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Nonstationary Kalman Filter for Estimation
of Accurate and Consistent
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Difficulty in obtaining accur ate car -following data hastraditionally been
regarded asaconsiderabledrawback in under standing real phenomena
and hasaffected the development and validation of trafficmicrosimulation
models. Recent advancementsin digital technology have opened up new
horizonsin theconduct of research in thisfield. Despitethehigh degrees
of precision of these techniques, estimation of time series data of speeds
and accelerations from positions with the required accuracy is still a
demandingtask. Thecoreof the problemisfiltering thenoisy trajectory
datafor each vehiclewithout altering platoon data consistency; i.e., the
speedsand accelerations of following vehiclesmust be estimated so that
theresulting intervehicle spacings are equal to thereal one. Otherwise,
negative spacings can also easily occur. The task was achieved in this
study by considering vehiclesof a platoon as a sole dynamic system and
reducing several estimation problemsto a single consistent one. This
processwasaccomplished by meansof anonstationary Kalman filter that
used measurementsand time-varying error information from differen-
tial Global Positioning System devices. The Kalman filter wasfruitfully
applied hereto estimation of the speed of thewhole platoon by including
intervehiclespacingsasadditional measurements(assumed tobereference
measurements). The closed solution of an optimization problem that
ensuresstrict observation of thetrueintervehicle spacingsconcludesthe
estimation process. The stationary counterpart of the devised filter is
suitablefor application to position data, regar dlessof thedata collection
technique used, e.g., video cameras.

The use of microscopic traffic flow modelsto eval uate complex rea
contexts, such as theimplementation of intelligent transportation
system strategies on congested road networks, has proved how in-
appropriate such modelsarein accurately representing thereal world.
Oneof themajor reasons has been long identified from theinadequacy
of their submodels, including car-following ones.

Although most of the car-following submodelsare still used, they
were devel oped after the historic study performed by the group of
General Motorsresearchers (1) between themid-1950s and the 1970s
and after some valuable contributionsfrom other investigators (2, 3).
Starting from some simple assumptions, they were devel oped through
afundamentally deductive approach. Mg or efforts have been devoted
to the study of the theoretical properties of models, such as stability.
By contrast, empirical verification of the assumptions and model
calibration have encountered serious difficultieswith the collection
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of accurate, unbiased data. Mgjor technological issues arise in the
collection of time series data of vehicle motion variables with high
degrees of accuracy and in acommon space-time reference system.
For thisreason, too, findingsfrom calibration studies have often been
contradictory [for acomprehensivereview, seethework of Brackstone
and McDonald (4)].

Asthe collection of accurate experimental data could substan-
tially improve the knowledge of real phenomena and the realism of
models, the recent devel opment of digital technology has opened up
new horizonsin the conduct of research in thisfield. Experiments
with several techniquesfor gathering vehicle trajectories have been
conducted (see the next section).

However, whatever approach is used and despite the high expected
degree of precision of instruments, the estimation of trajectoriesfrom
raw dataisademanding task. Therequirementsfor the effective use
of such datain car-following studies areindeed stringent. Estimated
speed and accel eration time seriesmust befree of noise. That is, they
must respect physical limitations and they must be smoothed. More-
over, they must be consistent: the speeds and accel erations of fol-
lowing vehicles must be estimated in such away that the resulting
intervehicle spacings are equa to real spacings. Otherwise, for exam-
ple, even dight differences between the estimated and the actual speeds
of avehicle may easily entail negative spacingsin the case of astop
(i.e.,incasesinwhich the actual spacingsarevery small; seethenext
section for an example).

Totheauthors knowledge, despiteitsimportance, thisconsistency
requirement for estimated data has not been explicitly stressed in
previous work. Raw data collected from different vehicles are gen-
erally processed independently, i.e., without the imposition of any
consistency condition (5, 6).

To addressthis problem, following vehicles can instead be consid-
ered a sole dynamic system and one consistent estimation problem
instead of several independent ones can be solved. The Kalman filter
isasuitabledevicefor such atask (7). It alowsthe system of n vehi-
clesto berepresented with a state—space model and estimation of state
variablevalues (vehicle cinematic variables) asthe best compromise
between measurements and model estimates.

The structure of thefilter presented below issuitablefor estimation
of time series data of speeds (and accel erations) from vehicle posi-
tionswith whatever technology with which the dataare collected. If
time-varying estimates of measurement errors are available, asin
the case of adifferential Global Positioning System (GPS), anon-
stationary filter can be devised. Otherwise, as with datafrom video
cameras, astationary filter isvalid.

In this paper, the data requirements for car-following studies, the
available collection techniques, and the experiments carried out for this
work are briefly discussed first. The availableinformation from GPS



devicesand the different estimation techniques compared in thiswork
are then presented. The structure and properties of the nonstationary
Kaman filter that was devised and a further refinement to the esti-
mation process follow. The paper concludes with a comparison of
the performances of the different estimation techniques tested.

