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Abstract
This work presents the bayesian reliability estimators known as “Practical Bayes Estimators” (PBE), being developed from Engineers’ point of view during last years.

These estimators fuse the designers’ and statisticians’ knowledge analytically, using the Bayes theorem that works as a real mathematical melting pot. In this way we provide the statistical estimation process with more efficiency, not wasting any kind of information. Moreover, we promote continuous design improvement involving everyone’s commitment, as suggested by the most advanced management policy aiming to obtain Total Quality.

1. Introduction

Today, a new technological product must ensure a specified reliability level from its initial launching on the market, on pain of obscuring the company image which will be restored with difficulty by subsequent improvements. Generally, the reliability targets can be achieved by means of a good design and many life tests on components or subsystems. Then, the analysis of the collected failure data is performed to detect a possible discrepancy between the in-service and the expected reliability, in order to allow the designers to adopt immediately the necessary corrective actions.

Obviously, being the failures random events, only statistical methodology is suitable to analyze them properly. Nevertheless, analyses based on pure classical statistical methods, carried out ignoring all the available technological knowledge, fail very often in their aim. That is mainly due to two things:

a) frequent scarcity of life data (caused by the high cost of the items; the very high level of their reliability; etc.) prevents to provide the obtained estimate with a confidence interval of practical value;

b) lack of understanding, of the obtained statistical estimates, by the designers (who should exploit them) they not having been involved in the estimation process.

To overcome these difficulties we can analytically fuse the designers’ and statisticians’ knowledge, using reliability estimators based on the application of Bayes theorem, that has got the peculiarity of allowing one to merge technological and statistical data. In this way, differently from any classical (i.e. not-bayesian) estimators, they provide the statistical estimation process with more efficiency not wasting any information achieved by usual engineering design practice. Besides, as a further consequence, they promote continuous design improvement involving everyone’s commitment, as needed in order to realize Total Quality.
In particular, this work presents bayesian reliability estimators known as “Practical Bayes Estimators” (PBE) being developed from Engineers’ point of view and aplied in several contexts during last years [1] [5] [6] [7] [8]. They allow to reduce the needed number of failure data reinforcing the statistical experimental information by incorporating in the estimation procedure also the available “a priori” Engineers’ knowledge.

2. Practical and modified-practical Bayes estimators

The practical bayes estimators (PBE) were first proposed ten years ago [1] [9] on the basic idea of incorporating Engineers’ information directly (i.e., without any unnatural manipulation and/or addition) into the reliability estimation process.

Technically the PBE approach can be seen as a compromise between the Classical Bayes approach and the Empirical one. The former is based on the use of completely specified prior distributions, the latter uses prior distributions fitted to past and independent experimental observations in a context of a two-stage sampling plan. Instead the PBE approach requires only the specification of those parameters, of the prior distributions, in which the Engineers’ prior knowledge can really be converted, leaving the remaining parameters unspecified.

The PBE were introduced in 1982 [1] for the Weibull model. Subsequently they were used in technological applications [6] [7], then formulated for the Inverse Weibull model [8] and applied to accelerated tests too [4].

However the choice of the parameters of the priors of these estimators is subjected to some restrictions that gave rise to a formal comment [10] and an improved formulation of the priors [5]. This improvement costs a further (alternative) definition of a prior, i.e., we gave two alternative formulations for one of the prior distributions according to fact that the anticipated values of the Weibull shape parameter are or are not greater than a unit. However, since the above restrictions don’t seriously affect the statistical properties of the PBE, this paper refers to their original formulation [1], which is the simplest one, leaving the modified practical Bayes estimators (MPBE) [5] to more experienced users and/or to very critical situations.

Notation
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reliable life, viz., quantile of the Weibull distribution such as that 
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anticipated (mean) value given by prior knowledge for 
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N-dimensional sample array

, 
scale and shape parameters of the Weibull distribution
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(used to simplify the mathematics)
a, b
scale and shape parameters of the Inverse Weibull distribution

N
sample size

1, 2
prior numerical interval for 
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implies an estimate.

