
The evermore widespread use of microscopic traffic simulation in the
analysis of road systems has refocused attention on submodels, including
car-following models. The difficulties of microscopic-level simulation
models in the accurate reproduction of real traffic phenomena stem not
only from the complexity of calibration and validation operations but also
from the structural inadequacies of the submodels themselves. Both of
these drawbacks originate from the scant information available on real
phenomena because of the difficulty with the gathering of accurate field
data. In this study, the use of kinematic differential Global Positioning
System instruments allowed the trajectories of four vehicles in a platoon
to be accurately monitored under real traffic conditions on both urban and
extraurban roads. Some of these data were used to analyze the behav-
iors of four microscopic traffic flow models that differed greatly in both
approach and complexity. The effect of the choice of performance measures
on the model calibration results was first investigated, and intervehicle
spacing was shown to be the most reliable measure. Model calibrations
showed results similar to those obtained in other studies that used test
track data. Instead, validations resulted in higher deviations compared
with those from previous studies (with peaks in cross validations between
urban and extraurban experiments). This confirms the need for real
traffic data. On comparison of the models, all models showed similar
performances (i.e., similar deviations in validation). Surprisingly, how-
ever, the simplest model performed on average better than the others, but
the most complex one was the most robust, never reaching particularly
high deviations.

The calibration and validation of models with field data are not only
necessary for their correct use in simulating real systems but also allow
them to be powerful tools for the investigation of real phenomena.
Analysis of the performances of models whose modeling approaches
differ significantly can give a much deeper insight into the behavior
of a real system than the mere analysis of observed measurements
can, and such analyses can substantially improve the models that are
developed and make them more reliable. As the challenging task of
assessing the potential effects of new technologies applied to road
systems (e.g., intelligent transportation systems) has shown that the
available simulation tools are generally inadequate, calibration and
validation of microscopic traffic flow models are even more important.

In traffic flow modeling, many microscopic laws and models that
attempt to capture longitudinal interactions among vehicles have

been proposed [a comprehensive review is provided elsewhere (1)].
However, not as many studies have been carried out to calibrate and
validate them, probably because of the difficulties and costs involved
with both gathering and processing field data as well as setting up
calibration studies. Moreover, the findings from such studies have
often been contradictory because of the bias of the data as well as
the use of inappropriate data collection schemes (1, 2).

Thus, as a result of the motivations described above, renewed efforts
are being directed to the testing of models against real traffic data.
A recent study compared different microscopic traffic flow models
by using the travel times of single vehicles recorded at eight fixed
locations on a rural road in the United States (3).

Improved accuracy in data collection allows the comparison of
models from a microscopic perspective as well. For instance, in the
field of instrumented vehicles, on the one hand, investment in driver
assistance systems has made available accurate automotive distance
sensors (4, 5); on the other hand, advances in Global Positioning
System (GPS) technology allow vehicle positions to be recorded with
an accuracy up to 1 cm (6 ). Thus, by using time series data for car-
following variables gathered along United Kingdom motorways with
an instrumented vehicle, Wu et al. validated a fuzzy logic-based model
(7 ). The ability of the model to fit the experimental data was com-
pared with those of other models. However, the latter had not pre-
viously been calibrated with field data, but parameter values from
the literature were used.

Brockfeld et al. (8) and Ranjitkar et al. (9) used time series data
recorded for nine vehicles that formed a single platoon on a test track
in Japan (6 ). In the work of Brockfeld et al., 10 car-following models
were calibrated by using distances as the error measurements and
the models were validated with different data sets (8). None of the
models appeared to be significantly better than any other. In the work
of Ranjitkar et al., six models were calibrated by using instead both
speeds and distances as error measurements (9). The results of the two
models with the two error measurements chosen differed significantly,
and the cause was attributed to data errors. Both studies showed that
interpersonal variations were greater than intermodel variations in most
cases, highlighting the influence of individual drivers on car-following
behavior.

Recent studies have validated two models (the Newell and 
CELLSIM models, respectively) by using vehicle trajectory data sets
(10, 11). The first of those studies used data on the motions of queued
vehicles discharging into signalized intersections, while the second of
those studies used data from a highway (12) and a five-lane freeway.