CAR-FOLLOWING DATA
Requirements of Experimental Data

The datarequired for car-following studies consist of the space-time
trajectories of vehicles, that is, the availability of vehicle positions
over timein an absol ute space-timereference system (e.g., from data
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from video cameras or onboard GPSreceivers; seebelow). Fromthese
positional data, time series of intervehicle spacings areimmediately
available, while vehicle speeds and accel erations must be cal cul ated
through successive derivations of the space traveled.

Asraw position data are subject to measurement errors, the latter
areamplified in the derivation process (see Figure 1 for an exam-
ple). Theresulting speeds and accel erations can present physically
incompatible values. Moreover, their temporal profiles can be very
noisy. Such deviations can significantly affect both car-following
behavior analysis and the estimation of model parametersthrough a
direct method, e.g., maximum-likelihood methods[an application has
been provided elsewhere (5)]. On the other hand, when noisy time
series of speedsor accelerations are used to feed modelsin aniterative
cdibration process[i.e., through an indirect method, such asthat used
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FIGURE 1 Measured and estimated (a) accelerations, (b) speeds, and (c) intervehicle spacings from Experiment 25B.
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elsawhere (8-10)], theinstahility of car-following models can easily
arise. This renders such data of no use for model calibration and
requires effective data-filtering techniques.

What is expected from such atechnique is the reduction of mea-
surement errors. Thus, low-frequency (i.e., smoothed) speed and
acceleration profilesin accordance with the human and mechanical
responses observed in real phenomena are sought. Moreover, such
smoothed profiles must be consistent. In other words, if the tempo-
ral profiles of the estimated speeds of two following vehicles n and
p, Vi(t) and v,(t), are used to calculate their intervehicle spacing at
timet, Asy(t), as

t t
AS,® = Asy(O) + [v(dt - [v,(dr vt )
0 0

(i.e., as the difference between the spaces traveled), such a calcu-
lated spacing would be expected to equal that directly measured at
instant t (if the vehiclesfollow the same trajectory).
Thisconsistency conditionisnot at al negligible. Indeed, evendight
deviations of estimated speeds from real ones may signify a strong
deviation of the estimated phenomenon from the real one. Figure 2
clarifiesthis aspect: thereal speed profiles of two following vehicles
(measured on the | eft scal€) are reported as dark thick and thin lines
(V1 biased and V2 unbiased respectively), while their intervehicle
spacings (measured on the right scale) are reported as alight line
(As12 unbiased). When the speed of thelead vehicleishigher than
that of thefollowing vehicle, i.e., vehicles are accel erating and the
dark thick line stays above the dark thin one, the intervehicle spacing
increases by a quantity measured by Equation 1 and is represented
by thelight-colored areas. By contrast, when the vehicles decel erate,
their space headway decreases by an amount equal to the dark areas.
If one estimates for the following vehicle (the dark thin one) a speed
profile (V2 biased) that deviates by aquantity equal to the areawith
vertical lines, the resulting intervehicle spacing would be represented
by thelight dotted line (As12 biased). If a speed profilethat deviates
by aquantity equal to theareawith vertical linesis estimated for the
following vehicle (represented by the dark thin line), the resulting
intervehicle spacing would be represented by the light dotted line
(instead of thelight one). Figure 2 therefore shows how even slight
and short-lasting errors (4 sin the exampl €) in the estimation of speeds

may giveriseto anintegral error that cannot befurther remedied. To
have an idea of the magnitudesinvolved, consider the casein which
vehicle positions are measured every 0.1 s, which isthe time step
generdly usedinsimulation. If dataarenot filtered, the samesign mea-
surement errors of only 10 cm for 2 sgiveriseto an error of 2min
traveled space. When vehicles have stopped and are presumably 1 m
apart, this might entail a negative spacing between the vehicles.

Data Collection Techniques

Two different approaches are suitable for the collection of car-
following data. Thefirst makesuse of remote sensing and object track-
ing from video cameras. The second envisagesthe use of instrumented
vehicles.

In thefirst approach, cameras either can be mounted at fixed and
preferably elevated locations (11) or can be movable by attachment
to aerial platforms (12, 13). This approach alowsthe collection of a
large number of trajectories, but only along alimited stretch of road
(rarely up to 500 m). Car-following, lane-changing, and gap accep-
tance behaviorsare observable. Moreover, traffic flow isnot disturbed
at all. However, the observation and analysis of driving behavior can
be affected by spatial limitation. Multiple-camerastitching isapos-
siblesolution, yetitisfar from straightforward. The experimental setup
and data processing aretime-consuming. Accuracy rangesfrom 10to
100 cm, and the detection rate ranges from 80% to 98% (11).

Among the techniques used for the second approach, one has
recently proved to be successful (14). It consistsof equipping avehicle
with at |east two types of instruments: a speed sensor (e.g., alaser
speedometer) and arelative spacing and speed sensor (e.g., aradar).
Thistechniquealowsthetrajectory of afollowing vehicle, unaware of
the experiment, to bemonitored for long stretchesalong aroute. Thus,
it provides, on the one hand, the opportunity to capture adriver’s
behavior under variable environmental and traffic conditions; on the
other hand, it restricts the analysis to the car-following dynamics of
asingle pair of vehicles. Radar accuracies, for example, are+0.2m
inrange and £0.4 m/sin relative speed (14).

