
www.elsevier.com/locate/parco

Parallel Computing 31 (2005) 1034–1047
A hierarchical distributed-shared memory
parallel Branch&Bound application with PVM

and OpenMP for multiprocessor clusters

Rocco Aversa, Beniamino Di Martino *,
Nicola Mazzocca, Salvatore Venticinque

Dip. Ingegneria dell’Informazione, Seconda Universitá di Napoli, DII, Real Casa dell’Annunziata,

via Roma 29, 81031 Aversa(CE), Italy

Received 11 October 2004; received in revised form 15 February 2005; accepted 5 March 2005
Available online 17 October 2005
Abstract

Branch&Bound (B&B) is a technique widely used to solve combinatorial optimization
problems in physics and engineering science. In this paper we show how the combined use
of PVM and OpenMP libraries can be a promising approach to exploit the intrinsic parallel
nature of this class of application and to obtain efficient code for hybrid computational
architectures. We described how both the shared memory and the distributed memory pro-
gramming models can be applied to implement the same algorithm for the inter-nodes and
intra-node parallelization. Some experimental tests on a local area network (LAN) of work-
stations are finally discussed.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Hybrid applications; OpenMP; MPI; Branch&Bound
0167-8191/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2005.03.010

* Corresponding author. Tel.: +39 081 5010282; fax: +39 081 5037042.
E-mail addresses: rocco.aversa@unina2.it (R. Aversa), beniamino.dimartino@unina.it (B. DiMartino),

n.mazzocca@unina.it (N. Mazzocca), salvatore.venticinque@unina2.it (S. Venticinque).

mailto:rocco.aversa@unina2.it
mailto:beniamino.dimartino@unina.it 
mailto:n.mazzocca@unina.it 
mailto:salvatore.venticinque@unina2.it 


R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1035
1. Introduction

Branch&Bound (B&B) is a technique widely used to solve combinatorial optimi-
zation problems in physics and engineering science. Furthermore, Branch&Bound
(B&B) applications represent a typical example of irregularly structured problems
whose parallelization using hierarchical computational architectures (e.g. clusters
of SMPs) involves several issues, such as the sharing of global computation state
and the dynamic workload balancing among nodes. In this paper we show how
the combined use of PVM and OpenMP libraries can be a promising approach
to exploit the intrinsic parallel nature of this class of application and to obtain
efficient code for hybrid computational architectures. Our strategy to yield an
effective distributed version of a given Branch&Bound (B&B) application for a
distributed multiprocessor architecture was driven by the following rules: no
significant variations in the original algorithm structure; reusing a large part of
the available code; exploiting the hybrid computational characteristics of the target
system. According to this second issue, we chose to combine in our parallel
version a coarse grain parallelization technique, using a PVM solution of the
B&B application [1] based on the coordinator/workers paradigm, together with a
finer grain parallelization approach that, using OpenMP primitives, introduces
an additional dynamic and efficient workload distribution among the shared
memory nodes of the system. The remainder of the paper proceeds as follows: a
description of the programming models adopted in this work is provided in
Section 2. A conceptual description of B&B optimization technique, together with
the relating parallelization issues is presented in Section 3. Section 4 describes the
parallel implementation, illustrating the shared memory version and its integration
into the original distributed version are presented. In Section 5 we discuss results
of tests on a local area network (LAN) of workstations. Finally we give some
concluding remarks.
2. Parallel architectures and programming models

The goal of parallelization is to obtain high performance keeping low program-
ming effort and exploiting the hardware resources of the target parallel machine.
Many parallel programming environments allow the developer to approach the
parallelization by using different programming paradigms, trying to match the
intrinsic parallelism of the algorithm with the available hardware. For example, a
shared memory implementation of a parallel program is expected to fit well a
SMP (Symmetric Multi Processor) machine, while a message passing model will
be preferred to take advantage of the characteristics of a cluster of workstations.
Whatever kind of target architecture, an efficient parallelization strategy needs: to
ensure a balanced distribution of work among processors, to reduce the amount
of inter-processor communication, and to keep the overheads of communication,
synchronization and parallelism management low [2]. Complying with these require-
ments, today, for a great deal, is still on the programmer�s responsibility.



