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NEPS OF COMPLEX UNIT GAIN GRAPHS∗

FRANCESCO BELARDO† , MAURIZIO BRUNETTI† , AND SULIMAN KHAN‡

Abstract. A complex unit gain graph (or T-gain graph) is a gain graph with gains in T, the multiplicative group of

complex units. Extending a classical construction for simple graphs due to Cvektović, suitably defined noncomplete extended

p-sums (NEPS, for short) of T-gain graphs are considered in this paper. Structural properties of NEPS like balance and some

spectral properties and invariants of their adjacency and Laplacian matrices are investigated, including the energy and the

possible symmetry of the adjacency spectrum. It is also shown how NEPS are useful to obtain infinitely many integral graphs

from the few at hands. Moreover, it is studied how NEPS of T-gain graphs behave with respect to the property of being nut,

i.e., having 0 as simple adjacency eigenvalue and nowhere zero 0-eigenvectors. Finally, a family of new products generalizing

NEPS is introduced, and their few first spectral properties explored.
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1. Introduction. Let Γ be a nonempty simple graph with vertex set V (Γ) = {v1, v2, . . . , vn} and let
#»

E(Γ) be the set of its oriented edges. Such set contains two copies of each edge of Γ with opposite directions.

We write eij for the oriented edge from vi to vj . Given any multiplicative group G, a G-gain graph is a

pair Φ = (Γ, γ) consisting of an underlying graph Γ and a map γ from
#»

E(Γ) to the gain group G such that

γ(eij) = γ(eji)
−1. Let 1G denote the identity element of G. The gain graph Φ is said to be balanced if, for

every directed cycle
#»

C = ei1i2 · · · eiki1 in Γ (if any), we have γ(ei1i2)γ(ei2i3) · · · γ(eiki1) = 1G.

In particular, a complex unit gain graph is a G-gain graph with G = T, the multiplicative group of all

complex numbers with norm 1. The theory of complex unit gain graphs incorporates those of signed graphs

and mixed graphs (as defined in [17]). In fact, a signed graph (resp., mixed graph) can be seen as a particular

T-gain graph with gains in the subset {±1} (resp., {1,±i}) of T. Clearly, every Tn-gain graph, where n ∈ N
and Tn denotes the group of nth roots of unity, can be regarded as a complex unit gain graph. Empty graphs

can be thought as T-gain graphs equipped with the empty gain function ∅ → T and are obviously balanced.

In the wake of [28], over the last decade there has been a renewed and growing interest for the Hermitian

matrices associated to T-gain graphs and their spectra (see, for instance [6, 7, 8, 9, 20, 23, 26, 31, 34, 35]).

After a section of preliminaries, we suitably define in Section 3 the noncomplete extended p-sums (NEPS,

for short) of T-gain graphs, originally defined by Cvetković for simple graphs [12], retrieving the Cvetković

products of signed graphs introduced in [15] when the gains of the factors are all included in {±1}. The

Cartesian products, the strong product, and the direct product of T-gain graphs all turn out to be special

cases of NEPS. We prove that NEPS behave well with respect to switching equivalence and give formulæ

for their adjacency eigenvalues. In Section 4, we consider the energy of an NEPS and find infinite families
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of noncospectral equienergetic T-gain graphs. The short Section 5 is devoted to the Laplacian eigenvalues

of NEPS; a formula relating the Laplacian spectrum of an NEPS and the Laplacian spectrum of its factors

is given when the latter are all regular. The Cvetković products are a powerful tool to obtain infinitely

many integral connected T-gain graphs. This topic is investigated in Section 6. Afterward, we deal with

complex unit gain graphs either having a symmetric spectrum or being sign-symmetric (see Section 7 for

the definition). Theorem 7.4 and 7.5, two of our main results, give structural conditions characterizing those

NEPS which preserve the spectral symmetry and the sign-symmetry of their factors. In Section 8, we extend

to T-gain graphs the classical notion of nut (simple) graphs: such graphs have 0 as simple eigenvalue and

0-eigenvectors without null components. In this case too, NEPS constructions show to be useful to obtain

infinitely many nut T-gain graphs from the small number one has at hand. In the final Section 9, we propose

generalizations of Cvetković products, which seem promising and reasonably manageable, since the majority

of the spectral results obtained for NEPS in this paper can be naturally extended to our new products.

2. Preliminaries.

2.1. Complex unit gain graphs.

Let Mm,n(C) be the set of m× n complex matrices. For a matrix A = (aij) ∈ Mm,n(C), we denote by

A∗ = (a∗ij) ∈ Mn,m(C) its conjugate (or Hermitian) transpose; i.e., a∗ij = aji.

The adjacency matrix A(Φ) = (aij) ∈ Mn,n(C) of a T-gain graph Φ = (Γ, γ) is defined by

(2.1) aij =

{
γ(eij) if vi is adjacent to vj ,

0 otherwise.

If vi is adjacent to vj , then aij = γ(eij) = γ(eji)
−1 = γ(eji) = aji. Consequently, A(Φ) is Hermitian and

its eigenvalues λ1(Φ) ⩾ · · · ⩾ λn(Φ) are real. The Laplacian matrix L(Φ), defined as D(Γ) − A(Φ), where

D(Γ) = diag(d(v1), . . . , d(vn)) stands for the diagonal matrix of vertex degrees of Γ, is Hermitian as well,

and all its eigenvalues λL
1 (Φ) ⩾ · · · ⩾ λL

n(Φ) are nonnegative [28]. By definition, the spectrum sp(M(Φ)) is

the multiset of eigenvalues of M(Φ), where M ∈ {A,L}. For brevity of notation, we shall often write sp(Φ)

instead of sp(A(Φ)) and denote by mΦ(λ) the multiplicity of an eigenvalue λ ∈ sp(Φ).

The negation of a T-gain graph Φ is −Φ := (Φ,−γ). Clearly, A(−Φ) = −A(Φ) and λi(−Φ) =

−λn−i+1(Φ).

A switching function for a gain graph Φ is any map ζ : V (Γ) → T. Switching a nonempty T-gain graph

Φ = (Γ, γ) means replacing γ by γζ , where γζ(eij) = ζ(vi)
−1γ(eij)ζ(vj), and obtaining in this way the

new T-gain graph Φζ = (Γ, γζ). We say that Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) (and their corresponding gain

functions) are switching equivalent if there exists a switching function ζ such that Φ2 = Φζ
1. By writing

Φ1 ∼ Φ2, we mean that Φ1 and Φ2 are switching equivalent.

To each switching function ζ we associate a diagonal matrix D(ζ) = diag(ζ(v1), . . . , ζ(vn)). Note that

(2.2) M(Φζ
1) = D(ζ)∗M(Φ1)D(ζ) for M ∈ {A,L}.

If Φ2 is isomorphic (but not necessarily equal) to Φζ
1 for a suitable switching function ζ, then Φ1 and Φ2 are

said to be switching isomorphic. If this is the case, we write Φ1 ≃ Φ2, and

(2.3) M(Φ2) = P−1M(Φζ
1)P = (PD(ζ))∗M(Φ1)PD(ζ),
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Figure 1. The gain triangle C3(e
iθ) and the gain diamond D(eiθ).

where P is an appropriate permutation (0, 1)-matrix and M ∈ {A,L}. From (2.2) and (2.3), we easily obtain

(2.4) Φ1 ∼ Φ2 =⇒ Φ1 ≃ Φ2 =⇒ sp(M(Φ1)) = sp(M(Φ2)) for M ∈ {A,L}.

A walk W = ei1i2ei2i3 · · · eil−1il is said to be neutral, negative, or imaginary, depending on if its gain

γ(W ) := γ(ei1i2)γ(ei2i3) · · · γ(eil−1il) is 1, −1 or nonreal. We write (Γ, 1) for the T-gain graph with all

neutral arcs.

The next proposition specializes [29, Lemma 2.2] to T-gain graphs.

Proposition 2.1. Let Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) be T-gain graphs with the same underlying graph

Γ. Φ1 and Φ2 are switching equivalent if and only if, for every directed cycle
#»

C in Γ, we have γ1(
#»

C) = γ2(
#»

C).

Neither of the two implications in (2.4) can be reversed. The counterexamples of minimal order are given

in Example 2.2 and involve the gain diamonds of type D(z) depicted in Fig. 1, where, like in the other figures

of this paper, we adopt the following drawing convention: each continuous (resp., dashed) thick undirected

line represents two opposite oriented edges with gain 1 (resp., −1), whereas the arrows detect the oriented

edges uv’s with a nonreal gain. The value γ(uv) is often specified near the correspondent arrow.

Example 2.2. For each z = eiθ ∈ T, we consider the gain diamond D(z) depicted on the right of Fig. 1.

Fixed a suitable ordering for its vertex set, we have

A(D(z)) =


0 −1 z 1

−1 0 1 0

z 1 0 1

1 0 1 0

 and sp(D(z)) = {−2,−1, 1, 2}.