An alternative methodology follows the development of GPSs:
by equipping all the vehicles of aplatoon with receivers and mon-
itoring their trajectories, advances can be made in understanding
driving behavior, asin thisway the internal dynamics of awhole
platoon can be thoroughly analyzed [ see the report of an experiment
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FIGURE 2 Biased and unbiased speeds (intervehicle spacings) for Vehicle 1 (V1) and Vehicle 2 (V2).



carried out with 10 vehiclesaong a Japanese motor racing track (6)].
GPS can effectively support thiskind of experiment because of three
characteristics peculiar to the system:

e Accuracy in the detection of positions, which, in the case of
differential correction onsignal carriers, reaches an expected value
of approximately 10 mm;

e Thorough timing of the system, which allows synchronous
detection of vehicle positions; and

e Sampling frequency of measurements (up to 20 Hz), whichis
higher than that of the usual simulation steps adopted.

As the techniques described above are limited to car-following
behavior, if information on the surrounding traffic isrequired, addi-
tional data collection systems must be used. The drawback isthat
driversare awarethat they are participating in experiments; besides,
if thelatter techniqueisperformed in real traffic, unexpected events
(e.g., theintrusion of a nonmonitored vehicle into the platoon) can
invalidate the test. The latter can be mitigated by the adoption of
appropriate countermeasures, as described below.

At present, none of the availabl e techniques seemsto be definitively
better than the others, with each having a preferential field of appli-
cation. For example, studies aimed at comparison of the abilities of
car-following models to reproduce real behaviors need trajectories
from the samedriver faced with different typesof roadsand traffic con-
ditions. Indeed, model performance aswell asthe optimal parameters
calibrated varies for the same driver under different driving condi-
tions (10). For thisreason and despiteits drawbacks, the GPS approach
seems to be agood compromise for the collection of such data.

Collected Experimental Data

An experiment similar to that carried out on atest track in Japan (6)
was performed under real traffic conditionsaong roadsin areasaround
Naples, Italy, in 2002 and 2003. The trajectories of four vehiclesin
a platoon were collected both on urban and on Sextraurban roads
with GPS devices. The latter consisted of five dual-frequency, GPS
+ Global Navigation Satellite System receivers (one base station
receiver and four rovers) with the following expected precisionin
real-time kinematic mode: horizontal = 10 mm + 1.0 ppm; vertical =
15 mm+ 1.0 ppm. The measurements obtained from therecelversare
discussed in the next section.

The aim of the experimental survey was to collect car-following
datafor multiple carsunder different rea driving conditions(i.e., on
different roads and under different traffic conditions) to be used for
comparison of the car-following models. The choice of roads was
crucial: several trials were performed on different types of roads.
In thiswork and in the subsequent study of model comparison (10),
only datafor one-carriageway roadswith onelane per direction (urban
and rural) were analyzed. On such roads, car-following behavior is
unaffected by lane-changing behavior.

Datawere collected on two days (October 30, 2002, and February
25, 2003) aong the same route and consist of five data sets (Exper-
iments 30A, 30B, 30C, 25B, and 25C, respectively) that altogether
amount to ca. 24 min. The data sets from October 30 were collected
on both urban roads (Experiments 30A and 30C) and arural road
(Experiment 30B). The data setsfrom February 25 were gathered on
the same urban roads from which the datawere collected in October.
Figure 3 shows maps of the GPS tracks of the trias (tracks on the
same road have been translated so that they are observable).
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The first urban road, Via Terracina (Experiments 30C and 25B), is
astraight road ca. 2 km long that departs from the Naples Engineering
Faculty and that heads toward the suburb of Agnano; it hasfour inter-
sections (two of which are signaized). It is often congested because
of the presence of stores, a hospital, a school, and parking places on
both sides of the road [the estimated capecity is 900 vehicles per hour
(veh/h)]. Datafor thisroad were collected under conditions con-
gested traffic (i.e., stop-and-go traffic conditions) in both October
and February.

The second urban road, Via Cinthia (Experiments 30A and 25C), is
astraight road approximately 2 km long that departs from the Naples
Engineering Faculty and that heads toward the suburb of Soccavo. It
has one signalized intersection and terminates with a roundabout. It
doesnot have asmany lateral disturbancesasViaTerracinaand hasno
parking places (the estimated capacity is 1,200 veh/h). Data for this
road were collected under congested traffic conditionsin both October
and February.

The rural road (Experiment 30B) is a two-lane highway that by-
passes the historical center of Pozzuoli, not far from the first two
sites. It is approximately 3 km long and has two intersections (one
signalized). It has no lateral access, and its estimated capacity is
1,500 veh/h. Thetraffic flow at the time that the data were gathered
was approximately 400 veh/h.

Careful attention was paid to the setup of the experimental proto-
col. Theleader of the platoon was one of the authors. Thefollowing
drivers, al of them university students, wereinformed of the path to
betaken and werefamiliar withit, but they were unaware of theaim
of the experiment. Theleader took careto prevent intrusionsinto the
platoon by giving way to extraneous vehicles at intersections. When
intrusions occurred, the corresponding data were discarded.

