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Abstract

Isolation, chemical characterization and phytotoxicity of nine polyhydroxylated terpenes (five Ci3 nor-isoprenoids, two sesquiter-
penes, a spirostane and a pseudosapogenin) from Cestrum parqui L’'Herr are reported. In this work we completed the phytochemical
investigation of the terpenic fraction of the plant and described the structural elucidation of polar isoprenoids using NMR methods.
All the configurations of the compounds have been assigned by NOESY experiments. Four new structures have been identified as
(3S,5R,6R,7E,9R)-5,6,9-trihydroxy-3-isopropyloxy-7-megastigmene, So-spirostan-33,12f,15a-triol, and 26-O-(3'-isopentanoyl)-p-b-
glucopyranosyl-5a-furost-20(22)-ene-3f,26-diol, and as an unusual tricyclic sesquiterpene.

The compounds have been assayed for their phytotoxicity on lettuce at the concentrations ranging between 10~* and 10~7 M. The

activities of some compounds were similar to that of the herbicide pendimethalin.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To ensure the survival in the ecosystem, plants produce
secondary metabolites with original chemical or biological
features. If these compounds, introduced in the environ-
ment, interfere with the development of other vegetal
organisms, they are called allelochemicals. Among the sec-
ondary metabolites, terpenoids show a wide spectrum of
biological activities including potential allelopathy (Calera
et al., 1995; Skaltsa et al., 2000; Cangiano et al., 2002; Ma-
cias et al., 2002).

In the search for bioactive natural products from Med-
iterranean spontaneous plants and weeds (DellaGreca
et al., 2003, 2005), we investigated Cestrum parqui. This
plant, commonly named green cestrum, has been intro-
duced from South America for use as an ornamental shrub
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in gardens. It is now naturalised and widely distributed in
the Mediterranean area as one of the major weeds. It grows
in dense masses, crowding out other species and it is noted
for its extreme toxicity to farm animals.

The phytochemical study of the leaves of the plant has
already afforded the isolation of 12 C;3 nor-isoprenoids,
identified by spectroscopic means and chemical correla-
tions. These compounds showed phytotoxic effect on the
germination and growth of Lactuca sativa L. (D’Abrosca
et al., 2004a,b).

In this study we have completed the phytochemical
investigation of the terpenic fraction of the plants and de-
scribed the isolation, characterization and the phytotoxic-
ity of more polar novel isoprenoids.

2. Results and discussion

The hydroalcoholic extract of the leaves of C. parqui was
concentrated and performed in a separator funnel, first
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with CH,Cl, and then with EtOAc. The chemical study of
the first extract led to the isolation of the 12 C,3 nor-isopre-
noids (D’Abrosca et al., 2004a,b). Phytochemical investiga-
tion of the EtOAc extract led to the identification of nine
terpenoids. The use of NMR experiments (COSY, TOCSY,
HSQC, HMBC, NOESY, ROESY) and mass spectrometry
techniques led to identification of four new compounds 3,
7,8, and 9 and five known compounds: the Cy3 nor-isopre-
noids 1 (Macias et al., 2004), and 2 (Calis et al., 2002), the
glucosides 4, and 5 (Takeda et al., 1997) and the sesquiter-
pene 6 (Jakupovic et al., 1988).

Compound 3 (Fig. 1) showed a molecular formula
Ci6H3004 as suggested by spectral data and elemental anal-
ysis. The "H NMR revealed the presence of two olefin pro-
tons, as a doublet at 6 6.16 and a double doublet at 6 5.78,
three multiplets at § 4.34, 4.20 and 4.18; four diastereotopic
protons of two methylenes as two double doublets were also
present, at 6 1.81/1.59 and 2.04/1.70, both correlated in a
COSY experiment with the methine at ¢ 4.18. Furthermore,
we identified six methyl: three singlets at ¢ 0.91, 1.11 and
1.22, a doublet at 6 1.26, correlated with the methine at o
4.34 in the COSY spectrum, and two coincident doublets
at 0 1.35, showing cross peak with the methine at ¢ 4.20.
The '*C NMR showed 15 signals in accordance with C,;
nor-isoprenoids with an ethereal isopropyl group. In fact, be-
sides the methine carbinol already mentioned, there were two
trisubstituted carbinols at 6 77.8 and 69.4. These data were in
accordance with a 3,5,6,9-tetrahydroxy-7-megastigmene. In
fact, the methyls at § 1.35 were both correlated, in the HMBC
experiment, with the carbon at § 68.2, the proton at 6 4.18,
assigned to the H-3 proton, was heterocorrelated with the
carbon at 6 69.9 and with the methyls at 6 21.6. The NOESY
experiment showed a NOE between the H-3 proton and the
H-13 and H-12 methyls, indicating its o orientation. The
NMR data of compound 3 were in accordance with those
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Fig. 1. Polar C,3 nor-isoprenoids isolated from C. parqui.

