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The evermore widespread use of microscopic traffic simulation in the
analysisof road systemshasr efocused attention on submodels, including
car-following models. The difficulties of microscopic-level simulation
modelsin theaccuratereproduction of real traffic phenomena stem not
only from thecomplexity of calibration and validation operationsbut also
from the structural inadequacies of the submodels themselves. Both of
these drawbacks originate from the scant information available on real
phenomena because of the difficulty with the gathering of accuratefield
data. In this study, the use of kinematic differential Global Positioning
System instrumentsallowed thetraj ectoriesof four vehiclesin aplatoon
tobeaccurately monitored under real traffic conditionson both urban and
extraurban roads. Some of these data were used to analyze the behav-
iorsof four microscopic traffic flow modelsthat differed greatly in both
approach and complexity. Theeffect of thechoiceof performancemeasures
on themodel calibration resultswasfirst investigated, and intervehicle
spacing was shown to be the most reliable measure. Model calibrations
showed results similar to those obtained in other studies that used test
track data. Instead, validationsresulted in higher deviations compared
with thosefrom previousstudies(with peaksin crossvalidationsbetween
urban and extraurban experiments). This confirmsthe need for real
traffic data. On comparison of the models, all models showed similar
performances (i.e., similar deviationsin validation). Surprisingly, how-
ever, thesimplest model performed on averagebetter than theothers, but
the most complex one was the most robust, never reaching particularly
high deviations.

The calibration and validation of modelswith field dataare not only
necessary for their correct usein simulating real systemsbut also allow
them to be powerful tools for the investigation of real phenomena.
Analysisof the performances of modelswhose modeling approaches
differ significantly can give amuch deeper insight into the behavior
of areal system than the mere analysis of observed measurements
can, and such analyses can substantially improve the model sthat are
developed and make them more reliable. Asthe challenging task of
ng the potential effects of new technologies applied to road
systems (e.g., intelligent transportation systems) has shown that the
available simulation tools are generally inadequate, calibration and
vaidation of microscopictraffic flow modelsare even moreimportant.

Intraffic flow modeling, many microscopic laws and modelsthat
attempt to capture longitudinal interactions among vehicles have
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been proposed [acomprehensivereview is provided elsewhere (1)].
However, not as many studies have been carried out to calibrate and
validate them, probably because of thedifficultiesand costsinvolved
with both gathering and processing field data as well as setting up
calibration studies. Moreover, the findings from such studies have
often been contradictory because of the bias of the data as well as
the use of inappropriate data collection schemes (1, 2).

Thus, asaresult of the motivations described above, renewed efforts
arebeing directed to the testing of models against real traffic data.
A recent study compared different microscopic traffic flow models
by using the travel times of single vehiclesrecorded at eight fixed
locations on arural road in the United States (3).

Improved accuracy in data collection allows the comparison of
models from amicroscopic perspective aswell. For instance, in the
field of instrumented vehicles, on the one hand, investment in driver
stance systems has made avail abl e accurate automotive distance
sensors (4, 5); on the other hand, advances in Global Positioning
System (GPS) technology allow vehicle positionsto be recorded with
an accuracy up to 1 cm (6). Thus, by using time series datafor car-
following variables gathered along United Kingdom motorwayswith
aninstrumented vehicle, Wu et a. validated afuzzy | ogic-based model
(7). The ability of the model to fit the experimental data was com-
pared with those of other models. However, the latter had not pre-
viously been calibrated with field data, but parameter valuesfrom
the literature were used.

Brockfeld et a. (8) and Ranjitkar et a. (9) used time series data
recorded for nine vehiclesthat formed asingle platoon on atest track
inJapan (6). Inthework of Brockfeld et al., 10 car-following models
were calibrated by using distances as the error measurements and
the modelswere validated with different data sets (8). None of the
models appeared to be significantly better than any other. Inthework
of Ranjitkar et a., six modelswere calibrated by using instead both
speedsand distances as error measurements (9). Theresultsof thetwo
modelswith thetwo error measurements chosen differed significantly,
and the cause was attributed to data errors. Both studies showed that
interpersonal variationswere greater than intermodel variationsin most
cases, highlighting theinfluence of individua driverson car-following
behavior.

Recent studies have validated two models (the Newell and
CELLSIM models, respectively) by using vehicle trgjectory data sets
(20, 11). Thefirst of those studies used data on the motions of queued
vehiclesdischarging into signalized intersections, while the second of
those studies used data from ahighway (12) and afive-lane freeway.