Despite the efforts mentioned above, several issues related to micro-
scopic traffic flow model calibration still need to be investigated.
The first regards data accuracy: the way in which they influence model
calibration results needs to be investigated; and, consequently, the
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minimal requirements of data for such studies have not been suffi-
ciently stressed in the literature. The choice of the most suitable field
data collection scheme or at least the best compromise between data
accuracy and realism is another problem whose solution has not
yet been consolidated. Moreover, methodological issues concern
the choice of appropriate measures of performance and calibration
methods as well as of suitable validation protocols.

In this context, this paper sets out not only to investigate method-
ological issues of model calibration and validation but also to produce
preliminary results from a comparison models with real traffic micro-
scopic data. Initial problems regarding the collection of field data
are extensively discussed in another work (13), which presents a
detailed description of the estimation process and the data accuracy
used here.

The next section describes the models tested. A brief description
of the data collection and the estimation process is then provided. A
discussion of the methodology adopted throughout this study and
issues of model calibration and validation follows. Finally, analysis
and comparison of model performances complete the paper.

MODELS TESTED

The study focused on the analysis of four well-known models, which
were chosen because of the different approaches that they use, as well
as the different standards of complexity and the different numbers
of parameters that need to be calibrated.

The following models were analyzed and are ordered as follows
by increasing numbers of parameters (and complexity):

1. A trajectory translation model, Newell’s model (14);
2. A safety distance model, Gipps model (15);
3. A continuous response model, the intelligent driver model

(IDM) (16 ); and
4. A stimulus–response model, MITSIM (17, 18).

The first model is the so-called low-order model by Newell. It was
used as a reference because of its simplicity and the minimum num-
ber of parameters (only two) to be calibrated. It simply states that if
a driver is impeded from traveling at his or her desired speed, the
driver follows the leader at the same speed and observes a desired
intervehicle spacing, d, that varies linearly with the speed. If the leader
changes speed, the driver (n) following imitates that speed after a
time interval, τn, that is required to reach the new desired spacing.
This is the same as saying that the follower’s trajectory is simply trans-
lated by a time τ and a space d with respect to those of the leader. In
mathematical terms,

where xn(t + τn) and xn − 1(t) represent the positions of the follower and
the leader, respectively. The model is able to describe the behaviors
only of following vehicles, so that a leader trajectory must be provided
(i.e., boundary conditions must be defined).

The Gipps model is a safety-based model. It provides two differ-
ent transfer functions according to the two different driving regimes
assumed. In the free-flow regime, the speed planned for the following
instant is obtained from an inequality of the experimental origin that

x t x t dn n n n+( ) = ( ) −−τ 1
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joins two conditions: (a) the speed does not exceed the desired speed
of the driver, and (b) free acceleration decreases on an increase in the
speed until it becomes null once the desired speed has been reached.
In the car-following regime, instead, the driver adopts such a speed
as to safely stop the vehicle in case of sudden braking of the leading
vehicle. Then, the speed planned by follower n (vn) is

where

x = vehicle position;
τ = follower’s reaction time (that is, the simulation step);

an = follower’s maximum desired acceleration;
Vn = follower’s desired speed;
bn = follower’s maximum deceleration;

sn−1 = effective size of the leader (that is, physical length plus a
margin into which the following vehicle is not willing to
intrude); and

b̂n−1 = follower’s estimate of maximum deceleration that the leader
intends to adopt.

IDM can be seen to be a continuous response model. The model
does not consider a reaction time, which is the same as saying that
its expression is an ordinary differential equation. It assumes that the
follower’s acceleration is a continuous function of the follower’s speed
(vn), the spacing (dn) from the leader, and the speed difference from
the leading vehicle (Δvn). In particular, the follower’s acceleration (v

.
n)

is calculated as

which mediates the tendency to accelerate to reaching the desired
speed, V 0

(n), and the tendency to decelerate when the spacing is less
than the desired spacing, d(vn, Δvn). The expression of the desired
spacing as a function of v and Δv is

where

d 0
(n) = desired spacing with zero speed of

driver n,
V 0

(n) = desired speed, and
a(n), δ, d 1

(n), T(n), and b(n) = nonphysical parameters of driver n.

