
PART 1

Traffic Flow Theory
and Car Following



Difficulty in obtaining accurate car-following data has traditionally been
regarded as a considerable drawback in understanding real phenomena
and has affected the development and validation of traffic microsimulation
models. Recent advancements in digital technology have opened up new
horizons in the conduct of research in this field. Despite the high degrees
of precision of these techniques, estimation of time series data of speeds
and accelerations from positions with the required accuracy is still a
demanding task. The core of the problem is filtering the noisy trajectory
data for each vehicle without altering platoon data consistency; i.e., the
speeds and accelerations of following vehicles must be estimated so that
the resulting intervehicle spacings are equal to the real one. Otherwise,
negative spacings can also easily occur. The task was achieved in this
study by considering vehicles of a platoon as a sole dynamic system and
reducing several estimation problems to a single consistent one. This
process was accomplished by means of a nonstationary Kalman filter that
used measurements and time-varying error information from differen-
tial Global Positioning System devices. The Kalman filter was fruitfully
applied here to estimation of the speed of the whole platoon by including
intervehicle spacings as additional measurements (assumed to be reference
measurements). The closed solution of an optimization problem that
ensures strict observation of the true intervehicle spacings concludes the
estimation process. The stationary counterpart of the devised filter is
suitable for application to position data, regardless of the data collection
technique used, e.g., video cameras.

The use of microscopic traffic flow models to evaluate complex real
contexts, such as the implementation of intelligent transportation
system strategies on congested road networks, has proved how in-
appropriate such models are in accurately representing the real world.
One of the major reasons has been long identified from the inadequacy
of their submodels, including car-following ones.

Although most of the car-following submodels are still used, they
were developed after the historic study performed by the group of
General Motors researchers (1) between the mid-1950s and the 1970s
and after some valuable contributions from other investigators (2, 3).
Starting from some simple assumptions, they were developed through
a fundamentally deductive approach. Major efforts have been devoted
to the study of the theoretical properties of models, such as stability.
By contrast, empirical verification of the assumptions and model
calibration have encountered serious difficulties with the collection

of accurate, unbiased data. Major technological issues arise in the
collection of time series data of vehicle motion variables with high
degrees of accuracy and in a common space–time reference system.
For this reason, too, findings from calibration studies have often been
contradictory [for a comprehensive review, see the work of Brackstone
and McDonald (4)].

As the collection of accurate experimental data could substan-
tially improve the knowledge of real phenomena and the realism of
models, the recent development of digital technology has opened up
new horizons in the conduct of research in this field. Experiments
with several techniques for gathering vehicle trajectories have been
conducted (see the next section).

However, whatever approach is used and despite the high expected
degree of precision of instruments, the estimation of trajectories from
raw data is a demanding task. The requirements for the effective use
of such data in car-following studies are indeed stringent. Estimated
speed and acceleration time series must be free of noise. That is, they
must respect physical limitations and they must be smoothed. More-
over, they must be consistent: the speeds and accelerations of fol-
lowing vehicles must be estimated in such a way that the resulting
intervehicle spacings are equal to real spacings. Otherwise, for exam-
ple, even slight differences between the estimated and the actual speeds
of a vehicle may easily entail negative spacings in the case of a stop
(i.e., in cases in which the actual spacings are very small; see the next
section for an example).

To the authors’ knowledge, despite its importance, this consistency
requirement for estimated data has not been explicitly stressed in
previous work. Raw data collected from different vehicles are gen-
erally processed independently, i.e., without the imposition of any
consistency condition (5, 6 ).

To address this problem, following vehicles can instead be consid-
ered a sole dynamic system and one consistent estimation problem
instead of several independent ones can be solved. The Kalman filter
is a suitable device for such a task (7 ). It allows the system of n vehi-
cles to be represented with a state–space model and estimation of state
variable values (vehicle cinematic variables) as the best compromise
between measurements and model estimates.

The structure of the filter presented below is suitable for estimation
of time series data of speeds (and accelerations) from vehicle posi-
tions with whatever technology with which the data are collected. If
time-varying estimates of measurement errors are available, as in
the case of a differential Global Positioning System (GPS), a non-
stationary filter can be devised. Otherwise, as with data from video
cameras, a stationary filter is valid.

In this paper, the data requirements for car-following studies, the
available collection techniques, and the experiments carried out for this
work are briefly discussed first. The available information from GPS
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devices and the different estimation techniques compared in this work
are then presented. The structure and properties of the nonstationary
Kalman filter that was devised and a further refinement to the esti-
mation process follow. The paper concludes with a comparison of
the performances of the different estimation techniques tested.

CAR-FOLLOWING DATA

Requirements of Experimental Data

The data required for car-following studies consist of the space–time
trajectories of vehicles, that is, the availability of vehicle positions
over time in an absolute space–time reference system (e.g., from data
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from video cameras or onboard GPS receivers; see below). From these
positional data, time series of intervehicle spacings are immediately
available, while vehicle speeds and accelerations must be calculated
through successive derivations of the space traveled.

