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Abstract: Pattern function quantum homodyne tomography (QHT) has
been used for characterizing the ouput of a degenerate below–threshold
type–I OPO. The recovered photon number distributions deviated from
those relative to Gaussian thermal states. The Kurtosis of the homodyne
data confirmed these deviations, thus proving the power of QHT to highlight
unexpected features of quantum states.
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1. Introduction

Quantum homodyne tomography (QHT) is a powerful technique for measuring the state of a
quantum field [1]. It is based on balanced homodyne detection of the investigated field (signal).
The interference of a strong coherent beam, (local oscillator – LO) with the signal at abeam
splitter (BS) gives a homodyne current proportional toη |z|X (θ) wherez is the LO complex
amplitude,η the photodetectors’ quantum efficiency andX(θ) ≡ 1

2

(
ase−iθ +a†

seiθ)
the sig-

nal’s field-quadrature. By varying the relative phaseθ between the two fields, it is possible to
measureX(θ) over the interval[0,2π). The collection of the outcomes(x,θ) for an adequate
number ofθ allows the reconstruction of any quantity of interest, including the whole signal’s
density matrixρ and, in turn, the Wigner quasi probability distribution.

QHT has been mostly applied to the reconstruction of Gaussian states of the field, as for
example coherent and squeezed states [2, 3, 4, 5], or to states intended to be non–Gaussian
[6, 7, 8].

The pattern function technique, firstly introduced in [9] provides a method for computing
directly from the homodyne data the mean value of interesting quantities. Any operatorO,
even if not directly detectable as the elements of the density matrix, can be associated to a
suitable pattern functionRη [O] (x,θ) . The corresponding expectation value〈O〉 is obtained by
averaging the pattern function over homodyne data. The technique automatically compensates
for the non–unit efficiency of the detectorsη and allows to fully characterize the state without
anya priori assumption on its statistics.

In this paper we highlight the peculiar characteristic ofpattern functionmethod of being free
of any hypothesis on the state. This is exploited to reveal unexpected deviations from Gaussian
state of a vacuum squeezed field due to residual threshold and detuning fluctuations of an OPO
source.

We have applied QHT to the output of a pump enhanced degenerate type–I OPO below
threshold. In particular, we have investigated these states for different pump power levels with
respect to the threshold and cavity escape efficiencies. In the ideal case (single–ended optical
cavity, no crystal loss) the output state is a minimum uncertainty one with squeezing in the
θ = 90◦ quadrature [10]. In practice, for continuous wave (CW) devices, this ideal state can
never be generated because of the unavoidable extra–losses of the optical cavity (input mirror
residual transmittance and/or crystal absorption). The effect of losses on vacuum squeezed
states is both to remove the minimum uncertainty property and to lower the available noise
reduction in the squeezed quadrature.

OPO field operators are described by Langevin equations depending linearly on Gaussian
noise operators. In recent years some papers have investigated the limits of the linear approx-
imation [11] by concluding that nonlinearity effects are out of reach of the present OPO tech-
nology. In fact they can be observed only in the very proximity of the threshold (distance from
threshold of the orders of 10−6). The conclusions of Ref. [11] however do not make justice of
other mechanisms which could produce some deviation from the Gaussian statistics. We refer
here to the unavoidable fluctuations of threshold and detuning phase, which depend on pump,
mechanical and thermal fluctuations.

Applying thepattern functionmethod to the radiation outing a standard OPO we have recon-
structed the photon distributionsρnn and compared them with those relative to a Gaussian field
[12]. Having found some deviations we have analyzed the Kurtosis of theX(θ) distributions
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for eachθ finding evidence of non Gaussian features. This provides evidence of the ability of
the above QHT method to recover the state details.

The paper is structured as follows. Section 2 outlines data analysis strategy and gives a gen-
eral glance topattern functionQHT. In section 3 a description of the experiment is given while
section 4 discusses the experimental results. Eventually, conclusions are drawn in section 5.

2. Data analysis

Thepattern functionQHT provides the complete quantum characterization of an optical signal
by average a suitable function over homodyne detection. Scanning the LO phase over a 2π
interval, the expectation value of any observableO is obtained as [13]:

〈O〉 = Tr[ρ O] =
∫ 2π

0

dθ
2π

∫ ∞

−∞
dx pη (x,θ) Rη [O](x,θ) (1)

with pη (x,θ) the distribution of the outcomesx for the quadratureX(θ), ρ the system density
matrix andη the detector efficiency. The pattern functionRη [O](x,θ) is:

Rη [O](x,θ) = Tr [O Kη (X(θ)−x)]

with

Kη (x) =
1
2

ℜ
[∫ +∞

0
k dk e

1−η
8η k2+ikx

]
.