The acceleration model of Ahmed (17 ), implemented in MIT-
SIMLab, provides two main driving regimes. The first is valid for car-
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following conditions and is a classic model of the type response =
sensitivity × stimulus, derived from the work by Gazis et al. (19).
The major differences of the acceleration model from the model of
Gazis et al. are as follows: (a) the sensitivity term changes for accel-
eration or deceleration maneuvers; (b) parameters vary among driv-
ers; (c) a term that takes into account the density of the segment
(i.e., that accounts for a look-ahead capability) is considered; and
(d ) a stochastic residual term is added to acceleration–deceleration.
Points c and d of the model are not considered here because of the lack
of density measurements and for the sake of simplicity (with regard
to taking into account the stochastic term). Thus, the mathematical
form of the car-following model tested here was

where

an
cf,i (t) = follower’s acceleration–deceleration in a car-

following situation,
Vn(t − τn) = follower’s speed at time (t − τn),

τn = follower’s reaction time,
ΔXn(t − τn) = distance from bumper to bumper between the

leader and the follower at time (t − τn),
ΔVn(t − τn) = speed difference between the leader and the

follower at time (t − τn),
i = acceleration or deceleration based on the value

of ΔVn(t − τn) [if ΔVn(t − τn) is greater than 0, there
is acceleration; otherwise, there is deceleration],
and

αi, βi, γ i, and λi = eight parameters to be calibrated for the car-
following regime (with i values for acceleration
and deceleration).

The second model is a free-flow regime (in which the vehicle accel-
erates at a normal acceleration rate to attain its desired speed). An
emergency regime for the avoidance of vehicle collision is provided as
well. A change from the car-following regime to the free-flow regime
is conditioned by thresholds on time headway between the leader
and the follower (h_upper and h_lower, respectively, in Table 1).

EXPERIMENTAL DATA

More details on the data used here (for which only brief information
is provided here) and a comprehensive discussion about the issues
regarding experimental data collection are provided elsewhere (13).

Experimental Setup and Data Collection

The data used in this study were obtained from a series of experiments
carried out along roads in areas surrounding Naples, Italy, under real
traffic conditions between October 2002 and July 2003. Experiments
were performed by driving four vehicles in a platoon along urban and
extraurban roads under different traffic conditions. All vehicles were
equipped with kinematic differential GPS receivers [dual-frequency,
GPS + Global Navigation Satellite System (GLONASS) receivers]
that recorded the position of each vehicle at 0.1-s intervals.
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As the aim of the experimental surveys was to collect data for com-
parison of car-following models, careful attention was devoted to
the choice of routes and the roads to be used for data collection in
this study. Roads with only one lane per direction were considered
so that car-following behavior was unaffected by other behaviors,
like lane changing. Moreover, roads along a route had to differ by type,
level of congestion, etc., to capture after a while the behaviors of the
same drivers (i.e., drivers in the same psychophysical condition)
coping with different environments.

The trajectory data used here were collected along the same route
on 2 days: October 30, 2002, and February 25, 2003. In all, five tra-
jectory data sets were extracted from data collected along the route:
three data sets from the October trial and two sets from the February
trial. These are named 30A, 30B, 30C, 25B, and 25C, respectively.
Sets 30A and 30C are for one-lane urban roads and are 3.3 and 6 min
long, respectively, while Set 30B is for a two-lane extraurban high-
way that bypasses the historical center of Pozzuoli (a town near Naples)
and is 4.2 min long. Sets from February 25 were gathered on the
same urban roads used for data collection in October and are 5.3 and
5 min long, respectively.

Careful attention was paid to the setup of the experimental protocol.
The leader of the platoon was one of the authors. The following drivers
were informed of the path to be taken and were familiar with it, but
they were unaware of the aim of the experiment. The leader took care
to prevent intrusions into the platoon by giving way to extraneous
vehicles at intersections. When intrusions occurred, the corresponding
data were discarded. The number of instrumented vehicles in the
platoon was limited to four because of the experimental difficulties
mentioned above as well as because of budget limitations.