Hence, the graphs in the set {D(z)) | z ∈ T} are all cospectral; yet, as it can easily deduced from Proposi-

tion 2.1, D(z) ≃ D(z′) only if z′ ∈ {z, z} and D(z) ∼ D(z′) only if z′ = z. ■

An edge set S ⊆ E is said to be balanced if no nonneutral directed cycles with edges in S exist. A

subgraph is balanced if its edge set is balanced (see [1, 9, 28] for further details). It is immediately seen that

the gain triangle C3(z) in Fig. 1 is balanced if and only if z3 = 1.

A potential function for γ is a function θ : V → T, such that θ(vi)
−1θ(vj) = γ(eij) for every eij ∈

#»

E(Γ).

By Proposition 2.1, it follows that a T-gain graph Φ is balanced if and only if all its directed cycles are

neutral. This is the only laborious part along the proof of the following result.
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Proposition 2.3. [28, Lemma 2.1] Let Φ = (Γ, γ) be a T-gain graph. The following three conditions

are equivalent:

1. Φ is balanced.

2. Φ ∼ (Γ, 1).

3. γ has a potential function.

The next result, proved in [24, Theorem 4.6] when the underlying graph is connected, gives a spectral

characterization of T-gain graphs.

Theorem 2.4. [11, Corollary 5.1] A T-gain graph Φ = (Γ, γ) is balanced if and only if sp(A(Φ)) =

sp(A(Γ)).

The last result we recall is the computation of the adjacency spectrum of every T-gain cycle.

Theorem 2.5. [28, Theorem 6.1] Let (Cn, γ) be a T-gain cycle such that one of its directed cycles has

gain eiθ. Then,

(2.5) sp(Cn, γ) =

{
2 cos

(
θ + 2πj

n

) ∣∣ 0 ⩽ j ⩽ n− 1

}
.

2.2. Kronecker products of matrices.

Let A = [aij ]k×m and B = [bij ]l×n be two matrices of orders k×m and l×n, respectively. The Kronecker

Product of A and B is by definition the kl ×mn matrix

A⊗B :=



a11B a12B · · · · · · a1mB

a21B a22B · · · · · · a2mB
...

...
. . .

. . .
...

...
...

. . .
. . .

...

ak1B ak2B · · · · · · akmB


.

In the following proposition, we collect some results that follow more or less immediately from the

definition.

Proposition 2.6. [36, Theorems 4.5 and 4.6] Let A,B,C, and D matrices of appropriate sizes. Then,

1. (A+B)⊗ C = A⊗ C +B ⊗ C;

2. (A⊗B)(C ⊗D) = (AC)⊗ (BD);

3. A⊗B is null if and only if either A or B is

null.

4. (A⊗B)⊗ C = A⊗ (B ⊗ C);

5. (A⊗B)−1 = A−1 ⊗B−1;

6. (A⊗B)⊤ = A⊤ ⊗B⊤;

7. (A⊗B)∗ = A∗ ⊗B∗.

Let N⩽h be the subset of all positive integers from i to h ∈ N. For i ∈ N⩽h, we denote by bi;qr the (q, r)-entry

of a ki × li matrix Bi. Proposition 2.6(4) implies in particular that the h-ary product B1 ⊗B2 ⊗ · · · ⊗Bh is

well defined. Its rows (resp., columns) can be indexed by the h-tuples

{q = (q1, q2, . . . , qh) | qi ∈ N⩽ki
} (resp., {r = (r1, r2, . . . , rh) | ri ∈ N⩽li})
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ordered lexicographically. The qr-entry of the h-ary product is

(2.6) bqr = b1;q1r1b2;q2r2 · · · bh;qhrh .

By (2.6) (or by Proposition 2.6(7)), it follows that the Kronecker product of Hermitian matrices is Hermitian.

In fact,

brq = b1;r1q1b2;r2q2 · · · bh;rhqh = b∗1;q1r1b
∗
2;q2r2 · · · b

∗
h;qhrh

= b∗qr.

Proposition 2.7. For i ∈ N⩽h, let Pi be an ni × ni permutation matrix. Then, P :=
⊗h

i=1 Pi is an

n× n permutation matrix, where n =
∏h

i=1 ni.

Proof. For each q = (q1, . . . , qh), it is well defined the h-tuple rq = (r1q, . . . , rhq) such that bj;qj ,rjq is

the only nonzero element on the rjth row in Pj . From (2.6), we immediately arrive at

bqr =

{
1 if r = rq;

0 otherwise.

The argument to show that each column of P contains just one nonzero entry, and such entry is 1, is

analogous.

In the following statement and throughout the paper, Im denotes the identity matrix of order m.

Proposition 2.8. [36, Theorem 4.8] Let B and C be square matrices of orders k and l, respectively,

with eigenvalues νi (1 ⩽ i ⩽ k) and λj (1 ⩽ j ⩽ l). Then the kl eigenvalues of B ⊗C are νiλj, and those of

B ⊗ Il + Ik ⊗ C are νi + λj .

Proposition 2.9. [13, Theorem 2.8] or [15, Lemma 2.8] For j ∈ N⩽h and r ∈ N⩽p, let λj1 ⩾ λj2 ⩾
· · · ⩾ λjnj the eigenvalues of a square matrix Bj of order nj, and let qr = (qr1, · · · , qrh) be an h-tuple of

nonnegative integers. The eigenvalues of B :=
∑p

r=1 B
qr1
1 ⊗ · · · ⊗ Bqrh

h (where B0
i := Ini

) are λk1,...,kh
:=∑p

r=1 λ
qr1
1k1

· · ·λqrh
hkh

for kj ∈ N⩽nj
.

Proof. It suffices to note that if {ujkj
| j ∈ Nh} is a set on nonzero vectors such that Bjujkj

= λjkj
ujkj

,

then u1k1
⊗ · · · ⊗ uhkh

is nonzero and B(u1k1
⊗ · · · ⊗ uhkh

) = λk1,...,kh
(u1k1

⊗ · · · ⊗ uhkh
) by Parts (1)-(3)

of Proposition 2.6.

3. Cvetković products of gain graphs and their adjacency matrix. Let B be a nonempty subset

of Fh := {0, 1}h \ {(0, ..., 0)}, the set of {0, 1}-h-tuples with at least one 1 among their components. We

start by recalling how Cvektović defined Γ := NEPS(Γ1, . . . ,Γh;B), the noncomplete extended p-sums (or

simply NEPS) of the simple graphs Γ1, . . . ,Γh with basis B (see, for instance, [13, p. 66]): the vertex set

V (Γ) is the Cartesian product V (Γ1)× · · · × V (Γh), and the vertices u := (u1, . . . , uh) and v := (v1, . . . , vh)

are adjacent if and only if there exists a (unique) h-tuple b = (b1, . . . , bh) in B such that ui = vi whenever

bi = 0, and uivi is an edge of Γi if bi = 1. Note that

(3.1)
#»

E(Γ) =
⊔
b∈B

#»

E(NEPS(Γ1, . . . ,Γh; {b})),

where the symbol
⊔

denotes the disjoint union.
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Definition 3.1. Let Φ1 = (Γ1, γ1), . . . ,Φh = (Γh, γh) be h T-gain graphs. The NEPS (or Cvecktović

product) of Φ1, . . . ,Φh with basis B is the T-gain graph Φ = (Γ, γ) defined as follows:

• the underlying graph Γ is NEPS(Γ1, . . . ,Γh;B);

• for each pair of adjacent vertices u := (u1, . . . , uh) and v := (v1, . . . , vh) in Γ,

(3.2) γ(uv) :=

h∏
j=1

γj(ujvj),

where γj(ujvj) is understood to be 1 whenever uj = vj.

The T-gain graph Φ = (Γ, γ) will be denoted by NEPS(Φ1, . . . ,Φh;B). ■

The map γ really defines a T-gain structure on NEPS(Γ1, . . . ,Γh;B), in fact,

γ(vu) =

h∏
j=1

γj(vjuj) =

h∏
j=1

γj(ujvj) = γ(uv).

Remark 3.2. For h ⩾ 2, let p : Fh −→ {0, 1}h−1 be the projection onto the first h − 1 coordinates. If

bh = 0 for all b ∈ B, then

Φ := NEPS(Γ1, . . . ,Γh;B) =

nh⊔
i=1

NEPS(Γ1, . . . ,Γh−1; p(B)),

where nh := |V (Γh)|. If instead bh = 1 for all b ∈ B and nh = 1, then the NEPS Φ is empty. ■

In order to make each factor of Φ structurally relevant and avoid empty NEPS, we shall often assume that

the following condition is fulfilled:

(3.3) for each i ∈ N⩽h, Γi is nonempty and there exists a b in B whose ith component is 1.