Despitethe efforts mentioned above, several issuesrelated to micro-
scopic traffic flow model calibration still need to be investigated.
Thefirst regardsdataaccuracy: theway in which they influence model
calibration results needs to be investigated; and, consequently, the
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minimal requirements of data for such studies have not been suffi-
ciently stressed in theliterature. The choice of the most suitablefield
datacollection scheme or at | east the best compromi se between data
accuracy and realism is another problem whose solution has not
yet been consolidated. Moreover, methodological issues concern
the choice of appropriate measures of performance and calibration
methods as well as of suitable validation protocols.

In this context, this paper setsout not only to investigate method-
ological issuesof model calibration and validation but also to produce
preliminary resultsfrom acomparison modelswith real traffic micro-
scopic data. Initial problemsregarding the collection of field data
are extensively discussed in another work (13), which presents a
detailed description of the estimation process and the data accuracy
used here.

The next section describes the models tested. A brief description
of the data collection and the estimation processis then provided. A
discussion of the methodology adopted throughout this study and
issues of model calibration and validation follows. Finally, analysis
and comparison of model performances complete the paper.

IMODELS TESTED

The study focused on the analysi s of four well-known models, which
were chosen because of the different approachesthat they use, aswell
as the different standards of complexity and the different numbers
of parameters that need to be calibrated.

The following models were analyzed and are ordered as follows
by increasing numbers of parameters (and complexity):

1. A traectory translation model, Newell’s model (14);

2. A safety distance model, Gipps model (15);

3. A continuous response model, the intelligent driver model
(IDM) (16); and

4. A stimulus—response model, MITSIM (17, 18).

Thefirst model isthe so-called low-order model by Newell. It was
used as areference because of its simplicity and the minimum num-
ber of parameters (only two) to be calibrated. It simply statesthat if
adriver isimpeded from traveling at his or her desired speed, the
driver followsthe leader at the same speed and observes adesired
intervehicle spacing, d, that varieslinearly with the speed. If the leader
changes speed, the driver (n) following imitates that speed after a
timeinterval, t,, that isrequired to reach the new desired spacing.
Thisisthesameassaying that thefollower’ strgjectory issimply trans-
lated by atime T and a space d with respect to those of theleader. In
mathematical terms,

X+ T,) = X, —d,

where x,(t + 1,) and x,_4(t) represent the positions of thefollower and
theleader, respectively. The model is able to describe the behaviors
only of following vehicles, so that aleader trgjectory must be provided
(i.e., boundary conditions must be defined).

The Gipps model is a safety-based model. It provides two differ-
ent transfer functions according to the two different driving regimes
assumed. In the free-flow regime, the speed planned for thefollowing
instant is obtained from an inequality of the experimental origin that
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joinstwo conditions: (a) the speed does not exceed the desired speed
of thedriver, and (b) free accel eration decreaseson anincreasein the
speed until it becomes null oncethe desired speed has been reached.
In the car-following regime, instead, the driver adopts such a speed
asto safely stop the vehiclein case of sudden braking of the leading
vehicle. Then, the speed planned by follower n (v,) is

Vot + ) = min[v,,(t + D, v, + 7]
where

v, (D
Vo

]- 0025 + 1
y v,

n

Voot + 0 = v, (D + 25 an-r-[l—

b2t — b, * 2[X, () — §4 — X, (D]
V& + 1T =bT+ 2
" _v -1 - Y ®
-1

x = vehicle position;
1 = follower’ sreaction time (that is, the simulation step);
a, = follower’'s maximum desired acceleration;
V, = follower’ s desired speed;
b, = follower’s maximum deceleration;
s..1 = €effective size of the leader (that is, physical length plus a
margin into which the following vehicle is not willing to
) intrude); and
b,_, = follower’ sestimate of maximum decel eration that theleader
intends to adopt.

IDM can be seen to be a continuous response model. The model
does not consider areaction time, which is the same as saying that
itsexpressionisan ordinary differential equation. It assumesthat the
follower’ sacceleration isacontinuousfunction of thefollower’ sspeed
(v), the spacing (d,)) from the leader, and the speed difference from
theleading vehicle (Av,). In particular, thefollower’ sacceleration (V)
iscaculated as

\'/ — a(n){l_( Vn )8 _ ‘:d(VmAVn):r}
n Vé)n) dn

which mediates the tendency to accelerate to reaching the desired
speed, V), and the tendency to decelerate when the spacing is less
than the desired spacing, d(v,, Av,). The expression of the desired
spacing as afunction of vand Avis

_ A m }‘ v ) &
d(v, Av) = dg” + dy v + TV + b

where

d® = desired spacing with zero speed of
driver n,
V@ = desired speed, and
am, §,d®, T®, and b™ = nonphysical parameters of driver n.

