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A B S T R A C T   

Background and objectives: The detection of tumor-infiltrating lymphocytes (TILs) could aid in the 
development of objective measures of the infiltration grade and can support decision-making in 
breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide 
images (WSI) is currently based on a visual assessment, thus resulting not standardized, not 
reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, 
aimed to apply high-throughput image feature extraction techniques to analyze the microscopic 
patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning 
the underlying biological processes compared to the WSI visual interpretation, thus providing 
more easily interpretable and explainable results than the most frequently investigated Deep 
Learning based methods in the literature. 
Methods: A dataset containing 1037 regions of interest with tissue compartments and TILs an-
notated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After 
segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 
pathomic features were extracted from each nucleus and reduced using a Spearman’s correlation 
filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and se-
lection operator. The relevant features were used to classify each candidate nucleus as either TILs 
or non-TILs using 5 multivariable machine learning classification models trained using 5-fold 
cross-validation (1) without resampling, (2) with the synthetic minority over-sampling tech-
nique and (3) with downsampling. The prediction performance of the models was assessed using 
ROC curves. 
Results: 21 features were selected, with most of them related to the well-known TILs properties of 
having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and 
different textural pattern than other cells. The best performance was obtained by Random-Forest 
with ROC AUC of 0.86, regardless of resampling technique. 
Conclusions: The presented approach holds promise for the classification of TILs in BC H&E- 
stained WSI and could provide support to pathologists for a reliable, rapid and interpretable 
clinical assessment of TILs in BC.   
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1. Introduction 

The treatment of breast cancer (BC) is largely determined by the biology of the tumor. It is becoming more evident that the patient’s 
immunity can be an important indicator of what treatment is needed and how their own immune system can significantly contribute to 
their chances of long-term survival [1]. In recent years, the role of the tumor microenvironment (TME) has received increasing 
attention in the immuno-oncology scientific community, focusing on the interaction between tumor cells and the host immune system 
[2]. Tumor-infiltrating lymphocytes (TILs), namely lymphocytes and plasma cells that have invaded the tumor tissue, are proving to be 
an important biomarker in cancer patients as they can play a role in killing tumor cells, particularly in some types of BC. In recent years, 
several studies have shown the predictive and prognostic value of visually scored TILs in triple-negative BC (TNBC) and human 
epidermal growth factor receptor 2 (HER2+) BC, making TILs a powerful clinical biomarker [3,4]. Therefore, accurate identification 
and measurement of TILs can support less aggressive target treatments, particularly immunotherapy, reducing the need for more 
invasive options like chemotherapy. Currently, the degree of TILs infiltration is assessed by simple visual evaluation of hematoxylin 
and eosin (H&E)-stained whole slide images (WSI) of tumor sections, following recommendations from the International TILs Working 
Group (TILs-WG) [5,6]. According to TILs-WG guidelines, the boundaries of the invasive tumor must be identified, and only TILs inside 
those boundaries were evaluated. In particular, the TILs-WG suggests only considering stromal TILs (sTILs), which are defined as 
mononuclear hosts immune cells (predominantly lymphocytes) present within the tumor margin and located within the stroma among 
carcinoma cells without directly contacting or infiltrating tumor cell nests (Fig. 1(A-C)). This is because sTILs are more prevalent, more 
variable in amount and have been demonstrated to be more reproducibly assessed when compared to intratumoral TILS (iTILs), 
defined as lymphocytes within nests of carcinoma characterized by cell-to-cell contact with no presence of stroma among them [7]. 
sTILs are then reported as a percentage, which refers to the percentage of stromal area occupied by mononuclear inflammatory cells 
over the total within-tumor stromal area [7]. Specifically, the TIL score is manually estimated as the percentage of total 
tumor-associated stromal area occupied by TILs, where areas of necrosis, ductal and lobular carcinoma in situ (DCIS/LCIS), and normal 
breast tissue are excluded [5]. However, despite these successful standardization efforts and the rising amounts of evidence concerning 
the association of TILs with favorable prognosis [8], manual quantification of TILs has several drawbacks: is time-consuming, limited 
in precision, requires extensive training by pathologists, inter-observer variability will likely remain an issue given the difficulty in 
quantitatively evaluating histological properties, and lacks the ability to evaluate more complex properties such as TIL distribution 
patterns or features associated with tissue phenotype. Therefore, this lack of standardized, objective, and effective TILs quantification 
strategies make TILs marker still not considered robust enough for being used in clinical practice [5]. In several TIL studies, pathol-
ogists count by eye the quantity of lymphocytes within a limited area, an obviously very error-prone and time-consuming task [3]. To 
favor the reporting of TILs in BC it is therefore necessary to provide the pathologists with automated image analysis tools. The 
availability of a computerized image analysis scheme for automated quantification of TILs will enable the development of an inex-
pensive image-based system for predicting disease survival and outcome. In particular, computational image analysis approaches are 
crucial for improving TILs quantification accuracy, saving time, enabling the analysis of more complex spatial patterns, and providing 
standardized metrics for validation by expert pathologists and regulatory agencies [9–11]. 