reported for (3S,5R,6R,7E9R)-3,5,6,9-tetrahydroxy-7-
megastigmene, suggesting an R configuration for the C-5
and C-6 chiral carbons. The absolute configuration to the
C-9 carbon has been confirmed by Mosher’s method
(D’Abrosca et al., 2004a,b).

Compound 7 (Fig. 2) had an unusual sesquiterpenic
skeleton. It had a molecular formula C;sH,,0, indicating
the presence of five unsaturations in the molecule.

The '*C NMR (Table 1) showed 15 carbon signals iden-
tified, on the basis of a DEPT experiment, as three methyls,
four methylenes, four methines, and four tetrasubstituted
carbons, whose values allowed us to identify them as a car-
bonyl (6 200.5), an olefinic carbon (6 160.1), a carbinol car-
bon (& 76.1) and an aliphatic sp> carbon at 6 40.1. The 'H
NMR data (Table 1), together with those derived from an
HSQC experiment, showed a singlet olefinic proton at ¢
5.82 bonded to the carbon at ¢ 122.2, a methylene as singlet
at 8 2.45, correlated with the carbon at 6 50.0, and two
diasterotopic protons at ¢ 2.43 and 2.29 both correlated
with the carbon at ¢ 50.2. In the region ranging from
2.05 to 1.00 ppm a doublet methine at é 1.72 (bonded to
the carbon at ¢ 57.9), two singlet methyls at ¢ 1.32, and
1.15, correlated with the carbons at ¢ 28.0 and 28.4, respec-
tively, and a doublet methyl at 6 1.03 (J = 6.8) bonded to
the carbon at 6 12.2 were identifiable. The '"H-'H COSY
and TOCSY experiments showed the following correla-
tions: the doublet methyl correlated with the methine at ¢
1.40, which showed cross peak with the methine at o
1.90. This proton was correlated with the doublet methine
at 6 1.72 and with the methylene protons at 6 1.48 and 1.98,
bonded to the carbon at 6 30.4, which were both correlated
with the methylene protons at ¢ 1.64 and 1.73, bonded to
the carbon at ¢ 39.9. The HMBC experiment furnished use-
ful data for solving the structure (Table 1). In fact, the car-
bonyl was correlated with both the methylene protons at o
2.29 and 2.43 which in turn were correlated with the car-
bons at ¢ 39.9, 40.1 and 57.9. This last heterocorrelated
with the methylene protons at § 1.48 and 1.98, with the
methines at ¢ 1.40 and 1.90, and with the methylene at ¢
2.45, and with the methyl at 6 1.15. Finally, the latter meth-
ylene protons showed interactions with the carbinol and
both the olefinic carbons. These data were in accordance
with an unusual tricyclic structure of a sesquiterpene as
shown in Fig. 2. The coupling constant of the H-10
methine (10.7 Hz) indicated a trans orientation with the
H-9 proton. The relative configurations at the chiral car-
bons have been determined by a NOESY experiment
(Fig. 3). In the Figs. 2 and 3 compound 7 has been drawn
as one of its enantiomer. The H-14 methyl give NOE with
the H-15 methyl, the H-8 methine and with one of the H-6
protons, which was also correlated with the H-10 proton.
The H-15 methyl showed correlations with the H-9 and
the H-11 proton at ¢ 1.48. Finally, the H-13 methyl gave
NOE with the H-10 methine and the H-2 proton at 6 2.43.