PBE
indicates Practical Bayes Estimators (or Estimates)

ML
indicates Maximum Likelihood.

3. The problem and the Bayes Approach

The Weibull distribution is well known and widely used as a reliability model, since it possesses many desiderable properties:

1. it is characterized by two parameters only (very seldom a third parameter must be considered);

2. it assumes a wide range of shapes, depending on the values of the parameters;

3. the meaning of its parameters is clear;

4. the values of its parameters are closely related to the nature of the involved mechanism of failure;

5. a simple likelihood function is associated to its samples.

The Weibull survival function is:
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that can be immediately reparameterized in terms of reliable life, xR, and shape parameter, , in which the Engineers’ knowledge can be more easily converted:
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being xR and  both unknown. As an example of xR , if R90% and xR=1,000 hours, then 90% of the items have lives greater than 1,000 hours.

A life test on N items results in a sample of N ordered life times. If N is very small, say 3, but various difficulties (item cost, time, etc.) prevent one from having other applicable experimental observations, then it is convenient to use other sources of information [11] [12]. On the other hand, in engineering, very often some knowledge exists about the mechanism of failure under consideration, which can be converted into quantitative form about . Moreover, an engineer presumably knows more than the simple order of magnitude of the life which the designed item has, e.g., he has a quite precise knowledge of an xR. Then, with both these pieces of information, he can formulate a numerical interval (1, 2) for  and an anticipated value of xR. The PBE allow to combine this prior knowledge about  and xR with a few test results to give very good parameter estimates, based on the hypothesis of Weibull life.

4. Technological knowledge and PRIOR DISTRIBUTIONS

In order to evaluate the PBE, of the Weibull survival function, the following elementary steps must be performed. These are also useful to highlight all the assumpions on which the resulting estimates are based.

Assumption of the prior probability density function for the shape parameter 
The uniform prior probability density function in the interval (1, 2) is assumed to fit the degree of belief on the shape parameter  of the sampling distribution:
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it appears to be as non-restrictive as feasible.

4.1. Formulation of the prior information on 
The prior knowledge for  is converted into the values 1 and 2, of the prior (3)

, using the well known relationship betwen the failure type and the value of  (e.g., first running and early failures imply 1; useful life and chance failures imply 1; old and wearout failures imply 1).

These two parameters can be effectively and easily anticipated since, as already noted in [1], the engineer’s information, about the mechanism of failure, can always be expressed in terms of an interval (1, 2). This interval must be chosen wide enough in order to plausibly contain the unknown (true) value of the Weibull shape parameter.

The only restriction, already anticipated in §2, which the anticipated values 1, 2 must be subjected to, is the following one:
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since their sum will be used as argument of the Gamma funtion in (8)

.

4.2. Assumption of the prior probability density function for the reliable life xR 

For the selected quantile xR (corresponding to the R value of interest) the prior probability density function is assumed to be the Inverse Weibull [2]:
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where a and b are scale and shape parameters respectively.

This distribution fits well with the prior knowledge about xR and is tractable. It has one mode and tends to be bell shaped (its variance decreasing) for increasing values of b. So, as example, for a strong prior knowledge about xR a high value of b must be chosen. 

4.3. Assuming the equality of the prior and samplig shape parameters

It is assumed b. Generally, the greater  is, the more peaked the Weibull probability density function is, the smaller the uncertainty is in xR and then, greater b must be. Therefore, b is the simplest choice. As a consequence, b remains unspecified in the prior (5)

.

This assumption overcomes many practical difficulties, freeing the engineers from the obligation of choosing a fixed value, say b=3, which often includes other information that is not prior knowledge about the probability density function (5)

.