As raw position data are subject to measurement errors, the latter
are amplified in the derivation process (see Figure 1 for an exam-
ple). The resulting speeds and accelerations can present physically
incompatible values. Moreover, their temporal profiles can be very
noisy. Such deviations can significantly affect both car-following
behavior analysis and the estimation of model parameters through a
direct method, e.g., maximum-likelihood methods [an application has
been provided elsewhere (5)]. On the other hand, when noisy time
series of speeds or accelerations are used to feed models in an iterative
calibration process [i.e., through an indirect method, such as that used
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FIGURE 1 Measured and estimated (a) accelerations, (b) speeds, and (c) intervehicle spacings from Experiment 25B.
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FIGURE 2 Biased and unbiased speeds (intervehicle spacings) for Vehicle 1 (V1) and Vehicle 2 (V2).

elsewhere (8–10)], the instability of car-following models can easily
arise. This renders such data of no use for model calibration and
requires effective data-filtering techniques.

What is expected from such a technique is the reduction of mea-
surement errors. Thus, low-frequency (i.e., smoothed) speed and
acceleration profiles in accordance with the human and mechanical
responses observed in real phenomena are sought. Moreover, such
smoothed profiles must be consistent. In other words, if the tempo-
ral profiles of the estimated speeds of two following vehicles n and
p, vn(τ) and vp(τ), are used to calculate their intervehicle spacing at
time t, Δsnp(t), as

(i.e., as the difference between the spaces traveled), such a calcu-
lated spacing would be expected to equal that directly measured at
instant t (if the vehicles follow the same trajectory).

This consistency condition is not at all negligible. Indeed, even slight
deviations of estimated speeds from real ones may signify a strong
deviation of the estimated phenomenon from the real one. Figure 2
clarifies this aspect: the real speed profiles of two following vehicles
(measured on the left scale) are reported as dark thick and thin lines
(V1 biased and V2 unbiased respectively), while their intervehicle
spacings (measured on the right scale) are reported as a light line
(Δs12 unbiased). When the speed of the lead vehicle is higher than
that of the following vehicle, i.e., vehicles are accelerating and the
dark thick line stays above the dark thin one, the intervehicle spacing
increases by a quantity measured by Equation 1 and is represented
by the light-colored areas. By contrast, when the vehicles decelerate,
their space headway decreases by an amount equal to the dark areas.
If one estimates for the following vehicle (the dark thin one) a speed
profile (V2 biased) that deviates by a quantity equal to the area with
vertical lines, the resulting intervehicle spacing would be represented
by the light dotted line (Δs12 biased). If a speed profile that deviates
by a quantity equal to the area with vertical lines is estimated for the
following vehicle (represented by the dark thin line), the resulting
intervehicle spacing would be represented by the light dotted line
(instead of the light one). Figure 2 therefore shows how even slight
and short-lasting errors (4 s in the example) in the estimation of speeds
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may give rise to an integral error that cannot be further remedied. To
have an idea of the magnitudes involved, consider the case in which
vehicle positions are measured every 0.1 s, which is the time step
generally used in simulation. If data are not filtered, the same sign mea-
surement errors of only 10 cm for 2 s give rise to an error of 2 m in
traveled space. When vehicles have stopped and are presumably 1 m
apart, this might entail a negative spacing between the vehicles.

Data Collection Techniques

Two different approaches are suitable for the collection of car-
following data. The first makes use of remote sensing and object track-
ing from video cameras. The second envisages the use of instrumented
vehicles.

In the first approach, cameras either can be mounted at fixed and
preferably elevated locations (11) or can be movable by attachment
to aerial platforms (12, 13). This approach allows the collection of a
large number of trajectories, but only along a limited stretch of road
(rarely up to 500 m). Car-following, lane-changing, and gap accep-
tance behaviors are observable. Moreover, traffic flow is not disturbed
at all. However, the observation and analysis of driving behavior can
be affected by spatial limitation. Multiple-camera stitching is a pos-
sible solution, yet it is far from straightforward. The experimental setup
and data processing are time-consuming. Accuracy ranges from 10 to
100 cm, and the detection rate ranges from 80% to 98% (11).

Among the techniques used for the second approach, one has
recently proved to be successful (14). It consists of equipping a vehicle
with at least two types of instruments: a speed sensor (e.g., a laser
speedometer) and a relative spacing and speed sensor (e.g., a radar).
This technique allows the trajectory of a following vehicle, unaware of
the experiment, to be monitored for long stretches along a route. Thus,
it provides, on the one hand, the opportunity to capture a driver’s
behavior under variable environmental and traffic conditions; on the
other hand, it restricts the analysis to the car-following dynamics of
a single pair of vehicles. Radar accuracies, for example, are ±0.2 m
in range and ±0.4 m/s in relative speed (14).