If Rη [O](x,θ) satisfies the hypothesis of the central limit theorem, the statistical error on the
tomographic measurement is given by

δO =
1√
N

{
∆R2

η [O]
}1/2

with N the number of data and∆R2
η [O] the variance ofRη [O] over data.

In particular, the photon number distribution can be reconstructed from the diagonal elements
of the density matrixρnn = 〈n|ρ|n〉 the pattern function for the projectors being

Rη [|n〉〈n|](x,θ) =
∫ +∞

−∞
dk|k|e1−2η

2η k2−i2kxLn(k2) , (2)

with Ln(x) the n–th Laguerre polynomials. Remarkably, the variances of the field quadrature
∆X(θ) themselves can be reconstructed using the homodyne data. We have

Rη [∆X2(ψ)](x,θ) = Rη [X2(ψ)](x,θ)−Rη [X(ψ)]
2

(3)

with

Rη [X2(ψ)](x,θ) =
1
4

{
1+(4x2− 1

η
)
[
4cos2(θ −ψ)−1

]}
Rη [X(ψ)](x,θ) = 2xcos(θ −ψ)

The experimental apparatus enters QHT procedure only through the calibration of the data with
respect to the measured shot noise. We stress thatpattern functionallows to recover the ”true”
properties of the state without making any hypothesis on it. In this way, it can be used for
investigating some features of a nonclassical light source. For example, a departure of the QHT
reconstructedρnn from the ones predicted for a Gaussian state, suggests the limits of an OPO
model based on constant coefficient Langevin equations.
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An OPO with linearized and time independent coefficient Langevin equation, generates a
Gaussiansqueezed thermal vacuum (STV) with density matrix

ρ = S(ζ )νS†(ζ )

beingS(ζ ) = exp
{

1
2ζ 2a†2− 1

2ζ ∗2a2
}

the squeezing operator (ζ = reiψ squeezing parameter),

andν = (nt +1)−1 [nt/(nt +1)]a
†a a thermal state density matrix withnt average photon num-

ber.nt andr depend on the OPO coupling efficiencyηout = γs
κs

(κs = γs+ κs cavity damping

including output mirrorγs and extra–lossesκs) and distance from the thresholdE = P
Pth

(Ppump
power,Pth threshold power). Forηout = 1, nt = 0 the state is the squeezed vacuum described
in [10]. For ηout < 1 the state is no more a pure neither a minimum uncertainty one. Given
ηout, ∆X(θ) shows an oscillatory dependence onθ with the maximum(θ = 0) and minimum
(θ = π/2) respectively increasing and decreasing asE → 1.

Assuming that the signal is a STV and using QHT reconstruction of squeezed (∆Y) and
anti-squeezed (∆X) quadrature variances (see Eq. 3) one can recovernt andr from the relations

nt = 4∆X ∆Y−1, r =
1
2

ln
∆Y
∆X

Then, the photon number distribution follows from Eq. 23 in ref. [12]:

pn =
Cn

An+ 1
2

Pn

(
B
C

)
(4)

beingPn(x) then-th Legendre function of the first kind and

A = (1+nt)2− (2nt +1)sinh2 r

B = nt(1+nt)

C =
√

n2
t (1+nt)2− (2nt +1)2sinh2 r cosh2 r

A difference betweenρnn andpn suggests a deviation of the actual state from the expected STV.

3. Experimental set-up

The experimental setup, described in more details in Ref. [14], basically consists of a type–I
LiNbO3:MgO OPO, the homodyne detector and a data acquisition board (see Fig.1).

The second harmonic beam (@532nm) of a frequency-doubled dual wavelength continuous
wave Nd:YAG laser (Lightwave model 142, Pg=145 mW @532 nm and PIR=45 mW @1064
nm, shot–noise–limited above 2.5 MHz, 5 dB above the shot noise at 2 MHz) is used for pump-
ing the OPO. The OPO cavity is locked to the pump beam by Pound-Drever technique [15].
Degeneracy is achieved by finely tuning the non–linear crystal temperature (residual fluctua-
tions≤1.mK for longer than one hour).

Tomographic data have been acquired by changing the OPO cavity end mirror resulting in
two different value for the cavity escape efficiencyηout.