TABLE 1 Average Values of Parameters After Calibrations

Mean VAR Cv

Newell τn 1.027 0.074 0.264
dn 0.370 0.228 0.109

Gipps an 3.331 4.189 0.614
bn −3.801 5.949 0.642
b̂n − 1 −4.783 10.613 0.681
Vn 16.152 12.280 0.217
τn 0.567 0.024 0.272

IDM a 2.568 0.619 0.306
b 1.694 0.493 0.415
V0 28.362 203.987 0.504
T 0.690 0.046 0.312
δ 2.836 3.499 0.660
d0 0.743 0.130 0.484
d1 0.557 1.637 2.299

MITSIM α_acc 2.512 1.563 0.498
β_acc 0.150 0.099 2.102
γ_acc 0.509 0.324 1.120
λ_acc 1.073 0.539 0.684
α_dec −2.328 2.545 0.685
β_dec 0.861 0.485 0.809
γ_dec 1.116 0.389 0.559
λ_dec 1.293 0.338 0.449
h_upper 2.044 0.285 0.261
h_lower 0.289 0.014 0.404
τn 0.580 0.093 0.526

VAR � variance; Cv � covariance.



Figure 1 shows as an example the speeds of the platoon leaders from
Experiments 30A, 30B, and 30C. The average speed for the extra-
urban data set (Set 30B) was 47 km/h, while that for the urban data
sets, Sets 30A and 30C, were 26 and 28 km/h, respectively. The driv-
ing patterns were also qualitatively different, with the urban patterns
showing repeated vehicle stops but with the other patterns being more
regular.

Data Estimation

GPS technology is known to allow the positions of the receivers to
be estimated in a common space–time reference system. From these
positional data, time series of intervehicle spacings is immediately
available, whereas vehicle speeds and accelerations must be calcu-
lated through successive derivations of the space traveled. Despite
the expected precisions of differential GPS positional measurements
(approximately 10 mm), the data needed to be filtered, in view of the
high levels of measurement noise because of the urban environ-
ment on the one hand (e.g., the multipath effect) and because of the
stringent requirements of data for car-following studies on the other.

The core of the problem was to filter noisy trajectory data for each
vehicle without altering the platoon data consistency; i.e., the speeds
and the accelerations of the following vehicles had to be estimated
so that the intervehicle spacings calculated from them were equal to
the real ones. Otherwise, for example, even slight differences between
the estimated and the actual speeds of a vehicle could easily have
entailed negative spacings in case of a stop. This was accomplished
by use of a nonstationary Kalman filter, which considers following
vehicles as a sole dynamic system and which allows one consistent
estimation problem instead of several independent (and inconsistent)
ones to be solved.

Thus, accurate and consistent time series data for intervehicle spac-
ings, speeds, and accelerations were obtained. Identification and adop-
tionof intervehicle spacings as reference measurements [an explanation
is provided elsewhere (13)] also allowed quantitative evaluation of
the estimation accuracy. The values of the estimation errors for the
trajectories of the five data sets used here are provided elsewhere (13).
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METHODOLOGY

As mentioned above, the aim of the study was to investigate method-
ological issues concerning comparison of microscopic traffic flow
models as well as comparison of some different well-known models.
Thus, the first step was the calibration of the models. The calibration
results gave a measure of the models’ ability to fit the experimental
data but did not necessarily represent the ability of the models to
reproduce real phenomena, i.e., to capture real system dynamics. Thus,
validations were performed to address this issue.

All the calibrations and validations of the models were carried out
for one driver at a time. In particular, the models simulated the tra-
jectory of each vehicle being fed the experimental trajectory of its
leader.

Calibration

Problem Formulation and Solution

Calibration of the model of a real system by indirect techniques (i.e.,
by techniques based on the use of the model itself to estimate its
parameters) starts by comparison of the model outputs with those of
the real system fed the same inputs. It is equivalent to the solution
of a constrained minimization problem in which the objective func-
tion expresses the deviation of the simulated output measurements
from those observed. Among the estimators commonly used there
is the generalized least-squares estimator, according to which the
problem formulation is set as follows:
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g i ni dx a, , ,( ) ≥ =0 1 …

Y u x asim = ( )S , ,

min obs sim obs sim

a

Tγ = −( ) −( )−Y Y P Y Y1

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350

Time (sec)

S
p

ee
d

 (
km

/h
)

30C

30B

30A

FIGURE 1 Speed profiles of platoon leaders from Experiments 30A (urban), 30B (extraurban), and 30C (urban).



where

γ = objective function of the optimization problem,
which measures the overall performance of the
model;

Yobs and Ysim = vectors of observed and simulated measures of
performances (MOPs) obtained from the outputs
of the model S, respectively;

P, u, x, and a = vectors of weights, inputs, state variables, and
parameters, respectively;

gi = ith inequality constraint;
hj = jth inequality constraint; and

ne and nd = numbers of equality and inequality constraints,
respectively.