An alternative methodology follows the development of GPSs:
by equipping all the vehicles of a platoon with receivers and mon-
itoring their trajectories, advances can be made in understanding
driving behavior, as in this way the internal dynamics of a whole
platoon can be thoroughly analyzed [see the report of an experiment



carried out with 10 vehicles along a Japanese motor racing track (6 )].
GPS can effectively support this kind of experiment because of three
characteristics peculiar to the system:

• Accuracy in the detection of positions, which, in the case of
differential correction on signal carriers, reaches an expected value
of approximately 10 mm;

• Thorough timing of the system, which allows synchronous
detection of vehicle positions; and

• Sampling frequency of measurements (up to 20 Hz), which is
higher than that of the usual simulation steps adopted.

As the techniques described above are limited to car-following
behavior, if information on the surrounding traffic is required, addi-
tional data collection systems must be used. The drawback is that
drivers are aware that they are participating in experiments; besides,
if the latter technique is performed in real traffic, unexpected events
(e.g., the intrusion of a nonmonitored vehicle into the platoon) can
invalidate the test. The latter can be mitigated by the adoption of
appropriate countermeasures, as described below.

At present, none of the available techniques seems to be definitively
better than the others, with each having a preferential field of appli-
cation. For example, studies aimed at comparison of the abilities of
car-following models to reproduce real behaviors need trajectories
from the same driver faced with different types of roads and traffic con-
ditions. Indeed, model performance as well as the optimal parameters
calibrated varies for the same driver under different driving condi-
tions (10). For this reason and despite its drawbacks, the GPS approach
seems to be a good compromise for the collection of such data.

Collected Experimental Data

An experiment similar to that carried out on a test track in Japan (6 )
was performed under real traffic conditions along roads in areas around
Naples, Italy, in 2002 and 2003. The trajectories of four vehicles in
a platoon were collected both on urban and on Sextraurban roads
with GPS devices. The latter consisted of five dual-frequency, GPS
+ Global Navigation Satellite System receivers (one base station
receiver and four rovers) with the following expected precision in
real-time kinematic mode: horizontal = 10 mm + 1.0 ppm; vertical =
15 mm + 1.0 ppm. The measurements obtained from the receivers are
discussed in the next section.

The aim of the experimental survey was to collect car-following
data for multiple cars under different real driving conditions (i.e., on
different roads and under different traffic conditions) to be used for
comparison of the car-following models. The choice of roads was
crucial: several trials were performed on different types of roads.
In this work and in the subsequent study of model comparison (10),
only data for one-carriageway roads with one lane per direction (urban
and rural) were analyzed. On such roads, car-following behavior is
unaffected by lane-changing behavior.

Data were collected on two days (October 30, 2002, and February
25, 2003) along the same route and consist of five data sets (Exper-
iments 30A, 30B, 30C, 25B, and 25C, respectively) that altogether
amount to ca. 24 min. The data sets from October 30 were collected
on both urban roads (Experiments 30A and 30C) and a rural road
(Experiment 30B). The data sets from February 25 were gathered on
the same urban roads from which the data were collected in October.
Figure 3 shows maps of the GPS tracks of the trials (tracks on the
same road have been translated so that they are observable).

6 Transportation Research Record 1934

The first urban road, Via Terracina (Experiments 30C and 25B), is
a straight road ca. 2 km long that departs from the Naples Engineering
Faculty and that heads toward the suburb of Agnano; it has four inter-
sections (two of which are signalized). It is often congested because
of the presence of stores, a hospital, a school, and parking places on
both sides of the road [the estimated capacity is 900 vehicles per hour
(veh/h)]. Data for this road were collected under conditions con-
gested traffic (i.e., stop-and-go traffic conditions) in both October
and February.

The second urban road, Via Cinthia (Experiments 30A and 25C), is
a straight road approximately 2 km long that departs from the Naples
Engineering Faculty and that heads toward the suburb of Soccavo. It
has one signalized intersection and terminates with a roundabout. It
does not have as many lateral disturbances as Via Terracina and has no
parking places (the estimated capacity is 1,200 veh/h). Data for this
road were collected under congested traffic conditions in both October
and February.

The rural road (Experiment 30B) is a two-lane highway that by-
passes the historical center of Pozzuoli, not far from the first two
sites. It is approximately 3 km long and has two intersections (one
signalized). It has no lateral access, and its estimated capacity is
1,500 veh/h. The traffic flow at the time that the data were gathered
was approximately 400 veh/h.

Careful attention was paid to the setup of the experimental proto-
col. The leader of the platoon was one of the authors. The following
drivers, all of them university students, were informed of the path to
be taken and were familiar with it, but they were unaware of the aim
of the experiment. The leader took care to prevent intrusions into the
platoon by giving way to extraneous vehicles at intersections. When
intrusions occurred, the corresponding data were discarded.