The acceleration model of Ahmed (17), implemented in MIT-
SIMLab, providestwo main driving regimes. Thefirstisvalidfor car-
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following conditions and is a classic model of the type response =
sensitivity x stimulus, derived from the work by Gaziset a. (19).
The major differences of the acceleration model from the model of
Gaziset a. areasfollows: (a) the sensitivity term changesfor accel-
eration or decel eration maneuvers; (b) parametersvary among driv-
ers; (c) aterm that takes into account the density of the segment
(i.e., that accounts for a look-ahead capability) is considered; and
(d) astochastic residual term isadded to accel eration—decel eration.
Pointscand d of themodel are not considered here because of thelack
of density measurements and for the sake of simplicity (with regard
to taking into account the stochastic term). Thus, the mathematical
form of the car-following model tested here was

; C VLt -1,)P ;
) = of ———2 AV, (t - 1) 1
a; AX(C = 1) [AV,( I @®

where

a®(t) = follower's accel eration-deceleration in a car-
following situation,
V,(t —1,) = follower’s speed at time (t — 1),
T, = follower’ sreaction time,
AX(t - 1,) = distance from bumper to bumper between the
leader and the follower at time (t - t,),
AV, (t—1,) = speed difference between the leader and the
follower at time (t — 1),

i = acceleration or decel eration based on thevalue
of AV, (t—1,) [if AV,(t—1,) isgreater than O, there
isacceleration; otherwise, thereisdeceleration],
and

o, B, v, and A' = eight parameters to be calibrated for the car-
following regime (withi valuesfor acceleration
and decel eration).

The second model isafree-flow regime (in which the vehicle accel-
erates at anormal acceleration rate to attain its desired speed). An
emergency regimefor theavoidanceof vehiclecollisonisprovided as
well. A changefrom the car-following regimeto the free-flow regime
is conditioned by thresholds on time headway between the leader
and the follower (h_upper and h_lower, respectively, in Table 1).

EXPERIMENTAL DATA

More details on the data used here (for which only brief information
is provided here) and a comprehensive discussion about the issues
regarding experimental datacollection are provided elsewhere (13).

Experimental Setup and Data Collection

Thedatausedin thisstudy were obtained from aseries of experiments
carried out along roadsin areas surrounding Naples, Italy, under real
traffic conditions between October 2002 and July 2003. Experiments
were performed by driving four vehiclesin aplatoon aong urban and
extraurban roads under different traffic conditions. All vehicleswere
equipped with kinematic differential GPS receivers[dual-frequency,
GPS + Global Navigation Satellite System (GLONASS) receivers]
that recorded the position of each vehicle at 0.1-sintervals.
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TABLE 1 Average Values of Parameters After Calibrations
Mean VAR Cv
Newell Ty 1.027 0.074 0.264
d, 0.370 0.228 0.109
Gipps a, 3331 4.189 0.614
b, -3.801 5.949 0.642
Br, o1 —4.783 10.613 0.681
Vi, 16.152 12.280 0.217
Ty 0.567 0.024 0.272
IDM a 2.568 0.619 0.306
b 1.694 0.493 0.415
Vo 28.362 203.987 0.504
T 0.690 0.046 0.312
S 2.836 3.499 0.660
do 0.743 0.130 0.484
d; 0.557 1.637 2.299
MITSIM o_acc 2512 1.563 0.498
B_acc 0.150 0.099 2.102
y_acc 0.509 0.324 1.120
A_acc 1.073 0.539 0.684
o,_dec -2.328 2.545 0.685
_dec 0.861 0.485 0.809
v_dec 1.116 0.389 0.559
A_dec 1.293 0.338 0.449
h_upper 2.044 0.285 0.261
h_lower 0.289 0.014 0.404
Ty 0.580 0.093 0.526

VAR = variance; Cv = covariance.

Astheaim of the experimental surveyswasto collect datafor com-
parison of car-following models, careful attention was devoted to
the choice of routes and the roads to be used for data collection in
this study. Roads with only one lane per direction were considered
so that car-following behavior was unaffected by other behaviors,
likelane changing. Moreover, roadsa ong aroute had to differ by type,
level of congestion, etc., to capture after awhile the behaviors of the
same drivers (i.e., drivers in the same psychophysical condition)
coping with different environments.