Compound 8 (Fig. 2) has been identified as So-spiros-
tane-3fB,12fB,15a-triol.  Its  molecular formula was
C,7H4405 as suggested by the EI-MS spectrum, showing
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Fig. 2. Sesquiterpenes and spirostanes isolated from C. parqui.

Table 1

NMR data of compound 7 in CDCl;

Position  dc DEPT oy HMBC (C — H)
1 40.1 C - H2a, H2B, H13
2 50.2 CH, 2.29 d (15.6 Hz) HI11

2.43 d (15.6 Hz)
3 200.5 C - H2a, H2B
4 1222 CH 582s H2B, H6, H10
5 160.1 C - H6, H10
6 50.0 CH, 245 s H14
7 76.1 C - H6, H14, H1S
8 46.6 CH 1.40 dq (6.8, 9.8 Hz) H6, H14, H15
9 48.8° CH 1.90 m H10, H15
10 579 CH 1.72 d (10.7 Hz) H2a, H2B, H6, HS,
H9, H11,H13
11 304 CH, 1.48 m HS8
1.98 m
12 399 CH, 1.64 m H2a, H2B, H10,
1.73 m H11, H13

13 28.4 CH; 1.15 s H2a, H2B, H12

14 28.0 CH; 1.32 s H6, H7, H8

15 122 CH; 1.03 d (6.8 Hz) HS, H9

the molecular peak at m/z 448 and by the elemental

analysis.

The "H NMR spectrum showed six protons geminal to
an oxygenated function, four as a double doublets at §

Fig. 3. Selected NOE observed in the NOESY experiment of sesquiter-
pene 7.

4.34,4.12, 3.52, and 3.28, a multiplet at 6 3.59, and a triplet
at 6 3.39. In the upfield region, two singlet methyls at § 0.99
and 0.86 and two doublet methyls at 6 1.02 and 0.81 were
evident. The '*C NMR showed five carbinol signals at o
82.2, 80,5, 71.2, 69.7, and at § 67.3, apart from an acetal
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carbon at ¢ 110.3. In the HMBC spectrum, this signal
showed correlations, with the protons at § 1.88 (H-20),
and the methylene at 6 3.52 and 3.39. The 'H-'H COSY
and TOCSY experiments showed correlations between
the doublet methyl at 6 1.02 and the methine at 6 1.88. This
latter correlated with the methine at 6 2.12, which showed
cross peak with the proton at 6 4.34. Finally, this latter
proton was correlated with the proton at § 4.12. These data
were in accordance with a 3B-hydroxyspirostane skeleton
with an hydroxyl group at the H-15 carbon. The correla-
tions, in the HMBC experiment, between the proton at ¢
3.28 with the methyl at 6 12.7, bonded to protons at ¢
0.99, and between this methyl with the carbinol at § 80.5
localized another hydroxyl at the C-12 carbon. The com-
parison of *C NMR with those present in the literature
(Wawer et al., 2001), allowed us to define an o configura-
tion for the H-5, H-17 and for the methyls H-21 and
H-27 and a R configuration for the C-22 carbon. The ste-
reochemistry of C-12 and C-15 carbons was defined by a
NOESY experiment. In fact, the H-18 methyl showed a
NOE effect with the H-15 proton, justifying an o orienta-
tion for the hydroxyl group, while the proton H-12 at ¢
3.28 which showed a NOE effect with the 17a proton justi-
fying a B orientation for the hydroxyl group on the C-12
carbon.

Compound 8 has been described for the first time,
although spirostanol glycosides have been already isolated
from C. parqui (Baqui et al., 2001).

Compound 9 was identified as the pseudosapogenin glu-
coside 26-0-(3-isopentanoyl)-p-p-glucopyranosyl-5a-fur-
ost-20(22)-ene-3B,26-diol. It had a molecular formula
C;33Hg,09 as suggested by the 13C NMR and the MALDI-
MS experiments, which showed the pseudomolecular ion
at m/z 663 [M + 17"