Initial data analysis highlighted a level of noise higher than that in
previous investigations (6 ) because of the environmental conditions of
experiments performed in an urban environment with disturbed mea-
surement signals (electromagnetic interference or physical obstacles
to the satellite signal) and multipath effects.

MEASUREMENTS FROM GPS DEVICES

Available Measures

GPS allows the position of a receiver to be estimated in Cartesian
coordinates, x, y, and z, in the Word Geodetic System 84 reference
system. As mentioned above, time series of intervehicle spacings are
immediately available from position data. Indeed, given the synchrony
of measurements among the GPS receivers, it is possible to obtain
the observed intervehicle spacing in instant tk , Δsnp

obs(tk), between the
receiver antennas on two vehicles, n and p, as the distance between
their positions at tk:

where [xn(tk), yn(tk), zn(tk)] are the coordinates of vehicle n at instant tk,
and [xp(tk), yp(tk), zp(tk)] are the coordinates of vehicle p at instant tk.

By considering the positions of a vehicle in two successive mea-
surement instants, it is possible to calculate the space traveled in the
sampling interval. The length of the space, T, is constant and is equal
to 0.1 s in this work.

The average observed speed, v n
obs(k), of vehicle n in interval k

between consecutive measurement instants tk − 1 and tk is equal to the
ratio between the space traveled in k and the length T:

Δs t
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where [xn(tk), yn(tk), zn(tk)] are the coordinates of vehicle n at instant tk,
and [xn(tk − 1), yn(tk − 1), zn(tk − 1)] are the coordinates of the vehicle n at
instant tk − 1.

The deviation from reality consists of mistaking the space actually
traveled by the vehicle during interval k with the straight space between
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the start and end positions in that interval. This error appears to be
negligible when the sampling frequency (10 Hz) is considered.

Intervehicle spacing Δsnp at instant tk either can be measured directly
from the positions at tk through Equation 2 or can be calculated by the
integral relation in Equation 1, with vn and vp measured from time zero
to tk, through Equation 3. In the first case, the deviation from the true
value depends on the measurement errors at the sole instant tk. In the
second case, the deviation is affected by all the measurement errors in
interval [0, tk] (with the two values being equal only for consistent
speeds). Hence, unlike speeds, the measured intervehicle spacings
are suitable as reference measurements in the estimation process, as

30C

30A

(a)

(b)

FIGURE 3 Data collection sites.



they are memoryless measurements. In conclusion, the available data
are (a) the time series of the instantaneous intervehicle spacings at
intervals of 0.1 s for each pair of vehicles and (b) the time series of
average speeds in intervals of 0.1 s for each vehicle.

Propagation of Uncertainties in Differential 
GPS Measurements

GPS also provides an estimate of uncertainty in the measurement of
each coordinate by providing its mean square error. From the latter it
is possible to calculate how error propagates into intervehicle spacings
and speed measurements. Awareness of such errors is essential for the
implementation of a Kalman filter.

In the GPS surveys carried out, estimate of the error at each mea-
surement instant (epoch) was obtained by solving the so-called dif-
ferential problem. By this technique, data from mobile stations were
correlated with those from a reference station and thus provided an
accuracy of about 1 cm. Less accurate measurements may be attributed
to residual errors due to so-called multipath phenomena, which are
quite widespread in the urban context and which result from the dupli-
cation of the signal following its reflection on surfaces (e.g., buildings)
close to the receivers.

The solution of the differential problem corresponds to the solution
of an overdetermined system of linear equations (measurements of
coordinates at each epoch) that, when solved by a least-squares tech-
nique, returns the information required as a variance–covariance
matrix of measures.

This matrix is a generalized diagonal in which each element refers
to an epoch, tk, and is represented by the estimates of measurement
covariances of the three coordinates of vehicle n, [xn(tk), yn(tk), zn(tk)],
indicated in this section as [x n

1 (tk), x
n
2 (tk), x

n
3 (tk)]:

where σ xij

n,tk is the compact notation that expresses the covariance of
xn

i (tk) and xn
j (tk), with i and j equal to 1, 2, and 3, for vehicle n at tk.

In this work only values of variances were available (the boldface
elements in the matrix), as they are the only data returned by the soft-
ware used to solve the differential problem (15). From estimates of
variances of the 12 starting variables, indicated here by x1, x2, . . . , x12

and equal to the coordinates of two vehicles in two successive instants,
covariances of the two arriving variables Δsnp(x1, x2, . . . , x12) and
vn(x1, x2, . . . , x12) were obtained; and these are equal to the inter-
vehicle spacing and the speeds, respectively, of the two vehicles given
in Equations 2 and 3.