Thetrajectory data used here were collected along the sameroute
on 2 days: October 30, 2002, and February 25, 2003. In dl, fivetra-
jectory data sets were extracted from data collected along the route:
three data sets from the October trial and two sets from the February
trial. These are named 30A, 30B, 30C, 25B, and 25C, respectively.
Sets30A and 30C arefor one-lane urban roadsand are 3.3 and 6 min
long, respectively, while Set 30B isfor atwo-lane extraurban high-
way that bypassesthe historica center of Pozzuoli (atown near Naples)
and is 4.2 min long. Sets from February 25 were gathered on the
same urban roads used for data collection in October and are 5.3 and
5 min long, respectively.

Careful attention was paid to the setup of the experimental protocol.
Theleader of the platoon was oneof theauthors. Thefollowing drivers
were informed of the path to be taken and were familiar with it, but
they were unaware of the aim of the experiment. Theleader took care
to prevent intrusions into the platoon by giving way to extraneous
vehiclesat intersections. When intrusions occurred, the corresponding
data were discarded. The number of instrumented vehiclesin the
platoon was limited to four because of the experimental difficulties
mentioned above as well as because of budget limitations.
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Figure 1 showsas an examplethe speeds of the platoon leadersfrom
Experiments 30A, 30B, and 30C. The average speed for the extra-
urban data set (Set 30B) was 47 km/h, while that for the urban data
sets, Sets30A and 30C, were 26 and 28 km/h, respectively. Thedriv-
ing patternswere also qualitatively different, with the urban patterns
showing repeated vehicle stops but with the other patternsbeing more
regular.

Data Estimation

GPS technology is known to alow the positions of the receivers to
be estimated in a common space-time reference system. From these
positional data, time series of intervehicle spacings is immediately
available, whereas vehicle speeds and accel erations must be calcu-
lated through successive derivations of the space traveled. Despite
the expected precisions of differential GPS positional measurements
(approximately 10 mm), the dataneeded to befiltered, in view of the
high levels of measurement noise because of the urban environ-
ment on the one hand (e.g., the multipath effect) and because of the
stringent requirements of datafor car-following studies on the other.

The core of the problem wastofilter noisy trajectory datafor each
vehiclewithout altering the platoon data consistency; i.e., the speeds
and the accelerations of the following vehicles had to be estimated
so that the intervehicle spacings cal cul ated from them were equal to
thereal ones. Otherwise, for example, even dlight differencesbetween
the estimated and the actual speeds of avehicle could easily have
entailed negative spacingsin case of astop. Thiswas accomplished
by use of anonstationary Kaman filter, which considersfollowing
vehicles as a sole dynamic system and which allows one consistent
estimation problem instead of several independent (and inconsistent)
ones to be solved.

Thus, accurate and consistent time seriesdatafor intervehicle spac-
ings, speeds, and accel erationswere obtained. | dentification and adop-
tionof intervehicle spacingsasreference measurements[an explanation
isprovided elsewhere (13)] aso alowed quantitative eval uation of
the estimation accuracy. The values of the estimation errorsfor the
trgjectories of thefive data setsused hereare provided el sawhere (13).
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METHODOLOGY

Asmentioned above, the aim of the study wasto investigate method-
ological issues concerning comparison of microscopic traffic flow
modelsaswell ascomparison of some different well-known models.
Thus, thefirst step wasthe calibration of the models. The calibration
results gave ameasure of the models’ ability to fit the experimental
data but did not necessarily represent the ability of the models to
reproducereal phenomena, i.e., to capturerea systemdynamics. Thus,
validations were performed to address this issue.

All the calibrations and validations of the modelswere carried out
for one driver at atime. In particular, the models simulated the tra-
jectory of each vehicle being fed the experimental trgjectory of its
leader.

Calibration
Problem Formulation and Solution

Calibration of themodel of areal system by indirect techniques(i.e.,
by techniques based on the use of the model itself to estimate its
parameters) starts by comparison of the model outputs with those of
the real system fed the same inputs. It is equivalent to the solution
of aconstrained minimization problem in which the objective func-
tion expresses the deviation of the simulated output measurements
from those observed. Among the estimators commonly used there
is the generalized |east-squares estimator, according to which the
problem formulation is set asfollows:

miny = (Y® — Ys™)T pi(y* _ ysm)
Y™ = S(u, x, a)
g(x,a =0 i=1..,n

hx,aa=0 j=1..,n

Speed (km/h)

—30C

100 150

200 250 300 350

Time (sec)

FIGURE 1 Speed profiles of platoon leaders from Experiments 30A (urban), 30B (extraurban), and 30C (urban).
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where

v = objective function of the optimization problem,
which measures the overall performance of the
model;

Yobs and YS™ = vectors of observed and simulated measures of
performances (MOPs) obtained from the outputs
of themodel S, respectively;

P, u, x, and a = vectors of weights, inputs, state variables, and
parameters, respectively;

g = ithinequality constraint;

h; = jthinequality constraint; and

n. and ny = numbers of equality and inequality constraints,
respectively.

