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Abstract
Let � ⊂ R

2 be an open, bounded and Lipschitz set. We consider the torsion problem
for the Laplace operator associated to � with Robin boundary conditions. In this
setting, we study the equality case in the Talenti-type comparison, proved in Alvino
et al. (Commun Pure Appl Math 76:585–603, 2023).. We prove that the equality is
achieved only if � is a disk and the torsion function u is radial.

Keywords Robin boundary conditions · Laplace operator · Rigidity result · Torsion
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1 Introduction

Let β > 0 and let � ⊂ R
2 be an open, bounded and Lipschitz set. We consider the

following problem for the Laplace operator:

⎧
⎨

⎩

−�u = 1 in �
∂u

∂ν
+ βu = 0 on ∂�,

(1)
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where ν is the outer unit normal to ∂�. A function u ∈ H1(�) is a weak solution to
(1) if

∫

�

∇u∇ϕ dx + β

∫

∂�

uϕ dH1 =
∫

�

ϕ dx, ∀ϕ ∈ H1(�). (2)

Classical arguments, see e.g [1], ensure that there exists a positive and unique weak
solution to (1), that we denote by u. So, we can define the Robin torsional rigidity of
� as the L1-norm of u:

T (�) :=
∫

�

u dx,

or, equivalently, as the maximum of the following Rayleigh quotient:

T (�) = max
ϕ∈H1(�)

ϕ �≡0

(∫

�

|ϕ(x)| dx
)2

∫

�

|∇ϕ(x)|2 dx + β

∫

∂�

ϕ2 dH1
.

In [2] the authors prove that the Robin torsional rigidity is maximum on balls among
bounded and Lipschitz sets of fixed Lebesgue measure and the proof of this Saint-
Venant type inequality relays on reflection arguments (see also [3]).

In the recent paper [4], the authors obtain the same result using symmetrization
techniques. They establish a Talenti-type comparison result between suitable Lorentz
norms of the solution to the following problems:

⎧
⎨

⎩

−�u = f in �,
∂u

∂ν
+ βu = 0 on ∂�,

⎧
⎨

⎩

−�v = f � in ��,
∂v

∂ν
+ βv = 0 on ∂��,

where f ∈ L2(�), f � is the Schwartz rearrangement of f (see Definition 3) and ��

is the ball centered at the origin having the same measure as �. Moreover, in the case
f ≡ 1, they obtain the following comparison result in any dimension

‖u‖L p(�) ≤ ‖v‖L p(��), p = 1, 2. (3)

We observe that, for p = 1, inequality (3) is exactly the Saint-Venant inequality proved
in [2]. It is still an open problem to establish if, for p ∈ (1,+∞), the ball maximizes
the L p norm of the torsion function among open, bounded and Lipschitz sets (see
[3, Open Problem 1]). A first evidence in this direction is provided in [5], where it is
proved that the ball is a critical shape for every L p norm in dimension n > 2.

On the other hand, in the case n = 2, the Open Problem 1 contained in [3] is solved
in [4] in the following stronger version:

u�(x) ≤ v(x) ∀x ∈ ��, (4)
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where u� is the Schwartz rearrangement of the solution to (1) and v is the solution to

⎧
⎨

⎩

−�v = 1 in ��

∂v

∂ν
+ βv = 0 on ∂��.

(5)

This kind of results in the Robin boundary setting was generalized to nonlinear case
in [6], to anisotropic case in [7], with mixed boundary conditions in [8], in the case of
the Hermite operator in [9] and for Riemannian manifolds in [10].

The aim of the present paper is to characterize the equality case in (4), indeed we
prove that the Talenti-type comparison is rigid in the planar case.

Theorem 1 Let � ⊂ R
2 be an open, bounded and Lipschitz set and let �� be the ball

centered at the origin and having the same measure as �. Let u be the solution to (1)
and let v be the solution to (5). If u�(x) = v(x) for all x ∈ ��, then

� = �� + x0, u(· + x0) = u�(·).

Moreover, we have the following extension of Theorem 1.

Theorem 2 Let � ⊂ R
2 be an open, bounded and Lipschitz set and let �� be the ball

centered at the origin and having the same measure as �. Let u be the solution to (1)
and let v be the solution to (5). We denote by R the radius of ��.
If min

�
u = min

��
v and if there exists r ∈]0, R[ such that u�(x) = v(x) for |x | = r ,

then

� = �� + x0, u(· + x0) = u�(·) in�.