In the case of small errors, by linearizing the functions Δsnp(x1,
x2, . . . , x12) and vn(x1, x2, . . . , x12) around the expected values with
the notations adopted, the following formula, which expresses the
propagation of variances and covariances in a compact form, is
obtained:

where σvnΔsnp and σxij
are the covariances of Δsnp and vn and of xi and xj,

respectively.
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By expressing the derivatives in Equation 4 at the finite differences
and by developing relative calculations, the required variances (Var)
and covariances (Cov) were obtained:

where σΔsnpΔsnp, σvnvn and σvnΔsnp are, respectively, the variances of
Δsnp and vn and the covariance of vn and Δsnp, expressed in the com-
pact form by Equation 4, and where Δsnp(k) indicates the inter-
vehicle spacing of vehicles n and p in period of time k, which is
understood to be equal to the spacing calculated in the initial instant
of this time period as given by Equation 2 [Δsnp(k) = Δsnp(tk − 1)].
Thus, the notation that will prove useful in specifying the Kalman
filter has been introduced.

DATA FILTERING PROBLEM

The following were used to filter the data:

• Local regression techniques,
• Selective filters (low-pass filters), and
• Kalman filters.

The first two techniques filter the trajectories of different vehi-
cles one at a time. Hence, they can estimate inconsistent speeds (as
described above).

Local Regression Technique

The first technique tested was a local regression technique (16 ), which
was enhanced with a preliminary cutoff threshold on measurement
errors. It is widely used instead of regular regression estimates when
data that require a flexible functional form, as in the case of time
series data over traveled space, are being evaluated (5).

It processes the coordinates of each single receiver, which were
previously subjected to a differential correction, and returns the
sequence of instantaneous speeds in instants of measurement sampling
(each 0.1 s).

The main steps of the procedure are

1. Elimination of data with an error estimated downstream of a
differential correlation over a predefined threshold;
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2. Interpolation of missing data with a cubic spline;
3. Calculation of the curvilinear abscissa from the positions;
4. Search for the best polynomial interpolator by least-squares

analysis for a window of points of predefined width (local regression);
5. Calculation of the first and second derivatives in the central point

of the window (instantaneous speed and acceleration);
6. Repeat of Steps 4 and 5 until speed and acceleration are within

the constraints; and
7. Repeat of Steps 4 to 6 for all the points of the vector of the

curvilinear abscissas.

This procedure makes it possible to smooth the speed profiles when
the signals are not greatly disturbed. Yet, it has two clear drawbacks:
(a) uncertainty in the choice of parameters of local regression and
of the threshold applied and (b) inconsistent estimation of vehicle
speeds.

Selective Filters

The second technique consisted of the application of low-pass selec-
tive filters [e.g., as in a study described previously (8), which used
a Savitzky–Golay filter to estimate accelerations] and, in particular,
a fourth-order Butterworth filter. Spectrum analysis did not allow clear
identification of the cutoff frequency, which was therefore obtained
by simulation (and which was equal to 0.5 Hz).

Qualitative analysis of the results can be summed up as follows:

• With observed speeds slower than ca. 0.3 m/s (when the vehicle
is presumably still), the noise is in the same band as the GPS signal
and is not cut off by the filter. The problem, however, can be solved
by setting zero speeds equal to these values before application of the
filter; and

• With observed speeds higher than ca. 0.3 m/s (running condi-
tions), the noise usually has frequencies higher than those of the GPS
signal and is eliminated by the filter.

However, a polarized noise of the measured signal, probably
caused by multipath phenomena, was sometimes observed. In this
case, although the filter eliminated the high frequency in the signal,
it gave back an inconsistent estimate. A clear example of this is
reported in Figure 1 (Vehicle 2), for which the noisy signal detected
is indicated as “Experimental data,” the filter response is indicated as
“Butterworth,” and the unbiased estimate is indicated as “Complete
procedure.” The effects of this biased filtering on the consistency of
speeds are presented in Figure 2 and were discussed in the section
on the requirements of the experimental data.

Kalman Filter

The Kalman filter is a linear device that allows estimation with the
minimum mean square error (7 ). In the formulation of the problem,
it is first necessary to develop the system state equations concerned
and the measurement equations, which are expressed as follows,
respectively:

x k A k x k B k u k D k k

y k C k x k k

+( ) = ( ) ( ) + ( ) ( ) + ( ) ( )

( ) = ( ) ( ) + ( )
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where

x(k), u(k), and y(k) = the variables of state, input, and out-
put, respectively, at instant k;

γ(k) and ζ(k) = errors due to the model and to the
measurements, respectively; and

A(k), B(k), C(k), and D(k) = matrices of the coefficients of the
variables of state, input, measure-
ments, and errors due to the model,
respectively, which are generally vari-
able with the instant k.