1036 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
In the shared memory approach the shared address space programming model
assumes one or more threads of control, each operating in an address space divided
into a region shared between threads, and another one that is private to each thread.
In particular the program accesses and updates shared variables simply by using
them in expressions and assignment statements. The principal programming environ-
ments supporting the shared memory paradigm include: support for data parallel
programming (single threaded, global name space, and loosely synchronous parallel
computation); open interfaces and interoperability with other languages and other
programming paradigms (e.g., message passing using MPI). Another important goal
is to achieve code portability across a variety of parallel machines, where portability
means not only that parallel programs compile on different target machines, but also
that a highly efficient program on one parallel machine is able to achieve reasonably
high efficiency on another parallel machine with a comparable number of processors.
Other features are automatic support for multithreaded execution, loop tiling, code
restructuring and efficient data distribution.

Examples of available compilers which support shared memory programming
are HPF [3] and OpenMP compliant platforms [4]. HPF is an high performance
Fortran Compiler that extends Fortran 90 language providing access to high-
performance architecture features while maintaining portability across platforms.
The programmer is often provided with an Application Programming Interface
(API) that can be used to explicitly direct multi-threaded, shared memory parallel-
ism. OpenMP is an Open specifications for Multi Processing via collaborative work
with interested parties from the hardware and software industry, government and
academia. It is composed of three primary API components: Compiler Directives,
Runtime Library Routines and Environment Variables. The API is specified for
C/C++ and Fortran. Multiple platforms have been implemented including most
Unix and Windows platforms. An example of JAVA implementation is JOMP
(JAVA OpenMP) [5], it is composed of a open JAVA pre-compiler and JAVA
runtime API.

Message passing models assume a collection of processes, each operating in a pri-
vate address space and each able to name the other processes. The normal unipro-
cessor operations are provided on the private address space, in program order.
The additional operations, send and receive, operate on the local address space
and the global process space: send transfers data from the local address space to a
process; receive accepts data into the local address space from a process. Each
send/receive pair is a specific point-to-point synchronization operation. By means
of these simple mechanisms many message passing languages and runtime systems
offer primitives for collective synchronization and communication such as barriers
or broadcast and multicast. Some examples are MPI [6], PVM [7]. Furthermore a
lot of platforms are available today targeted to systems which are distributed on
wide area networks (GRID). Some examples exploit web computing [8,9], mobile
code based technology [10], or reuse classical and standard protocols and languages
[11,12]. We adopt in this paper both the shared memory and Message passing pro-
gramming paradigms to parallelize an irregular application targeted to cluster of
SMP workstations. Our hybrid implementation exploits the Message passing model



R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1037
for inter-node parallelization and the shared memory model within the single work-
station for intra-node parallelization.
3. The Branch&Bound parallel application

A discrete optimization problem consists in searching the optimal value (maxi-
mum or minimum) of a function f :~x 2 Zn ! R, and the solution ~x ¼
fx1; . . . ; xng in which the function�s value is optimal. f ð~xÞ is said cost function,
and its domain is generally defined by means of a set of m constraints on the
points of the definition space. Constraints are generally expressed by a set of in-
equalities:

Xn

i¼1

ai;jxi 6 bj 8j 2 f1; . . . ;mg ð1Þ

and they define the set of feasible values for the xi variables (the solutions space of the
problem). Branch&Bound is a class of methods solving such problems according to a
divide&conquer strategy. The initial solution space is recursively divided in sub-
spaces, until attaining to the individual solutions; such a recursive division can be
represented by a (abstract) tree: the nodes of this tree represent the solution
subspaces obtained by dividing the parent subspace, the leaf nodes represent the
solutions of the problem, and the tree traversal represents the recursive operation
of dividing and conquering the problem.