Over the last decade, the rapidly increasing technical advancements in the field of digital pathology enabled the development of 
increasingly advanced computerized image analysis approaches for automating manual tasks such as TILs quantification and 
addressing their associated limitations. Different automated TILs quantification approaches have been proposed, ranging from those 
based on classical image processing methods, where cell boundaries are identified and the resulting objects classified according to 
certain properties, to deep learning (DL)-based approaches that directly classify cells without the need for explicit segmentation [9, 
12–14]. Although the most common strategies proposed to quantify TILs are those exploiting DL supervised techniques, achieving high 

Fig. 1. Identifying stromal Tumor Infiltrating Lymphocyte (TIL) regions in a H&E-stained WSI of breast cancer. (A) H&E-stained WSI of breast 
cancer. (B) Example of a region of tissue. (C) Example of stromal TILs (green solid arrow) and cells that are no TILs (red dotted arrow). The image 
shows how it can be challenging to visually differentiate TILs from other cells. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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quality results with this group of methods requires large scale dataset for training with precisely annotated masks accurately repre-
senting the cell borders (in case of semantic segmentation approaches such as the U-Net [15]) or the exact locations (in case of 
object-detection approaches such as Fast R–CNN [16] and YOLO [17]) of TILs in training images. Moreover, DL-based approaches are 
mostly neither interpretable nor easily explainable [18,19], and fail to aid pathologists with novel insights on the tissue since they lack 
in providing a structured representation of the input image data. 

The emerging and rapidly expanding field of pathomics aims to apply high-throughput image feature extraction techniques to 
interrogate the microscopic patterns in pathologic data, especially from H&E-stained sections [20]. The founding hypothesis in support 
of the use of pathomics in medical care is that quantitative features derived from digital pathology images could give additional in-
formation in relation to the underlying biological processes compared to the visual interpretation of the image as a picture, which is the 
traditional way of interpreting images. In this context, features extracted from pathomic analysis could be a promising tool for 
automatically identifying TILs in BC H&E images since they may contain information helping to discover novel biological associations 
that could be useful for TILs detection [20]. Moreover, they provide more easily interpretable and explainable results than those 
obtained using DL-based approaches for TILs detection [18,21,22]. Only a few previous studies aimed at detecting TILs using quan-
titative features from H&E images of different cancer types [12,23,24], while most studies aimed at developing DL-based computa-
tional TIL assessment methods broadly following some or all steps of visual TILs-WG guidelines [21,22,25,26]. However, automated 
TILs quantification methods are still far from reaching clinical practice for many reasons (e.g., requirement of more rigorous design, 
greater sample size, more standardized survival analyses, high demand for powerful infrastructures for training data etc.) and studies 
contributing to achieving a quantitative, automatic, interpretable, and as simple as possible (both considering the implementation and 
the hardware requirements) are needed. 

In light of this, this study aims to develop an approach based on a comprehensive set of hand-crafted pathomic features to auto-
matically classify TILs in H&E-stained WSI of BC sections. It is worth remarking that pathomic features are explicit, therefore easy to 
interpret, as opposed to the DL approach. Several predictive models built using these features will be evaluated to study how different 
classifiers influence the results. 

2. Materials and methods 

In this section, data used in this study as well as the preprocessing methods and the algorithm for nuclei segmentation are 
introduced. Moreover, the extraction of pathomic features, feature selection and classifier modeling are described in detail. Finally, the 
metrics used for the evaluation are provided. The overall methodological workflow of this study is shown in Fig. 2(A-D). 

2.1. Dataset 

A public dataset of diagnosed TNBC and HER2+ BC patients was used https://tiger.grand-challenge.org/. In particular, for the 

Fig. 2. Workflow of the approach developed in the study. Starting from H&E images from HER2+ and TN breast cancer, the approach starts with 
the segmentation of nuclei within tumor-associated associated stroma (A). Pathomic features were then extracted from cell segmentation within 
tumor-associated stroma (B). After the feature selection step, five classification models were trained (C) and their performance evaluated (D). 
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development of the pipeline the ‘WSIROIS’ dataset was employed. This dataset consists of 195 WSIs of core-needle biopsies and 
surgical resections of BC patients with annotated tissue compartments and TILs, combining cases from three sources.  

• TCGA: TNBC cases from TCGA-BRCA [27] archive (n = 151). The annotations provided for this dataset were generated by adapting 
the publicly available BCSS (https://bcsegmentation.grand-challenge.org/) and NuCLS (https://nucls.grand-challenge.org/ [24]) 
datasets.  

• RUMC: 26 cases of TNBC and HER2+ cases from Radboud University Medical Center (Netherlands), with annotations by a panel of 
board-certified breast pathologists.  

• JB: 18 cases of TNBC and HER2+ cases from Jules Bordet Institute (Belgium). Annotations for these were made by a panel of board- 
certified breast pathologists. 

All data were provided at 20 × magnification (resolution of 0.5 micron-per-pixel) for processing. All images have ROI-level 
annotation masks for use in processing. Concerning annotations corresponding to tissue compartments, each image had ROI-level 
annotations of the following tissue classes: invasive tumor, tumor-associated stroma, in-situ tumor, healthy glands, necrosis not in- 
situ, inflamed stroma and other. ROIs of tissue compartments were manually annotated using polygons. TILs were manually anno-
tated using point annotations and then squared bounding boxes of 8 × 8 μm were constructed centered on the point annotation [28]. 
Five breast pathologists independently performed tissue and TILs annotations and any disagreement was solved by consensus. The 
classes ‘tumor-associated stroma’ and ‘inflamed stroma’ were merged to form a ‘stroma’ class. Then, all other classes were set to zero. 
In this way, masks only consisted of background and stroma, and TILs. ROIs without stromal tissue annotation were excluded. 