When the set γi(
#»

E(Γi)) is included in {±1} for each i ∈ N⩽h, the several Φi’s can be regarded as signed

graphs. If this is the case, γ(
#»

E(Γ)) is also included in {±1}, and the signature on NEPS(Φ1, . . . ,Φh;B)

(thought as a signed graph) is precisely the one proposed in [15], where NEPS of signed graphs are defined.

For p ∈ N⩽h, let Bh,p be the subset of Fh of all h-tuples containing precisely p 1’s, and let jh ∈ Fh be

the all-ones h-tuple (1, . . . , 1). Clearly, Bh,h = {jh}. Inspired by some established terminology and notation

in the realm of simple graphs (see [13, Section 2.5] and [18]), we call NEPS(Φ1, . . . ,Φh;Bh,p) the (complete)

p-sum of Φ1, ...,Φh, and

□h
i=1Φi := NEPS(Φ1, ...,Φh;Bh,1), ×h

i=1
Φi := NEPS(Φ1, ...,Φh; {jh}), ⊠h

i=1Φi := NEPS(Φ1, ...,Φh;Fh),

the Cartesian product, the direct or tensor product, and the strong product, respectively. Thus, the Cartesian

(resp., direct) product of h T-gain graphs is synonym of complete 1-sum (resp., h-sum).

For any simple graph Λ, it is immediate to realize that the direct products Φ × (Λ, 1) and Φ × (K2, 1)

are the T-gain graphs considered in [30] under the names Kronecker product of Φ and Λ and bipartite double

of Φ, respectively.
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For i ∈ N⩽h, let now ni be the order of the T-gain graph Φi = (Γi, γi). Fixed once for all an ordering

for the sets V (Γi), we denote by either uij or vij the jth vertex of Γi. Then, we order the vertices of

V (Γ) = {(u1j1 , . . . , uhjh) | jh ∈ N⩽nh
} lexicographically. The following proposition generalizes to T-gain

graphs the correspondent results for signed graphs achieved with [15, Theorem 3.1].

Proposition 3.3. For i ∈ N⩽h, let Φi be a T-gain graph with ni vertices. The adjacency matrix of

Φ = NEPS(Φ1, . . . ,Φh;B) is given by

(3.4) A(Φ) =
∑

(b1,...,bh)∈B

A(Φ1)
b1 ⊗ · · · ⊗A(Φh)

bh .

Moreover, if λi1 ⩾ λi2 ⩾ · · · ⩾ λini
are the eigenvalues of A(Φi), then sp(Φ) = {λk1,...,kh

| ki ∈ N⩽ni
}, where

(3.5) λk1,...,kh
:=

∑
(b1,...,bh)∈B

λb1
1k1

· · · λbh
hkh

.

Proof. The argument is essentially the one used in the proof of [15, Theorem 3.1]. Let A′(Φ) temporarily

denote the matrix on the right side of (3.4). As explained in Section 2.2, the rows (resp., columns) of A′(Φ)

can be indexed by the h-tuples

{q = (q1, q2, . . . , qh) | qi ∈ N⩽ni
} (resp., {r = (r1, r2, . . . , rh) | ri ∈ N⩽ni

}) .

The same is true for the rows and columns of A(Φ): the row (resp., column) indexed by q (resp., r) corre-

sponds to the vertex u = (u1q1 , u2q2 , . . . , uhqh) (resp., v = (v1r1 , v2r2 , . . . , vhrh)). Now, it is straightforward

to check that if u and v are not adjacent in Γ, then the (q, r)-entries of A(Φ) and A′(Φ) are both zero. If

instead u and v are adjacent, by (3.1) and the definition of Γ, there exists precisely one b(u,v) ∈ B such that

b
(u,v)
i = 1 if and only if qi ̸= ri. Recalling (2.1) and (3.2), the (q, r)-entry of A(Φ) is

∏h
j=1 γj(ujvj), which,

by (2.6), is also the (q, r)-entry of A(Φ1)
b
(u,v)
1 ⊗ · · · ⊗ A(Φh)

b
(u,v)
h , the b(u,v)-summand of A′(Φ). Since the

(q, r)-entries of the remaining summands of A′(Φ) are zero, Equality (3.4) is proved.

The second part of the statement is a direct consequence of Proposition 2.9.

In the special case of the Cartesian product, Equality (3.4) becomes

(3.6) A
(
□h

i=1Φi

)
= A(Φ1)⊗ In2 ⊗ · · · ⊗ Inh

+ In1 ⊗A(Φ2)⊗ · · · ⊗ Inh
+ · · ·+ In1 ⊗ In2 ⊗ · · · ⊗A(Φh).

For p ∈ N⩽h, we recall that the pth elementary symmetric polynomials in h variables X1, . . . , Xh is

Sp(X1, . . . , Xh) :=
∑

1⩽j1<···<jp⩽h

Xj1Xj2 · · · Xjp .

The following result immediately follows from Proposition 3.3.

Corollary 3.4. The adjacency spectra of the complete p-sum, the Cartesian product, the direct product

and the strong product of Φ1, . . . ,Φh read as follows:

sp (NEPS(Φ1, . . . ,Φh;Bh,p)) = {Sp(λ1k1
, . . . , λhkh

) | ki ∈ N⩽ni
},

sp
(
□h

i=1Φi

)
= {λ1k1

+ · · ·+ λhkh
| ki ∈ N⩽ni

},

(3.7) sp
(×h

i=1
Φi

)
= {λ1k1

λ2k2
· · ·λhkh

| ki ∈ N⩽ni
},
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i

Φ1 and Φ2 Φ1□Φ2 Ψ

Figure 2. The T-gain graphs of Example 3.5.

and

sp
(
⊠h

i=1Φi

)
=

{
h∑

p=1

Sp(λ1k1
, . . . , λhkh

)

∣∣∣∣ ki ∈ N⩽ni

}
,

where ni is the order of Φi and λi1 ⩾ λi2 ⩾ · · · ⩾ λini
are the eigenvalues of A(Φi).

Example 3.5. Consider the T-gain graphs Φ1 = (C3, γ1) and Φ2 = (P3, γ2) depicted on the left of Fig. 2.

According to the drawing convention explained above, γ1(
#»

E(C3)) = {1,±i} and γ2(
#»

E(P3)) = {±1} (note

that, by Proposition 2.1, Φ1 ∼ C3(ei
π
6 ), one of gain triangles considered in Fig. 1). After fixing suitable

orderings in V (C3) and V (P3), we obtain

A(Φ1) =

 0 i 1

−i 0 1

1 1 0

 , and A(Φ2) =

 0 1 0

1 0 −1

0 −1 0

 ,

whose spectra are sp(Φ1) = {0,±
√
3} and sp(Φ2) = {0,±

√
2}. The T-gain graphs Φ1□Φ2 and Ψ :=

NEPS(Φ1 × Φ2; {(1, 0), (1, 1)}) are depicted in Fig. 2, where all the arrows connote arcs with gain i. By

(3.4) (or directly from Definition 3.1)

A(Φ1□Φ2) = A(Φ1)⊗ I3 + I3 ⊗A(Φ2) and A(Ψ) = A(Φ1)⊗ I3 +A(Φ1)⊗A(Φ2).

We can use (3.5) to write down their spectra, arriving at

(3.8) sp(Φ1□Φ2) =
{
0, ±

√
2, ±

√
3, ±(

√
2 +

√
3),±(

√
2−

√
3)
}
,

and

(3.9) sp(Ψ) =
{
±
√
3, ±(

√
3 +

√
6),±(

√
3−

√
6), 0(3)

}
,

where the exponent in parentheses of 0 stands for its multiplicity. ■

We now show that replacing some factors of a Cvektović product Φ with switching equivalence mates

does not alter its switching equivalence class.

Proposition 3.6. For i ∈ N⩽h, let Φi = (Γi, γi) be a nonempty T-gain graph, and let ζi : V (Γi) −→ T
a switching function. The T-gain graphs Φ := NEPS(Φ1, . . . ,Φh;B) and Φ′ := NEPS(Φζ1

1 , . . . ,Φζh
k ;B) are

switching equivalent.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 621-643, November 2023.

629 NEPS of complex unit gain graphs

Proof. By Definition 3.1, Φ is the T-gain graph (Γ, γ), where Γ = NEPS(Γ1, . . . ,Γh;B), and γ acts as

in (3.2). Similarly, Φ′ is the T-gain graph (Γ′, γ′), where Γ = NEPS(Γζ1
1 , . . . ,Γζh

h ;B), and for any pair of

adjacent vertices u := (u1, . . . , uh) and v := (v1, . . . , vh) in Γ,

γ′(uv) :=

h∏
j=1

γ
ζj
j (ujvj),

where γ
ζj
j (ujvj) has to be read as 1 if uj = vj .