The '"H NMR spectrum showed 11 protons geminal to
oxygen. The presence of a doublet at 6 4.34 and a methy-
lene at 6 3.92 and 3.81 suggested a monosaccharide moiety
in the molecule. A multiplet at § 4.70, another methylene as
two double doublets at 6 3.77 and 3.35, and a multiplet at o
3.57 were also evident. The 'H-'H COSY and TOCSY
experiments confirmed this hypothesis, showing correla-
tions between the anomeric proton at ¢ 4.34 and a double
doublet at ¢ 3.49 (H-2’), which gave cross peaks with an
downshifted double doublet at 6 4.91. This latter showed
correlations with a multiplet at 6 3.41, which gave cross
peak with the diasterotopic methylene protons. A multiplet
at ¢ 4.70, another methylene as two double doublets at ¢
3.77 and 3.35, and a multiplet at J 3.59 were also evident.
In the upfield region three singlet methyls at 6 0.64, 0.81
and 1.56 and three doublet methyls 6 0.99 (2x) and 0.91
were identifiable. A signal was due to a methyl at 6 0.91
and another due to two coincident methyls at 6 0.99. The
3C NMR revealed signals due to 38 carbons, which were
identified, on the basis of a DEPT experiment, as six meth-
yls, 13 methylenes, 14 methines and five tetrasubstituted
carbons. The HSQC experiment allowed the attribution
of the protons to the corresponding carbons.

The H-3’ proton of the sugar moiety was heterocorre-
lated, in a HMBC experiment, with a carboxyl carbon at
0 175.1, which showed correlations with a doublet methy-
lene at 6 2.28 and a methine at 6 2.21, bonded to the car-
bons at § 43.5 and 25.9, respectively. These last showed
interactions with two coincident methyls at 6 0.99, bonded
to the carbon at § 22.3. These data suggested the presence
of an isopentanoic acid esterificated to the hydroxyl group
bonded at C-3’ carbon of the sugar. The data were sup-
ported by the MALDI-MS experiment that showed the
fragmentation peak at m/z 417, due to loss of 3’-isopenta-
noyl-B-p-glucopyranosyl group from the molecule. The
comparison of the remaining carbon signals with those of
compound 8 and with other related compounds (Tobari
et al., 2000), suggested a pseudotigogenin structure for
the aglicone. The HMBC experiment showed correlation
between the H-27 methyl at 6 0.91 with the C-24, C-25
and C-26 carbons at ¢ 30.6, 34.9, and 75.3, respectively.
Correlations between the H-17 methine at § 2.44 and the
C-16, C-18, C-20, C-22 carbons were also evident. Further-
more, the correlation between the anomeric proton and the
C-26 carbon suggested the presence of the pseudotigogenin
linkage of the 3’-isopentanoyl-B-p-glucopyranosyl moiety
at the C-26 hydroxyl group of the aglicone. The NMR data
suggested the presence of glucose in the molecule. This
hypothesis was confirmed by the GC comparison of the
alditole acetate, obtained from hydrolyzed compound 9,
with an authentic sample of acetylated glucitol.

In order to evaluate the potential phytotoxicity, we have
studied the effects of aqueous solutions of the isolated com-
pounds ranging from 10~ to 1077 M on germination, root
and shoot elongation of L. sativa L. (lettuce). The results of
the bioassays are reported in Fig. 4.

With the exception of compound 2, no significant effects
were observed on lettuce germination. The C;3 nor-isopre-
noids 1, 4, and 5 had a similar activity, showing a moderate
phytotoxicity on both root (Fig. 4B) and shoot elongations
(Fig. 4C). On the contrary, compound 2 showed a good
activity on the germination (Fig. 4A), root and shoot elon-
gation at all the tested concentrations. The aglicones of glu-
cosides 4 and 5 have been tested on L. sativa (D’Abrosca
et al., 2004a,b) showed no significant effects: the values in-
cluded between +10% from control. The presence of the
sugar moiety enhances the phytotoxicity on the plant devel-
opment by inhibiting, in particular, the shoot elongation.
In fact, their values achieved about 40% inhibition at the
higher concentrations. Sesquiterpene 6 was inactive, while
the spirostane 8 was the most active compound inhibiting,
the root and shoot elongations at 10~* M, about 60%. At
this concentration, slight effects of over 30% were observed
on the seed germination too.