The OPO output goes to a homodyne detector with a total detection efficiencyη = 0.88±
0.02. Mode matching at the BS has been accomplished by spatially filtering the LO beam by a
mode cleaner cavity (MC), similar to the OPO one (∆l = |lOPO− lMC| < 0.1 mm). An optical
delay line with a resolution of 10µm is used for matching the two optical paths, while two half-
waves-plates guarantee polarization matching. Visibilities of 0.97±0.02 have been repeatedly
obtained.
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Fig. 1. Schematic of the experimental setup. It essentially consists of two main parts: I –
the OPO source (described into details in Ref. [14]) II – detection and acquisition bench
made of a homodyne detector, a demodulation module and a PCI acquisition card (14 bits
resolution).

Each photodiode (Epitaxx ETX300) is matched to a low–noise trans–impedance AC (> few
kHz) amplifiers based on CLC425. The difference photocurrent is further amplified by a low
noise high gain amplifier (Miteq AU1442 G=34dB, noise figure 1.2).

Acquisition is triggered by a linear ramp applied to the PZT, that drivesθ. The ramp is
adjusted to obtain a 2π variation in an acquisition window.

Tomographic data are acquired by sampling the difference photocurrent. To avoid bad influ-
ence from the laser low frequency noise, data sampling is moved away from the optical carrier
frequencyωIR by mixing the homodyne current with a sinusoidal signal of frequencyΩ. Tomo-
graphic measurements are performed atΩ = 3MHz well inside the cavity bandwidth (∆ν = 15
and 18MHz forηout = 0.4 and 0.5 respectively). The resulting current, filtered by a cascade of
low–pass filters with total bandwidthB	 1MHz, is eventually sampled by a digital acquisition
PC based module (Gage 14100) able to acquire up to 1M–points per run with 14 bits resolution.

The sampling rateν has been fixed to 5 Msamples/s for experimental convenience. We note
that a ratioB

ν < 1 reduces the number of totally uncorrelated samples. In this way the number of
effective samples is given byNe f f = N× B

ν . Being the measured process stationary the filtering-
sampling procedure does not alter the statistics of the outcomes. Our sampling conditions are
similar to the ones utilized in Ref. [2] while they used a ten times narrower filter. So doing
we have chosen to privilege the effective number of samples with respect to a better defined
spectral selection.

Calibration with respect to the noise of the coherent vacuum state is obtained by acquiring a
set of data by obscuring the signal while scanning the LO phaseθ. The total electronic noise
power has been measured to be 15 dBm below the shot–noise level.

4. Experimental results

In order to assess the role of threshold fluctuations we have reconstructed the states for different
values ofηout andE .

The first set of data is relative toηout = 0.4 andE = 0.5, 0.8 and 0.95. The threshold has
been directly measured at the end of the tomographic acquisition. For each value ofE we have
acquired typically 5 homodyne traces and recovered for eachρnn (up ton = 6, see Eq. (2)) and
the quadrature variances (∆X, ∆Y) normalized to the shot–noise.
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The reconstructed∆X and∆Y have been used for computing the photon number probability
pn by means of Eq.4 under the assumption of Gaussian state. Then,pn have been compared to
ρnn.

Fig. 2. Photon number distribution forE = P
Pth

= 0.5 (a), 0.8 (b) and 0.95 (c) as recovered
by pattern function tomography (ρnn – black columns) and in the Gaussian state hypothe-
sis (pn – grey columns). The two determinations are different with a deviation increasing
with pump power. Confidence intervals (not shown) are much smaller that the difference
between the two determinations.

In Fig. (2) we reportρnn and pn for E = 0.5 (lower plot), 0.8 and 0.95 (upper plot). As
it can be seen the two determinations are sensibly different, their difference being larger the
closer the OPO is to the threshold. ForE = 0.5 (lower plot)ρ00 = 0.780 andp0 = 0.743 (¡ 3%
difference), while forE = 0.95 (upper plot)ρ00 = 0.585 andp0 = 0.533 (10% difference). For
E = 0.8 (middle plot) is 8%.

This behavior has been confirmed by a second set of measurements performed with higher
coupling efficiency (ηout = 0.5). In this case we have acquired data forE = 0.5, 0.60, 0.65,
0.70, and 0.8. Similarly to the previous case, the relative deviation betweenρ00 andp0 increases
with E , while for givenE it is lower for higherηout. The maximum deviation is less than 6%
for E = 0.8. In Fig. 3 we report the relative deviation betweenρ00 and po for both coupling
efficiencies.