We consider the following switching function for Φ:

(3.10) ζ : (u1, . . . , uh) ∈ V (Γ) 7−→ ζ1(u1)ζ2(u2) · · · ζh(uh) ∈ T.

It turns out that Φ′ = Φζ . In fact,

γ′(uv) =
∏h

j=1 ζ
−1
j (uj)γj(ujvj)ζj(vj) =

(∏h
j=1 ζ

−1
j (uj)

)(∏h
j=1 γj(ujvj)

)(∏h
j=1 ζj(vj)

)
= ζ−1(u)γ(uv)ζ(v),

as claimed.

In Section 2.1, we have introduced a diagonal matrix associated to each switching function. We point out

that the diagonal matrix D(ζ) associated to the map defined in (3.10) is D(ζ1)⊗ · · · ⊗D(ζh). The following

sequence of equalities can be interpreted as an alternative proof of Proposition 3.6.

A(Φ′) =
∑

(b1,...,bh)∈B

A(Φζ1
1 )b1 ⊗ · · · ⊗A(Φζh

h )bh (by (3.4))

=
∑

(b1,...,bh)∈B

D(ζ1)
∗A(Φ1)

b1D(ζ1)⊗ · · · ⊗D(ζh)
∗A(Φh)

b1D(ζh) (by (2.2))

=
(⊗h

i=1 D(ζi)
)∗( ∑

(b1,...,bh)∈B

A(Φ1)
b1 ⊗ · · · ⊗A(Φh)

bh

)(⊗h
i=1 D(ζi)

)
(by Proposition 2.6)

= D(ζ)∗A(Φ)D(ζ) (again by (3.4)).

Proposition 3.7. If, for every i ∈ N⩽h, the nonempty T-gain graph Φi = (Γi, γi) is balanced, then

ΦB = (ΓB, γB) := NEPS(Φ1, . . . ,Φh;B) is balanced for every nonempty B ⊆ Fh.

Proof. The reader can choose his favorite argument among the following ones:

1. If Φi ∼ (Γi, 1) for all i’s, then ΦB ∼ (ΓB, 1) by Proposition 3.6.

2. If Φi is balanced, then it has a potential θi : V (Γi) −→ T by Proposition 2.3. The gain graph ΦB is

balanced again by Proposition 2.3 since it has a potential, namely

θ : (u1, . . . , uh) 7−→
h∏

i=1

θi(ui).

In fact, if u = (u1, . . . , uh) and v = (v1, . . . , vh) are adjacent in ΓB, then

θ−1(u)θ(v) =

(
h∏

i=1

θi(ui)
−1

)(
h∏

i=1

θi(vi)

)
=

h∏
i=1

θi(ui)
−1θi(vi) =

h∏
i=1

γi(uivi) = γ(uv).
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3. By Proposition 3.3, ΦB and (ΓB, 1) have the same eigenvalues. Hence, ΦB is balanced by Theo-

rem 2.4.

An NEPS of T-gain graphs can be balanced even though some of its factors are unbalanced. An example

with the minimal number of vertices is NEPS(−(C3, 1)× (−(K2, 1)); {(1, 1)}) which is isomorphic to (C6, 1).

More generally, as noted for the NEPS of signed graphs in [15, Section 2], if B is a subset of Bh,p, then

NEPS(−Φ1, . . . ,−Φh;B) = (−1)p NEPS(Φ1, . . . ,Φh;B).

4. Energy. The energy E(Ψ) of a T-gain graph Ψ = (Λ, ξ) is given by the formula

(4.1) E(Ψ) =
∑

λ∈ sp(Ψ)

|λ|.

In the context of complex unit gain graphs, this numerical graph invariant has been comprehensively studied

in [30], where the authors find bounds for the energy involving the spectral radius of Ψ or others parameters

like the matching number, the vertex cover number, the number of odd cycles, and the largest vertex degree

of Λ.

The next statement generalizes the correspondent result for signed graphs given in [15, Theorem 3.1].

Proposition 4.1. For i ∈ N⩽h, let ni be the order of the nonempty T-gain graph Φi. The energy of

Φ := NEPS(Φ1, . . . ,Φh;B) can be computed through the formula

(4.2) E(Φ) =
n1∑

r1=1

· · ·
nh∑

rh=1

∣∣∣∣∣∣
∑

(b1,...,bh)∈B

λb1
1r1

· · · λbh
hrh

∣∣∣∣∣∣ ,
where λi1 ⩾ · · · ⩾ λini

are the eigenvalues of A(Φi). Moreover,

(4.3)
1

n
E(Φ) ⩽

∑
b∈B

∏
bi=1

1

ni
E(Φi),

where n := |V (Φ)| and equality only holds for B = {jh}.

Proof. Equality (4.2) immediately comes from (3.5) and (4.1). In order to prove the remaining part of

the statement, follow almost verbatim the final part of the proof of [15, Theorem 3.1] after replacing Σ and

Σi with Φ and Φi, respectively, whenever they occur.

Corollary 4.2. E
(
×h

i=1
Φi

)
=

h∏
i=1

E(Φi).

Proof. Use (3.7) or (4.3) with equality, since we are in the special case B = {jh}, and observe that the

right side of (4.3) becomes n−1
∏h

i=1 E(Φi).

Clearly, two switching isomorphic T-gain graphs have the same energy. Inspired by an argument found in

[33], where the energy of NEPS of simple graphs is investigated, we are about to show that each nonbipartite

graph gives rise to infinitely many pairs of noncospectral equienergetic T-graphs (signed graphs, actually)

with the same underlying graph. A fortiori, those equienergetic pairs are not switching isomorphic.

Let Ψ be a T-gain graph. For 0 ⩽ s ⩽ h , we set

Φh,s(Ψ) := (−Ψ)× · · · × (−Ψ)︸ ︷︷ ︸
s times

×Ψ× · · · ×Ψ︸ ︷︷ ︸
h−s times

.
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In the next statement, with a slight abuse of notation, Γ and −Γ stand for (Γ, 1) and −(Γ, 1), respectively.

Proposition 4.3. The equality E(Φh,s(Γ)) = E(Φh,t(Γ)) holds for every pair s and t in {0, . . . , h}.
Moreover, if Γ is not bipartite and the number s− t is odd, then the T-gain graphs Φh,s(Γ) and Φh,t(Γ) are

not cospectral.

Proof. A T-gain graph Λ and its negation have the same energy since, as already noted in Section 2,

they have opposite eigenvalues. By Corollary 4.2, it follows that

E(Φh,s(Γ)) = E(Φh,t(Γ)) =

(
q∑

i=1

|λi|

)h

,

where λ1 ⩾ · · · ⩾ λq are the eigenvalues of A(Γ). In order to see that Φh,s(Γ) and Φh,t(Γ) are surely not

switching isomorphic if s− t is odd, it is not restrictive to assume s even and t odd. If this is the case,

λ1(Φh,s(Γ)) = λh
1 > −λh−1

1 λq = λ1(Φh,t(Γ)),

since, as a consequence of the Perron–Froebenius Theorem and [13, Theorem 3.11], we have λ1 > −λq. Thus,

sp(Φh,s(Γ)) ̸= sp(Φh,t(Γ)).

Proposition 4.3 shows that Φh,s(Γ) and Φh,t(Γ) with s − t odd, thought as pairs of signed graphs, can be

added to the list of equienergetic noncospectral signed graphs found in [10] and [27].

Remark 4.4. The proof of Proposition 4.3 can be suitably modified to prove that each T-gain graph

Ψ with order q, provided that λ1(Ψ) ̸= −λq(Ψ), gives rise to infinite pairs of equienergetic noncospectral

graphs; namely Φh,s(Ψ) and Φh,t(Ψ) whenever the number s− t is odd (see Example 4.5). It turns out that

λ1(Φh,s(Ψ)) ̸= λ1(Φh,t(Ψ)), but the values of these two numbers depend on which number between λ1(Ψ)

and −λq(Ψ) is the largest and (if λ1(Ψ) < −λq(Ψ)) on the parity of h. ■

Example 4.5. Let Ψ̃ := (C3, γ̃) be such that γ̃(
#»

C3) = e
π
4 i. By (2.5), the eigenvalues of A(Ψ̃) (in

decreasing order) are

λ1(Ψ̃) = 2 cos
( π

12

)
, λ2(Ψ̃) = 2 cos

(
17

12
π

)
and λ3(Ψ̃) = −

√
2.

The graphs Φ2,0(Ψ̃) = Ψ̃× Ψ̃ and Φ2,1(Ψ̃) = (−Ψ̃)× Ψ̃ are equienergetic, their common energy being

E(Φ2,0(Ψ̃)) = E(Φ2,1(Ψ̃)) =

(√
2 + 2 cos

( π

12

)
+ 2 cos

(
5

12
π

))2

,

but they are not switching isomorphic since

λ1(Φ2,0(Ψ̃)) = 4 cos2
( π

12

)
> 3 > 2

√
2 cos

( π

12

)
= λ1(Φ2,1(Ψ̃)).