The most phytotoxic compounds 1, 2 and 8, have been
compared with the Pendimethalin, a commercial post-
emergency herbicide for their effects on seedling growth
(Fig. 5). Literature data reported that this herbicide acts
as an inhibitor for cell division and elongation (Hess and
Bayer, 1977; Richard and Hussey, 1999). Furthermore,
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Fig. 4. Effect of terpenoids from C. parqui on germination (A), root length
(B) and shoot length (C) of Lactuca sativa L. Value presented as
percentage differences from control and are not significantly different with
P >0.05 for Student’s ¢-test. (a) P <0.01; (b) 0.01 <P <0.05.

studies on the alga Protosiphom botryoides indicated that
growth rate, cell number, chlorophyl level and dry weight
decrease with increasing Pendimethalin concentration
(Shabana et al., 2001).

All the compounds showed a toxic effect similar to her-
bicide, especially at the lowest concentration for the ter-
pene 2.

In conclusion the terpenes isolated from C. parqui, may,
play a role in the phytotoxicity of the extract on the lettuce
(D’Abrosca et al., 2004a,b). The less polar ones seem to
have no relevant effects. The introduction of polar group
1-3 or sugar moicty (4, 5) improve their phytotoxicity,
probably for the enhanced solubility in aqueous solution.
Also spirostanol 8 was active, especially at the higher con-
centrations used in the bioassays. This compound showed a
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Fig. 5. Comparison of phytotoxicity of compounds 1, 2 and 8 with the

post-emergency herbicide Pendimethalin (P) on Lactuca sativa L. Value
presented as percentage differences from control.

good correspondence between concentration and effect for
all the measured parameters.

3. Experimental
3.1. General experiment procedures

NMR spectra were recorded at 500 MHz for 'H and
125 MHz for '*C on a Varian 500 spectrometer Fourier
transform NMR, in CDCl; or CD3;OD solutions at
25°C. Proton-detected heteronuclear correlations were
measured using HMQC (optimised for 'Jyc = 145 Hz)
and HMBC (optimised for "Jyc = 8 Hz). Optical rotations
were measured on a Perkin—Elmer 343 polarimeter. IR
spectra were determined in CHCIl; solutions on a FT-IR
Perkin—Elmer 1740 spectrometer. Electronic ionization
mass spectra (EI-MS) were obtained with a HP 6890
instrument equipped with a MS 5973 N detector. Matrix
assisted laser desorption ionization (MALDI) mass spectra
were recorded using a Voyager-DE MALDI-TOF mass
spectrometer. The HPLC apparatus consisted of a pump
(Shimadzu LC-10AD), a refractive index detector (Shima-
dzu RID-10A) and a Shimadzu Chromatopac C-R6A re-
corder. Preparative HPLC was performed using RP-8
(Luna 10 pm, 250 x 10 mm i.d., Phenomenex), RP-18
(Luna 10 pm, 250 x 10 mm i.d., Phenomenex) or SiO,
(Maxsil 10 silica, 10 pm, 250 X 10 mm i.d., Phenomenex),
columns. Analytical TLC was performed on Merk Kiesel-
gel 60 F,s54 or RP-18 F,s4 plates with 0.2 mm layer thick-
ness. Spots were visualized by UV light or by spraying
with H,SO4~AcOH-H,O (1:20:4). The plates were then
heated for 5 min at 120 °C. Prep. TLC was performed on
Merck Kieselgel 60 F,s4 plates, with 0.5 or 1 mm film thick-
ness. Flash column chromatography (FCC) was performed
on Merck Kieselgel 60 (230-400 mesh) at medium pressure.
Column chromatography (CC) was performed on Merck
Kieselgel 60 (70-240 mesh), Baker Bond Phase CI18
(0.040-0.063 mm), Fluka Reversed phase silica gel 100 C8
(0.040-0.063 mm) or on Sephadex LH-20® (Pharmacia).
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3.2. Plant material

Plants of C. parqui were collected, in the vegetative state,
in Sant’Agata de’ Goti, near Caserta (Italy), and identified
by Dr. Assunta Esposito of the Second University of Na-
ples. A voucher specimen (CE125) has been deposited at
the Herbarium of the Dipartimento di Scienze della Vita
of Second University of Naples.