When S is a simulation model, to calculate the value of the objective
function at every step of the algorithm searching for the minimum, one
or more simulations are performed whether or not the model is sto-
chastic. In this work, the optimization software LINDO API (20) was
used to solve the minimization problem presented above. The soft-
ware uses a multipoint nonlinear optimization algorithm, which starts
by searching for the minimum from different points to circumvent
local minima.

Choice of Performance Measures

A fundamental aspect of the problem is the choice of more adequate
MOPs to represent system and model output measurements. If the
model were capable of reproducing the dynamics of the real phenom-
enon exactly and, thus, all the system output measurements coincided
with the model output measurements, the objective functions obtain-
able with any MOP would be equally null in terms of their global
minima and the corresponding sets of optimum parameters would
coincide. As models are more or less accurate approximations of
reality, the choice of the functional form of the objective function,
as well as the choice of MOPs, influences the results of calibrations.
The form of response surfaces of a model obtained by calibrating the
model vis-à-vis different MOPs, for example, may prove different,
as the same may happen with the minima of objective functions and
the corresponding sets of optimum parameters.

In the case of calibration of car-following models, the MOPs used
must capture the dynamics of the phenomenon as it develops. These
are derived directly from disaggregated traffic surveys and consist of
time series of vehicle speeds or of their intervehicle spacings or time
headways. Once simulations have been performed, to measure over-
all model performance and to check whether the simulated measure-
ments really match the observed ones, error tests are usually adopted.
In fact, most of the common statistical tests cannot be used in this case,
as the measurements concerned are not stationary and self-correlated.
Also, as mentioned above, the inputs used for calibration consist of
the trajectory of the leader.

Error tests of common use are the root mean square error (RMSe),
the root mean square percentage error (RMSPe), or Theil’s inequality
coefficient (U ):
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The square of RMSe can be decomposed into the following terms (21):

where

UM, US, and UC = bias, variance, and covariance proportions of
U, respectively (these are useful as a means of
understanding the sources of the simulation
error);

µsim and µobs = means of simulated and observed values,
respectively;

σsim and σobs = standard deviations of simulated and observed
values, respectively;

ρ = correlation coefficient; and
Yi

obs and Yi
sim = ith observed and simulated variables, respec-

tively, with i ranging from 1 to N.

As pointed out above, in the case of calibration of car-following
models, the choice of MOP in the objective function is expected to
condition the results. First, the choice of time headway as the MOP,
especially with nonlinear objective functions, may provide nonoptimal
results. Indeed, as higher values of time headways are obtained as
speeds become closer to zero, observations that fall in this range of
speeds might have an excessive weight in the calibration of the model,
which is especially the case for urban data sets, in which low speeds
are more frequent. In this case a simple remedy may be to eliminate
observations concerning speeds close to zero when the model is
calibrated (a threshold of 1 m/s has been adopted here).

Some further considerations may therefore arise from the observa-
tion of Figure 2, in which the results of calibration of the three models
carried out with three different objective functions (i.e., different
MOPs) are reported for data from one experiment. Mean errors and
RMSPe values are given. Once the models have been calibrated for
experimental time headways, the error statistics for speeds and inter-
vehicle spacings are also calculated. The same was done when the
models were calibrated on the basis of speeds and intervehicle spac-
ings. Thus, each graph represents the values of error statistics for the
three MOPs, obtained by calibrating the models three times: on the
basis of time headways, speeds, and intervehicle spacings. Thus, for
example, the “headway ObjF” label reports the values of the test errors
of the three MOPs calculated once the model has been calibrated on
the basis of time headways.