When Sisasimulation model, to calculate the value of the objective
function at every step of thea gorithm searching for theminimum, one
or more simulations are performed whether or not the model is sto-
chastic. Inthiswork, the optimization software LINDO API (20) was
used to solve the minimization problem presented above. The soft-
ware uses amultipoint nonlinear optimization algorithm, which starts
by searching for the minimum from different points to circumvent
local minima.

Choice of Performance Measures

A fundamental aspect of the problem isthe choice of more adequate
MOPs to represent system and model output measurements. If the
model were capable of reproducing the dynamics of thereal phenom-
enon exactly and, thus, all the system output measurements coincided
with the model output measurements, the obj ective functions obtain-
able with any MOP would be equally null in terms of their global
minima and the corresponding sets of optimum parameters would
coincide. As models are more or less accurate approximations of
reality, the choice of the functional form of the objective function,
aswell asthe choice of MOPs, influencesthe results of calibrations.
Theform of response surfaces of amodel obtained by calibrating the
model vis-a-vis different MOPs, for example, may prove different,
as the same may happen with the minimaof objective functionsand
the corresponding sets of optimum parameters.

Inthe caseof calibration of car-following models, the M OPs used
must capture the dynamics of the phenomenon asit develops. These
arederived directly from disaggregated traffic surveysand consist of
time series of vehicle speedsor of their intervehicle spacingsor time
headway's. Once simulations have been performed, to measure over-
all model performance and to check whether the simulated measure-
mentsreally match the observed ones, error testsare usually adopted.
Infact, most of the common statistical tests cannot be used inthiscase,
asthemeasurements concerned are not stationary and self-correlated.
Also, as mentioned above, the inputs used for calibration consist of
the trajectory of the leader.

Error tests of common use are the root mean square error (RMSe),
the root mean square percentage error (RMSPe), or Theil’ sinequdlity
coefficient (U):

1 im\2
RMSe = J— s _ yam
5 2 )

[ im \ 2

| 1 Ypbs Ysm

RMSPe = .| — —_
\J N z.( Y?hs )
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Thesguare of RM Se can be decomposed into thefollowing terms (21):

UM — (usim — p’obs)2 .
WN)Y (Y - yim)
US (Gsim - cobs)z

T NI (Y vy

UC — 2(1 B p)cs'mcobs
WN)Y (Vo= - vem)*

where

UM, US, and U° = hias, variance, and covariance proportions of
U, respectively (these are useful as a means of
understanding the sources of the simulation
error);

Msim @nd pops = Mmeans of simulated and observed values,
respectively;
Osm and o, = Standard deviations of simulated and observed
values, respectively;
p = correlation coefficient; and
Y and YS™ = ith observed and simulated variables, respec-
tively, withi ranging from 1 to N.

As pointed out above, in the case of calibration of car-following
models, the choice of MOP in the objective function is expected to
condition theresults. First, the choice of time headway asthe MOP,
especidly with nonlinear objectivefunctions, may provide nonoptimal
results. Indeed, as higher values of time headways are obtained as
speeds become closer to zero, observations that fall in this range of
speeds might have an excessiveweight in the calibration of themodel,
whichisespecialy the casefor urban data sets, in which low speeds
are more frequent. In this case asimple remedy may beto eliminate
observations concerning speeds close to zero when the model is
calibrated (athreshold of 1 m/s has been adopted here).

Some further considerations may therefore arise from the observa
tion of Figure 2, in which the results of calibration of the three models
carried out with three different objective functions (i.e., different
MOPs) arereported for datafrom one experiment. Mean errors and
RM SPe values are given. Once the models have been calibrated for
experimental time headways, the error statisticsfor speedsand inter-
vehicle spacings are also calculated. The same was done when the
modelswere calibrated on the basis of speeds and intervehicle spac-
ings. Thus, each graph representsthe values of error statisticsfor the
three MOPs, obtained by calibrating the models three times: on the
basis of time headways, speeds, and intervehicle spacings. Thus, for
example, the“headway ObjF” |abel reportsthevaluesof thetest errors
of the three M OPs cal culated once the model has been calibrated on
the basis of time headways.