Errors (E ) due to the model and errors of measurement are white
stochastic processes with zero mean and known covariance matrix

where

δij = Kronecker symbol,
Q(ki) = covariance matrix of system noise γ(k), and
R(ki) = covariance matrix of measurement noise ζ(k).

Q(ki), which is greater than or equal to 0, and R(ki), which is greater
than or equal to 0, are known; δij is equal to 0 for i not equal to j; and
δij is equal to 1 for i equal to j.

The filter estimates [ x̂F (k)] are obtained by solving the following
equation:

where x̂P is the one-step prediction at k, obtained by solving the
following recursive equation:

The matrix K(k) is called the gain matrix:

and represents a compromise between two distinct requirements.
These two requirements are the need to use the available measure-
ments to adjust the model estimate of the future state and the need
not to downgrade this estimate because of errors in measurements.
The gain matrix is proportional to the covariance matrix of the esti-
mate error, PP(k), which must be updated for every step through the
following formula:

where PF (k) is given by

where I is the unit matrix.

KALMAN FILTER DESIGNED

As described in the section above, the Kalman filter, compared with
the techniques tested previously, provides the opportunity to imple-
ment a model of the system concerned. The response of such a model

P k I K k C k P kF p
( ) = − ( ) ( )[ ] ( )� �

P k A k P k A k D k Q k D kp F
T T+( ) = ( ) ( ) ( ) + ( ) ( ) ( )1 � � � �

K k P k C k C k P k C k R kp
T

p
T( ) = ( ) ( ) ( ) ( ) ( ) + ( )[ ]−

� � � �
1

ˆ ˆx k A k x k B k u kp F
( ) = −( ) −( ) + −( ) −( )1 1 1 1� �

ˆ ( ) ˆ ( ) ˆx k x k K k y k C k x kF P P= + ( ) ( ) − ( ) ( )[ ]� �

E k E k

E k k Q k E k k R ki j
T

i ij i j
T

i ij

γ ζ

γ γ δ ζ ζ δ

( )[ ] = ( )[ ] =

( ) ( )[ ] = ( ) ( ) ( )[ ] = ( )

0 0



is thus adjusted through the available measurements, the weights of
which are proportional to the quality of the measurements themselves
as well as to the accuracy of the model.

The filter was therefore devised to jointly use speed measurements
for n vehicles and the measurements of the n − 1 intervehicle spacings
by constraining the integral differences of the estimates of the former
to be equal to the latter. The problem is presented below in relation
to just two vehicles, as the extension of the case to n vehicles is trivial.
The following were assumed as state variables:

v1(k) = speed of vehicle 1 in k (space traveled in k divided by T );
v2(k) = speed of vehicle 2 in k (space traveled in k divided by T );

and
Δs12(k) = intervehicle spacing of vehicles 1 and 2 in k (i.e., in the

initial instant of k, tk − 1).

As measurements, values of v 1
obs(k), v 2

obs(k), and Δs 12
obs(k) are given by

Equations 3 and 2.
The state equations and output equations were as follows:

where stationary matrices A, B, C, and D are equal to

Evolution of the two state variables v1(k) and v2(k) is described by
a random walk, in which γ1 and γ2 are parameters to be calibrated
(together with γ3). The measuring errors, ζii with i meaning 1, 2, 3,
instead, are evaluated as mean square errors from the variances in
Equations 5 and 6. These variances, together with the variance from
Equation 7, make it possible to work out the covariance matrix of
errors R(k):

Filter initialization occurs by requiring x̂p(k0) to coincide with the
measurement vector of v1, v2, and Δs in the initial instant and by
requiring the covariance matrix PP(k0) to be the identity matrix.

R k
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The filter is suitable for application to time series of position data,
regardless of the technique used to collect data. If such a technique
provides time-varying information on measurement errors (as for
GPS data after differential correction), the nonstationary filter designed
here can be adopted. Otherwise, the stationary counterpart of the fil-
ter can be applied by fixing a time-independent covariance matrix
of errors R (e.g., data from video cameras).

The availability of a system model represented by n vehicles of
the platoon appears to be particularly useful for the case concerned.
Estimation of the trajectory of a generic vehicle does not depend
exclusively on the single measurements obtained for that vehicle but
is bound to the observance of the overall dynamics of the system. This
allows consistent estimates of the speed profiles of the vehicles in a
platoon to be obtained, which is a fundamental requirement of data for
car-following studies. The filter formulation shows that the estimate
of the speed of a vehicle directly depends on the measurements
obtained for the vehicle itself, as well as on the measurements obtained
for the two adjacent vehicles and, through the latter, the measurements
obtained for all other vehicles in the platoon.