An initial consideration is the fact that all the models are better at
reproducing speeds than at reproducing spacings or headways. The
deviations between the simulated and the observed speeds, which
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were always lower than 10%, were always lower than the deviations
obtained for the other two MOPs. This result was already found by
Ranjitkar et al., who justified it by stating that it could be ascribed
to data errors (9). Instead, the explanation is that speed deviations
and spacing deviations from the observed data do not have the same
meaning. For example, when a model is calibrated on the basis of
speeds, an error made by the model in calculating the speed between
instants tk − 1 and tk entails an error in the space traveled in the same
interval (i.e., an error in the spacing from the leader). The latter,
however, is kept equal for all the following instants; i.e., in all the
following instants the result for the space traveled will be increased
or decreased by this amount of error. Therefore, it is easier to fit
models on the basis of speed measurements than on the basis of
spacing measurements, but this definitely does not imply a better
reproduction of real dynamics.

Another aspect of this difference is that by calibration of a model on
the basis of speeds, the values of the error tests calculated for the other
two measures are, sensibly, higher than the optimum ones. In other
words, they are higher than the values obtained by calibrating the
model directly on the basis of headways and spacings. For example,
on the right side of Figure 2 it is shown that the Gipps model calibrated
on the basis of speeds presents errors for headways and spacings equal
to 35% and 34%, respectively, while when it is directly calibrated,
headways and spacings present values of 17% and 16%, respectively.
The mean errors on the left side of Figure 2, which provide information
on the bias of the models, again show that calibration of the models
on the basis of speeds implies nonnegligible errors for headways and
spacings.

This proves that intervehicle spacing is the most reliable measure
of performance for the calibration of car-following models. As a
consequence, all subsequent calibrations were performed by using
intervehicle spacing as the MOP.

Validation

Unlike calibrations, validations consist of a simple simulation in which
the model seeks to reproduce a trajectory from Data Set X by using
parameters calibrated on the basis of another data set, Data Set Y.

As mentioned above, data for the data sets used in this study were
collected on 2 different days. For each day, different data sets are
nothing but the trajectories of the same drivers traveling in the same
order along different stretches of roads belonging to the route cov-
ered. It is straightforward to verify whether the models are able to
reproduce the behavior of the same driver along different parts of the
route with the parameters calibrated on the basis of data for another
part of it. This is an interesting point, because the roads from which
the data for the different data sets along the route were extracted differ
in their types and levels of congestion.

Hence, cross validations were accomplished by comparing for one
driver at a time the observed trajectory from Data Set X with that
simulated by using the parameters calibrated for the same driver in
a different data set, Data Set Y, and vice versa. The error tests used
for evaluation of the performances were the same as those used for
the calibrations.

Calibration and Validation Setup

As the trajectory of the preceding vehicle was unknown for the leader
of the platoon, calibrations and validations could have been accom-
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plished only for the three following drivers, which are referred to as
Driver 2, Driver 3, and Driver 4.

First, model parameters were calibrated for each observed trajec-
tory (i.e., 3 drivers × 5 data sets = 15 calibrations per model). Then,
for each driver six cross validations were carried out between the
three data sets from October 30 and two cross validations were carried
out between the two data sets for February 25 (i.e., 3 drivers × 8 pairs
= 24 validations per model). There were thus eight cross validations
(per driver per model), referred to as 30AB, 30AC, 30BA, 30BC,
30CA, 30CB, 25BC, and 25CB, where 30AB, for example, means that
each driver in Experiment 30A was simulated by using the optimal
parameters for the driver calibrated from Data Set 30B.

All the models were simulated by adopting a simulation step of
0.1 s, consistent with the available field data. In other words, for
models whose simulation step was a parameter to be calibrated, when
this proved to be greater than 0.1 s, the values of the output variables
at every 0.1 s were also calculated.

CALIBRATION AND VALIDATION RESULTS

Calibration Results

A few interesting remarks can be made on the basis of the results
from the calibrations (Table 2 and Figure 3). It is surprising that the
RMSPe values resulting from the experiments carried out under real
traffic conditions in this study are mainly consistent with those found
in the literature for experiments conducted on test tracks (8, 9).