4.4. Expression of the prior belief about a reliable life xR 

The prior information for xR must be converted only into the mean value 
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As a consequence of the last two steps, the probability density function of xR  (5)

 is converted into the conditional prior:
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with fixed mean 
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Evaluation of the prior scale parameter a
Having assumed b — as suggested both in [1] and [5] — the parameters of the (6)

 (and only in this one)  can be substituted by its mean, obtaining the needed anticipated value of the prior parameter a automatically and without employing any further information:
(7)

 to be anticipated are reduced to a only. Moreover, in order to simplify the procedure, in the equation 


[image: image18.wmf](

)

11

m

R

a

x

b

G-

=


 macrobutton MTPlaceRef (8)

where:
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4.5. Some comments

Using prior technological knowledge, in a statistical estimation procedure, improves efficiency not wasting important information, since it immediately tells the statistical method where reasonable estimates are located.

Employing a particular probability density function for formulating the prior technological knowledge, about a stastistical parameter, describes the “strength” and the “shape” of the advanced information. This improves the efficency further, since it tells the statistical method how the belief is distributed on the range of reasonable estimates.

The PBE use the prior probability density functions only for describing the prior information, without supposing necessarily that the corresponding parameters (of the sampling distributions) vary effectively from one item to another. It is supposed that true and fixed values of the unknown parameters really exist (however, the validity of the PBE hold even if the stochastic nature of the life parameters is assumed). According to this hypothesis, to investigate the bias and efficiency of the estimators, many Monte Carlo simulation studies were carried out [1] [8] [4] [5] [3]. The effects of poor priors, viz. not centered on the true value of the corresponding unknown parameters, were fully investigated, always getting good results.

The Bayes approach to reliability evaluation is not new for the Weibull distribution, but it is very easy only if the shape parameter is known [13] [14]. When both shape and scale parameters are unknown, the problem is decidedly more difficult. If the Gamma and a discrete prior distribution are assumed for scale and shape parameters, respectively, the joint posterior distribution can be found [13]. The problem can also be solved if one assumes the Inverted Gamma for the scale parameter and the Uniform model for the shape parameter [14]. There are two difficulties, from a practical point of view, in the above approaches:

1. They always use priors defined on the scale parameter of the Weibull. This implies that one has a prior knowledge about it. On the contrary, an Engineer normally does not think in terms of the scale parameter, but he can be conditioned to express his knowledge in terms of the less alien and more practical concept of a percentile of the life distribution (reliable life).

2. Both the priors are rigid (i.e. completely specified) and so they rarely correspond exactly to the prior knowledge. Then, they often include other information that is not prior knowledge

So, for these reasons, the PBE incorporate directly into the estimation process the prior belief about a reliable life xR, for an arbitrary but fixed R (steps 4.3, 4.5) and does not explicitly specify the shape parameter b of the Inverse Weibull prior distribution (step 4.4).

5. Life tests and Bayes theorem

Usually, in a complete life test, N identical items are run until a sample arrays 
[image: image20.wmf]x

, of N lives, is available. If the life spans of the items are characterized by the model (1)

, the likelihood of the complete sample is given by:
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Multiplying the two priors 
(7)

, the joint prior probability density function of (3)

  gotobutton ZEqnNum338743  and  is obtained. Then, from this, using the transformation:
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the joint prior follows in terms of the more convenient parameters 
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 and :
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where 
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Substantially, the Bayes theorem says that:
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“Prior” and “posterior” mean before and after getting life data respectively. So, in this way, the theorem fuses the technological prior knowledge, summarized into joint prior, with all the information (life data and form of the reliability model) included into likelihood. More rigorously, from Bayes theorem this joint posterior of the two parameters to be estimated follows:
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This function incorporates all the information held after having carried out the life tests. Then, using (10)

 and performing the first integration, the following posterior joint probability density is obtained:
(9)
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We can say that this density function describes the residual uncertainty which exists about the two parameters. So we could estimate the parameters 
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 and ( adopting its modal or median or barycentric values. The PBE choose the last ones, that is, the expectations of 
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Even the simple trapezoidal rule can be used to perform the above integrals, that are easily and quickly obtained taking into account their similarity:
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where:



[image: image36.wmf][

]

2

1

1

1

1

1

ln();1,2,3

j

j

k

N

N

m

j

ii

i

i

IaxaRxdj

b

bb

bb

b

bb

-

-

-

--

=

=

æö

=+=

ç÷

ç÷

èø

å

ò

C


 macrobutton MTPlaceRef (17)

with the following values for the parameters mj and kj:
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6. applicative examples

6.1. Pseudo random data

Consider the following pseudo-random sample generated according to the Weibull distribution with 
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0.69,     0.97,     1.07.
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Suppose that technological consideration suggest that the value of the unknown parameter  must stay in the interval (1, 3) being the involved failure mechanism neither of early type 
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 nor of late wear-out type 
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. Besides, on the basis of routine design evaluations and past experience a percentile 
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 is expected, that is 98% of the produced items is expected to overcome the running time equal to 0.59 without any failure.

This prior information is not very precise, since it hardly includes the true value of  and anticipates an 84% biased percentile, being the true value equal to 0.27 and not 0.59. However, the PBE give the following estimates compared with those obtained using the classical Maximum Likelihood method:

Tab. 1. Bayes and Maximum Likelihood Weibull parameter estimates
 based on the sample data (19)

.
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6.2. Field data

The design team of a new component, for a heavy duty truck, collected the following experimental pieces of information:

1) only 2 failure data, 2.3 and 8.0 hundred thousands cycles;

2) 50 items have reached 2 hundred thousands cycles without failure;

3) the whole team is confident that 99.9% of the items will overcome 2 hundred thousands cycles without any problems;

4) they are in a position to anticipate the interval (1, 3) for the Weibull shape parameter.

However, they judge that the most critical piece of information is the percentage of the items that will overcome 2 hundred thousands cycles without any problems. So they decide to test the sensitiveness of the estimates to this anticipated value for R, considering also 
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Using the PBE, the estimates reported in Tab. 2 were obtained.

Tab. 2. PBE based on the above information supplied by a design team.
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7. Conclusive remarks

The PBE (Practical Bayes Estimators) for the 2-parameter Weibull reliability model are presented when both parameters are unknown. In many life testing situations there is really a prior information that can be reasonably quantified into prior knowledge in terms of range regarding the shape parameter, and in terms of anticipated value regarding a quantile (reliable life) of the sampling distribution. The PBE directly incorporate such information into the estimation process, using a not completely specified prior distribution. Since analytic tractability is not possible, the estimates are obtained by using numerical (but easy) integration. A Monte Carlo simulation (carried out in previous works, each time on 1,000 samples and also using very poor priors) has shown that these estimators are quite unbiased and efficient for a large range of parameter values of poor priors.

When the experimental data are very few (say 2, 3) the PBE can still be used as a simple tool to improve the technological reliability predictions. In fact, in these case, the PBE work as a filter that always improves — in mean — the prior pieces of information if these are poor, or substantially confirms them if they are good. From this point of view we see for the first time the Bayes theorem applied to allow Statistics to help Engineering and not vice versa.

In this case the controversy about whether to use Bayesian or non-Bayesian methods appears surmounted since alternative classical estimators, like the Maximum Likelihood ones, give estimates that are very often worse than elementary technological knowledge.

Dealing with very high reliability components, also 2 o 3 experimental data are very difficult to get. In such a case, the only way to get enough life data is by over-stressing the units during their life tests, i.e., using the so called accelerated tests. Also in this situation the PBE can be used efficiently [4], even if the main difficulty inherent to this test policy is obtaining a very deep knowledge of the technological parameters that are able to “accelerate” the mechanism of failure without altering its nature. Otherwise we are not allowed to extrapolate the reliability evaluations from the test conditions to the operating ones. Not exaggerating in the increase of the stress level is always the best solution, even if this could lead to a reduced number of failure data. In any case we can see, once again, that the close cooperation between Technicians and Statisticians is the only way to attain the highest reliability levels.
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