2.2. Preprocessing 

Stain normalization was performed in the preprocessing step to each image using the method proposed by Vahadane et al. [29]. For 
each image, this method involves a stain separation by sparse non-negative matrix factorization, in which the image is decomposed 
into sparse and non-negative stain density maps, followed by a structure-preserving color normalization step aimed at altering only the 
image color appearances while preserving the structure [29]. Nuclear segmentation was performed on H&E-stained slides to recognize 
objects through a watershed-based cell detection method. Of note, nuclear segmentation is a crucial but challenging task in pathology 
image analysis, and the search for a robust, practically useable nucleus segmentation module is still ongoing [30–32]. Various different 
approaches have been proposed, ranging from relatively simple thresholding techniques (e.g. Otsu [33], watershed [34]) to more 
advanced methods, such as, for instance, those based on deep learning [30]. In this study, a watershed-based method was used for its 
documented advantages, namely simplicity, speed and the ease with which parameters can be adjusted and fine-tuned. This method 
applies a set of mathematical operations (fast radial symmetry transform and regional minima) at different scales to identify candidate 
locations for nuclei [34] and is part of the most widely used nuclear segmentation methods among pathologists due to its imple-
mentation within the most popular digital pathology tools (e.g. Cell Profiler [35], Qupath [26], ImageJ [36], OpenCV [37]). 

The cell detection function from the analysis module of QuPath was used to perform watershed-based nuclei segmentation within 
tumor-associated stroma [34,38–40]. The setup parameter was set as hematoxylin OD for the detection image, with a pixel size of 0.5 
μm. Nucleus parameters were set as follows: background radius: 8 μm; median filter radius: 0 μm; σ: 1.5 μm; minimum cell area: 10 
μm2; maximum cell area: 400 μm2 [41]. For intensity parameters, the threshold was set to 0.1, and the maximum background intensity 
was set to 2. An expert microscopist verified the accuracy of the automatic cell detection. 

2.3. Feature extraction and selection 

71 pathomic features were extracted using the open-source HistomicsTK package https://github.com/DigitalSlideArchive/ 
HistomicsTK/from each segmented nucleus. The extracted radiomics features were categorized into five groups: 6 Fourier Shape 
Descriptors (FSD) features, 8 gradient features, 26 Haralick features, 12 intensity-based features, 19 morphometry features. The 
computing algorithms can be found at https://digitalslidearchive.github.io/HistomicsTK/histomicstk.features.html. Features selec-
tion was performed using a correlation filter based on the absolute values of pairwise Spearman’s correlation (ρ) coefficient to reduce 
feature redundancy and prevent model overfitting (To reduce the dimension of features and solve the overfitting problem). The 
threshold for ρ was set to 0.9. Briefly, if two features had ρ > 0.9, the function looks at the mean absolute correlation of each variable, 
and the variable with the largest mean absolute correlation is removed. A further feature reduction through a univariate analysis using 
a nonparametric Wilcoxon rank-sum test was performed to investigate their statistical significance with respect to the outcome (TIL/ 
noTIL). The significantly different features (p < 0.05) were then selected. The optimal feature set from the remaining features was 
selected using the least absolute shrinkage and selection operator (LASSO) algorithm method, which was used to identify the most 
outcome-related features. The LASSO is a regularization technique used to minimize the number of non-zero elements and make the 
solution unique. In the LASSO algorithm, the shrinkage parameter lambda was identified when the misclassification error was smallest 
in 5-fold cross-validation [42,43]. The surviving features were used to build pathomic-based prediction models. Feature selection 
procedures were implemented in R studio software, version 4.0.2 (downloadable from http://www.R-project.org). 

2.4. Data processing 

To avoid the predominance of features with the largest scale in the analysis, z normalization was performed on the training set prior 
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model training and applied to the test set. According to z normalization, each feature was normalized as (x− x′
)

s where x, x’, and s are the 
feature, the mean, and the standard deviation, respectively. 

2.5. Model building and performance evaluation 

Before data processing, data were randomly split into training (70%) and testing sets (30%) but stratified to ensure that the ratio of 
positive samples to negative samples was the same between the training and test set. Five different models were used to evaluate the 
discrimination power of pathomic features: Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Decision Tree (DT), 
Random Forest (RF), Multi-layer Perceptron (MLP). Five common classifiers from different families were chosen to see which of them 
provides the best classification performance. K-Fold cross-validation (CV) with K = 5 was applied to the training data set for model 
selection (hyperparameter tuning). Concerning model parameters, the number of neighbors k in k-NN was selected from Refs. [5,7,9]; 
the number of trees to grow and the number of variables randomly sampled as candidates at each split was set to ntree = 500 and mtry 
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
number of predictors

√
, respectively; the confidence factor for DT was chosen from cp ∈ [0.1, 0.5]; the number of hidden layers in 

