.025 1.013 �0.110 0.358 0.425 �0.077 0.405

ZCT�TC �0.123 �0.115 0.133 0.060 �0.498 0.125 0.027 0.005

ZCG�GC 0.035 0.010 0.995 0.010 �0.300 0.850 �0.110 0.150

sum �0.100 �0.080 2.140 �0.040 �0.440 1.400 �0.160 0.560
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Table 8

Experimental absolute values for dimer free energy parameters DG0 (in kcal/mol)

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

[12] [13] [14] [15] [16] [17] [18] [6]

AA=TT 0.43 0.89 1.66 0.67 1.02 1.20 1.00 0.91

AT=TA 0.27 0.81 1.19 0.62 0.90 0.90 0.88 0.83

TA=AT 0.22 0.76 0.76 0.70 0.90 0.90 0.58 0.68

CA=GT 0.97 1.37 1.80 1.19 1.70 1.70 1.45 1.54

GT=CA 0.98 1.35 1.13 1.28 1.43 1.50 1.44 1.25

CT=GA 0.83 1.16 1.35 1.17 1.16 1.50 1.28 1.28

GA=CT 0.93 1.25 1.41 1.12 1.46 1.50 1.30 1.30

CG=GC 1.70 1.99 3.28 1.87 2.09 2.80 2.17 1.87

GC=CG 1.64 1.96 2.82 1.85 2.28 2.30 2.24 1.86

GG=CC 1.22 1.64 2.75 1.55 1.77 2.10 1.84 1.85
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5. Conclusions

We have proposed a three-parameter formula to fit the free energy for the DNA
dinucleotides and derived a set of sum rules. Let us emphasize that the sum rules
have to be considered as approximate identities derived from empirical formulae. Let
us also remark that, in the comparison between the experimental and the theoretical
values computed from Eq. (2), for RNA and for DNA, a larger discrepancy is
present between the GC and CG dimer for RNA structure than for DNA. This
feature can be understood as an effect of the more relevant role played in the
thermodynamics by the GC content in DNA than in RNA; e.g. an empirical formula
depending on four parameters has been derived in Ref. [19], expressing the melting
temperature of DNA as a function of its fractional GC content and of the
concentration on Naþ ions. We have compared the theoretical values with the
experimental data of seven authors as well as their averaged value. The results of the
fits reported in Tables 5 and 9, show in the average a satisfactory agreement, except
for Breslauer. On the basis of the above comparison, we cannot make any statement
on the reliability of the different experimental data. In order to support our analysis
by general theoretical arguments, we postulate a relation between the free energy and
the dimer correlation function Eq. (22), which has theoretical motivation from
statistical mechanics as well as experimental motivation from the analysis of the
computed correlation function. Our postulated equation is self-consistent as it
satisfies the identity that the sum of correlation functions has to satisfy by definition.
From consistency equations, we derive a set of sum rules for the correlation
functions which are well verified by the computed values for several biological
species. This analysis supports the validity of our relation Eq. (22), which allows us
to perform biological independent consistency checks, which is remarkably verified
by our theoretical formula. We have checked which set of experimental data satisfy
the consistency relations. The result is that the data of Refs. [14,16] and [17] are not
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Table 9

Fitted absolute values for dimer free energy parameters DG0 (in kcal/mol)

Gotoh Vologodskii Breslauer Delcourt SantaLucia Sugimoto Unified Benight

AA=TT 0.46 0.92 1.13 0.75 1.08 1.11 0.93 0.85

AT=TA 0.30 0.79 0.93 0.65 0.91 0.93 0.78 0.81

TA=AT 0.30 0.79 0.93 0.65 0.91 0.93 0.78 0.81

CA=GT 1.02 1.40 1.94 1.26 1.57 1.75 1.51 1.36

GT=CA 1.02 1.40 1.94 1.26 1.57 1.75 1.51 1.36

CT=GA 0.85 1.27 1.73 1.16 1.40 1.57 1.35 1.33

GA=CT 0.85 1.27 1.73 1.16 1.40 1.57 1.35 1.33

CG=GC 1.73 2.01 2.94 1.88 2.24 2.57 2.25 1.90

GC=CG 1.73 2.01 2.94 1.88 2.24 2.57 2.25 1.90

GG=CC 1.25 1.61 2.34 1.57 1.73 2.03 1.78 1.81
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consistent. Therefore we disagree with the conclusions of Ref. [7]. The results of our
analysis are more close to the ones of Ref. [4].