5. Laplacian eigenvalues. As in Section 2.1, we denote by λL
1 (Ψ) ⩾ · · · ⩾ λL

n(Ψ) the eigenvalues of

the Laplacian matrix L(Ψ) = D(Λ)−A(Ψ) of a T-gain graph Ψ = (Λ, ϑ).

Proposition 5.1. [15, Theorem 3.6] For i ∈ N⩽h, let Γi be a simple graph of order ni. The degree

matrix of Γ = NEPS(Γ1, . . . ,Γh;B) is given by

(5.1) D(Γ) =
∑

(b1,...,bh)∈B

D(Γ1)
b1 ⊗ · · · ⊗D(Γh)

bh .
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For the Cartesian product, Equality (5.1) specializes as follows:

(5.2) D
(
□h

i=1Γi

)
= D(Γ1)⊗ In2 ⊗ · · · ⊗ Inh

+ In1 ⊗D(Γ2)⊗ · · · ⊗ Inh
+ · · ·+ In1 ⊗ In2 ⊗ · · · ⊗D(Γh).

Corollary 5.2. For i ∈ N⩽h, let λ
L
i1 ⩾ · · · ⩾ λL

ini
be the Laplacian eigenvalues of a T-gain graph Φi

with ni vertices. The Laplacian matrix of the Cartesian product Φ = □h
i=1Φi is

(5.3) L(Φ) = L(Φ1)⊗ In2
⊗ · · · ⊗ Inh

+ · · · + In1
⊗ In2

⊗ · · · ⊗ L(Φh),

and

sp(L(Φ)) =
{
λL
i1,...,ih

= λL
1i1 + · · ·+ λL

hih
| ij ∈ N⩽nj

and j ∈ N⩽h

}
.

Proof. The formula (5.3) is a straightforward consequence of Propositions 2.6, (3.6) and (5.2) (in any

case, the required steps are made explicit, when the factors are signed graphs, along the proof of [15, Theorem

3.7]). The Laplacian eigenvalues are computed by taking into account Proposition 2.8.

Let now Φ = (Γ, γ) = NEPS(Φ1, . . . ,Φh;B) for B ⊆ Fh. From (3.4) and (5.2), we obtain

(5.4) L(Φ) = D(Γ)−A(Φ) =
∑

(b1,...,bh)∈B

(
D(Γ1)

b1 ⊗ · · · ⊗D(Γh)
bh −A(Φ1)

b1 ⊗ · · · ⊗A(Φh)
bh
)
;

yet, for B ̸⊆ Bh,1 there is no hope to find a general formula of type (3.5) allowing to determine sp(L(Φ))

from the several sp(L(Φi))’s. This fact has been known to scholars since at least the publication of [4], in

which the authors gave an example of two nonisomorphic simple graphs F and H with six vertices such that

sp(L(F )) = sp(L(H)), and yet sp(L(F ⊠K2)) ̸= sp(L(H ⊠K2)). That is why we have to make do with the

following result.

Theorem 5.3. For i ∈ N⩽h, let Γi be regular ri graphs with ni vertices, and let λi1 ⩾ λi2 ⩾ · · · ⩾ λini

be the adjacency eigenvalues of the T-gain graph Φi = (Γi, γi). The Laplacian eigenvalues of Φ = (Γ, γ) =

NEPS(Φ1, . . . ,Φh;B) are

λL
k1,...,kh

:=
∑

(b1,...,bh)∈B

(
rb11 · · · rbhh − λb1

1k1
· · · λbh

hkh

)
for kj ∈ N⩽nj

and j ∈ N⩽h.

Proof. Let n :=
∏h

i=1 ni. By (5.4), if xiki
is a λiki

-eigenvector of A(Φi), then
⊗h

i=1 xiki
is a λL

k1,...,kh
-

eigenvector of L(Φ), since, in our hypotheses, D(Γ1)
b1 ⊗ · · · ⊗D(Γh)

bh = rb11 · · · rbhh In.

6. Integral spectra. A T-gain graph Ψ is said to be integral if such is sp(Ψ), i.e., if every eigenvalue

of A(Ψ) is an integer. Although the literature on integral simple graphs was already vast when, twenty years

ago, the now renowned survey article [3] was published, a structural characterization of integral graphs still

eludes us. The gain diamonds examined in Example 2.2 are all integral. Recently, some other families of

integral T-gain graphs have been detected in [2], where the authors introduce (in the restricted context of

mixed graphs) the mixed asymmetric product Ψ1 ⊙ Ψ2 of Ψ1 and Ψ2. From [2, Theorem 5.1], it turns out

that Ψ1 ⊙Ψ2 is actually isomorphic to NEPS(Ψ1,Ψ2; {(0, 1), (1, 1)}). As a matter of fact, NEPS operations

offer a quick procedure to obtain infinitely many integral graphs from the few already at hand. In fact, (3.5)

immediately yields the following result.

Proposition 6.1. For i ∈ N⩽h, let Φi = (Γi, γi) be a nonempty integral T-gain graph. Then, for all

nonempty B ⊆ Fh, the product NEPS(Φ1, . . . ,Φh;B) is integral.
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v4

v3

v2

v1i i

Figure 3. The T-gain graphs K̃4 and ND(K̃4).

We now borrow some ideas from [35] in order to build infinitely many connected integral T-gain graphs with

at least one imaginary cycle. Such peculiarity ensures that their switching isomorphic class does not contain

signed graphs. Following [35], the Huang’s Negative Double ND(Ψ) of a T-gain graph Ψ of order q is the

T-gain graph whose adjacency matrix is [
A(Ψ) Iq
Iq −A(Ψ)

]
.

We inductively define NDℓ(Ψ) := ND(NDℓ−1(Ψ)). Although denoted and called in another way, the

sequence
{
ND2ℓ(C4,−1)

}
ℓ∈N

, where C4,−1 is the signed quadrangle with just one negative edge, has been

recently considered in [21]. It is straightforward to check that the negative double of a connected T-gain
graph Ψ is connected; more precisely, diam(ND(Ψ)) = diam(Ψ) + 1. The following lemma, already used in

[35], can be proved by slightly modifying the clever implementation of the Cayley–Hamilton Theorem in the

proof of [22, Lemma 2.2].

Lemma 6.2. Let Ψ be a T-gain graphs with 2q vertices such that sp(Ψ) =
{
−
√
s
(q)

,
√
s
(q)
}
. Then,

sp(ND(Ψ)) =
{
−
√
s+ 1

(2q)
,
√
s+ 1

(2q)
}
.

Fig. 3, where all the arrows denote arcs with gain i, depicts the T-gain graphs K̃4 and ND(K̃4).

Proposition 6.3. The T-gain graphs in the set ND =
{
Ωn := NDn2−3(K̃4) | n ⩾ 2

}
are all connected

and integral. Moreover, each Ωn contains imaginary cycles, and

sp(Ωn) =
{
−n(2n

2−2), n(2n
2−2)

}
.

Proof. We already noted that the operator ND preserves connectedness. Once we label the vertices of

K̃4 as in Fig. 3, we see that the graph Ωn contains copies of the (directed) cycle
#»

C = v1v2v3, and γ(
#»

C) = i.

The adjacency matrix of K̃4 is

A(K̃4) =


0 1 1 1

1 0 i −i

1 −i 0 i

1 i −i 0

 ,

whose spectrum is
{
−
√
3
(2)

,
√
3
(2)
}
. The eigenvalues of Ωn can be now computed thanks to Lemma 6.2.

Corollary 6.4. For i ∈ Nh, let Φi be a T-gain graph in ND. The product Φ := NEPS(Φ1, . . . ,Φh;B)

is integral. If, additionally, the Φi’s and B fulfill Condition (3.3), then Φ is connected.
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Proof. Integrality of Φ comes from (3.5) and Proposition 6.3. In order to prove the connectness of Φ,

we first observe that each Ωn is connected and nonbipartite; in fact, diam(Ωn) = n2 − 2 and its underlying

graph contains 2n
2−3 disjoint copies of the complete graph K4. As explained in [14, p. 33], when the factors

of an NEPS are all connected with at least two vertices and for each i there exists a b ∈ B with bi = 1,

there should be at least one bipartite factor to possibly have a disconnected product, and this is not the case

for Φ.

7. Symmetric spectra and sign-symmetry.

A gain graph Ψ has a symmetric spectrum (with respect to 0) if for each λ ∈ sp(Ψ), the number −λ

is also in sp(Ψ) and has the same multiplicity. A gain graph is said to be sign-symmetric if it is switching

isomorphic to its negation. Since the map λ ∈ sp(Ψ) 7−→ −λ ∈ sp(−Ψ) is a bijection, every sign-symmetric

gain graph has a symmetric spectrum. On the contrary, a symmetric spectrum does not guarantee the

sign-symmetry: let us use the acronym SNS to denote those gain graphs which have a symmetric spectrum

but are not sign-symmetric. In [16] it is shown that, up to isomorphism, there exists one SNS complete

signed graph with 8 vertices and six SNS complete signed graphs of order 9; furthermore, it is proved that

there are (noncomplete) SNS signed graphs with n vertices for all n ⩾ 6.