MLP was selected from hl ∈ [1,5] no tuning parameters were needed for LDA. Additionally, to overcome the imbalance in the dis-
tribution of the TILs condition, models were also trained using both downsampling and a synthetic minority oversampling technique 
(SMOTE) procedure on the training dataset to achieve balanced classes. The downsampling technique is a resampling method that 
decreases the size of the majority class to be the same or closer to the minority class size by just taking out a random sample. On the 
other hand, SMOTE is a hybrid resampling method that downsamples the majority class, and artificially generates new examples of the 
minority class using the nearest neighbors of these cases. Furthermore, the majority class examples are also under-sampled, leading to 
a more balanced dataset [44]. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the predictive perfor-
mance of the classification models (in all three settings: not resampled, downsampled, and SMOTE-sampled training set), and the area 
under the curve (AUC) was calculated. Accuracy (Eq. (1)), sensitivity or recall (Eq. (2)), specificity (Eq. (3)), precision (Eq. (4)), and 
F1-score (Eq. (5)) were employed to evaluate the diagnostic performance of resulting models in the hold-out test set. The associated 
formulas are listed below: 

Accuracy=
TP + TN

TP + TN + FP + FN
(1)  

Sensitivity=
TP

TP + FN
(2) 

Fig. 3. Selected pathomic features (n = 21) after the three steps of feature selection. Surviving features were reported in bold. Abbreviations: FSD =
Fourier Shape Descriptor; MAD = Median Absolute Deviation; IDM = Inverse Difference Moment; IMC = Information Measure of Correlation. 
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Specificity=
TN

TN + FP
(3)  

Precision=
TP

TP + FP
(4)  

F1=
precision ∗ recall
precision + recall

(5)  

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative. 
The AUC-ROCs were statistically compared between different classifiers and between different resampled strategies using DeLong 

test with Bonferroni correction. P values less than 0.05 were considered significant. Models building and evaluation were implemented 
using Caret package in R studio software, version 4.0.2, downloadable from http://www.R-project.org. 

3. Results 

A total of 1037 ROIs with tissues compartments and TILs annotated were considered. Nuclei segmentation resulted in 92,141 
nuclei, of which 20,111 TILs. 

Selection of pathomic features returned 21 features, of which 2 from FSD group, 2 from gradient group, 9 from Haralick group, 3 
from morphometry group and 5 from intensity group (Fig. 3). 

Tables 1 and 2 reported the predictions of the five built machine learning models. Moreover, Fig. 4 shows the ROC curves rep-
resenting performances of each classifier on the test set, both in the original setting, in the downsampled setting and the SMOTE- 
sampled setting. The performance of RF were the best according to AUC and the DeLong test, with or without applying resampling 
techniques, both in the training (AUCROCRF = 0.857–0.858) and the test set (AUCROCRF = 0.855–0.857). DeLong test revealed that all 
except 9 AUC comparisons were significant. It can be observed that the use of resample technique did not significantly affect MLP and 
RF prediction performances. In addition, performances of KNN with downsampling were not significantly different from those of KNN 
with smote resampling. The same behavior was observed for LDA. In addition, classification performances of KNN with downsampling 
were not significantly different from those of LDA without resampling. Refer to Fig. 5 for an overview of DeLong test results. Of note, 
although the sensitivity of models with SMOTE or down resampling in training and validation sets declined, the specificity improved 
greatly. However, RF produced the best classification performances, suggesting that these models could potentially be employed to 
discriminate TILs from noTILs. Comparing the AUCROC for SMOTE, downsampling, and the original data, applying resampling does 
not improve performances (Refer to Table 2). 

4. Discussion 

Growing evidence has revealed that TILs are an important prognostic positive biomarker in BC patients [3]. Despite standardization 
efforts, the quantification of TILs is still based on a visual assessment, thus being time-consuming, labor-intensive, requiring large 
experience and expertise, prone to the inter-pathologist discrepancy, and associated with a mere qualitative evaluation of histological 
properties [5]. Therefore, the TILs marker is still not considered robust enough to be used in clinical practice, mainly because there are 
no standardized, objective, and effective TILs quantification strategies. Despite efforts from many researchers, the pathologist does not 
regularly assess the TIL infiltration due to a lack of automatic image analysis tools. Automatic detection of TILs using computational 

Table 1 
Average prediction performance of different pathomic models for classifying TILs from noTILs in the training set with 5-fold CV. Bold indicates best 
performing models. Abbreviations: AUCROC = Area Under the Receiver Operating Characteristic curve; SMOTE = synthetic minority oversampling 
technique; LDA = Linear Discriminant Analysis; KNN = K-Nearest Neighbour; DT = Decision Tree; RF = Random Forest; MLP = Multi-layer 
Perceptron.  