The method is enumerative, but it aims to a non-exhaustive scanning of the solu-
tions space. This goal is achieved by estimating the best feasible solution for each
subproblem, without expanding the tree node, or trying to prove that there are no
feasible solutions for a subproblem, whose value is better than the current best value.
(It is assumed that a best feasible solution estimation function has been devised, to be
computed for each subproblem.) This latter situation corresponds to the so called
pruning of a search subtree. B&B algorithms can be parallelized at a fine or coarse
grain level. The fine-grain parallelization involves the computations related to each
subproblem, such as the computation of the estimation function, or the verification
of constraints defining feasible solutions. The coarse grain parallelization involves
the overall tree traversal: there are several computation processes concurrently tra-
versing a different branch of the search tree. In this case the effects of the parallelism
are not limited to a speed up of the algorithmic steps. Indeed, the search tree ex-
plored is generally different from the one traversed by the sequential algorithm. As
a result the number of explored nodes can be greater than in the sequential case
and the resolution time could increase in a not predictable manner. As it has been
demonstrated in [13], this approach exhibits anomalies, so that the parallelization
does not guarantee an improvement in the performance. For most practical prob-
lems, however, the bigger the problem size, the larger are the benefits of the parallel
traversal of the search tree. Parallel B&B algorithms can be categorized on the basis
of four features [14]:



1038 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
(1) how information on the global state of the computation is shared among pro-
cessors (we refer to such information as the knowledge generated by the
algorithm);

(2) how the knowledge is utilized by each process;
(3) how the workload is divided among the processes;
(4) how the processes communicate and synchronize among them.

The knowledge is global if there is a single common repository for the state of the
computation at any moment, accessed by all processes, otherwise it is local. In this
latter case, processes have their own knowledge bases, which must be kept consistent
to a certain degree to speed up the tree traversal and to balance the workload. With
respect to the knowledge use, the algorithms are characterized by: (1) the reaction

strategy of processes to the knowledge update (it can range from an instantaneous
reaction, to ignore it until the next decision is to be taken); (2) the dominance rule

among workers (a worker dominates another if its solutions best value is better than
the lower bound on the solutions of the other): it can be partial or global, if a node
can be eliminated only by a dominant node belonging to the same subtree traversed
by a process, or by any other dominant node; (3) the search strategy, that can be
breadth, depth or best first. With regard to the workload division, if all generated sub-
problems are stored in a common knowledge base, to each process that becomes idle
the most promising subproblem is assigned (on the basis of an heuristic evaluation).
If the state of the computation is distributed among processes (local knowledge),
then a workload balancing strategy has to be established, consisting of a relocation
of subproblems not yet traversed.

The parallel algorithm we present solves the (0–1) knapsack problem, which can be
stated as follows [15]:

maximize
Xn

i¼1

cixi ð2Þ

with xi 2 f0; 1g 8i 2 f1; . . . ; ng

subject to
Xn

i¼1

ai;jxi 6 bj 8j 2 f1; . . . ;mg ð3Þ

where ai,j and bj are positive integers.
4. The hybrid implementation

In the coordinator/workers concurrent programming model, a coordinator process
spawns a set of worker processes, which perform the actual computation; the coor-
dinator also manages the sharing of the global knowledge among the workers. The
structure of the application is depicted in Fig. 1. The algorithm we chose is exploited
both at distributed level by a PVM implementation and on the single SMP node by
the OpenMP support.



Coordinator

worker worker worker

Fig. 1. Structure of the coordinator worker algorithm.

R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1039
At distributed memory the workers are PVM processes spawned on the available
nodes, while at shared memory we have many workers threads inside a process,
scheduled on different processors.

The parallelization process follows the following phases:

(1) The decomposition of the problem consist of the initial division of the original
solution space. The solution space is splitted by the coordinator many times till
the number of subspaces is equals to the number of workers.