3.3. Extraction and isolation

Fresh leaves of C. parqui (30 kg) were frozen at —80 °C,
powdered and extracted with MeOH-H,O (1:9) for 48 h at
10 °C. The hydroalcoholic solution, after the evaporation
of the MeOH, was extracted in a separator funnel first
using CH,Cl, and then with EtOAc. Both the organic frac-
tions were dried with Na,SO, and concentrated under vac-
uum, yielding 8.0 and 9.2 g of crude residue respectively.
Both the organic extracts have been stored at —80 °C until
purification.

3.3.1. CH,Cl, extract fractionation

The CH,Cl, extract was chromatographed on silica gel,
with CHCI; and EtOAc solutions, to give four fractions
A-E.

Fraction A, eluted with CHCl;, was rechromatographed
on RP-18 silica eluting with MeOH-MeCN-H,O (2:1:1)
and collecting fractions of 10 mL. The fractions 14-24 were
purified on TLC eluting with CHCl3-Me,CO (17:3) to have
pure 7 (2mg). Fraction B, eluted with EtOAc-CHCl;
(1:19) was rechomatographed on Sephadex LH-20 eluting
with hexane—-CHCl;-MeOH (3:1:1) and collecting fractions
of 5ml. The fractions 21-34 were purified by HPLC on
RP-18 semipreparative column eluting with MeOH-
MeCN-H,O (2:1:2) to obtain pure 1 (2 mg) and 6 (5 mg).
Fraction C, eluted with EtOAc-CHCl; (1:9), was purified
on RP-18 silica gel, eluting with MeOH-MeCN (3:2) to
have pure 8 (7 mg). Fraction D, eluted with EtOAc-CHCl;
(1:1), was rechromatographed by FCC on SiO,, eluting
with the lower phase of the biphasic solution constituted
by CHCl;-MeOH-H,O (13:7:6). We obtained a crude frac-
tion which was purified by HPLC on RP-18 column, elut-
ing with MeOH-MeCN-H,O (3:1:1) to have pure 2 (2 mg).
Fraction E, eluted with EtOAc, was rechromatographed by
CC on RP-18 eluting with MeOH-MeCN-H,O0 (2:1:2) to
obtain a fraction which was purified by TLC, eluting with
the lower phase of the biphasic solution obtained by
CHCIl3-MeOH-H,0 (13:7:6), to give pure 9 (8 mg).

3.3.2. EtOAc extract fractionation

The EtOAC extract was chromatographed on silica gel,
with CHCI; and Me,CO solutions, to give two fractions
F-G.

Fraction F, eluted with Me,CO-CHCI; (1:1), was chro-
matographed on Sephadex LH-20, eluting with EtOH-
H,O (3:1) to have a crude fraction which was purified by
TLC, eluting with the lower phase of the biphasic solution

obtained by CHCl;-MeOH-H,O (13:7:6), to obtain pure 3
(8 mg). Fraction G, eluted with Me,CO-CHClI; (3:2), was
chromatographed on Sephadex LH-20, eluting with
EtOH-H,O (1:1) to have a crude fraction which was puri-
fied by TLC, eluting with the upper phase of the biphasic
solution obtained by EtOAc-MeOH-H,0O (79:10:11), to
have pure 4 (5 mg) and 5 (11 mg).

3.3.3. Compound characterization

3.3.3.1. (3S5R6R7E9R)-56,9-Trihydroxy-3-isopropyl-
oxy-7-megastigmene (3). Colourless oil; [a]f)s —11.7°
(MeOH, ¢ 0.02); '"H NMR (500 MHz, CD;OD): § 6.16
(1H, d, J=15.6 Hz, H-7), 578 (1H, dd, J=15.6 and
6.3 Hz, H-8), 4.34 (1H, m, H-9), 4.20 (1H, m, i-PrO), 4.18
(1H, m, H-3), 2.04 (1H, dd, J=14.1 and 3.3 Hz, H4.,),
1.81 (1H, dd, J=14.1 and 3.3 Hz, H2,,), 1.70 (1H, ddd,
J=14.1, 4.5 and 1.8 Hz, H-4,,), 1.59 (1H, dd, J=14.1
and 4.8 Hz, H-2.4), 1.35 (6H, d, J= 6.6 Hz, i-PrO), 1.26
(3H, d, J= 6.3 Hz, H-10), 1.22 (3H, s, H-13), 1.11 (3H, s,
H-12), 0.91 (3H, s, H-11). '*C NMR (125 MHz, CD;0D):
0135.4 (C-8), 131.4 (C-7), 77.8 (C-6), 69.9 (i-PrO), 69.4 (C-
5), 69.1 (C-9), 68.2 (C-3), 47.6 (C-2), 44.2 (C-4), 38.7 (C-1),
28.9 (i-Pr0O), 27.8 (C-11), 26.0 (C-12), 24.0 (C-13), 21.6 (C-
10). EI-MS: m/z 286 [M]", 271 [M —Me]", 268
[M — H,OJ"; elemental analysis — found: C, 67.32; H,
10.65. Calc. for Ci¢H3004: C, 67.10; H, 10.56%.