Models Resample AUCROC Accuracy Sensitivity (Recall) Specificity Precision F1-score 

RF None 0.8576 ± 0.0029 0.8306 ± 0.0024 0.9398 ± 0.0025 0.4386 ± 0.0036 0.8572 ± 0.0009 0.8966 ± 0.0015 
SMOTE 0.8541 ± 0.0027 0.8162 ± 0.0034 0.8744 ± 0.0033 0.6077 ± 0.0083 0.8888 ± 0.0022 0.8815 ± 0.0023 
Down 0.8572 ± 0.003 0.7617 ± 0.0025 0.7486 ± 0.0029 0.8086 ± 0.0073 0.9335 ± 0.0023 0.8309 ± 0.0019 

DT None 0.7383 ± 0.0046 0.8085 ± 0.0018 0.9413 ± 0.0133 0.3322 ± 0.0556 0.8351 ± 0.0096 0.8849 ± 0.0006 
SMOTE 0.7712 ± 0.0165 0.7162 ± 0.01 0.7013 ± 0.0216 0.7699 ± 0.032 0.9164 ± 0.008 0.7943 ± 0.0106 
Down 0.7702 ± 0.021 0.7012 ± 0.0113 0.6763 ± 0.0203 0.7905 ± 0.027 0.9207 ± 0.0075 0.7796 ± 0.0115 

LDA None 0.8365 ± 0.0019 0.813 ± 0.0016 0.9467 ± 0.003 0.3332 ± 0.0069 0.8359 ± 0.0011 0.8878 ± 0.0011 
SMOTE 0.8395 ± 0.0024 0.725 ± 0.003 0.6949 ± 0.005 0.833 ± 0.0069 0.9372 ± 0.0021 0.798 ± 0.0029 
Down 0.8392 ± 0.0024 0.7237 ± 0.0026 0.693 ± 0.0037 0.8335 ± 0.0065 0.9372 ± 0.0022 0.7968 ± 0.0023 

KNN None 0.8232 ± 0.0036 0.817 ± 0.0022 0.9176 ± 0.002 0.4563 ± 0.0067 0.8582 ± 0.0015 0.8869 ± 0.0014 
SMOTE 0.8151 ± 0.0025 0.7159 ± 0.0039 0.6905 ± 0.0048 0.8069 ± 0.0079 0.9277 ± 0.0027 0.7917 ± 0.0033 
Down 0.8335 ± 0.0032 0.7385 ± 0.0056 0.7208 ± 0.0061 0.8017 ± 0.0044 0.9288 ± 0.002 0.8117 ± 0.0046 

MLP None 0.8524 ± 0.0035 0.8253 ± 0.0034 0.9279 ± 0.0093 0.4569 ± 0.0313 0.8598 ± 0.0059 0.8925 ± 0.0024 
SMOTE 0.8518 ± 0.0024 0.7628 ± 0.0254 0.7568 ± 0.0461 0.7844 ± 0.0492 0.9271 ± 0.0117 0.8324 ± 0.0235 
Down 0.8534 ± 0.0029 0.7559 ± 0.0196 0.743 ± 0.0344 0.8023 ± 0.0341 0.9313 ± 0.0085 0.826 ± 0.0186  
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image analysis approaches could contribute to developing objective and precise mechanisms to measure the infiltration grade of BC, 
with a look towards the possibility of reaching a standardized TILs assessment that pathologists could then use in clinical practice for 
decision-making and treatment planning. Most current literature on automated TILs quantification relies on DL-based methods, which 
could be highly effective for the task, but due to their not immediate interpretability, fail to aid pathologists with novel insights on the 
tissue. Given the need for studies contributing to achieving a quantitative, automatic, interpretable, and as simple as possible TILs 
evaluation, a pathomic-based approach for classifying TILs on BC digital pathology images was proposed, exhibiting several types of 
interpretable features for automatic TILs classification. Results showed that some specific pathomic features extracted from nuclei in 
tumor-associated stromal regions of H&E images of BC could classify if nuclei were TILs or not. In particular, several machine learning 
models with selected pathomic features that could classify sTILs with high prediction performances after a feature selection process 
were developed. Considering the prediction performances of ML models, RF revealed the highest predictive value among different 
classifiers, with AUCs reaching 86%. Downsampling and SMOTE sub-sampling techniques were applied to tackle the unbalanced data 
problem and showed improvement in specificity. Machine learning algorithms tend to sacrifice the minority group for an unbalanced 
dataset to achieve higher accuracy [45]. Although both two subsampling methods improved specificity, SMOTE was able to enhance 
AUC in a balanced way: while maintaining high sensitivity, it was also able to increase specificity significantly. In addition, SMOTE has 
been shown to be robust to the variation of unbalanced ratios with various classifiers [44]. Previous studies aimed at detecting TILs 
using visual features from H&E images of different cancer types [23,24,46]. Basavanhally et al. [23] developed an approach combining 
a region-growing algorithm and Markov random fields to identify lymphocytes in HER2+ BC images. Kuo et al. [47], in a study aiming 
at lymphocytes infiltration for BC patients ante-lymphadenectomy, obtained AUCs up to 0.87 using a SIFT algorithm for classifying 
lymphocytes from non-lymphocytes. However, these studies involved smaller datasets and used different segmentation approaches 
and features with respect to this study. Moreover, they were published before the development of TILs-WG guidelines. Corredor et al. 
[12] performed a study aiming at detecting TILs on lung cancer H&E images using shape, texture, and color features. They also 
automatically detected nuclei with a watershed approach and obtained 89%, 83% and 86% in precision, recall and F1 score for TILs 
detection. Of note, these studies developed the classification approaches training SVM classifiers. In this study, for exploring the 
behavior of machine learning models that were suitable in case of training data much larger than the number of features, thus not 

Table 2 
Average prediction performance of different pathomic models for classifying TILs from noTILs in the test set. Bold indicates best performing models. 
Abbreviations: AUCROC = Area Under the Receiver Operating Characteristic curve; CI = Confidence Interval; SMOTE = synthetic minority over-
sampling technique; LDA = Linear Discriminant Analysis; KNN = K-Nearest Neighbour; DT = Decision Tree; RF = Random Forest; MLP = Multi-layer 
Perceptron.  