The idea of the proof is the following. Starting from the proof in [4] of the pointwise
comparison (4), we show that the equality u� = v implies that the level sets of u
are balls on the boundary of which the normal derivative of u is constant. Then, we
prove that these balls are concentric, using an argument inspired by [11] (see also [12,
Lemma 6]). In the Robin case, the main difficulty is that, contrary to the Dirichlet
case, the level sets of the solution may touch the boundary of �.

As far as the Dirichlet boundary conditions, the starting point for the study of these
kinds of problems is the paper by Talenti [13], in which a pointwise comparison is
stated between the solution to the following problems:

{
−�uD = f in �,

uD = 0 on ∂�,

{
−�vD = f � in ��,

vD = 0 on ∂��,

whenever
f ∈ L

2n
n+2 (�). In particular, he proves in [13] the pointwise inequality:

u�
D(x) ≤ vD(x) ∀x ∈ �� (6)
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and, consequently, by integration, the Saint-Venant inequality in the Dirichlet case
holds:

∫

�

uD dx =
∫

��

u�
D dx ≤

∫

��

vD dx,

conjectured by Saint-Venant in 1856. Moreover, a previous result in this direction is
due to Weinberger, that proved in [14] the following result:

max
�

uD ≤ max
��

vD.

We stress that, in the case of Dirichlet boundary conditions, the rigidity result holds
and it is proved in [15] (see Remark 6 for the main differences to the Robin case).

Finally, we conclude by a list of generalization of Talenti’s comparison results in
different setting with Dirichlet boundary conditions. Extension to the semilinear and
nonlinear elliptic case can be found, for instance, in [16], to the anisotropic elliptic
operators in [17], to the parabolic case in [18] and to higher order operators in [19,
20]. We also refer the reader to [21, 22] and the references therein for a survey on
Talenti’s techniques.

The paper is organized as follows. In Sect. 2 we recall some basic notions about
rearrangements of functions and we recall some properties of the Torsion function,
while Sect. 3 is dedicated to the proof of Theorems 1 and 2 and to a list of open
problems.

2 Notation and Preliminaries

Throughout this article, |·|will denote the Euclidean norm inR2, while · is the standard
Euclidean scalar product. ByH1(·), we denote the 1-dimensional Hausdorff measure
in R

2. The perimeter of � will be denoted by P(�) and since � is a bounded, open
and Lipschitz set, we have that P(�) = H1(∂�). Moreover, we denote by |�| the
Lebesgue measure of �.

If � is an open and Lipschitz set, it holds the following coarea formula. Some
references for results relative to the sets of finite perimeter and the coarea formula are,
for instance, [23, 24].

Theorem 3 (Coarea formula) Let f : � → R be a Lipschitz function and let u : � →
R be a measurable function. Then,

∫

�

u|∇ f (x)|dx =
∫

R

dt
∫

(�∩ f −1(t))
u(y) dH1(y). (7)

We recall now some basic definitions and results about rearrangements and we refer
to [22] for a general overview.
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Definition 1 Let u : � → R be a measurable function, the distribution function of u
is the function μ : [0,+∞[ → [0,+∞[ defined by

μ(t) = |{x ∈ � : |u(x)| > t}|.

Definition 2 Let u : � → R be a measurable function, the decreasing rearrangement
of u, denoted by u∗, is the distribution function of μ.

Remark 1 We observe that the function μ(·) is decreasing and right continuous and
the function u∗(·) is the generalized inverse of the function μ(·).
Definition 3 The Schwartz rearrangement of u is the function u� whose level sets are
balls with the same measure as the level sets of u.

We have the following relation between u� and u∗:

u�(x) = u∗(π |x |2)

and it can be easily checked that the functions u, u∗ e u� are equi-distributed, so we
have that

‖u‖L p(�) = ∥
∥u∗∥∥

L p(0,|�|) = ‖u�‖L p(��).

Let now u be the solution to (1). For t ≥ 0, we introduce the following notations:

Ut = {x ∈ � : u(x) > t} ∂Uint
t = ∂Ut ∩ �, ∂Uext

t = ∂Ut ∩ ∂�, μ(t) = |Ut |

and, if v is the solution to (5), using the same notations as above, we set

Vt =
{
x ∈ �� : v(x) > t

}
, ∂V int

t = ∂Vt ∩ �, ∂V ext
t = ∂Vt ∩ ∂�, φ(t) = |Vt |.