Initial dataanalysishighlighted alevel of noise higher than that in
previousinvestigations (6 ) because of the environmental conditionsof
experiments performed in an urban environment with disturbed mea-
surement signal's (el ectromagnetic interference or physical obstacles
to the satellite signal) and multipath effects.

MEASUREMENTS FROM GPS DEVICES
Available Measures

GPS allows the position of areceiver to be estimated in Cartesian
coordinates, X, y, and z, in the Word Geodetic System 84 reference
system. As mentioned above, time seriesof intervehicle spacingsare
immediately availablefrom position data. Indeed, given the synchrony
of measurements among the GPS receivers, it is possible to obtain
the observed intervehicle spacing ininstant t,, As‘n’gs(tk), betweenthe
receiver antennas on two vehicles, n and p, as the distance between
their positions at t:

wopg X)) = XPOT + [Y'(t) — Yot
A5 (00 = \/ +[2't) - @) @)

where [x"(t,), y"(t), Z'(t)] arethe coordinates of vehiclen at instant t,,
and [X°(ty), yP(t), 2°(ty)] are the coordinates of vehicle p at instant t,.

By considering the positions of a vehicle in two successive mea
surement instants, it is possible to calculate the space traveled in the
sampling interval. The length of the space, T, is constant and is equal
to 0.1 sinthiswork.

The average observed speed, v*(k), of vehicle n in interval k
between consecutive measurement instantst,_; and t,isequal to the
ratio between the space traveled in k and the length T:
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where [x"(ty), y"(t), 2(t,)] arethe coordinates of vehiclen at instant t,,
and [X"(tc_1), Y"(tk_1), Z'(tc_ )] are the coordinates of the vehiclen at
instant t,_.

Thedeviationfromreality consists of mistaking the space actually
traveled by the vehicleduringinterval kwith the straight space between

30A

the start and end positions in that interval. This error appearsto be
negligible when the sampling frequency (10 Hz) is considered.
Intervehiclespacing As,, at instant t, either can be measured directly
from the positions at t, through Equation 2 or can be calculated by the
integral relationin Equation 1, with v, and v, measured from time zero
toty, through Equation 3. In thefirst case, the deviation fromthe true
value depends on the measurement errors at the soleinstant t,. Inthe
second case, the deviation isaffected by al the measurement errorsin
interval [0, t] (with the two values being equal only for consistent
speeds). Hence, unlike speeds, the measured intervehicle spacings
are suitable asreference measurementsin the estimation process, as



they are memoryless measurements. In conclusion, the available data
are (a) the time series of the instantaneous intervehicle spacings at
intervals of 0.1 sfor each pair of vehicles and (b) the time series of
average speedsin intervals of 0.1 sfor each vehicle.

Propagation of Uncertainties in Differential
GPS Measurements

GPS aso provides an estimate of uncertainty in the measurement of
each coordinate by providing its mean square error. From the latter it
ispossibleto calculate how error propagatesinto intervehicle spacings
and speed measurements. Awareness of such errorsisessentia for the
implementation of a Kalman filter.

In the GPS surveys carried out, estimate of the error at each mea-
surement instant (epoch) was obtained by solving the so-called dif-
ferential problem. By thistechnique, datafrom mobile stationswere
correlated with those from a reference station and thus provided an
accuracy of about 1 cm. Lessaccurate measurements may beattributed
to residua errors due to so-called multipath phenomena, which are
quite widespread in the urban context and which result from the dupli-
cation of thesignal following itsreflection on surfaces (e.g., buildings)
closeto thereceivers.

The solution of thedifferential problem correspondsto the solution
of an overdetermined system of linear equations (measurements of
coordinates at each epoch) that, when solved by aleast-squarestech-
nique, returns the information required as a variance—covariance
matrix of measures.

Thismatrix isageneralized diagonal in which each element refers
to an epoch, t,, and is represented by the estimates of measurement
covariances of thethree coordinates of vehiclen, [x(ty), y"(ty), Z(ty)],
indicated in this section as [x1 (1), X5 (), X3(t)]:

n,ty n,tg n,tx

Oxy Oxz Ous
n,ty n,te n,ty
Oy Oxz Oxzp
n,tk n,tg n,tk
o (6} o

X31 X32 X33

where 6, is the compact notation that expresses the covariance of
X7'(t) and X{'(t), withi and j equal to 1, 2, and 3, for vehiclen at t,.

Inthiswork only values of varianceswere available (the bol dface
elementsin the matrix), asthey arethe only datareturned by the soft-
ware used to solve the differential problem (15). From estimates of
variances of the 12 starting variables, indicated here by x;, X, . . . , X2
and equal to the coordinates of two vehiclesin two successiveinstants,
covariances of the two arriving variables As,,(Xy, X, - . . , X12) and
Vo(X1, Xo, - - ., X12) Were obtained; and these are equal to the inter-
vehicle spacing and the speeds, respectively, of thetwo vehiclesgiven
in Equations 2 and 3.