If the underlying graph of a T-gain graph Ψ is bipartite, then Ψ is sign-symmetric (the argument given

in [16, Section 2] to prove the correspondent result for signed graphs works as well in our context). The

graph C3(e
π
6 i) (see Fig. 1) and ND(K̃4) defined in Section 6 are examples of nonbipartite sign-symmetric

graphs. As a matter of fact, ND(Ψ) is sign-symmetric for every gain graph Ψ. This is a consequence of

Theorem 7.1, from which we deduce in particular that each nonbipartite gain graph of order n is an induced

subgraph of several suitable connected sign-symmetric gain graphs of order 2n.

Theorem 7.1. For each gain graph Ψ = (Λ, ϑ) with n vertices, let Ξ be a gain graph obtained from

Ψ ⊔ (−Ψ) by adding a positive number of edges connecting vertices of Ψ to vertices of −Ψ, and whose

correspondent arcs have gain in {±1}. Then, Ξ is sign-symmetric.

Proof. We argue as in the proof of [16, Theorem 2.2]. With respect to a suitable ordering of V (Λ ⊔ Λ),

the adjacency matrix of Ξ assumes the form

A(Ξ) =

[
A(Φ) C

C −A(Φ)

]
,

where C is a {0,±1}-matrix. The gain graphs Ξ and −Ξ are switching isomorphic since their adjacency

matrices are related as in (2.2). More precisely,

A(−Ξ) = −A(Ξ) = (PD)∗A(Ξ)PD, where P =

[
O In
In O

]
and D =

[
−In O

O In

]
.

In other words, −Ξ is switching equivalent to the gain graph obtaining from Ξ by swapping the labels of the

ith vertex of Ψ and the ith vertex of −Ψ.

The NEPS of h gain graphs can be sign-symmetric even when not all factors are sign-symmetric; an example

being (−(C3, 1)× (−(K2, 1)) = (C6, 1). Furthermore, we have the following more general result.

Proposition 7.2. Let Ψ = (Λ, ϑ) be a gain graph. The Cartesian product Ψ□(−Ψ) is sign-symmetric.

Proof. Let A := A(Ψ), and V (Λ) = {u1, . . . , un}. From the equalities

A(−(Ψ□(−Ψ))) = −A(Ψ□(−Ψ)) = −(A⊗ In + In ⊗ (−A)) = (−A)⊗ In + In ⊗A = A((−Ψ)□Ψ),
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we infer that −(Ψ□(−Ψ)) is equal to (−Ψ)□Ψ, which is isomorphic to Ψ□(−Ψ), the suitable vertex permu-

tation being (ui, uj) ∈ V (Λ)× V (Λ) 7−→ (uj , ui) ∈ V (Λ)× V (Λ).

On the contrary, it can happen that the spectrum of an NEPS is not symmetric even when all factors are

sign-symmetric: the minimal example is (K2, 1) ⊠ (K2, 1) = (K4, 1). An NEPS retains the property of its

factors of having a symmetric spectrum or being sign-symmetric under the same assumption on B, as the

Theorems 7.4 and 7.5 show. For their statements, we need the following definition.

Definition 7.3. [14, Definition 2.3.7] A function in several variables is called odd with respect to a

given nonempty subset S of variables if the function changes only in sign when all the variables in S are

simultaneously changed in sign. ■

Theorem 7.4. For i ∈ Nh, let Φi = (Γi, γi) be a T-gain graph with a symmetric spectrum. If Φi’s and B

fulfill Condition (3.3), then Φ = NEPS(Φ1, . . . ,Φh;B) has a symmetric spectrum if and only if there exists

a subset {i1, . . . , ip} ⊆ Nh with respect to which the function

(7.1) fB : (x1, . . . , xh) ∈ Rh 7−→
∑

(b1,...,bh)∈B

xb1
1 xb2

2 · · · xbh
n ∈ R,

is odd.

Proof. The eigenvalues of Φ are given in (3.5). By the symmetry of the several sp(Φi)’s,

λ1,...,1 =
∑

(b1,...,bh)∈B

λb1
11 · · · λbh

h1 = max sp(Φ).

If sp(Φ) is symmetric, there exists an h-tuple (k1, . . . , kh) such that −λ1,...,1 = λk1,...,kh
. Note that none of

the two inequalities in

−λ1,...,1 = λk1,...,kh
= − |λk1,...,kh

| ⩾ −
∑

(b1,...,bh)∈B

|λb1
1k1

· · · λbh
hkh

| ⩾ −
∑

(b1,...,bh)∈B

|λb1
11 · · · λbh

h1| = −λ1,...,1,

is strict. Therefore,

(7.2) λb1
1k1

· · · λbh
hkh

= −λb1
11 · · · λbh

h1 for each (b1, ..., bh) ∈ B.

Condition (3.3) ensures that the numbers λ1k1
, . . . , λhkh

are all positive; moreover, λjkj
∈ {λj1,−λj1}.

We now set F = {j | λjkj = −λj1}. It is clear from (7.2) that the function (7.1) is odd with respect to

{xj | j ∈ F}.

Suppose now that (7.1) is odd with respect to a certain subset T ⊆ {x1, . . . , xh}. After possibly replacing

Φ with a switching isomorphic T-gain graph, we can assume T = {x1, . . . , xp} for some p ⩽ h. If ni = |V (Γi)|,
the map

λi1,...,ip,ip+1,...,ih ∈ sp(Φ) 7−→ λn1+1−i1,...,np+1−ip,ip+1,...,ih ∈ sp(Φ),

is a bijection and maps each eigenvalue onto its opposite. This proves the symmetry of sp(Φ).

Theorem 7.5. For i ∈ Nh, let Φi be a sign-symmetric T-gain graph. If Φi’s and B fulfill Condition (3.3),

then Φ = NEPS(Φ1, . . . ,Φh;B) is sign-symmetric if and only if there exists a subset {i1, . . . , ip} ⊆ Nh with

respect to which the function (7.1) is odd.

Proof. Let, once again, ni = |V (Γi)|. The sign-symmetry of the Φi’s is equivalent to the existence of an

ni × ni permutation matrix Pi and a switching function ζi = V (Γi) −→ T such that

S∗
i A(Φi)Si = −A(Φi) for Si := PiD(ζi).
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If Φ is sign-symmetric, its spectrum is symmetric, and by Theorem 7.4 there exists a subset T ⊆ {x1, . . . , xh}
with respect to which the function (7.1) is odd. Conversely, suppose that the function (7.1) is odd with respect

to a suitable T ⊆ {x1, . . . , xh}. As already noted in the previous proof, after possibly replacing Φ with a

switching isomorphic T-gain graph, we can assume T = {x1, . . . , xp} for some p ⩽ h. By Proposition 2.6,

(7.3) Ŝ∗A(Φ)Ŝ = −A(Φ) = A(−Φ),

where

Ŝ =

(
p⊗

i=1

Si

)
⊗ (Inp+1

⊗ · · · ⊗ Inh
),

Proposition 2.6, together with Proposition 2.7, also shows that Ŝ is the row-by-column product between the

permutation matrix (
⊗p

i=1 Pi)⊗(Inp+1
⊗· · ·⊗Inh

) and the diagonal matrix (
⊗p

i=1 D(ζi))⊗(Inp+1
⊗· · ·⊗Inh

);

hence, (7.3) proves that Φ is sign-symmetric.

Corollary 7.6. For i ∈ Nh, let Φi be a sign-symmetric T-gain graph (resp., have a symmetric spec-

trum). Then □h
i=1Φi and×h

i=1
Φi are sign-symmetric (resp., have a symmetric spectrum).

Proof. Consider the functions

(x1, . . . , xh) ∈ Rh 7−→
h∑

i=1

xi ∈ R and (x1, . . . , xh) ∈ Rh 7−→
h∏

i=1

xi ∈ R.

By Theorems 7.4 and 7.5, it suffices to observe that the former is odd with respect to {x1, x2, . . . , xh}, and
the latter is odd with respect to {x1} ⊂ {x1, . . . , xh}.

Example 7.7. The gain graphs Φ1 and Φ2 in Example 3.5 are both sign-symmetric. By (3.8) and (3.9),

we already know that the spectra of Φ1□Φ2 and Ψ := NEPS(Φ1 × Φ2; {(1, 0), (1, 1)}) are both symmetric.