Obviously the ‘‘sum rules’’, whose approximate validity allows one to reduce the
number of independent parameters in the NN model, can be formulated without
making any reference to the ‘‘crystal basis’’ and they might have been derived from
an analysis of the experimental data. In the crystal model, they are a straightforward
derivation of the simple expression of an empirical formula to fit the free energy.
Indeed, as it has been discussed in some details in Ref. [10], the crystal basis model
seems to provide a useful mathematical setting to formulate some properties of DNA
and/or RNA, which may imply that some essential physico-chemical features have
been indeed incorporated in the mathematical language. Let us remark that a dimer
with J3H ¼ 0 (J3V ¼ 0) means that it is made by two not identical purines or
pyrimidines or by a purine and a not complementary pyrimidine (respectively, by a
purine and a pyrimidine).
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Appendix A. Basic notions on crystal bases

In this appendix we briefly recall the main properties of the so-called deformed
universal enveloping algebra of slð2Þ; denoted Uqðslð2ÞÞ; and its limit Uq!0ðslð2ÞÞ:
The algebra Uqðslð2ÞÞ is defined as a suitable completion of the algebra of polynomes
in the generators eJþ; eJ� and eJ3 (in particular adding the exponential series), subject
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to the following commutation relations:

½eJþ; eJ�� ¼ ½2eJ3�q,

½eJ3; eJ�� ¼ �eJ�, ð37Þ

where

½x�q ¼
qx � q�x

q� q�1
. (38)

Moreover some suitable axioms have to be fulfilled, which endows Uqðslð2ÞÞ with a
Hopf algebra structure. Since we do not need these axioms here, we do not explicitly
write them for sake of simplicity.

The vector spaces of the irreducible representations of this algebra are labelled, for
q different of root of unity, by a non negative integer or half-integer number j and
are of dimension ð2j þ 1Þ; the basis vectors being denoted by cjm; �jpmpj: In the
limit q! 1 one recovers the usual slð2Þ: Strictly speaking, in the limit q! 0 the
generators are ill defined, but it is possible, see Ref. [9], to define new generators J�;
J3ð¼ eJ3Þ; whose action on the vector basis of the representation space, still labelled
by a non negative integer or half-integer number j and of dimension ð2j þ 1Þ; is well
defined:

J3cjm ¼ mcjm; J� cjm ¼ cj;m�1; J�cj;�j ¼ 0 . (39)

This special basis in the limit q! 0 is called a crystal base. Note that the action of
J� on cjm is equal to cj;m�1 (i.e., the coefficient is always 1), contrary to the slð2Þ or
Uqðslð2ÞÞ case where this coefficient is a complicated function of j and m.

It is possible also to define an operator C called Casimir operator [8], such that

Ccjm ¼ jðj þ 1Þcjm¼)½C; J�� ¼ ½C; J3� ¼ 0 . (40)

Its explicit expression is given by

C ¼ ðJ3Þ
2
þ

1

2

X
n2Zþ

Xn

k¼0

ðJ�Þ
n�k
ðJþÞ

n
ðJ�Þ

k . (41)

Although this Casimir operator is written as an infinite series of powers of J�; in any
crystal base, only a finite number of terms gives a non-vanishing contribution, which
leads to (40).

Notice that Uq!0ðslð2ÞÞ is neither a deformed universal enveloping algebra nor a
Hopf algebra. However, one can show [9] that the tensor product of two crystal
bases labelled by j1 and j2 can be decomposed into a direct sum of crystal bases
labelled, as in the case of the tensor product of two slð2Þ or of Uq!0ðslð2ÞÞ irreducible
representations, by an integer or half-integer number j such that

jj1 � j2jpjpj1 þ j2 . (42)

The new peculiar and crucial feature, which is the key point in the model proposed in
Ref. [8], is that now the basis vectors of the j-space are pure states, that is they are the
product of a state belonging to the j1-space and of a state belonging to the j2-space,
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while in the case of slð2Þ or of Uq!0ðslð2ÞÞ they are linear combinations with
coefficients called, respectively, Clebsch-Gordan coefficients or q-Clebsch-Gordan
coefficients. As an example, we obtain for the dimer CT and TC, from Eq. (1) and
from the rules to perform the tensor product (see [9,8]):

C � T � cð1=2;1=2ÞH ;ð1=2;1=2ÞV
� cð1=2;�1=2ÞH ;ð1=2;1=2ÞV

¼ cð0;0ÞH ;ð1;0ÞV
� CT ,

T � C � cð1=2;�1=2ÞH ;ð1=2;1=2ÞV
� cð1=2;1=2ÞH ;ð1=2;1=2ÞV

¼ cð1;0ÞH ;ð1;0ÞV
� TC . ð43Þ
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