Models Classifier AUCROC (95% CI) Accuracy (95% CI) Sensitivity (Recall) Specificity Precision F1-score 

RF None 0.8567 (0.8518, 0.8567) 0.8296 (0.8251, 0.834) 0.9395 0.4373 0.8563 0.8960 
SMOTE 0.8552 (0.8503, 0.8552) 0.8158 (0.8112, 0.8204) 0.8733 0.6107 0.8890 0.8811 
Down 0.8569 (0.8521, 0.8569) 0.7617 (0.7567, 0.7667) 0.7475 0.8125 0.9344 0.8305 

DT None 0.8182 (0.8124, 0.8182) 0.8003 (0.7955, 0.805) 0.9107 0.4062 0.8455 0.8769 
SMOTE 0.7751 (0.7693, 0.7751) 0.7037 (0.6983, 0.7091) 0.6796 0.7896 0.9202 0.7818 
Down 0.8284 (0.823, 0.8284) 0.6825 (0.677, 0.688) 0.6438 0.8206 0.9276 0.7601 

LDA None 0.834 (0.8286, 0.834) 0.8134 (0.8087, 0.818) 0.9467 0.3376 0.8361 0.8880 
SMOTE 0.8372 (0.8319, 0.8372) 0.7225 (0.7172, 0.7278) 0.6906 0.8365 0.9378 0.7954 
Down 0.8367 (0.8314, 0.8367) 0.722 (0.7166, 0.7272) 0.6903 0.8352 0.9373 0.7950 

KNN None 0.8182 (0.8124, 0.8182) 0.8136 (0.809, 0.8182) 0.9159 0.4487 0.8557 0.8848 
SMOTE 0.8097 (0.8039, 0.8097) 0.7125 (0.7072, 0.7179) 0.6883 0.7991 0.9244 0.7891 
Down 0.8284 (0.823, 0.8284) 0.7362 (0.7309, 0.7413) 0.7189 0.7977 0.9269 0.8098 

MLP None 0.8491 (0.8439, 0.8491) 0.823 (0.8185, 0.8275) 0.9476 0.3782 0.8447 0.8932 
SMOTE 0.8481 (0.8431, 0.8481) 0.7662 (0.7612, 0.7712) 0.7632 0.7768 0.9243 0.7632 
Down 0.8503 (0.8453, 0.8503) 0.7476 (0.7424, 0.7527) 0.7290 0.8140 0.9333 0.8186  

Fig. 4. Receiver Operating Characteristic (ROC) curves of prediction models without resampling (A), with SMOTE-resampling (B) and with 
downsampling (C). Abbreviations: LDA = Linear Discriminant Analysis; KNN = K-Nearest Neighbour; DT = Decision Tree; RF = Random Forest; 
MLP = Multi-layer Perceptron. 
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exploring models that perform better with a low amount of training data and large features [48]. Moreover, differently from the 
above-mentioned studies, this work was focused on sTILs, according to the recommendations of TILs-WG [5]. Other studies aimed at 
developing DL-based computational TIL assessment methods broadly following some or all steps of visual TILs-WG guidelines [21,22, 
25]. Lu et al. [13] developed a U-Net model for lymphocyte detection showing 0.9536, 0.901, 0.9266 of recall, F1-score and precision, 
and strong association with immune response of outcomes. Le et al. [14], in a study aiming at exploring the correlation between tils 
distribution and invasive tumor through CNNs, obtained AUCs up to 0.950 for TILs. Sun et al. [21] developed a deep learning-based 
tool for an automatic til score assessment and achieved a F1-score of 0.856 for nuclei (also including TILs) classification. Similar 
approaches were also developed for detecting TILs in other cancer types [11,49–51]. 

Although the promising results achieved by DL-based approaches, a hand-crafted pathomics approach was preferred rather than a 
fully automated DL one as this could give better control over the initial data analysis and subsequent ML model construction and a 
better understanding of the whole pipeline. In fact, although the majority of DL-based methods have strong predictive performance 
and are comparable to the traditional hand-crafted approaches, these methods have limited ability to explain the deep features with 
neither a set of diagnostic plans nor an insight into the results. In particular, it was considered appropriate and constructive to explore 
hand-crafted pathomic features since pathomic and in general digital pathology is a recently explored field and, given the additional 
information related to the underlying biological processes that pathomics could provide, this study may add value in this direction. In 
this regard, while it might be difficult to demonstrate a causal relationship between pathomic features and underlying biological 
processes, it is possible to hypothesize about their underlying connections. It is worth noting that among features that passed the 
feature selection step and thus constitute ML models, there are features associated with shape (e.g. circularity, FSD) and intensity 
(mean, median absolute deviation and energy), and this could be related to the well-known properties of TILs of having a regular 
shape, clearer margins and higher peak intensity than other cells. Moreover, the contribution of features associated with gradient 
(mean, kurtosis) and Haralick features could be attributable to the more homogeneous enhancement and different textural distribution 
pattern of TILs than other cells [13]. Of note, Haralick features from nuclear were shown to be prognostic among different cancer types 
[52]. Despite some promising results emerging in this preliminary study, there are still many limitations which have to be 
acknowledged. The first concerns the unbalanced nature of the dataset, which has been tried to account for by applying SMOTE and 
downsampling techniques that have demonstrated their value in the setting of medical imaging ML analysis [44]. Moreover, although 
the dataset was very large given the high number of nuclei used for training and test models, the number of corresponding WSIs is from 
a limited number of patients. On a positive note, the study has the advantage of involving patients from different institutions. 