The sign-symmetry of the former can be deduced from Corollary 7.6. The latter is also sign-symmetric since

the function

(x1, x2) ∈ R2 7−→ x1 + x1x2 ∈ R,

is odd with respect to {x1} ⊆ {x1, x2} and Theorem 7.5 holds. On the contrary, there are no subsets of

{x1, x2} with respect to which the function

f : (x1, x2) ∈ R2 7−→ x1 + x1x2 + x2 ∈ R,

is odd. Thus, the nonsymmetry of sp ((K2, 1)⊠ (K2, 1)) could be predicted by Theorem 7.4. ■

Let now Ψ be a fixed SNS complete T-gain graph. The properties of the Cartesian product allow us to

determine infinitely many SNS connected T-gain graphs containing Ψ as an induced subgraph. We recall

that the clique number ω(Γ) of a simple graph Γ is the largest s such that Ks is a subgraph of Γ.

Theorem 7.8. Let Kn = (Kn, κ) be a complete SNS T-gain graph, and let Ψ = (Λ, ϑ) be a connected

T-gain graph such that sp(Ψ) is symmetric and ω(Λ) < n. Then, Φ = Kn□Ψ = (Kn × Λ, φ) is connected

and SNS.

Proof. Since all gain functions on K2 give rise to switching equivalent T-gain graphs, and all gain

triangles with a symmetric spectrum are also switching isomorphic, we see that n ⩾ 4. Let {u1, . . . , un}
and {v1, . . . , vq} be the vertex sets V (Kn) and V (Λ), respectively. The spectrum of Φ is symmetric by

Corollary 7.6. Clearly, Φ is connected and has diameter diam(Λ) + 1.
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For i ∈ Nq, let Hi be the subgraph of Kn□Λ induced by the vertex set V (Kn)×{vi}. We denote by Hi

the gain graph (Hi, φ|Hi
). In order to show that Φ is not sign-symmetric, we first prove that Kn□Λ does

not contain induced subgraphs isomorphic to Kn apart from H1, H2, . . . ,Hq. Assume by contradiction that

H is a clique with n vertices in Φ, but H ̸∈ {Hi | i ∈ Nq}. There would exist in E(H) an edge connecting

two vertices of type (ui, vj) and (ui, vk). The definition of Cartesian product implies that no vertex of type

(uh, vk) with h ̸= i is adjacent to (ui, vj). Therefore, H should be a subgraph of {ui} × Λ, but this is

impossible, since ω({ui} × Λ) = ω(Λ) < n.

So far, we have proved that each bijection σ : V (Kn) × V (Λ) −→ V (Kn) × V (Λ) preserving the ad-

jacencies of Kn□Λ and the gains of
#»

E(Φ), maps V (Kn) × {v1} onto V (Kn) × {vk(σ)}. Denoted by σ(Φ)

the correspondent gain graph isomorphic of Φ, we have proved that if σ(Φ) ∼ −Φ, then σ(H1) ∼ −Hk(σ),

implying Kn ≃ −Kn against the hypotheses.

Theorem 7.8 has its utility since, as we noted already at the beginning of this section, SNS complete gain

graphs with n vertices do exist, at least for n ∈ {8, 9}.

In view of the next corollary, we denote by Ck,z = (Ck, γ) the gain cycle with k vertices {u1, . . . , uk}
such that γ(u1u2) = z ∈ T, γ(u2u1) = z, and all the remaining arcs are neutral.

Corollary 7.9. Let Kn = (Kn, κ) be a complete SNS T-gain graph. Then, Kn□Ck,i is connected and

SNS for all k ⩾ 3.

Proof. The gain cycle Ck,i is switching equivalent (resp., isomorphic) to its negation if k is even (resp.,

odd). In any case, sp(Ck,i) is symmetric for all k ⩾ 3. Since ω(Cn) = 2 < n, the gain graph Kn□Ck,i is SNS
by Theorem 7.8.

8. NEPS and nut T-gain graphs. A T-gain graph Ψ = (Λ, ϑ) is said to be singular if such is the

matrix A(Ψ).

Definition 8.1. A nut T-gain graph (NTGG, for short) is a singular nonempty T-gain graphs Ψ =

(Λ, ϑ) such that mΨ(0) = 1 and every 0-eigenvector is full, i.e., all its components are nonzero. ■

Nut (simple) graphs were apparently studied for the first time with this denomination in [32]. Nut signed

graphs has been recently considered in [5] (where the authors settled to call them “signed nut graphs” for

euphonic reasons). When ϑ(V (Λ)) is included in {±1}, a nut T-gain graph Ψ = (Λ, ϑ) can be regarded as a

signed nut graph as defined in [5].

For i ∈ N⩽h, let Φi = (Γi, γi) be a nonempty connected T-gain graph with ni(⩾ 2) vertices and

eigenvalues λi1 ⩾ · · · ⩾ λini . For the rest of the paper, we assume that Φ = NEPS(Φ1, . . . ,Φh;B) satisfies

Condition 3.3. In this section, we shall study under which structural conditions Φ can be an NTGG. We

start with a direct consequence of (3.5).
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Figure 4. The T-gain graph K̂4 and the hourglass Ĥ.

Lemma 8.2. If Φ = NEPS(Φ1, . . . ,Φh;B) is an NTGG, there exists precisely one h-tuple (k1, . . . , kh)

in×h

i=1
Nni such that

λk1,...,kh
=

∑
(b1,...,bh)∈B

λb1
1k1

· · · λbh
hkh

= 0.

Proposition 8.3. If Φ = NEPS(Φ1, . . . ,Φh;B) is an NTGG, then, for each fixed i ∈ N⩽h, there exists

at least one b ∈ B whose ith component is 0.

Proof. We argue by contradiction, assuming that the first component of every b ∈ B is nonzero. Let

(k1, . . . , kh) the h-tuple correspondent to the null eigenvalue in sp(Φ). We have

0 = λk1,...,kh
= λ1k1

 ∑
(1,b2,...,bh)∈B

λb2
2k2

· · · λbh
hkh

 .

Now, if λ1k1
= 0 we have λk1,ℓ2,...,ℓh = 0 for all (ℓ2, . . . , ℓh) ∈×h

i=2
Nni

; otherwise, λℓ1,k2,...,kh
= 0 for

all ℓ1 ∈ Nn1 . In both cases, against the hypothesis, mΨ(0) would be larger than 1 (recall that ni ⩾ 2

from (3.3)).

As a direct consequence of Proposition 8.3, there are no direct products in the class of NTGGs. It is

somehow easier to find nut graphs among T-gain graphs than among signed graphs. In fact, no signed nut

graphs exist with less than 5 vertices, whereas the triangle C3(ei
π
2 ) = C3(i) in Fig. 1 is an NTGG (with

j3 among its 0-eigenvectors). We also find a complete NTGG with four vertices, as the following example

shows.

Example 8.4. Let C2k+1(i) be the gain cycle with 2k + 1 vertices obtained by assigning the gain i to

all arcs running counterclockwise around it. The gain cycles C2k+1(i) for k ⩾ 1 and the graph K̂4 depicted

in Fig. 4 are all NTGG. In fact, from (2.5) we see that mC2k+1(i)(0) = 1; moreover, the all-ones vector jn is a

0-eigenvector since the sum of each row of A(C2k+1(i)) is i+ (−i) = 0. In order to see that K̂4 is an NTGG,

note that the adiacency matrix of the gain graph is

A(K̂4) =


0 w 1 w

w 0 w 1

1 w 0 w

w 1 w 0

 , where w = e
2
3πi.

The sum of each row is 1 + w + w = 0; therefore, the all-ones vector j4 is a 0-eigenvector, and mK̂4
(0) = 1,

since sp(K̂4) =
{
−1−

√
3, 0,−1 +

√
3, 2
}
. ■
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An NEPS can be an NTGG even if none of the factors is an NTGG. An example of this kind is

Ψ̂ = NEPS((C3, 1), (K2, 1), (K2, 1); B̂), with B̂ = {(1, 1, 0), (0, 1, 1), (0, 0, 1)} .

In fact, sp(Ψ̂) = {−3(2),−2(2), 0, 1(6), 4} is computed with the aid of (3.5), and a full 0-eigenvector is given

by (1, 1, 1)⊗ (1, 1)⊗ (1,−1).

In order to understand whether an NEPS of NTGG’s is an NTGG, we just need to check the multiplicity

of 0 in the product, since the following proposition holds.

Proposition 8.5. If, for i ∈ N⩽h, Φi is an NTGG, then Φ = NEPS(Φ1, . . . ,Φh;B) is singular and

admits a full 0-eigenvector.

Proof. Let (k1, . . . , kh) be the h-tuple such that λiki = 0 for every i ∈ N⩽h. By (3.5), sp(Φ) contains

0 = λk1,...,kh
. Once you pick a (full) 0-eigenvector xi of A(Φi) for i ∈ N⩽h, by Proposition 2.6 and (2.6)

⊗h
i=1xi is a full 0-eigenvector of Φ.