In order to understand the origin of these differences we have tested the Gaussian character
of the state by analyzing the data statistics at a fixedθ. For a Gaussian state, in fact, the Wigner
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Fig. 3. Relative difference between the two experimental determinations ofρ00 (by pattern
function tomography) andp0 (Gaussian hyphotesis). The reported deviations correspond
to E = 0.5, 0.6, 0.65, 0.7, and 0.8 (ηout = 0.5), andE = 0.5, 0.8 and 0.95 (ηout = 0.4).

function is Gaussian and so is the marginal distributionp(x,θ) at fixedθ. Any deviation of
p(x,θ) from a Gaussian is an indication of the deviation of the state itself. The deviation of a
statistical distribution from a Gaussian can be evaluated by means of the Kurtosis

K =
1
N

N

∑
i=1

(xi − x̄)4

σ4 −3

which vanishes in the Gaussian case.
Each data set refers to a LO phaseθ spanning between 0 and 2π corresponding to 106

points acquired in 200 ms. In order to test the statistics at a fixedθn we have divided the
tomographic set in 100 phase bins (10000 data each, lasting 2 ms). The histogram of these data
describesp(x,θn) for X (θn). We found a clear deviation from a Gaussian particularly for the
anti–squeezed quadrature, increasing as the threshold is approached. In Fig. 4 we report the
p(x,θn) variance and Kurtosis versus the phase BIN. For low pump level the Kurtosis keeps
below 0.15 for anyθn while for powers close to the threshold (upper plot)K reaches 0.4÷0.5
in correspondence of the two variance maxima. In all the acquisitionsK is practically 0 in
correspondence of variance minima.

We note that atE = 0.8 for ηout = 0.5 the deviations betweenρnn and pn are smaller than
those observed forηout = 0.4. This could indicate a less critical influence ofE as the coupling
efficiency is enhanced. Nevertheless, the Kurtosis in the two cases are equal within their error.

We note thatK for calibration data is zero within 5∗10−3, thus ensuring no spurious effects
of the detection apparatus on the observed distributions. Moreover, the correct functioning of
the homodyne set-up (optics + photodiodes + electronics) has been tested [5] in the tomographic
reconstruction of few photon coherent states.

This behavior can be reconducted to residual fluctuations of the OPO parameters. In the case
of a single–ended cavity the field inside the OPO,as satisfies an equation of the form

d
dt

âs = [χ +δ χ (t)] â†− [γs+ i∆(t)] âs+
√

2γsâ
in
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Fig. 4. Kurtosis ofp(x,θn) (red triangles) for three homodyne data sets:E = P
Pth

= 0.5 (a),
0.8 (b) and 0.95 (c). Empty circles indicate the variance (given in a.u.) for the sameθn. The
phase BIN at which the variance and the Kurtosis are maximum coincides. The Kurtosis
goes practically to 0 in correspondance of variance minima. The highest Kurtosis is≈ 0.5
for E = 0.95. In this case the relative deviation betweenρ00 and p0 (see text for details)
reaches 10%. It is worth noting that it has been observed a maximum noise reduction of 2.4
dB.

with fluctuating detuning∆(t) and non linear coupling coefficientχ +δ χ (t) with

δ χ (t) = χ

(
δ

∣∣a�
∣∣

|a�| − δT2

∆T2 − ∆2

γ2

)

depending on the pumpδ
∣∣a�

∣∣, temperatureδT and detuning∆ residual variations. Laser pumps
may exhibit intensity fluctuations of∼ 1%, while a Drever-Pound system stabilizes the cavity
with a residual detuning of∼ 10−2÷10−3γs.

Ignoring these fluctuations ˆas inherits the Gaussian statistics of ˆain thus giving rise to a
squeezed vacuum [10]. Switching onδ χ (t) and∆(t) âs begins to deviate from the Gaussian
state the more the greaterδ χ2 and∆2 are [16]. These results can be generalized to a double–
ended cavity.

5. Conclusions

In this paper we have examined the accuracy of quantum homodyne tomography (QHT) tech-
nique based onpattern functions, as applied to the vacuum squeezed field generated by an
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OPO below threshold. We show that this method is able to detect small state deviations from a
Gaussian statistics, due to the residual fluctuations of threshold and detuning.

Operating the OPO away and close to the threshold, we have obtained a set of density matrix
elements deviating in a more or less pronounced way from those of a vacuum squeezed thermal
state. These deviations have been confirmed by directly analyzing the distribution functions of
the quadraturesX (θ) for 100 values ofθ. Plotting the Kurtosis (K) of each distribution as a
function ofθ for different distances from the threshold we found that K is minimum(maximum)
for the squeezed (anti–squeezed) quadrature. In general Kmax decreases by moving away from
the threshold.

We conclude that QHT based on pattern function is an effective method for characterizing
quantum signals and assessing the correct operation of non classical light sources.
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