In the case of small errors, by linearizing the functions A s,(X,
Xo, .+ .y X12) @NA Vy(Xy, X, - - ., X12) @round the expected values with
the notations adopted, the following formula, which expressesthe
propagation of variances and covariances in a compact form, is
obtained:

oV, E)Asm
; 4
vnAsnp z ax aX x.J ( )

i

where o, s, and Oy, arethe covariances of As,, and v, and of x; and x;,
respectively.
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By expressing the derivativesin Equation 4 at thefinite differences
and by developing relative calculations, the required variances (Var)
and covariances (Cov) were obtained:

Var[As, (K] = Gygpas,

n — %P g
|:)Q (tk,lA)S1 (:) (tk—l)] [(5:,"“(’1 4 Ggltk,l] (5)
p

1l
.M‘“’

Il
-

Var[v,(K] = o,

S tk tkl n,t n,t
e R R IO

Cov[v,(k), As,,(K)] = ©

VnASnp

= v [ 100 X ®) — X'(ts)
_2;[ 100 v, (K) ]

A X (b)) = X () || _nes
[ As, (K ] i @)

Where Gas s, Ov, AN Oy a5, are, respectively, the variances of
As,, and v, and the covariance of v, and As,, expressed in the com-
pact form by Equation 4, and where As,,(k) indicates the inter-
vehicle spacing of vehicles n and p in period of time k, which is
understood to be equal to the spacing calculated in theinitial instant
of this time period as given by Equation 2 [AS,(K) = Asy(tc_1)]-
Thus, the notation that will prove useful in specifying the Kalman
filter has been introduced.

DATA FILTERING PROBLEM

The following were used to filter the data:

e |ocal regression techniques,
e Selective filters (low-passfilters), and
e Kalman filters.

Thefirst two techniquesfilter the trgjectories of different vehi-
clesone at atime. Hence, they can estimate inconsistent speeds (as
described above).

Local Regression Technique

Thefirst techniquetested wasalocal regression technique (16), which
was enhanced with a preliminary cutoff threshold on measurement
errors. Itiswidely used instead of regular regression estimateswhen
data that require a flexible functional form, as in the case of time
series data over traveled space, are being evaluated (5).

It processes the coordinates of each singlereceiver, which were
previously subjected to a differential correction, and returns the
sequence of instantaneous speedsininstants of measurement sampling
(each 0.1s).

The main steps of the procedure are

1. Elimination of data with an error estimated downstream of a
differential correlation over a predefined threshold;
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2. Interpolation of missing datawith a cubic spline;

3. Calculation of the curvilinear abscissa from the positions;

4. Search for the best polynomial interpolator by |east-squares
analysisfor awindow of pointsof predefined width (local regression);

5. Cdculation of thefirst and second derivativesinthecentral point
of the window (instantaneous speed and acceleration);

6. Repeat of Steps4 and 5 until speed and accel eration arewithin
the constraints; and

7. Repeat of Steps 4 to 6 for al the points of the vector of the
curvilinear abscissas.

Thisprocedure makesit possibleto smooth the speed profileswhen
thesignalsarenot greatly disturbed. Y et, it hastwo clear drawbacks:
(a) uncertainty in the choice of parameters of local regression and
of the threshold applied and (b) inconsistent estimation of vehicle
speeds.

Selective Filters

The second technique consisted of the application of |ow-pass selec-
tivefilters[e.g., asin astudy described previously (8), which used
a Savitzky—Golay filter to estimate accel erations] and, in particular,
afourth-order Butterworth filter. Spectrum analysisdid not allow clear
identification of the cutoff frequency, which wastherefore obtained
by simulation (and which was equal to 0.5 Hz).

Qualitative analysis of the results can be summed up as follows:

e \With observed speeds dower than ca. 0.3 m/s (when the vehicle
is presumably still), the noiseisin the same band as the GPS signal
and isnot cut off by thefilter. The problem, however, can be solved
by setting zero speeds equal to these val ues before application of the
filter; and

e With observed speeds higher than ca. 0.3 m/s (running condi-
tions), the noise usually hasfrequencies higher than those of the GPS
signal and is eliminated by the filter.

However, a polarized noise of the measured signal, probably
caused by multipath phenomena, was sometimes observed. Inthis
case, although thefilter eliminated the high frequency in the signal,
it gave back an inconsistent estimate. A clear example of thisis
reported in Figure 1 (Vehicle 2), for which the noisy signal detected
isindicated as" Experimental data,” thefilter responseisindicated as
“Butterworth,” and the unbiased estimate isindicated as“ Complete
procedure.” The effects of this biased filtering on the consistency of
speeds are presented in Figure 2 and were discussed in the section
on the requirements of the experimental data.

Kalman Filter

The Kalman filter is alinear device that allows estimation with the
minimum mean square error (7). In the formulation of the problem,
it isfirst necessary to develop the system state equations concerned
and the measurement equations, which are expressed as follows,
respectively:

x(k+D = AK - x(k + BK) - uk) + DK - yk)

y(k) = C - x(k + Lo

where

x(K), u(k), and y(k) = thevariables of state, input, and out-
put, respectively, at instant k;
v(k) and {(k) = errors due to the model and to the
measurements, respectively; and
A(K), B(K), C(k), and D(k) = matrices of the coefficients of the
variables of state, input, measure-
ments, and errors due to the model,
respectively, which aregeneraly vari-
ablewith the instant k.