Because of the invariance of the Laplacian under rotation, we have that v is radial.
Moreover, we observe that the solutions u to (1) and v to (5) are both superharmonic
and so, by the strong maximum principle, it follows that they achieve their minima on
the boundary.

From now on, we denote by

um = min
�

u, vm = min
��

v, (8)

uM = max
�

u, vM = max
��

v. (9)

Since we are assuming that the Robin boundary parameter β is strictly positive, we
have that um > 0 and vm > 0. Hence, u and v are strictly positive in the interior of �.

Since v is radial, positive and decreasing along the radius then, for 0 ≤ t ≤ vm ,

Vt = ��,
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while, for vm < t < vM , we have that Vt is a ball concentric to �� and strictly
contained in it.

In the next remarks, we collect some general and useful results.

Remark 2 By the weak formulation (2) and the isoperimetric inequality, we have that

vmP(��) =
∫

∂��

v(x) dH1 = 1

β

∫

��

dx = 1

β

∫

�

dx

=
∫

∂�

u(x) dH1 ≥ umP(�) ≥ umP(��),

and, as a consequence,

um ≤ vm . (10)

Moreover, from (10) follows that

μ(t) ≤ φ(t) = |�| ∀t ≤ vm . (11)

Remark 3 We observe that φ, the distribution function of v, is absolutely continuous.
Indeed, in [11, Lemma 2.3], is proved that the absolutely continuity of φ is equivalent
to the following condition:

∣
∣
∣{|∇v| = 0} ∩ v−1(vm, vM )

∣
∣
∣ = 0 (12)

which is verified by v, as its gradient never vanishes on the level sets Vt .

The starting point of the proof of our main results is the following Lemma, proved
in [4]. For the convenience of exposition, we report here the proof.

Lemma 4 Let u be a solution to (1) and let v be a solution to (5). Then, for almost
every t > 0, we have

4π ≤
(

−μ′(t) + 1

β

∫

∂Uext
t

1

u
dH1

)

(13)

and

4π =
(

−φ′(t) + 1

β

∫

∂V ext
t

1

v
dH1

)

. (14)

Proof Let t > 0 and h > 0. Let us choose the following test function in the weak
formulation (2)

ϕ(x) =

⎧
⎪⎨

⎪⎩

0 if u < t

u − t if t < u < t + h

h if u > t + h.
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Then, we have

∫

Ut\Ut+h

|∇u|2 dx + βh
∫

∂Uext
t+h

u dH1 + β

∫

∂Uext
t \∂Uext

t+h

u(u − t) dH1

=
∫

Ut\Ut+h

(u − t) dx + h
∫

Ut+h

dx .
(15)

Dividing (15) by h, using coarea formula (7) and letting h go to 0, we have that for
a.e. t > 0

∫

∂Ut

g(x) dH1 =
∫

Ut

dx,

where

g(x) =
{

|∇u| if x ∈ ∂Uint
t ,

βu if x ∈ ∂Uext
t .

(16)

Using the isoperimetric inequality, for a.e. t ∈ [0, uM ) we have

2
√

πμ(t)
1
2 ≤ P(Ut ) =

∫

∂Ut

dH1 ≤ (17)

≤
(∫

∂Ut

g dH1
) 1

2
(∫

∂Ut

1

g
dH1

) 1
2

(18)

= μ(t)
1
2

(∫

∂Uint
t

1

|∇u| dH
1 + 1

β

∫

∂Uext
t

1

u
dH1

) 1
2

. (19)

and, so, (13) follows. Finally, we notice that, if v is the solution to (5), then all the
inequalities above are equalities, and, consequently, we have (14). ��
Remark 4 By integrating (14), it is possible to write the explicit expression of v, that
is

v(x) = |�| − π |x |2
4π

+ |�| 12
2
√

πβ
.