In the calibration phase, MITSIM is capable of reproducing the
experimental data better than the other models are. Indeed, the aver-
age error is about 12% for MITSIM, whereas the average errors are
about 16% for the IDM model and approximately 17% for the mod-
els of Newell and Gipps. The values of the statistical indexes UM, US,
and UC, which provide information on the nature of errors, are close
to the optimal configuration (UM = 0, US = 0, UC = 1) for all the mod-
els except Newell’s, which, even though it does not introduce sys-
tematic errors (UM is always close to 0), does not seem to reproduce
correctly the fluctuations of the experimental data, i.e., measured
spacings (US is about 0.17). This result was actually expected
because of the simplicity of Newell’s model, in which the spacing
varies linearly with speed and oscillations in the distance-keeping
behavior with the leading vehicle are not allowed (in fact, the error
US presented in Table 2 is almost always due to an underestimation
of the variance of the real data).

The worst values of RMSPe in the calibration phase were attained
with all models for Driver 25-3: in Experiment 25B for the Newell
model (22.45%), the Gipps model (23.02%), and IDM (23.75%) and
in Experiment 25C for MITSIM (19.09%). It is therefore reasonable
to suppose that the behavior of Driver 25-3 is not easily reproducible
by models. The fact that there are drivers whose behaviors are more
easily reproduced is confirmed by the trend of errors of the models.
Indeed, the calibration results among the different models for the
same driver did not generally differ significantly, while the perfor-
mances of models dealing with different drivers vary consistently
(Figure 3 and Table 2), as highlighted in previous work as well (8, 9).
It can thus be argued that traditional models fail to capture some
aspects of driving behavior.

In Table 1, the average values of the mean, the variance, and the
covariance of the calibrated model parameters are reported. It is worth
noting that the exponents λi (with i values for acceleration and decel-
eration) of the ΔVn term in Equation 1 are nearly equal to 1, as found



in previous studies (1). Another remark concerns the Gipps model,
which has a low average reaction time, confirming the stringent
car-following behavior from the available experimental data.

Validation Results

In the validation phase, the different models were essentially equiva-
lent, on average, with all models giving RMSPe values between 22.5%
and 24.2% (Table 2 and Figure 4). The Newell model exhibited the
smallest increment of error between the calibration and the valida-
tion phases (5.6%), while MITSIM had the highest increment (about
10.6%, on average) (Table 2). This could be confirmation of a tendency
for MITSIM to overfit the experimental data. The better performance
of MITSIM in the calibration phase may well be due to the larger
number of parameters and, therefore, the larger number of degrees of
freedom compared with those in the other models. Except for the two
cases discussed below, MITSIM almost always had worse RMSPe
values than the other models. Nevertheless, it showed the most robust
behavior, as the validation results never reach particularly high values.

By looking at the validations for each driver, all models had similar
responses except for those for Driver 30-4 for IDM and the Newell
model (Validations 30BA and 30CA) and except for all drivers for
Validation 30BC for the Gipps model.

In the first case, it appears that the two models overfit the cali-
bration data for Driver 30-4 in Experiment 30A. Indeed, the param-
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eters calibrated for Experiment 30A differed greatly from the optimum
ones obtained for Experiments 30B and 30C. This can be interpreted
as anomalous behavior for that driver.

The second major case regards the most extreme validation. Indeed,
it is the validation between the urban and the extraurban trials (Val-
idation 30BC). In this case, the Gipps model failed to simulate cor-
rectly the extraurban (Experiment 30B) trajectories of all the vehicles
with parameters calibrated on the basis of the urban data (Experi-
ment 30C). If one looks at the optimum parameters from the two cal-
ibrations (Experiments 30B and 30C), it can be noted that the values
of maximum deceleration of the drivers varied by approximately
600% between the two trials. Unlike the case of Driver 30-4, in which
anomalous behavior of the driver occurred, here the Gipps model
seems to be sensitive to the calibration context (urban versus extra-
urban), failing to reproduce the results for all drivers. In general, the
performance of Validation 30BC, unlike those of the other validations,
differed significantly among the different models, confirming this
difficulty with urban and extraurban cross validation.