Errors (E) dueto the model and errors of measurement are white
stochastic processes with zero mean and known covariance matrix

E[y&w] =0  E[¢K] =0

E[v()v(k)'] = Qk)3;

where

E[C(ki)C(kj )T] = R(ki)sij

&; = Kronecker symbol,
Q(k;) = covariance matrix of system noise y(k), and
R(k) = covariance matrix of measurement noise (k).

Q(k)), which isgreater than or equal to 0, and R(k;), which is greater
than or equal to 0, are known; §;; isequal to Ofor i not equal toj; and
§; isequal to 1fori equal toj.

Thefilter estimates [ - (K)] are obtained by solving the following
equation:

% (K) = %o(K) + KK - [y — CK - %o (K]

where X, is the one-step prediction at k, obtained by solving the
following recursive equation:

X, = Ak =D X (k=D + Bk —D-uk —D

The matrix K(K) is called the gain matrix:

Kk = P, CHO" - [Ch - P, - CROT + R(k)]’1

and represents a compromise between two distinct requirements.
These two requirements are the need to use the available measure-
ments to adjust the model estimate of the future state and the need
not to downgrade this estimate because of errors in measurements.
The gain matrix is proportional to the covariance matrix of the esti-
mate error, Pp(K), which must be updated for every step through the
following formula:

Pk +D = Ak R+ AKT" + DK - QK - DKT

where P: (k) isgiven by

Rk = [I - Kk - Ck]- P,k

where | isthe unit matrix.

KALMAN FILTER DESIGNED

Asdescribed in the section above, the Kalman filter, compared with
the techniques tested previously, provides the opportunity to imple-
ment amodel of the system concerned. The response of such amodel
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isthus adjusted through the available measurements, the weights of
which are proportional to the quality of the measurementsthemselves
aswell asto the accuracy of the model.

Thefilter wastherefore devised to jointly use speed measurements
for nvehiclesand the measurements of then— 1 intervehicle spacings
by constraining theintegral differencesof the estimates of theformer
to be equal to the latter. The problem is presented below in relation
tojust two vehicles, asthe extension of the caseto nvehiclesistrivid.
The following were assumed as state variables:

vi(K) = speed of vehicle Link (spacetraveledinkdivided by T);
V,(K) = speed of vehicle2ink (spacetraveledinkdivided by T);
and
Asiy(K) = intervehicle spacing of vehiclesland 2ink (i.e, inthe
initia instant of k, t,_,).

Asmeasurements, values of v™(k), v¥(k), and As®3(K) are given by
Equations 3 and 2.
The state equations and output equations were as follows:

vi(k +12) = v, (k) + v, V0O = v (0 + 4, (0

oKk +1) = v, (K) + 7, V32K = v, (K) + £ (K

Asp(k+1) = 530 + [0 = GOJT + 75 | AsT(K) = As, (KD + L3 (K)

where stationary matrices A, B, C, and D are equal to

1 0 0
A=|0 1 0
T-T1
B = [0]

1 0 0]
c=[01 0
0 0 1]
1 0 0
D=|01 0
0 0 1]

Evolution of thetwo state variables vy (k) and v(K) isdescribed by
arandom walk, in which y; and v, are parameters to be calibrated
(together with ys). The measuring errors, {; with i meaning 1, 2, 3,
instead, are evaluated as mean square errors from the variances in
Equations 5 and 6. These variances, together with the variance from
Equation 7, make it possible to work out the covariance matrix of
errors R(K):

Gvﬂk?.vl(k) O letk),Asu(k)

RK) = 0 Ovaovmw  Ovko.aspto

GASQ(k),Vﬂk) GAslz(k),vz(k) GASu(k),ASu(Im
Filter initialization occurs by requiring X,(ko) to coincide with the

measurement vector of v, Vv,, and As in the initial instant and by
requiring the covariance matrix Pp(ko) to be the identity matrix.
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Thefilter issuitablefor application to time series of position data,
regardless of the technique used to collect data. If such atechnique
provides time-varying information on measurement errors (as for
GPSdataafter differentia correction), the nonstationary filter designed
here can be adopted. Otherwise, the stationary counterpart of thefil-
ter can be applied by fixing a time-independent covariance matrix
of errors R (e.g., data from video cameras).

The availability of a system model represented by n vehicles of
the platoon appearsto be particularly useful for the case concerned.
Estimation of the trajectory of a generic vehicle does not depend
exclusively on the single measurements obtained for that vehicle but
isbound to the observance of the overall dynamicsof the system. This
allows consistent estimates of the speed profiles of the vehiclesina
platoon to be obtained, which isafundamental requirement of datafor
car-following studies. Thefilter formulation showsthat the estimate
of the speed of a vehicle directly depends on the measurements
obtained for thevehicleitsalf, aswell ason the measurements obtained
for thetwo adjacent vehiclesand, through thelatter, the measurements
obtained for all other vehiclesin the platoon.