Another issue concerns the prerequisite of pixel level annotation for individual nuclei segmentation within tumor-associated 
stroma, thus implying that any segmentation errors can have a direct impact on the final performance. Although the choice of an 
automatic and well-established approach guarantees robustness and reproducibility, the lack of a segmentation ground truth does not 
allow to quantitatively evaluate and control the segmentation error (e.g. through Dice index or F1-score [53,54]) and also to test more 
advanced segmentation methods (e.g. training neural networks), also by making comparisons (as done in previous studies) with other 
existing nuclear segmentation algorithms implemented in different software/studies [55–57]. 

It must be emphasized, however, that the problem of segmentation is inherent in hand-crafted approaches that aim to extract 
quantitative descriptors from regions of interest (e.g. radiomics, pathomics), and embraces all the advantages and disadvantages 

Fig. 5. Comparison of AUCROCs between different classification models and different resampling techniques. Abbreviations: SMOTE = synthetic 
minority oversampling technique; LDA = Linear Discriminant Analysis; KNN = K-Nearest Neighbour; DT = Decision Tree; RF = Random Forest; 
MLP = Multi-layer Perceptron. 
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associated with the different segmentation techniques (manual, semi-automatic, automatic) [58]. 
It is worth noting that the implemented segmentation has the advantage of being fully automatic, and so not prone to inter- and 

intra-observer variability, replicable and not time-consuming for the pathologist [59]. 
As previously highlighted, a limited number of features was explored in this study to be able to interpret them directly and give a 

physical meaning as reliable as possible. An essential criterion for having examined these features is that they are easy to interpret, as 
opposed to features obtained from neural networks [20,22]. However, this framework could be used in future studies evaluating an 
expanded suite of pathomic measurements, as well as extended to characterizing TILs in other cancer types. For example, it might have 
been interesting to explore nuclear architectural information and local cell cluster graph-based measurements that have been reported 
to be of prognostic value in non-small cell lung cancer [60]. However, this is related to another issue concerning the missing infor-
mation on both diagnostic and prognostic outcomes associated with patients (e.g., it is only known that the patients had HER2+ or 
TNBC immunophenotype, but the distribution was not specified; moreover, no prognostic outcomes were provided), which prevented 
us from performing diagnostic/prognostic predictions using the TIL assessment obtained using the developed classification method. 
Moreover, also based on previous studies tried to assess TILs using immunohistochemistry (IHC) images [61–63], it could be inter-
esting to investigate pathomic features from IHC to add value to the developed approach. While TIL scoring in conventional H&E 
sections has the advantage that no additional stains are required, lymphocyte subtyping into cytotoxic, helper, regulatory, and other T 
cells not possible in H&E may become clinically relevant in the future. Therefore, in addition to TIL detection through morphological 
(H&E) features, subtyping of TILs through IHC could be relevant [9]. Another critical limitation affecting the study concerns the 
well-known lack of shared reference standards concerning data storage, the missing agreement on analysis procedures, and the feature 
reliability and reproducibility limitations affecting pathomics [64,65]. In particular, the existing lack of standardization in image 
acquisition, preprocessing, segmentation methods, and pathomics analysis tools, could lead to discrepancies in feature measurements 
that are not due to underlying biological variations [20,66]. However, all steps of pathomic workflow performed in this study were 
reported in detail since it is essential to develop this emerging field in terms of clinical translation and to improve the reproducibility of 
study outcomes [67]. It is worth noting that the proposed approach has followed a fragment of the TIL-WG guideline, by leveraging on 
annotations of tumor-associated stroma in which sTILs were annotated. In particular, having worked on the tumor-associated stroma 
annotations masked some intrinsic pitfalls associated with the identification of stromal regions (e.g. the exclusion of areas of necrosis, 
ductal and lobular carcinoma in situ (DCIS/LCIS), and normal breast tissue) [7]. Studies trying to address all the concepts of stromal 
and intratumoral TILs and accounting for confounding morphologies specific to different tumor sites, subtypes, and histologic patterns 
as envisioned by the TIL-WG are required [22]. In addition, it should also be highlighted that a general limitation of an automated 
approach for TIL evaluation concern whether its performance should be measured i) as the concordance between manual and auto-
mated sTIL score (namely the agreement between automatic TIL score and TIL score visually evaluated by pathologist or ii) according 
to the clinical outcome of the patient (e.g., the ability to predict survival or response to treatment, or a mix of both [14,21]. Although 
findings of this study require careful interpretation due to the limitations mentioned above, the proposed hand-crafted pathomic 
approach revealed interesting results that may represent a starting point for future research aiming at developing a quantitative, 
standardized, interpretable, automatic and as simple as possible method for TIL assessment. In the future, the generalizability of the 
proposed method should be validated on more datasets with larger WSI, incorporating it into a more complex pipeline that includes all 
the steps of the TIL-WG guidelines, also exploring the impact of different intermediate processing steps (e.g. nuclear segmentation, 
stain normalization) on the TILs classification performance. 