(2) Assignment. The coordinator assigns a single task to each worker. Subse-
quently the task could be splitted again in order to perform new assignments
whether some workers will be idle.

(3) The orchestration is very simple. Each worker explores the solution space of the
problem by splitting and solving the assigned one. When a better solution is
found it is communicated to the other workers (which reside both on the same
node and on the remote ones). When a worker is idle it asks for new tasks to
the local workers before and to the remote ones later.

(4) The mapping is performed by the coordinator that spawns the PVM processes
across the nodes. The master thread inside each process generates a pool of
threads, one for each processor available on a SMP node.

4.1. The PVM coarse grain parallelization

The implementation consists of the following phases:

• a coordinator process produces P instances of a worker process, decomposes the
assigned problem in P disjoint subproblems and assigns them to the workers;

• each worker explores its own subtree with a depth-first strategy, and updates its
local current best value, sending it to the coordinator, when it generates a feasible
solution;



1040 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
• when the coordinator receives a local current best value, it compares it with the
global current best value and eventually updates and broadcasts it to the workers.

The load balancing among the workers is accomplished with the following
strategy:

• when a worker completes the exploration of its subtree, it sends a message to the
coordinator, and waits for a new load share from it;

• the coordinator manages a list of idle workers: when it is not empty, it polls active
workers for a share of the load, until it receives a positive answer, then it assigns
the share to the first idle process in the list.

Thus, the coordinator is in charge of managing the updates and the broadcast of
the current best value, and of balancing the load among workers. The presence of a
coordinator also allows the detection of the termination condition. This is verified
when all workers are idle at the same time, and there are no messages carrying work
units, which have been sent but not received yet. Since the coordinator holds the glo-
bal state of the computation (lists of idle workers and of workload messages), it is
able to detect this situation. The characteristics of the algorithm at distributed level,
with respect to the categorization of the B&B algorithms presented in the previous
section, are the following: (1) each worker has its own knowledge base (local knowl-
edge); (2) processes react instantaneously to knowledge updates (the signal primitives
of the PVM environment are used for this purpose); (3) a global dominance rule is
adopted, since the current optimal value is broadcasted to all processes as soon as it
is updated; (4) the search strategy is depth-first, as it is more suited in the case of local
knowledge; (5) with respect to workload sharing between processes, load balancing is
provided, activated in presence of an idle process, since there is a local knowledge
sharing; (6) with regard to synchronization, the algorithms are asynchronous, since
there is no synchronous exchange of information and workload between executors,
but this exchange is performed on the basis of executor�s local events, and so
asynchronously with respect to the other executors.

4.2. The OpenMP fine-grain parallelization

The shared memory extension of the algorithm allows many threads to solve in
parallel the problem assigned to a pvm worker process applying recursively the di-
vide and conquer strategy. Each thread begins the traversal of the subtree assigned
to the pvm process from a different node at a deeper level. The solution space is an
array of boolean values specified till an early index lsc; a feasible solution is the same
array specified till the full dimension N. The not fully specified array represents also a
branch of the tree. The solution space is splitted by incrementing the index lsc and
obtaining two new arrays with the the value of index lsc-1 equals to 1 and 0. As
the PVM workers, the threads divide the subspaces assigned to them, but put
the new subproblems in the same shared bag. Every time the solution space is
divided into two new problems the thread pushes the first into the common bag



R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1041
and continues to explore the second one. When a branch of the tree is pruned a new
task is taken from the common bag. When a new optimum is found the global
optimum is updated. The global optimum is shared among the threads in order to
optimize the tree branching. As the bag is shared among all the workers we do
not need a inner workload balancing strategy. When the bag is empty all the threads
becomes IDLE and a new problem is asked by the master thread to the PVM
coordinator process. The computation of the feasible solution is performed in a
OpenMP parallel section where the constraints and the function loads are shared,
while the computations are executed on private data. The different threads concur
to write the same shared data when:

• a new local optimum is found an the global one needs to be updated;
• a new subproblem is pushed into the bag;
• a new subproblem is taken from the bag.