The adoption of a state equation that deals with intervehicle spacings
makes it possible to use the dynamic filter. The system of equations
describing the motion of a single vehicle for which only positioning
measurements are known is not observable, and its observability
matrix (i.e., [C, CA, . . . , CAn − 1]T ) is not of maximum rank. Hence,
estimation of its speed profile through the use of a dynamic filter will
require an additional measurement (e.g., when dealing with a vehi-
cle instrumented with GPS, this is generally accomplished by means
of additional sensors, such as odometers and accelerometers). By
considering instead n vehicles simultaneously, it is possible to include
in the system an additional measurement (intervehicle spacings) that
makes the system observable.

Some further considerations concern filter stability. From the equa-
tions presented above, it is easy to obtain the model of the estimation
error (e):

If the gain matrix K is constant (i.e., the filter is stationary), the fil-
ter is stable if and only if eigenvalues of process matrix E = (A − K � C ),
are less than 1, that is, if D � Q � DT is definitely positive. In other words,
the appropriate setting of the model error matrix Q makes the filter
stable. Unlike stationary filters, results of the stability of time-varying
filters tend to be complex; e.g., the condition applied above to E for
any k becomes necessary [sufficient conditions are also described
elsewhere (17 )]. From a practical point of view, the training of the
filter with different matrices Q can overcome instability effects.

Note, in conclusion, that to avoid filter estimation of negative or
small, nonnull speed values on vehicle stopping, some conditions
were added to ease the convergence toward null values.

FURTHER REFINEMENT TO ESTIMATES

As mentioned above, the Kalman filter finds a compromise between
measurements and model estimates. Thus, the estimates obtained are
not necessarily strictly consistent; i.e., they do not strictly observe
state equations of the system. In other words, the intervehicle spacings
calculated from estimated speeds can differ slightly from the inter-
vehicle spacings given as output by the filter itself. This is because the
assumption that γ3 is not equal to 0 turns out to be necessary. Indeed,

e k A K k C e k+( ) = − ( )[ ]{ } ( )1 � �



vehicles move in the three-dimensional space (and the GPS mea-
surements are three-dimensional as well); hence, Equations 2 and 3
cannot verify exactly the third state equation unless both vehicles are
moving exactly on the same line in the three-dimensional space. Any-
how, if this consistency were ensured, the following constrained
optimization problem could be stated: to find the values of speeds
that are as close as possible to the Kalman estimates and that strictly
respect true intervehicle spacings (as “true” intervehicle spacings,
Kalman filter estimates can be assumed). In mathematical terms

subject to

where v1 and v2 are the Kalman filter estimates of the speeds.
A closed solution can be obtained by the Lagrange multipliers

method.

RESULTS AND COMPARISONS

To compare qualitatively the various techniques applied to the same
data, note the results illustrated in Figure 1. The data were chosen for
their relevance to the study concerned and show strong noise with
polarization of the measurement signal for a length of about 4 s
(multipath phenomena in measurements from seconds 135 to 139).
They are a sample from the trajectory of the second vehicle of the
platoon in data set 25B. The techniques compared were as follows: a
local regression procedure, a Butterworth filter, a Butterworth filter
with a cutoff threshold on speeds of less than 0.3 m/s, the Kalman fil-
ter, and the complete procedure (i.e., the Kalman filter, the consistency
problem, and the Butterworth filter).

Figure 1 reports the acceleration and speed profiles of the second
vehicle of the platoon and the intervehicle spacing profile between the
first and second vehicles as measured and filtered.

The speed profile in the noisy section (between seconds 135 and
139) shows that the local regression procedure almost eliminates
all measurements as very noisy (i.e., error estimates are above the
threshold), and the resulting profile is the outcome of the cubic spline
between points not rejected in the margin of this section. By contrast,
the Butterworth filters have a very regular profile, although they are
affected by the polarization of the signal: the filtered profile seems to
be above the actual profile (which is easy to infer from the observations
of experimental data) and is dragged upward by the higher values.
Finally, the Kalman filter presents a profile that appears to be the
closest to the actual profile.

Figure 1 also presents a comparison of intervehicle spacings. In
Figure 1 the measured intervehicle spacing at any instant is given by
Equation 2. As mentioned above, this measurement does not depend
on those measurements affected in other instants. Moreover, these
memoryless errors, which usually amount to some centimeters, have
a low percent incidence on intervehicle spacings, which generally
amount to some meters. This implies that the intervehicle spacing
profile appears to be quite regular, even when the measurements
are noisy.

Instead, all profiles obtained with the filtering techniques tested are
obtained as differences of integrals of the speeds estimated through
these techniques, as speed consistency needs to be checked (and are
calculated from instant 0). Therefore, the Kalman label does not

Δ Δs k s k v k v k T12 12 1 21+( ) = ( ) + ( ) − ( )[ ]

min ˆ ˆ ( )
v v

v k v k v k v k
1 2

1 1
2

2 2
2 8γ = ( ) − ( )[ ] + ( ) − ( )[ ]
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indicate the intervehicle spacing estimate made by the filter but, rather,
the spacing calculated as the difference of the integrals of speeds esti-
mated by the filter itself. Indeed, these profiles do not always coincide
(see the section on further refinement of the estimates).