5. Conclusions 

The proposed pathomic approach accurately classified sTILs on H&E images of HER2+ and TNBC. This study brought to attention 
several types of quantitative features that are potentially easier to interpret and linked to underlying biological processes that can assist 
pathologists in improving diagnosis by increasing their understanding of the pathology. Compared with the state-of-the-art DL ap-
proaches, the proposed method is therefore an important step towards quantitative, reproducible, interpretable, and rater-independent 
TILs quantification analysis in BC histopathology and is also easily applicable to new datasets and domains. 
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[9] F. Klauschen, K.-R. Müller, A. Binder, M. Bockmayr, M. Hägele, P. Seegerer, S. Wienert, G. Pruneri, S. de Maria, S. Badve, S. Michiels, T.O. Nielsen, S. Adams, 
P. Savas, F. Symmans, S. Willis, T. Gruosso, M. Park, B. Haibe-Kains, B. Gallas, A.M. Thompson, I. Cree, C. Sotiriou, C. Solinas, M. Preusser, S.M. Hewitt, 
D. Rimm, G. Viale, S. Loi, S. Loibl, R. Salgado, C. Denkert, International Immuno-Oncology Biomarker Working Group, Scoring of tumor-infiltrating 
lymphocytes: from visual estimation to machine learning, Semin. Cancer Biol. 52 (2018) 151–157, https://doi.org/10.1016/j.semcancer.2018.07.001. 

[10] S. Abousamra, R. Gupta, L. Hou, R. Batiste, T. Zhao, A. Shankar, A. Rao, C. Chen, D. Samaras, T. Kurc, J. Saltz, Deep learning-based mapping of tumor 
infiltrating lymphocytes in whole slide images of 23 types of cancer, Front. Oncol. 11 (2022). https://www.frontiersin.org/articles/10.3389/fonc.2021.806603. 
(Accessed 30 September 2022). accessed. 

[11] N. Shvetsov, M. Grønnesby, E. Pedersen, K. Møllersen, L.-T.R. Busund, R. Schwienbacher, L.A. Bongo, T.K. Kilvaer, A pragmatic machine learning approach to 
quantify tumor-infiltrating lymphocytes in whole slide images, Cancers 14 (2022) 2974, https://doi.org/10.3390/cancers14122974. 

[12] G. Corredor, X. Wang, C. Lu, V. Velcheti, E. Romero, A. Madabhushi, A watershed and feature-based approach for automated detection of lymphocytes on lung 
cancer images, in: Medical Imaging 2018: Digital Pathology, SPIE, 2018, pp. 213–218, https://doi.org/10.1117/12.2293147. 

[13] Z. Lu, S. Xu, W. Shao, Y. Wu, J. Zhang, Z. Han, Q. Feng, K. Huang, Deep-learning-based characterization of tumor-infiltrating lymphocytes in breast cancers from 
histopathology images and multiomics data, JCO Clin Cancer Inform 4 (2020) 480–490, https://doi.org/10.1200/CCI.19.00126. 

[14] H. Le, R. Gupta, L. Hou, S. Abousamra, D. Fassler, L. Torre-Healy, R.A. Moffitt, T. Kurc, D. Samaras, R. Batiste, T. Zhao, A. Rao, A.L. Van Dyke, A. Sharma, 
E. Bremer, J.S. Almeida, J. Saltz, Utilizing automated breast cancer detection to identify spatial distributions of tumor-infiltrating lymphocytes in invasive breast 
cancer, Am. J. Pathol. 190 (2020) 1491–1504, https://doi.org/10.1016/j.ajpath.2020.03.012. 

[15] O. Ronneberger, P. Fischer, T. Brox, U-Net, Convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi 
(Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241, https:// 
doi.org/10.1007/978-3-319-24574-4_28. 

[16] R. Girshick, Fast R-CNN, 2015. http://arxiv.org/abs/1504.08083. (Accessed 13 February 2023). accessed. 

M. Verdicchio et al.                                                                                                                                                                                                   

https://www.frontiersin.org/articles/10.3389/fonc.2021.610303
https://doi.org/10.3390/cancers13164233
https://doi.org/10.1038/s41523-021-00346-1
https://doi.org/10.1038/s41598-018-38272-1
https://doi.org/10.1038/s41598-018-38272-1
https://doi.org/10.1093/annonc/mdu450
https://doi.org/10.1093/annonc/mdu450
https://doi.org/10.1038/s41523-020-0154-2
https://doi.org/10.1038/s41523-020-0154-2
https://doi.org/10.1038/s41523-020-0156-0
https://doi.org/10.1093/annonc/mdv571
https://doi.org/10.1016/j.semcancer.2018.07.001
https://www.frontiersin.org/articles/10.3389/fonc.2021.806603
https://doi.org/10.3390/cancers14122974
https://doi.org/10.1117/12.2293147
https://doi.org/10.1200/CCI.19.00126
https://doi.org/10.1016/j.ajpath.2020.03.012
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1504.08083


Heliyon 9 (2023) e14371

11

[17] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look once: Unified, Real-Time Object Detection, 2016. http://arxiv.org/abs/1506.02640. (Accessed 13 
February 2023). accessed. 
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