In these three situations we need to define an OpenMP critical sections in order to
make atomic each of these actions. In order to explain as the OpenMP support was
exploited we describe here how the sequential version has been extended. As it is
shown Fig. 2, this kind of parallelization is straightforward and very simple to
implement.

However in this case we have three pure parallel computing sections (without any
concurrence on shared values):

(1) the computation of the new optimum;
(2) the verification of the feasibilities;
(3) the branching of the tree.

We have three critical section which introduce a loss of performance when the dif-
ferent threads are executing the same part of the code:

(1) the updating of the global optimum;
(2) the pushing of a new task in the shared bag;
(3) the extraction of a task from the shared bag.

The critical sections deal with three different and not overlapped domains. In fact
the bag of tasks is a buffer accessed according to a first-in-first-out strategy. It means
that two threads could concur to write the same data just when they are executing in
the section identified by the same label opt, push or pop. First of all we should
consider that for each iteration we are sure to enter at least one critical section. In
fact when a new optimum is found in the space of solutions two critical section
are crossed:

• we enter the first critical section in order to update the new optimum;
• and we divide the problem and fill the bag in order to identify the final solution or
a better value.



Fig. 2. The OpenMP implementation of the parallel algorithm with a shared bag of tasks.

1042 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
Instead when the new solution is not feasible or it is worse than the current opti-
mum only one critical section is executed in order to take a new problem from the
bag. About the scalability of the problem, when the problem size increases we see
above all an exponential growth of the solution space, whose main effect is a bigger
number of iterations. It means that the execution time of the critical section increases
too much. Finally it easy to foresee that the degree of concurrence increases with the
number of threads. In order to overcome this kind of troubles we tried to optimize
the implementation of the algorithm described above. It is possible to reduce the
concurrence among the threads by defining a shared, but distributed bag. If each
thread is owner of a private repository of tasks we have at the most one execution
of critical code. We mean that the critical code is executed only when a better opti-
mum and a feasible solution are found. The update of the global value is needful in
order to perform a more consistent pruning of the tree. When the problem size or the
number of threads increase the number of updates does not change in the same way.



R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1043
The number of executions of the critical code depends just by the input data and the
way according to which the solution space is divided among the threads. The pseudo
code, showed in Fig. 3, describes the implementation of the optimized approach.

As it can be seen we implemented the distributed bag as an array of pockets. Each
thread picks out of its own pocket. The index of each pocket is associated to the
identifier of the owner OpenMP thread. In order to perform a load balancing among
Fig. 3. The optimized implementation of OpenMP based algorithm.



1044 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
the threads, when the owned pocket is empty, the worker tries to pull a task from the
other pockets. The concurrent access to the same pocket takes place very seldom.
Anyway we must assure that the access to the same pocket, in order to get a new
problem, is exclusive among the threads.

The labelled critical section used in the previous implementation is not suited to
solve this kind problem. In fact the label is a static attribute for the section while the
pocket accessed by a thread when it enter the critical section is known only at run-
time. The collision caused by the concurrent access to the particular pocket is
avoided by an array of locks. A thread reserves and releases the lock i every time
it needs to to take a task from the pocket i. If the bag is empty the thread becomes
idle and wait for the others workers at the end of the parallel section. Hence the pro-
cess become idle and asks for new load to the remote coordinator.

The characteristics of the algorithm at this level, with respect to the classification
of the B&B algorithms presented in the previous section, are the following: (1) each
worker has its own knowledge base (private knowledge, and private space of solu-
tion) and a shared one; (2) processes react instantaneously to knowledge updates
(all the relevant information is stored in shared data); (3) a global dominance rule
is adopted, since the current optimal value is assigned to shared global one; (4)
the search strategy is depth-first, as it is more suited in the case of local knowledge;
(5) with respect to workload sharing between processes, load balancing is provided
by a coordinated access to shared bag of tasks; (6) with regard to synchronization,
the algorithms are asynchronous, since there is no synchronous exchange of informa-
tion and workload between executors. This exchange is performed on the basis of
local events that allow the mutual exclusion in upgrading shared information.
5. Experimental results