3.3.3.2. 1,2,2a,3,6,7,8,8a-Octahydro-7-hydroxy-2a,7,8-
trimethylacenaphthylen-4(4H )-one (7). In describing this
compound we do not use the [UPAC numeration but we
have adopted that reported in Fig. 2. Colourless oil; [05]12)5
+27.1° (CHCls, ¢ 0.02); UV iM°H nm (loge): 244 (3.7);
IR vHh em™': 3634, 2926, 1663; 'H NMR: see Table 1;
13C NMR: see Table 1; EI-MS: m/z 234 [M]", 216
[M — H,OJ"; elemental analysis — found: C, 76.44; H,
9.63. Calc. for C5H»,0,: C, 76.88; H, 9.46%.

3.3.3.3. Sa-Spirostan-3f,12f,150-triol (8). White powder;
[oz]2D5 —19.3° (CH,Cl,, ¢ 0.07); IR vHC: em~: 3675, 2926;
'"H NMR: (500 MHz, CDCly): 4.34 (1H, dd, J=9.3 and
5.4 Hz, H-16), 4.12 (1H, dd, J=5.4 and 3.6 Hz, H-15),
3.59 (1H, m, H-3), 3.52 (2H, dd, J=11.1 and 4.5 Hz, H-
26), 3.39 (1H, 1, J=11.1 Hz, H-26), 3.28 (1H, dd, J=9.3
and 5.4 Hz, H-12), 2.12 (1H, ¢, J= 5.4 Hz, H-17), 1.88
(1H, overlapped, H-20), 1.02 (3H, d, J= 6.9 Hz, H-21),
0.99 (3H, s, H-18), 0.86 (3H, s, H-19), 0.81 (3H, d,
J=6.3 Hz, H-27); 3C NMR: see Table 2; EI-MS: m/z
448 [M]", 433 [M — Me]", 430 [M — H,O]"; elemental
analysis — found: C, 72.46; H, 9.24. Calc. for C,7H4405:
C, 72.28; H, 9.89%.

3.3.3.4. 26-0O-(3'-Isopentanoyl)-pB-p-glucopyranosyl-5o-fur-
05t-20(22 )-ene-3p,26-diol (9). White powder; IR y“HC:
em 't 3682, 2923, 1717; '"H NMR: (500 MHz, CD;OD):
491 (1H, dd, J=9.3 and 8.7 Hz, H-3'), 4.70 (1H, m, H-
16), 4.34 (1H, d, J =7.8 Hz, H-1"), 3.92 (1H, dd, J=12.0
and 3.6 Hz, H-6'), 3.81 (1H, dd, J=12.0 and 5.1 Hz,
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Table 2
13C NMR data of spirostane 8 and glucoside 9 in CDCl;
Position 8 9
DEPT dc DEPT dc
1 CH, 38.1 CH, 38.1
2 CH, 313 CH, 27.0
3 CH 71.2 CH 71.3
4 CH, 38.1 CH, 38.1
5 CH 45.1 CH 44.8
6 CH, 30.6 CH, 30.0
7 CH, 36.9 CH, 324
8 CH 30.3 CH 34.9
9 CH 53.7 CH 54.3
10 C 35.8 C 35.6
11 CH, 28.5 CH, 23.0
12 CH 80.5 CH 39.7
13 C 46.3 C 39.7
14 CH 59.1 CH 54.8
15 CH 69.7 CH 31.5
16 CH 82.2 CH 84.3
17 CH 60.2 CH 64.2
18 CH; 12.7 CH; 14.1
19 CH; 12.2 CH; 12.3
20 CH 429 C 103.7
21 CH; 13.6 CH; 11.6
22 C 110.3 C 151.3
23 CH, 313 CH, 21.2
24 CH, 29.7 CH, 30.6
25 CH 30.2 CH 34.9
26 CH, 67.3 CH, 75.3
27 CH; 17.2 CH; 18.7
1Y - - CH 103.3
2! - - CH 75.7
3 - - CH 78.0
4 - - CH 69.9
5’ - - CH 72.0
6 - - CH, 62.3
1”7 - - C 175.1
2" - - CH, 435
3" - - CH 259
4" - - CH; 223
5" - - CH; 22.3