Theadoption of astate equation that deal swith intervehicle spacings
makesit possible to use the dynamic filter. The system of equations
describing the motion of asingle vehiclefor which only positioning
measurements are known is not observable, and its observability
matrix (i.e., [C, CA, ..., CA"-1T) isnot of maximum rank. Hence,
estimation of its speed profile through the use of adynamicfilter will
require an additional measurement (e.g., when dealing with a vehi-
cleinstrumented with GPS, thisisgenerally accomplished by means
of additional sensors, such as odometers and accelerometers). By
considering instead n vehiclessmultaneoudly, itispossibletoinclude
in the system an additional measurement (intervehicle spacings) that
makes the system observable.

Somefurther considerations concernfilter stability. Fromtheequa-
tions presented above, it iseasy to obtain themodel of the estimation
error (e):

ek +D = {A—[KK-CJ}- ek

If the gain matrix K isconstant (i.e., thefilter is stationary), thefil-
terisstableif and only if eigenvaluesof processmatrix E=(A—K-C),
arelessthan 1, thatis, if D - Q- DTisdefinitely positive. In other words,
the appropriate setting of the model error matrix Q makes the filter
stable. Unlike stationary filters, results of the stability of time-varying
filters tend to be complex; e.g., the condition applied above to E for
any k becomes necessary [sufficient conditions are al so described
elsewhere (17)]. From apractica point of view, the training of the
filter with different matrices Q can overcome instability effects.

Note, in conclusion, that to avoid filter estimation of negative or
small, nonnull speed values on vehicle stopping, some conditions
were added to ease the convergence toward null values.

FURTHER REFINEMENT TO ESTIMATES

Asmentioned above, the Kalman filter finds a compromise between
measurementsand model estimates. Thus, the estimates obtained are
not necessarily strictly consistent; i.e., they do not strictly observe
state equations of the system. In other words, the intervehicle spacings
calculated from estimated speeds can differ slightly from theinter-
vehicle spacingsgiven asoutput by thefilter itself. Thisisbecausethe
assumption that y; isnot equal to 0 turnsout to be necessary. Indeed,
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vehicles move in the three-dimensional space (and the GPS mea-
surements are three-dimensional aswell); hence, Equations 2 and 3
cannot verify exactly thethird state equation unlessboth vehiclesare
moving exactly onthe samelinein thethree-dimensiona space. Any-
how, if this consistency were ensured, the following constrained
optimization problem could be stated: to find the values of speeds
that are as close as possible to the Kalman estimates and that strictly
respect true intervehicle spacings (as “true’ intervehicle spacings,
Kaman filter estimates can be assumed). In mathematical terms

miny = [ — GAOT + [V — %GO (8)

subject to
As,(K+ D = As, (K + [v(K) — v,UOT

where v, and v, are the Kalman filter estimates of the speeds.
A closed solution can be obtained by the Lagrange multipliers
method.

RESULTS AND COMPARISONS

To compare qualitatively the varioustechniques applied to the same
data, notetheresultsillustrated in Figure 1. The datawere chosen for
their relevanceto the study concerned and show strong noisewith
polarization of the measurement signal for a length of about 4 s
(multipath phenomenain measurements from seconds 135 to 139).
They are asamplefrom the trgjectory of the second vehicle of the
platoon in data set 25B. The techniques compared were asfollows: a
local regression procedure, a Butterworth filter, a Butterworth filter
with acutoff threshold on speeds of lessthan 0.3 m/s, the Kalman fil -
ter, and the compl ete procedure (i.e., the Kalmanfilter, the consistency
problem, and the Butterworth filter).

Figure 1 reports the accel eration and speed profiles of the second
vehicleof the platoon and theintervehicle spacing profile between the
first and second vehicles as measured and filtered.

The speed profile in the noisy section (between seconds 135 and
139) shows that the local regression procedure almost eliminates
all measurementsasvery noisy (i.e., error estimates are above the
threshold), and theresulting profileisthe outcome of the cubic spline
between points not rejected in the margin of this section. By contrast,
the Butterworth filters have avery regular profile, athough they are
affected by the polarization of thesignal: thefiltered profile seemsto
beabovetheactua profile (whichiseasy toinfer from the observations
of experimental data) and isdragged upward by the higher values.
Finally, the Kalman filter presents a profile that appears to be the
closest to the actual profile.

Figure 1 also presents a comparison of intervehicle spacings. In
Figure 1 the measured intervehicle spacing at any instant is given by
Equation 2. Asmentioned above, this measurement does not depend
on those measurements affected in other instants. Moreover, these
memorylesserrors, which usually amount to some centimeters, have
alow percent incidence on intervehicle spacings, which generally
amount to some meters. Thisimpliesthat the intervehicle spacing
profile appears to be quite regular, even when the measurements
arenoisy.