Remark 5 Integrating (13) and (14) between 0 and t and integrating by parts, it is
proved in [4] that

μ(t) ≤ φ(t), t ≥ vm . (20)

Finally, we observe that the pointwise comparison (4) easily follows from (20).
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3 Proof of theMain Results

Proof of Theorem 1 First of all, let us observe that, from the fact that we are assuming
that u� = v, we have

um = vm . (21)

We integrate now (13) and (14) from 0 to t and, since u∗ is the generalized inverse of
μ (Remark 1), we perform the following change of variables μ(t) = s and φ(t) = s.
So, we get

v∗(s) = |�| − s

4π
+ |�| 12

2
√

πβ
(22)

u∗(s) ≤ |�| − s

4π
+ 1

4πβ

∫ u∗(s)

0
dr

∫

∂Uext
r

1

u
dH1. (23)

From u� = v, we have u∗ = v∗ and, so, combining (22) and (23), we get

|�| 12
2
√

πβ
≤ 1

4πβ

∫ u∗(s)

0
dr

∫

∂Uext
r

1

u
dH1

≤ 1

4πβum

∫ uM

0

∫

∂Uext
r

dH1 = 1

4πβum

|�|
β

= |�| 12
2
√

πβ
,

(24)

where the last equality follows from (21). Therefore, all the inequalities in (24) are
equalities and, consequently, equality holds in (13).

We now divide the proof in two steps.
Step 1 Let us prove that every level set {u > t} is a ball.
Equality in (13) implies the equality in (17), i.e.

2
√

πμ(t)
1
2 = P(Ut )

that means that almost every level set is a ball. On the other hand, for all t ∈ [um, uM ),
there exists a sequence {tk} such that

1. tk → t ;
2. tk > tk+1;
3. {u > tk} is a ball for all k.
Since {u > t} = ∪k{u > tk} can be written as an increasing union of balls, then we
have that {u > t} is a ball for all t and, from the fact that� = {u > um}, we obtain that
� = x0 + ��. From now on, we can assume without loss of generality that x0 = 0.

Step 2 Let us prove that the level sets are concentric balls.
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Equality in (13) implies also equality in (18), i.e.

∫

∂Ut

dH1 =
(∫

∂Ut

g dH1
) 1

2
(∫

∂Ut

1

g
dH1

) 1
2

.

This means that, as we have equality in the Hölder inequality, for almost every t , the
function

g(x) =
{

|∇u| if x ∈ ∂Uint
t ,

βu if x ∈ ∂Uext
t .

is constant, in particular

|∇u| = Ct , ∀x ∈ ∂Uint
t , βu = Ct , ∀x ∈ ∂Uext

t , (25)

and by continuity we can infer that this is true for all t . By the way, we observe that
for all x ∈ ∂Ut ,

g(x) = ∂u(x)

∂νt
, (26)

where νt is the unit outer normal to ∂Ut .
From equality (13), we have also that

μ(t) = φ(t),

and, consequently, we can deduce from Remark 3 that alsoμ is absolutely continuous.
If we denote by

B(x(t), ρ(t)) = {u > t},

we can observe that the function μ(t) is locally Lipschitz in (um, uM ), and, so, the
function

ρ(t) =
(

μ(t)

π

) 1
2

is also locally Lipschitz. Moreover, since {u > t} ⊆ {u > s} for t > s, we have

|x(t) − x(s)| ≤ ρ(s) − ρ(t)

and, consequently, x(t) is locally Lipschitz.
Let us assume now by contradiction that x(t) is not constant. This means that there

exists t0 ∈ (um, uM ) such that

y = d

dt
x(t0) �= 0.
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Let us set z := y/|y| and

P(t) := x(t) + ρ(t)z ∈ ∂B(x(t), ρ(t)), Q(t) := x(t) − ρ(t)z ∈ ∂B(x(t), ρ(t)).

We have that, for all t ∈ (um, uM ),

u(P(t)) = u(Q(t)) = t (27)

and

∂u(P(t0))

∂νt0
= ∇u(P(t0)) · z

−∂u(Q(t0))

∂νt0
= ∇u(Q(t0)) · z.

On the other hand, from (27), we obtain

1 = d

dt
u(P(t))|t0= ∇u(P(t0)) · P ′(t0) = ∇u(P(t0)) · z(|y| + ρ′(t0))

1 = d

dt
u(Q(t))|t0= ∇u(Q(t0)) · Q′(t0) = ∇u(Q(t0)) · z(|y| − ρ′(t0)),

and, consequently,

∂u

∂νt0
(P(t0))(|y| + ρ′(t0) = − ∂u

∂νt0
(Q(t0))(|y| − ρ′(t0)). (28)