H-6'), 3.77 (1H, dd, J = 9.3 and 6.0 Hz, H-26p), 3.65 (1H,
t, J=9.3 Hz, H-4'), 3.57 (1H, m, H-3), 3.49 (1H, dd,
J=8.7 and 7.8 Hz, H-2'), 3.41 (1H, m, H-5'), 3.35 (1H,
dd, J=9.3 and 7.2 Hz, H-260), 2.44 (1H, d, J=10.5 Hz,
H-17), 2.28 (2H, d, J=6.6Hz, H-2"), 2.21 (1H, m,
H-3"), 1.56 (3H, s, H-21), 0.99 (9H, d, J = 6.6 Hz, H-4"',
H-5"), 0.91 (3H, d, J = 6.6 Hz, H-27), 0.81 (3H, s, H-18),
0.64 (3H, s, H-19). >*C NMR: see Table 2. MALDI-MS:
m/z 663 [M + HJ", 417 [M — C;;H,,04]"; elemental analy-
sis — found: C, 68.87; H, 9.36. Calc. for C33H¢O9: C, 68.85;
H, 9.43%.

3.3.4. Preparation of the alditol acetate of 9

A sample of 9 (2mg) was hydrolysed with 2 N TFA
(250 pl) for 1 h at 120 °C. Two hundred and fifty microli-
tres of isoPrOH were added to the mixture and kept under
nitrogen for 1 h. To the dried residue, dissolved in deion-
ised water (200 pl), 2 mg of NaBH, were added in magnetic
stirring. After 1 h two drops of AcOH were added to elim-

inate the excess of hydride and the solution was dried under
N>,. The residue was kept overnight on P,O5 at room tem-
perature. Successively, 250 ul of pyridine dry and 100 pl of
Ac,O were added and the mixture was kept in magnetic
stirring for 30 min at 120 °C. After the removal of the
solvent the residue was dissolved in water (0.5 ml),
extracted with CH,Cl, (0.5 ml) and analysed by GLC.

3.4. Bioassays

Seeds of L. sativa L. (cv Napoli V. F.) collected during
2003, were obtained from Ingegnoli S.p.a. All undersized
or damaged seeds were discarded and the assay seeds were
selected for uniformity. Bioassays used Petri dishes (50 mm
diameter) with one sheet of Whatman No. 1 filter paper as
support. In four replicate experiments, germination and
growth were conducted in aqueous solutions at controlled
pH. Test solutions (10~* M) were prepared using (2-[N-
morpholinojethanesulfonic acid (MES; 10 mM, pH 6)
and the rest (107°~10~’ M) were obtained by dilution. Par-
allel controls were performed. After adding 25 seeds and
5 ml test solutions, Petri dishes were sealed with Parafilm®
to ensure closed-system models. Seeds were placed in a
growth chamber KBW Binder 240 at 25 °C in the dark.
Germination percentage was determined daily for five days
(no more germination occurred after this time). After
growth, plants were frozen at —20 °C to avoid subsequent
growth until the measurement process. Data are reported
as percentage differences from control in the graphics and
tables. Thus, zero represents the control; positive values
represent the stimulation of the parameter studied and neg-
ative values represent inhibition.

3.5. Statistical treatment

The statistical significance of differences between groups
was determined by a Student’s ¢-test, calculating mean val-
ues for every parameter (germination average, shoot and
root elongation) and their population variance within a
Petri dish. The level of significance was set at P < 0.05.
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