The system used as hardware platform for our experimental executions is the
Cygnus cluster of the Parsec Laboratory, at the Second University of Naples. This
is a Linux cluster with four SMP nodes equipped with two Pentium Xeon 1 GHz,
512 MB RAM and a 40 GB HD, and a dual-Pentium Xeon 3.2 GHz front end.
The nodes are interconnected by 100 Mbit Ethernet switch. For the experiments
we report in this Section, we have installed, on our system, the ROCKS LINUX
distribution supported by NPACI, the Intel C++ Compiler version 8.0 and the
PVM environment version 3.4.4. We executed at first the sequential version of our
application and the different parallel implementations.

The results are showed in Fig. 4 and reported in Table 1.
About Table 1, on the first two columns we have the pure OpenMP implementa-

tion using a shared bag and the pure OpenMP implementation using the distributed
bag, both executed on a single node. On the last columns we have the pure PVM and
hybrid implementations executing on four nodes. According to the irregular behav-
iour of the application, due to the dependence of the algorithm on the input data, we
get very different results, even with the same dimension of the original problem
(N = 40 unknowns). The collected results refer to three different input data set.



0

10
20

30

40
50

60

se
q

om
p 

c-
ba

g

om
p 

d-
ba

g

pu
re

 p
vm

pv
m

+o
m

p
se

q

om
p

c-
ba

g

om
p

d-
ba

g

pu
re

pv
m

pv
m

+o
m

p
se

q

om
p

c-
ba

g

om
p

d-
ba

g

pu
re

pv
m

pv
m

+o
m

p

Different input data sets

A
p

p
lic

at
io

n
 t

im
e 

(s
ec

)

Fig. 4. The execution time for different set of input data.

Table 1
Performance results for different implementations

Input data seq omp_lp omp pure pvm pvm + omp

1 4779 5681 4403 3315 3363
1853657 2930622 2812890 4831090 7422951

2 49427 42833 39226 11719 16323
19041082 21515089 25490114 17169639 38584062

3 36887 34204 42661 26816 17492
14656792 18239698 28736101 40089176 43818122

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Input data
1

Input data
2

Input data
3

Input data sets

N
o

rm
al

iz
ed

sp
ee

d
u

p

omp (common bag)

omp (distr. bag)

Fig. 5. Normalized speedup for the shared bag and distributed bag OpenMP implementations.

R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1045
On the first row, for each input data set, it is reported the application time required
by the execution for the different implementations. On the second row, it is reported
the total number of subproblems which were explored. It is reasonable that the exe-
cution time is strictly related to the number of problems which are effectively solved.
The fastest execution, with the first data set, is due to the effect of a relevant pruning
of the tree. Whatever a relevant pruning does not occur in the first phase of the com-
putation, the number of solutions explored can increase a lot, as it is happens for the
second and the third data set.

About the improvement or the loss in performance that we can appreciate when a
greater number of processes is involved, they depend by how the solution space is
divided among the processes.



0

1

2

3

4

5

6

7

8

9

0 4 8 10
Number of cpus

N
o

rm
al

iz
ed

S
p

ee
d

u
p

Pure PVM

PVM and OMP

Ideal

2 6

Fig. 6. Normalized speedup for the pure PVM and hybrid parallel implementations.

1046 R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047
As the classical speedup measure is not meaningful since the different executions
work with a different number of solutions, we will provide a normalized measure of
the speedup in order to remove the dependence on the irregularity of the problem.

In Fig. 5 we compare the speedup of the pure OpenMP version executed on a sin-
gle node. The optimized implementation perform always better already with two
treads.