In general, the results of the validations from this study show errors
larger than those reported in similar studies (8). In addition, the dis-
tribution of the error among its components deviates from the optimal,
as shown in Table 2. The fact that there are significant increments of
error compared with those from the calibration results suggests that
the behavior of the same driver may differ in different contexts. It is
therefore not advisable to calibrate car-following models on the basis

TABLE 2 Calibration and Validation Results

RMSPe UM US UC

Calibration

Newell Mean 16.9% 0.054 0.173 0.773
Max 22.5% 0.148 0.424 0.958
Min 11.3% 0.000 0.003 0.427
Amplitude (max–min) 11.1% 0.148 0.421 0.531

Gipps Mean 17.2% 0.038 0.052 0.910
Max 23.0% 0.146 0.241 0.988
Min 12.2% 0.000 0.000 0.680
Amplitude (max–min) 10.8% 0.145 0.241 0.308

IDM Mean 15.6% 0.040 0.066 0.894
Max 23.8% 0.122 0.188 0.989
Min 10.6% 0.000 0.001 0.729
Amplitude (max–min) 13.1% 0.122 0.187 0.259

MITSIM Mean 12.4% 0.025 0.052 0.923
Max 19.1% 0.105 0.124 0.980
Min 7.3% 0.000 0.002 0.795
Amplitude (max–min) 11.8% 0.105 0.122 0.184

Validation

Newell Mean 22.5% 0.149 0.172 0.678
Max 41.4% 0.444 0.369 0.958
Min 13.6% 0.010 0.003 0.454
Amplitude (max–min) 27.7% 0.435 0.366 0.504

Gipps Mean 24.2% 0.130 0.094 0.776
Max 45.4% 0.343 0.256 0.975
Min 17.1% 0.006 0.004 0.434
Amplitude (max–min) 28.3% 0.338 0.252 0.541

IDM Mean 23.5% 0.387 0.124 0.490
Max 44.0% 0.659 0.389 0.951
Min 13.8% 0.003 0.002 0.187
Amplitude (max–min) 30.2% 0.656 0.387 0.765

MITSIM Mean 22.9% 0.210 0.097 0.692
Max 29.1% 0.696 0.259 0.979
Min 15.5% 0.000 0.001 0.283
Amplitude (max–min) 13.6% 0.696 0.257 0.695

Max � maximum; Min � minimum.



of experimental data pertinent to contexts limited in space and time
(i.e., data from a single video camera), but it is necessary to detect the
behavior of a user for a fairly long period, if possible, who is coping
with different types of road and traffic characteristics.

CONCLUSIONS

This paper sought not only to investigate methodological issues of
model calibration and validation but also to produce preliminary results
of a comparison of models on the basis of real microscopic traffic data.

First, the influence of the choice of performance measurement used
for model calibration was examined. Intervehicle spacing was found
to be the most reliable measure, and a physical interpretation was pro-
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vided. Numerical evidence of the need to perform model validations
was provided. The same drivers showed different optimal calibration
parameters when data were calibrated on the basis of data from data
sets collected for different parts of a route over a short distance in time.
Moreover, the calibration results appeared to be surprisingly simi-
lar to those of previous work performed with data from test tracks
[on average, 15.50% RMSPe versus 15.51% RMSPe from a previous
study (8) for the same models], but this did not hold for cross vali-
dations that performed worse [on average, 22.31% RMSPe versus
17.37% RMSPe from a previous study (8)].

It is worth noting, on the one hand, that this difference in validation
performance was obtained by considering only the data that were
not overfitted and that it can be explained by the qualitative difference
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FIGURE 4 Model performances in cross validations (RMSPe values).



in the data sets used in the studies (data for real traffic versus data
from a test track). On the other hand, this study overfit the data in
the urban–extraurban cross validations. The first consideration high-
lights the importance of validations with real traffic data, while the
second suggests that data collection schemes that allow the observa-
tion of drivers who are driving for long periods and who are coping
with different types of road and traffic characteristics be adopted.

In a comparison of the models, the simplest model (the Newell
model) performed the best, on average, while MITSIM showed a
tendency to overfit the data on comparison of the calibration and val-
idation results. A high degree of variability of parameters was observed
not only among the different drivers but also for the same driver
coping with different contexts. The results require confirmation in
other studies and with other experimental data sets.
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