Aninitial consideration isthefact that all the models are better at
reproducing speeds than at reproducing spacings or headways. The
deviations between the simulated and the observed speeds, which
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FIGURE 2 Mean errors and RMSPe values of the MOPs (headway, speed, and spacing) for each kind of calibration [calibrations
differ for the choice of MOPs in the objective function (ObjF or ObjFunct)] (Experiment 30C): (a-b), IDM, (c—d) Gipps,
(e—f) Newell, and (g—h) MITSIM.
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were always|ower than 10%, were alwayslower than the deviations
obtained for the other two MOPs. Thisresult was already found by
Ranjitkar et al., who justified it by stating that it could be ascribed
to data errors (9). Instead, the explanation is that speed deviations
and spacing deviations from the observed datado not have the same
meaning. For example, when a model is calibrated on the basis of
speeds, an error made by the model in cal culating the speed between
instantst,_, and t, entails an error in the space traveled in the same
interval (i.e., an error in the spacing from the leader). The latter,
however, is kept equal for al the following instants; i.e., in al the
following instants the result for the space traveled will be increased
or decreased by this amount of error. Therefore, it is easier to fit
models on the basis of speed measurements than on the basis of
spacing measurements, but this definitely does not imply a better
reproduction of real dynamics.

Another aspect of thisdifferenceisthat by calibration of amodel on
thebasis of speeds, the values of the error tests cal culated for the other
two measures are, sensibly, higher than the optimum ones. In other
words, they are higher than the values obtained by calibrating the
model directly onthe basis of headways and spacings. For example,
ontheright sideof Figure2itisshownthat the Gippsmodel calibrated
onthebasisof speeds presentserrorsfor headwaysand spacingsequal
to 35% and 34%, respectively, while when it is directly calibrated,
headways and spacings present val ues of 17% and 16%, respectively.
Themean errorsontheleft sideof Figure 2, which provideinformation
on the bias of the models, again show that calibration of the models
onthebasisof speedsimpliesnonnegligible errorsfor headwaysand
spacings.

This provesthat intervehicle spacing isthe most reliable measure
of performance for the calibration of car-following models. As a
consequence, all subsequent calibrations were performed by using
intervehicle spacing as the MOP.

Validation

Unlikecdibrations, validationsconsist of asmplesimulationinwhich
the model seeksto reproduce atrajectory from Data Set X by using
parameters calibrated on the basis of another data set, Data Set Y.

Asmentioned above, datafor the data sets used in this study were
collected on 2 different days. For each day, different data setsare
nothing but thetragjectories of the same driverstraveling in the same
order along different stretches of roads belonging to the route cov-
ered. It is straightforward to verify whether the models are able to
reproduce the behavior of the same driver along different parts of the
route with the parameters calibrated on the basis of datafor another
part of it. Thisisan interesting point, because the roads from which
the datafor the different data sets a ong the route were extracted differ
intheir types and levels of congestion.

Hence, crossvalidationswere accomplished by comparing for one
driver at atime the observed trgjectory from Data Set X with that
simulated by using the parameters calibrated for the samedriver in
adifferent dataset, Data Set Y, and vice versa. The error tests used
for evaluation of the performances were the same as those used for
the calibrations.

Calibration and Validation Setup

Asthetrgjectory of the preceding vehicle was unknown for the leader
of the platoon, calibrations and validations could have been accom-
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plished only for the three following drivers, which arereferred to as
Driver 2, Driver 3, and Driver 4.

First, model parameterswere calibrated for each observed trajec-
tory (i.e., 3driversx 5 data sets= 15 calibrations per model). Then,
for each driver six cross validations were carried out between the
three data setsfrom October 30 and two crossvalidationswere carried
out between thetwo data setsfor February 25 (i.e., 3driversx 8 pairs
= 24 validations per model). There werethus eight crossvalidations
(per driver per model), referred to as 30AB, 30AC, 30BA, 30BC,
30CA, 30CB, 25BC, and 25CB, where 30AB, for example, meansthat
each driver in Experiment 30A was simulated by using the optimal
parameters for the driver calibrated from Data Set 30B.

All the models were simulated by adopting a simulation step of
0.1's, consistent with the available field data. In other words, for
model swhose simul ation step was aparameter to be calibrated, when
thisproved to be greater than 0.1 s, the values of the output variables
at every 0.1 swere also calculated.