In Fig. 6 it is showed the normalized speedup for the execution of the pure PVM
implementation and the hybrid one. It scales always well.
6. Conclusion

We presented a strategy for the parallelization of Branch&Bound algorithms for
distributed memory of SMP architectures. It is based on a coordinator/worker par-
adigm at distributed level supported with a dynamic workload balancing facility. In
order to take advantage of the SMP architecture of the computational nodes,
according to a similar approach, we recursively defined a master thread and a pool
of workers which share a bag of tasks. Finally, we described a PVM-OpenMP imple-
mentation and presented some experimental results discussing the irregular behav-
iour of the Branch&Bound application. Future works will explore the extension of
the proposed parallelization approach to a target platform consisting of a wider
number of nodes, also geographically distributed, supported by a GRID infrastruc-
ture. We were already able to evaluate the overhead introduced when the application
is launched by the globus v. 2.0 gatekeeper. We estimated a growth of the user time
equals to 0.2 s about.
References

[1] B. Di Martino, N. Mazzocca, S. Russo, Paradigms for the parallelization of Branch&Bound
algorithms, PARA, 1995.

[2] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: a Hardware/software Approach,
Morgan-Kaufman Publisher, 1998. August.



R. Aversa et al. / Parallel Computing 31 (2005) 1034–1047 1047
[3] P. Mehrotra, J. Van Rosendale, H. Zima, High performance Fortran: history status and future,
Parallel Computing (1997), Special Issue on Languages and Compilers for Parallel Computers.

[4] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory programming,
Computational Science & Engineering 5 (1) (1998).

[5] J.M. Bull, M.E. Kambites, JOMP—an OpenMP-like interface for Java, in: Proceedings of the ACM
2000 Java Grande Conference, June 2000, pp. 44–53.

[6] G. William, E. Lusk, N. Doss, A. Skjellum, A highperformance, portable implementation of the MPI
message passing interface standard, Parallel Computing 22 (6) (1996) 789–828.

[7] The PVM Concurrent Computing System: Evolution, Experiences and Trends V. Sunderam, J.
Dongarra, A. Geist, R. Manchek, Parallel Computing 20 (4) (1994) 531–547.

[8] A. Baratloo, M. Karaul, Z. Kedem, P. Wycko, Charlotte: Metacomputing on the Web. in:
Proceedings of the 9th International Conference on Parallel and Distributed Computing systems,
Dijon, France, September 1996.

[9] B.O. Christiansen, P. Cappello, M.F. Ionescu, M.O. Neary, K.E. Schauser, D. Wu, Javelin: internet-
based parallel computing using java, Concurrency: Practice and Experience 9 (11) (1997) 1139–1160.

[10] P. Evripidou, C. Panayiotou, G. Samaras, E. Pitoura, The PaCMAn metacomputer: parallel
computing with java mobile agents, Future Generation Computer Systems Journal 18 (2) (2001) 265–
280, Special Issue on Java in High Performance Computing.

[11] Globus: A Metacomputing Infrastructure Toolkit I. Foster, C. Kesselman, International Journal of
Supercomputer Applications 11 (2) (1997) 115–128, Provides an overview of the Globus project and
toolkit.

[12] MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface N. Karonis, B.
Toonen, I. Foster, Journal of Parallel and Distributed Computing (2003).

[13] H.T. Lai, S. Sahni, Anomalies in parallel Branch&Bound algorithms, Communications of the ACM
27 (6) (1984) 594–602.

[14] H.W.J. Trienekens, Parallel Branch&Bound Algorithms, Ph.D. Thesis at Erasmus Universiteit-
Rotterdam, November 1990.

[15] C. Ribeiro, Parallel computer models and combinatorial algorithms, Annals of Discrete Mathematics,
North-Holland, 1987, pp. 325–364.


	A hierarchical distributed-shared memory parallel Branch amp Bound application with PVM and OpenMP for multiprocessor clusters
	Introduction
	Parallel architectures and programming models
	The Branch&Bound parallel application
	The hybrid implementation
	The PVM coarse grain parallelization
	The OpenMP fine-grain parallelization

	Experimental results
	Conclusion
	References