Figure 1 shows that the only speed estimates that produce an inter-
vehicle spacing consistent with the actual one are those obtained
through the Kalman filter. The estimates farthest from the reference
measurements are those concerning the spacing calculated on the
basis of raw speed measurements and by the speeds filtered through
the Butterworth filter. The two profiles coincide as expected, as the
latter does not alter the integral of the filtered speeds.

In conclusion, Figure 1 shows the acceleration profiles calculated
as the derivative of the estimated speeds as well. In this case the most
regular profile appears to be that given by the complete procedure.

Table 1 reports the values of root mean square error (RMSe) and root
mean square percentage error (RMSPe) for the intervehicle spacing
profiles of all the data sets available in this study. Error test values
were computed by comparison of the intervehicle spacings calculated
from the speeds estimated by the various techniques and the inter-
vehicle spacings estimated by use of the Kalman filter (which are
assumed to be the reference measurements). The results show that
the stated problem of the consistency of speeds estimated is not neg-
ligible at all. Moreover, only the Kalman filter estimates cover the
requirements for the data to be used in car-following studies.

CONCLUSIONS

This study sought to make a contribution to the problem of car-
following data collection and estimation. First, the stringent require-
ments of data for car-following studies were described, highlighting
the problem of speed data consistency, i.e., the deviation between the
intervehicle spacings calculated from the estimated speed and the true
intervehicle spacings. Such a problem arises when the speed profiles
of different vehicles are independently estimated from position data
(i.e., one at a time).

This problem was tackled by considering vehicles as a sole dynamic
system and solving one consistent estimation problem instead of
several inconsistent ones. A Kalman filter was designed for this pur-
pose. The filter can be applied to position data regardless of the data
collection technique used. The availability of time-varying informa-
tion on error measurements allowed the design of a nonstationary
filter that was applied to five car-following data sets collected by means
of a differential GPS.

Adoption of intervehicle spacing as reference measures first allowed
the effective design of the filter and then comparison of the perfor-
mances of the different filtering techniques. The results showed that,
unlike the Kalman filter, the techniques that are generally adopted are
not suitable for estimation of consistent car-following data. The error
that they supply is not at all negligible and makes the data estimated
insufficiently accurate for use in car-following studies.
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TABLE 1 RMSe and RMSPe Between Intervehicle Spacings Calculated from Estimated Speeds
and Intervehicle Spacings Measured

Local Butterworth + Complete
Regression Butterworth Threshold Kalman Procedure

RMSe [m] 30A Δs12 3.07 2.73 1.43 0.40 0.24
Δs23 2.64 2.87 1.62 0.29 0.29
Δs34 0.77 0.67 0.65 0.22 0.12

30B Δs12 1.49 1.34 1.69 0.22 0.27
Δs23 4.89 0.80 0.80 0.36 0.23
Δs34 0.85 0.58 0.65 0.25 0.14

30C Δs12 4.39 0.84 1.15 0.41 0.11
Δs23 3.41 4.05 4.99 0.70 0.48
Δs34 2.73 4.13 3.61 0.46 0.41

25B �s12 1.52 7.24 2.50 0.58 0.35
Δs23 6.87 10.28 5.58 1.15 0.49
Δs34 4.11 13.69 7.89 1.57 0.60

25C Δs12 1.64 2.43 1.95 1.15 1.17
Δs23 0.82 2.32 2.33 1.41 0.88
Δs34 4.40 6.17 3.14 1.41 0.57

RMSPe [%] 30A Δs12 38.8% 33.1% 16.6% 4.5% 2.6%
Δs23 29.5% 31.5% 18.4% 3.1% 2.8%
Δs34 11.7% 11.3% 9.9% 2.3% 1.5%

30B Δs12 23.6% 15.6% 19.1% 2.2% 2.9%
Δs23 43.2% 7.8% 7.8% 2.6% 1.9%
Δs34 11.6% 8.7% 8.9% 2.6% 1.4%

30C Δs12 50.0% 11.0% 14.6% 5.4% 1.5%
Δs23 33.9% 38.9% 46.9% 6.2% 5.1%
Δs34 31.1% 45.7% 39.4% 4.3% 3.0%

25B �s12 16.9% 85.2% 32.0% 8.1% 4.8%
Δs23 65.5% 101.2% 54.3% 12.9% 4.4%
Δs34 38.9% 133.8% 73.4% 12.2% 6.1%

25C Δs12 20.0% 30.6% 23.9% 12.6% 14.0%
Δs23 8.5% 22.2% 23.2% 14.6% 9.5%
Δs34 59.8% 86.6% 44.8% 13.7% 8.4%

NOTE: Boldface indicates errors relative to the trajectories found in Figure 3. 




