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Abstract

Epigenetics connects genetic and environmental factors: it includes DNA methyl-

ation, histone post-translational modifications and the regulation of chromatin

accessibility by non-coding RNAs, all of which control constitutive or inducible

gene transcription. This plays a key role in harnessing the transcriptional pro-

grams of both innate and adaptive immune cells due to its plasticity and

environmental-driven nature, piloting myeloid and lymphoid cell fate decisions

with no change in their genomic sequence. In particular, epigenetic marks at the

site of lineage-specific transcription factors and maintenance of cell type-specific

epigenetic modifications, referred to as ‘epigenetic memory’, dictate cell differen-

tiation, cytokine production and functional capacity following repeated antigenic

exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming

occurring during a primary innate immune response leads to enhanced responses

to secondary challenges, a phenomenon known as ‘trained immunity’. Here, we
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discuss how stable and dynamic epigenetic states control immune cell identity

and plasticity in physiological and pathological conditions. Dissecting the regula-

tory circuits of cell fate determination and maintenance is of paramount impor-

tance for understanding the delicate balance between immune cell activation and

tolerance, in healthy conditions and in autoimmune diseases.

KEYWORD S
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INTRODUCTION

The definition of epigenetics includes reversible pro-
cesses which affect gene expression—without DNA
sequence changes—and can be inherited through cell
generation, contributing to the maintenance of cell phe-
notype [1, 2].

Epigenetic modifications include DNA methylation
and histone changes (post-translational methylation and
acetylation) which regulate gene expression by modulat-
ing chromatin conformation and accessibility. DNA
methylation, associated with gene silencing, is catalyzed
by DNA methyltransferases (DNMTs) on cytosines
located at CpG islands, in close proximity to promoter or
distal cis-regulatory enhancer elements [3]. Different epi-
genetic enzymes, such as histone methyltransferases
(HMTs) and acetylases (HATs), catalyze the apposition of
the post-translational modifications—hence defined epi-
genetic writers—distinct from those responsible for his-
tone demethylation (HDM) and deacetylation (HDAC),
referred to as epigenetic erasers. While histone acetyla-
tion associates with a permissive chromatin state, methyl-
ation can be either favourable or not, depending on the
number and the position of the methyl groups on the
histone tail. Heterochromatin protein (HP)1 recognizes
trimethylated H3 lysine (K)9 or K27 (H3K9me3 or
H3K27me3, respectively) and induces chromatin silenc-
ing; on the contrary, nucleosome remodelling factor
(NURF) identifies the histone mark H3K4me3 that asso-
ciates with a permissive chromatin state [4]. The overall
combination of histone modifications, defined ‘histone
code’, designates chromatin accessibility to transcription
factors (TFs). However, how chromatin conformations
manage differentiation and lineage commitment from
haematopoietic stem/progenitor cells (HSPCs) to mature
immune cells has not been fully understood. Intriguingly,
despite the intrinsically repressive state of the chromatin,
lineage-promoting TFs can reach some of their binding
sites even when they are wrapped into nucleosomes,
recruiting chromatin-remodelling enzymes and exposing
the underlying DNA. While certain TFs induce lineage-
specific chromatin accessibility, others can play key roles

in cell reprogramming [5, 6]. In immune cells, a network
of regulatory elements (REs) and TFs coordinate tran-
scriptional and phenotypic diversity. During develop-
ment, inaccessible REs are recognized by pioneer TFs in
a sequence-specific manner, leading to chromatin remo-
delling, which spreads heritable epigenetic information
instructing cell identity. Recent studies have identified
cell type-specific super-enhancers (SEs), defined as geno-
mic regions which positively regulate the expression of
genes that drive cell identity and lineage specificity; they
designate complex REs distinct by high density of TFs
and enhancer marks, common to cell lineage- and
disease-associated genes [7]. Both intrinsic and extrinsic
signals recruit TFs and transcriptional co-activators to
SEs; along with the formation of chromatin multi-loop
hubs, the result is that REs and their target genes are
brought into close proximity. However, how intrinsic and
extrinsic cues converge on enhancer activities to coordinate
cell type- or transitory-gene expression profiles in immune
cells is still not well understood. In this work, we discuss
current advances on the epigenetic and transcriptional reg-
ulatory circuits that promote and restrict immune cell iden-
tity and function. We also propose possible future directions
of investigation aimed at taking advantage of these mecha-
nisms to control immune cell function in health and
autoimmunity.