Instead, all profiles obtained with thefiltering techniquestested are
obtained as differences of integrals of the speeds estimated through
these techniques, as speed consistency needsto be checked (and are
calculated from instant 0). Therefore, the Kalman label does not
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indicatetheintervehicle spacing estimate made by thefilter but, rather,
the spacing cal cul ated asthe difference of theintegrals of speeds esti-
mated by thefilter itself. Indeed, these profilesdo not always coincide
(see the section on further refinement of the estimates).

Figure 1 showsthat the only speed estimatesthat produce aninter-
vehicle spacing consistent with the actual one are those obtained
through the Kalman filter. The estimates farthest from the reference
measurements are those concerning the spacing calculated on the
basis of raw speed measurements and by the speedsfiltered through
the Butterworth filter. The two profiles coincide as expected, asthe
latter does not alter the integral of the filtered speeds.

In conclusion, Figure 1 showsthe accel eration profiles cal culated
asthederivative of the estimated speedsaswell. Inthis casethe most
regular profile appears to be that given by the complete procedure.

Table 1 reportsthe val ues of root mean square error (RM Se) and root
mean square percentage error (RM SPe) for theintervehicle spacing
profiles of all the data sets available in this study. Error test values
were computed by comparison of theintervehicle spacings cal culated
from the speeds estimated by the various techniques and the inter-
vehicle spacings estimated by use of the Kalman filter (which are
assumed to be the reference measurements). The results show that
the stated problem of the consistency of speeds estimated isnot neg-
ligible at all. Moreover, only the Kalman filter estimates cover the
requirements for the datato be used in car-following studies.

CONCLUSIONS

This study sought to make a contribution to the problem of car-
following data collection and estimation. First, the stringent require-
ments of datafor car-following studieswere described, highlighting
the problem of speed dataconsistency, i.e., the deviation between the
intervehicle spacings cal cul ated from the estimated speed and the true
intervehicle spacings. Such aproblem ariseswhen the speed profiles
of different vehiclesareindependently estimated from position data
(i.e., oneat atime).

Thisproblemwastackled by considering vehiclesasasoledynamic
system and solving one consistent estimation problem instead of
severa inconsistent ones. A Kaman filter was designed for thispur-
pose. Thefilter can be applied to position dataregardless of the data
collection technique used. The availability of time-varying informa-
tion on error measurements allowed the design of a nonstationary
filter that was applied to five car-following data sets collected by means
of adifferential GPS.

Adoption of intervehicle spacing asreference measuresfirst allowed
the effective design of the filter and then comparison of the perfor-
mances of the different filtering techniques. Theresults showed that,
unlikethe Kalman filter, thetechniquesthat are generally adopted are
not suitablefor estimation of consistent car-following data. The error
that they supply isnot at all negligible and makesthe data estimated
insufficiently accurate for use in car-following studies.
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TABLE 1 RMSe and RMSPe Between Intervehicle Spacings Calculated from Estimated Speeds
and Intervehicle Spacings Measured
Loca Butterworth + Complete
Regression Butterworth Threshold Kaman Procedure
RMSe[m] 30A As), 3.07 2.73 143 0.40 0.24
ASy3 2.64 2.87 1.62 0.29 0.29
ASy 0.77 0.67 0.65 0.22 0.12
30B As), 1.49 1.34 1.69 0.22 0.27
ASy3 4.89 0.80 0.80 0.36 0.23
ASy 0.85 0.58 0.65 0.25 0.14
30C As), 4.39 0.84 1.15 0.41 0.11
ASy3 3.41 4.05 4.99 0.70 0.48
ASy 2.73 4.13 3.61 0.46 0.41
25B As;, 1.52 7.24 2.50 0.58 0.35
ASy3 6.87 10.28 5.58 1.15 0.49
ASy 4.11 13.69 7.89 1.57 0.60
25C As), 1.64 2.43 1.95 1.15 117
ASy3 0.82 2.32 2.33 1.41 0.88
ASy 4.40 6.17 3.14 141 0.57
RM SPe [%)] 30A As;, 38.8% 33.1% 16.6% 4.5% 2.6%
ASy 29.5% 31.5% 18.4% 3.1% 2.8%
ASzy 11.7% 11.3% 9.9% 2.3% 1.5%
30B Asy, 23.6% 15.6% 19.1% 2.2% 2.9%
ASy 43.2% 7.8% 7.8% 2.6% 1.9%
ASzy 11.6% 8.7% 8.9% 2.6% 1.4%
30C Asp, 50.0% 11.0% 14.6% 5.4% 1.5%
ASy 33.9% 38.9% 46.9% 6.2% 5.1%
ASy, 31.1% 45.7% 39.4% 4.3% 3.0%
25B As), 16.9% 85.2% 32.0% 8.1% 4.8%
ASy 65.5% 101.2% 54.3% 12.9% 4.4%
Asy 38.9% 133.8% 73.4% 12.2% 6.1%
25C Asp, 20.0% 30.6% 23.9% 12.6% 14.0%
ASy 8.5% 22.2% 23.2% 14.6% 9.5%
Asy 59.8% 86.6% 44.8% 13.7% 8.4%

Norte: Boldface indicates errors relative to the trajectories found in Figure 3.
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