We end this section by showing that NEPS can be useful to get infinite families of NTGG’s ‘built’ from some

known NTGG.

Proposition 8.6. Let p and q be odd coprime integers larger than 1, and let Ĥ be the hourglass in

Fig. 4. The products of nut T-gain graphs Npq = Cp(i)□ Cq(i), N□
p = Cp(i)□Ĥ, and N⊠

p = Cp(i)⊠ Ĥ are all

nut T-gain graphs.

Proof. By (2.5) and a direct computation, we obtain

sp(Cp(i)) =
{
µj := 2 cos

(
(2j + 1)π

2p

) ∣∣∣ 0 ⩽ j ⩽ p− 1

}
,

sp(Cq(i)) =
{
µ′
k := 2 cos

(
(2k + 1)π

2q

) ∣∣∣ 0 ⩽ k ⩽ q − 1

}
,

and sp(Ĥ) = {±
√
5,±1, 0}. We already observed in Example 8.4 that Cp(i) and Cq(i) are nut T-gain graphs.

The gain graph Ĥ can be regarded as a 0-net-regular signed graph, i.e., the difference between the numbers

of positive and negative edges incident to a fixed vertex is always 0. This property guaranteees that the full

vector j5 is a 0-eigenvector.

Now, sp(Npq) = {λjk := µj + µ′
k | 0 ⩽ j ⩽ p − 1, 0 ⩽ j ⩽ q − 1}, and λjk := µj + µ′

k = 0 if and only if

q(2j + 1) = p(2q − 2k − 1), which is equivalent to j = (p − 1)/2 and k = (q − 1)/2, being p and q coprime

and 2j + 1 ⩽ 2p − 1. Hence, the multiplicity of 0 = λ p−1
2 , q−1

2
in sp(Npq) is 1, and Npq is an NTGG by

Proposition 8.5.

Turning our attention to N□
p , we note that for all p ⩾ 3 and j ∈ {0, 1, . . . , p− 1}

−
√
5/2 < −1 < cos

(
(2j + 1)π

2p

)
< 1 <

√
5,

and

(8.1)
(2j + 1)π

2p
̸∈
{
π

3
,
2π

3

}
,

implying that the numbers ±
√
5+µj and ±1+µj are nonnull. In other words, the multiplicity of 0 ∈ sp(N□

p )

is 1.
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Finally, we consider sp(N⊠
p ) = {−1, 0, ν1,j , ν2,j , ν3,j | 0 ⩽ j ⩽ p− 1}, where

ν1,j := 1 + 2µj , ν2,j :=
√
5 + (1 +

√
5)µj , and ν3,j := −

√
5− (

√
5− 1)µj .

We need to show that the multiplicity of 0 in sp(N⊠
p ) is 1. In view of this purpose, note that ν1,j is nonzero

by (8.1), whereas ν2,j and ν3,j are nonzero since the numbers −
√
5/(1 +

√
5) and −

√
5/(

√
5− 1) cannot be

eigenvalues of a T-gain graph, their minimal polynomials

4x2 + 10x+ 5 and 4x2 + 10x− 5,

being nonmonic.

9. Beyond Cvektović: new products of T-gain graphs. For each b = (b1, . . . , bh) ∈ Rh, the

numbers

supp(b) := {i ∈ N⩽h | bi ̸= 0} and w−
b =

∣∣{i ∈ N⩽h | bi < 0}
∣∣,

will be, respectively, called support and the negative weight of b. We now explain how the set of all possible

Cvektović products of a fixed h-tuple of T-gain graphs Φ1 = (Γ1, γ1), . . . ,Φh = (Γh, γh) can be further en-

larged by considering the nonempty subsets B of the nonzero h-tuples with components in {0,±1} satisfying

the following restriction:

(9.1) supp(b) = supp(b′) =⇒ b = b′ ∀ {b,b′} ⊆ B.

We shall make use of the Kronecker delta symbol δuv =

{
1 if u = v

0 if u ̸= v,
with variables in suitable vertex

sets.

Definition 9.1. Let B a nonempty subset of nonzero {0,±1}-h-tuples satisfying (9.1). The generalized

Cvektović product of the T-gain graphs Φ1 = (Γ1, γ1), . . . ,Φh = (Γh, γh) with basis B is the T-gain graph

Φ = (Γ, γ) defined as follows:

• the underlying graph Γ is NEPS(Γ1, . . . ,Γh;B
abs), where

Babs :=
{
(|b1|, . . . , |bh|)

∣∣ (b1, . . . , bh) ∈ B
}
;

• for each pair of adjacent vertices u := (u1, . . . , uh) and v := (v1, . . . , vh) in Γ,

γ(uv) :=

h∏
j=1

(−1)bjγj(ujvj),

where γj(ujvj) is understood to be 1 whenever uj = vj, and (b1, . . . , bh) is the (unique) h-tuple in

B such that |bi| = 1− δuivi .

The T-gain graph Φ = (Γ, γ) will be denoted by GCP(Φ1, . . . ,Φh;B). ■

GCP(Φ1, . . . ,Φh;B) is really a T-gain graph, since γ(vu) = γ(uv) by the elementary equality −z = −z

holding for each z ∈ C. Clearly, GCP(Φ1, . . . ,Φh;B) = NEPS(Φ1, . . . ,Φh;B) if w−(b) is even for all b ∈ B.

In particular, this happens when B is a subset of Fh. We omit the proof of the following theorem, since it

can be obtained by slightly modifying the arguments exposed in the previous sections.
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Theorem 9.2. For i ∈ N⩽h, let Φi = (Γi, γi) be a T-gain graph with ni vertices and let B a nonempty

subset of nonzero {0,±1}-h-tuples satisfying (9.1).

(i) The adjacency matrix of Φ = GPC(Φ1, . . . ,Φh;B) is given by

A(Φ) =
∑
b∈B

(−1)w
−
b A(Φ1)

b1 ⊗ · · · ⊗A(Φh)
bh .

(ii) If λi1 ⩾ λi2 ⩾ · · · ⩾ λini
are the eigenvalues of A(Φi), then sp(Φ) = {λGPC

k1,...,kh
| ki ∈ N⩽ni

}, where

(9.2) λGPC
k1,...,kh

:=
∑
b∈B

(−1)w
−
b λb1

1k1
· · · λbh

hkh
.

(iii) For each ζi : V (Γi) −→ T, the T-gain graph Φ′ := GPC(Φζ1
1 , . . . ,Φζh

k ;B) is switching equivalent to

Φ.

(iv) if the Φi’s are all integral, then Φ is integral.

(v) if the Φi’s all have a symmetric spectrum (resp., are sign-symmetric), then Φ has a symmetric

spectrum (resp., is sign-symmetric) if and only if there exists a subset {i1, . . . , ip} ⊆ Nh with respect

to which the function

fB : (x1, . . . , xh) ∈ Rh 7−→
∑
b∈B

(−1)w
−
b xb1

1 xb2
2 · · · xbh

n ∈ R,

is odd.

The possible presence of −1’s in the defining h-tuples of B does not allow to extend Proposition 3.7 to

generalized Cvektović products. In fact, it is very easy to find unbalanced GPC’s with balanced factors,

an example being Ψ̂ := GPC((C3, 1), (K2, 1); {(−1, 0), (1, 0)}) = (−(C3, 1))□(K2, 1). The gain graph Ψ̂ is

a GPC which is also an NEPS with the same underlying graph, but this phenomenon does not occur in

general, as the following proposition shows.

Proposition 9.3. Let Φ = GPC((C3, 1), (C3, 1);B), with B = {(−1, 0), (1, 1), (1, 0)} . An NEPS of (at

least two) T-gain graphs cannot be switching isomorphic to Φ.

Proof. By (9.2), we easily obtain sp(Φ) = {−5(2), 1(6), 4}. Assume by contradiction that there exists an

NEPS Ψ = (Λ, ϑ) of at least two T-gain graphs such that Ψ ≃ Φ. The spectra of Φ and Ψ should be equal

and, since the underlying graph of Φ is K9, the factors of Ψ should necessarily be two gain triangles, say

Ψ1 = (C3, γ1), and Ψ2 = (C3, γ2); moreover, Ψ = Ψ1⊠Ψ2. The graph Φ is unbalanced, but does not contain

cycles with an imaginary gain; on the other hand, Ψ contains copies of Φ1 and Φ2 as induced subgraphs.

This means that Ψ should be either switching isomorphic to (−(C3, 1))⊠(C3, 1) or to (−(C3, 1))⊠(−(C3, 1)),

but none of this two graphs have 1 in their spectrum.

We end the paper by stating the following problem.

Problem. Find structural conditions on the factors and on the basis B characterizing the generalized

Cvektović products of T-gain graphs which are switching isomorphic to an NEPS.
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