CALIBRATION AND VALIDATION RESULTS
Calibration Results

A few interesting remarks can be made on the basis of the results
from the calibrations (Table 2 and Figure 3). It is surprising that the
RM SPe val ues resulting from the experiments carried out under real
traffic conditionsin this study are mainly consistent with those found
in the literature for experiments conducted on test tracks (8, 9).

In the calibration phase, MITSIM is capable of reproducing the
experimental data better than the other models are. Indeed, the aver-
age error is about 12% for MITSIM, whereas the average errors are
about 16% for the IDM model and approximately 17% for the mod-
elsof Newell and Gipps. The values of the statistical indexesUM, US,
and U€, which provide information on the nature of errors, are close
to the optimal configuration (UM=0, US=0, U¢=1) for all themod-
els except Newell’s, which, even though it does not introduce sys-
tematic errors (UM is always close to 0), does not seem to reproduce
correctly the fluctuations of the experimental data, i.e., measured
spacings (US is about 0.17). This result was actually expected
because of the simplicity of Newell’s model, in which the spacing
varies linearly with speed and oscillations in the distance-keeping
behavior with the leading vehicle are not allowed (in fact, the error
US presented in Table 2 is almost always due to an underestimation
of the variance of thereal data).

Theworst values of RM SPein the calibration phase were attained
with al models for Driver 25-3: in Experiment 25B for the Newell
model (22.45%), the Gipps model (23.02%), and IDM (23.75%) and
in Experiment 25C for MITSIM (19.09%). It istherefore reasonable
to suppose that the behavior of Driver 25-3isnot easily reproducible
by models. The fact that there are drivers whose behaviors are more
easily reproduced is confirmed by the trend of errors of the models.
Indeed, the calibration results among the different models for the
same driver did not generally differ significantly, while the perfor-
mances of models dealing with different drivers vary consistently
(Figure 3 and Table 2), as highlighted in previouswork aswell (8, 9).
It can thus be argued that traditional models fail to capture some
aspects of driving behavior.

In Table 1, the average values of the mean, the variance, and the
covariance of the calibrated model parametersarereported. Itisworth
noting that the exponents A’ (with i valuesfor acceleration and decel-
eration) of the AV, termin Equation 1 are nearly equal to 1, asfound
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TABLE 2 Calibration and Validation Results
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RMSPe um us uc
Calibration
Newell Mean 16.9% 0.054 0.173 0.773
Max 22.5% 0.148 0.424 0.958
Min 11.3% 0.000 0.003 0.427
Amplitude (max—min) 11.1% 0.148 0.421 0.531
Gipps Mean 17.2% 0.038 0.052 0.910
Max 23.0% 0.146 0.241 0.988
Min 12.2% 0.000 0.000 0.680
Amplitude (max—min) 10.8% 0.145 0.241 0.308
IDM Mean 15.6% 0.040 0.066 0.894
Max 23.8% 0.122 0.188 0.989
Min 10.6% 0.000 0.001 0.729
Amplitude (max—min) 13.1% 0.122 0.187 0.259
MITSIM Mean 12.4% 0.025 0.052 0.923
Max 19.1% 0.105 0.124 0.980
Min 7.3% 0.000 0.002 0.795
Amplitude (max—min) 11.8% 0.105 0.122 0.184
Validation
Newell Mean 22.5% 0.149 0.172 0.678
Max 41.4% 0.444 0.369 0.958
Min 13.6% 0.010 0.003 0.454
Amplitude (max—min) 27.7% 0.435 0.366 0.504
Gipps Mean 24.2% 0.130 0.094 0.776
Max 45.4% 0.343 0.256 0.975
Min 17.1% 0.006 0.004 0.434
Amplitude (max—min) 28.3% 0.338 0.252 0.541
IDM Mean 23.5% 0.387 0.124 0.490
Max 44.0% 0.659 0.389 0.951
Min 13.8% 0.003 0.002 0.187
Amplitude (max—min) 30.2% 0.656 0.387 0.765
MITSIM Mean 22.9% 0.210 0.097 0.692
Max 29.1% 0.696 0.259 0.979
Min 15.5% 0.000 0.001 0.283
Amplitude (max—min) 13.6% 0.696 0.257 0.695

Max = maximum; Min = minimum.

in previous studies (1). Another remark concerns the Gipps model,
which has alow average reaction time, confirming the stringent
car-following behavior from the available experimental data.