Moreover, by (25) we have

∂u

∂νt0
(P(t0)) = ∂u

∂νt0
(Q(t0))

and, so, we have |y| = 0, that is absurd.
Thus, we have proved that u is radially symmetric and, since

∂u

∂r
= ∂u

∂ν
< 0,

u is decreasing along the radii and u = u�. ��

Remark 6 In the proof of Theorem1.1 themain difference from the proof of the rigidity
result in the Dirichlet case contained in [15] is Step 2. Indeed, in [15], the authors use
the steepest descent lines method, which relays on the fact that |∇u| is constant on the
level set of u, which is not a priori true in the Robin case.
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Proof of Theorem 2 Let us set s = πr2. The assumption u�(x) = v(x) for |x | = r ,
implies

u∗(s) = v∗(s).

Arguing now as in the proof of Theorem 1, we have

|�| − s

4π
+ |�| 12

2
√

πβ
= v∗(s) = u∗(s) ≤ |�| − s

4π
+

∫ u∗(s)

0
dr

∫

∂Uext
r

1

u
dH1

≤ |�| − s

4π
+ 1

4πβum

|�|
β

= |�| − s

4π
+ |�| 12

2
√

πβ
,

where in the last equality we have used the hypothesis um = vm . So, we have equality
in (23) and, consequently, in (13) for t := u∗(s). As before, this implies that

• {u > t} is a ball;
• μ(t) = φ(t);
• the function g defined in (16) is constant on ∂Ut .

Let us observe that, for all τ > vm

∫ τ

0
t

(∫

∂U ext
t

1

u(x)
dH1

)

dt ≤
∫ uM

0
t

(∫

∂U ext
t

1

u(x)
dH1

)

dt

∫

∂�

(∫ u(x)

0

t

u(x)
dt

)

dH1 =
∫

∂�

u(x)

2
= |�|

2β
,

(29)

while, for v it holds

∫ τ

0
t

(∫

∂V ext
t

1

v(x)
dH1

)

dt =
∫ vm

0
t

(∫

∂V ext
t

1

v(x)
dH1

)

dt

= vm P(��)

2
= |�|

2β
, (30)

where the first equality follows from the fact that ∀t > vm

∂V ext
t = ∂Vt ∩ ∂� = ∅.

If we multiply (13) and (14) by t and we integrate from 0 to t , we get

2π t2 ≤
∫ t

0
t

(

−μ′(t) + 1

β

∫

∂Uext
t

1

u(x)
dH1

)

dt ≤
∫ t

0
t
(−μ′(t)

)
dt + |�|

2β2 ,

(31)
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where in the last inequality we use (29), and we get

2π t2 =
∫ t

0
t

(

−φ′(t) + 1

β

∫

∂V ext
t

1

v(x)
dH1

)

dt =
∫ t

0
t
(−φ′(t)

)
dt + |�|

2β2 ,

(32)

where in the last equality we use (30). Therefore, combining (31) and (32), we have
that

∫ t

0
t
(−μ′(t)

)
dt ≥

∫ t

0
t
(−φ′(t)

)
dt, (33)

and, integrating by parts and recalling that μ(t) = φ(t), we get

∫ t

0
(μ(t) − φ(t)) dt ≥ 0.

On the other hand, since (20) holds for all t ≥ 0, we have

μ(t) = φ(t), ∀t ∈ [0, t]

and this implies that equality holds in (13) for all t ∈ [0, t]. Now, arguing as in
Theorem 1, we recover � = �� + x0 and u(·+ x0) = u�(·) in {r ≤ |x | ≤ R}. Finally,
for the uniqueness of the solution to problem (5), once we have that � is a ball, it
follows that u = v for all x ∈ �. ��

As a particular case of the above result, if we take r = 0, we have

Corollary 1 Let � ⊂ R
2 be an open, bounded and Lipschitz set and let �� be the ball,

centered at the origin, having the same measure of �. Let u be the solution to (1) and
let v be the solution to (5). If um = vm, and uM = vM, then

� = �� + x0, u(· + x0) = u�(·) in ��.

Open Problem 1 Below we present a list of open problems and work in progress.

• Generalize the results contained in Theorems 1 and 2 to higher dimension. In order
to do that, one should prove (4) in R

n for n ≥ 3 (we address to Open Problem 1
in [4]).

• Generalize the results contained in Theorems 1 and 2 under weaker assumptions.
• Generalize the previous results to the p-Torsion or to the anisotropic Torsion.
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