Validation Results

In the validation phase, the different models were essentially equiva
lent, on average, with al model s giving RM SPe val ues between 22.5%
and 24.2% (Table 2 and Figure 4). The Newell model exhibited the
smallest increment of error between the calibration and the valida-
tion phases (5.6%), while MITSIM had the highest increment (about
10.6%, on average) (Table 2). Thiscould be confirmation of atendency
for MITSIM to overfit the experimental data. The better performance
of MITSIM inthe calibration phase may well be due to the larger
number of parametersand, therefore, thelarger number of degrees of
freedom compared with thosein the other model s. Except for thetwo
cases discussed below, MITSIM almost always had worse RM SPe
vauesthan the other models. Neverthel ess, it showed the most robust
behavior, asthe vadidation results never reach particularly high values.

By looking at the validationsfor each driver, al models had similar
responses except for those for Driver 30-4 for IDM and the Newell
model (Validations 30BA and 30CA) and except for all driversfor
Validation 30BC for the Gipps model.

In the first case, it appears that the two models overfit the cali-
bration datafor Driver 30-4 in Experiment 30A. Indeed, the param-

eterscalibrated for Experiment 30A differed greatly from the optimum
ones obtained for Experiments 30B and 30C. Thiscan beinterpreted
as anomalous behavior for that driver.

The second magjor caseregardsthe most extreme validation. Indeed,
it isthe validation between the urban and the extraurban trials (Val -
idation 30BC). In this case, the Gipps model failed to simulate cor-
rectly the extraurban (Experiment 30B) tragjectoriesof all thevehicles
with parameters calibrated on the basis of the urban data (Experi-
ment 30C). If onelooksat the optimum parametersfrom thetwo cal-
ibrations (Experiments 30B and 30C), it can be noted that the values
of maximum deceleration of the drivers varied by approximately
600% between thetwo trials. Unlike the case of Driver 30-4, inwhich
anomalous behavior of the driver occurred, here the Gipps model
seems to be sensitive to the calibration context (urban versus extra-
urban), failing to reproduce the resultsfor al drivers. In general, the
performance of Vaidation 30BC, unlikethose of the other validations,
differed significantly among the different models, confirming this
difficulty with urban and extraurban cross validation.

Ingenera, theresults of thevalidationsfrom thisstudy show errors
larger than those reported in similar studies (8). In addition, the dis-
tribution of the error among its componentsdeviatesfrom the optimal,
asshownin Table 2. Thefact that there are significant increments of
error compared with those from the calibration results suggests that
the behavior of the same driver may differ in different contexts. Itis
therefore not advisableto calibrate car-following modelson thebasis
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FIGURE 3 Model performances in calibrations (RMSPe values).

of experimental data pertinent to contexts limited in space and time
(i.e., datafrom asingle video camera), but it is necessary to detect the
behavior of auser for afairly long period, if possible, who iscoping
with different types of road and traffic characteristics.

CONCLUSIONS

This paper sought not only to investigate methodological issues of
model cdibration and validation but a so to produce preliminary results
of acomparison of modelson the basisof real microscopic traffic data.

Firgt, theinfluence of the choice of performance measurement used
for model calibration was examined. I ntervehicle spacing was found
to bethemost reliable measure, and aphysical interpretation was pro-

vided. Numerical evidence of the need to perform model validations
was provided. The samedrivers showed different optimal calibration
parameters when datawere calibrated on the basis of datafrom data
setscollected for different partsof aroute over ashort distanceintime.
Moreover, the calibration results appeared to be surprisingly simi-
lar to those of previouswork performed with datafrom test tracks
[on average, 15.50% RM SPe versus 15.51% RM SPe from aprevious
study (8) for the same modelg], but this did not hold for cross vali-
dationsthat performed worse [on average, 22.31% RM SPe versus
17.37% RM SPe from a previous study (8)].

Itisworth noting, on the one hand, that this differencein validation
performance was obtained by considering only the data that were
not overfitted and that it can be explained by the qualitative difference
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in the data sets used in the studies (data for red traffic versus data
from atest track). On the other hand, this study overfit the datain
the urban—extraurban crossvalidations. Thefirst consideration high-
lights the importance of validations with real traffic data, while the
second suggests that data collection schemes that allow the observa
tion of driverswho are driving for long periods and who are coping
with different types of road and traffic characteristics be adopted.

In a comparison of the models, the simplest model (the Newell
model) performed the best, on average, while MITSIM showed a
tendency to overfit the dataon comparison of the calibration and val -
idationresults. A high degree of variability of parameterswas observed
not only among the different drivers but also for the same driver
coping with different contexts. The results require confirmation in
other studies and with other experimental data sets.
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