Epigenetic regulation as a bridge between
the genome and the environment

One of the most relevant aspects of epigenetics is that it
operates as a bridge between genotype and life experi-
ence. Both cell-specific- and environment-related changes
in gene expression patterns can be determined by inherit-
able but reversible modifications of the DNA, histones
and chromatin conformations together with non-coding
RNA [8] (Figure 1). This research field is significantly
improving our understanding of how the environment
shapes our own phenotype along with the phenotype of
our descendants, being potentially transmitted to the fol-
lowing generation.
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Interestingly, some environmental factors are so
robust that even monozygotic twins can be distinguished
through the analysis of their epigenetic traits [9]. Futher-
more, the cell-specific gene expression patterns can be
altered by the environment throughout the life, leading
to phenotypical changes that may either protect or pre-
dispose to several diseases [1].

Certain dietary components can change gene expres-
sion via alterations in DNA methylation and histone
modifications. Indeed, DNA and histones are modified by
writers and erasers, whose activity is regulated by meta-
bolic intermediates [10]. Nutritional composition and
maternal diet contribute to the establishment of the epi-
genetic profile in the foetus that may affect the individual
susceptibility to certain diseases, resulting in potential
long-term consequences in the offspring [11]. Among the
epigenetic modifications, a reduction in DNA methyla-
tion was found on the promoter of the insulin-like
growth factor 2 (IGF2) gene (important for the modula-
tion of foetal development and growth) in famine-
exposed offspring compared to sex-matched controls [12,
13]. In addition, early exposure to famine caused low

birth weight, cardiovascular diseases and low lipoprotein
levels in the offspring [14, 15]. Moreover, maternal mal-
nutrition has been associated with the development of
metabolic diseases in adult offspring. Jousse et al. found a
loss of methyl groups in the promoter of the leptin gene
in adipocytes, corresponding to reduced levels of leptin
mRNA in murine male offspring from mothers exposed
to a low-protein diet during gestation and lactation [16].
Low-protein diet-induced hypomethylation of glucose-
6-phosphatase (G6PC) promoter in piglet male offspring,
together with increased methylation of H3K4 in the
G6PC promoter in the liver. This led to the activation of
the G6PC gene in males and an increased susceptibility
to develop hyperglycaemia and diabetes in adulthood
[17]. During pregnancy, maternal obesity increases the
risk of obesity and metabolic diseases in the progeny. It
has been shown that the offspring of mothers fed a
high-fat diet showed hypermethylation in genes impli-
cated in liver fibrosis and lipid accumulation, such as
ephrin type-B receptor 2 (Ephb2) and fibroblast growth
factor 21 (Fgf21) that could predispose to the develop-
ment of fatty liver disease in the progeny [18].

EPIGENETICS
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Furthermore, epigenetic alterations that change the
chromatin accessibility, resulting in abnormal gene tran-
scription and/or genomic instability, have been proposed
as key regulators of the ageing process, driver of age-
related diseases (Figure 1). With age, the immunocompe-
tence becomes constrained [19] and this associates with
the repression of genes controlling immune cell differen-
tiation along with the hyper-activation of autoimmunity/
inflammation-related genes [20]. In macrophages, epige-
netic mechanisms contribute to the reduced expression of
the major histocompatibility complex (MHC)-II observed
with age; epigenetic alterations also contribute to the
low-grade inflammation associated with resting neutro-
phils due to increased levels of tumour necrosis factor
(TNF)-α and interleukin (IL)-1α [20]. Dozmorov et al.
reported hypomethylated regions showing T-cell-specific
enrichment in active enhancers marked with H3K27Ac
and H3K4me1 in elderly individuals, suggesting a pro-
gressive age-associated shift toward a pro-inflammatory
phenotype that could contribute to the increased fre-
quency of autoimmunity with age [21]. Interestingly,
disease-associated genetic variations often occur within
the SE regions of disease-relevant pathogenic cells [22].
Notably, single nucleotide polymorphisms (SNPs) predis-
posing individuals to autoimmune disorders are clustered
in genomic regions with epigenetic modifications of
active enhancers in T or B lymphocytes. More in detail,
among the 76 SNPs linked to type 1 diabetes (T1D),
67 appear in non-coding sequences, with 13 occurring in
the SEs of T-helper (Th) cell-specific genes. Likewise, in
human subjects with systemic lupus erythematosus
(SLE), the non-coding SNPs occur most frequently in
B-cell super-enhancers, with 22 SNPs in the SEs of genes
controlling B-cell maturation and function [22]. Further-
more, the analysis of exhausted CD8+ T cells in humans
and in mouse model of chronic viral infection has
revealed distinct chromatin accessibility compared to
memory CD8+ T cells. This suggests that CD8+ T cell
exhaustion is supported by a broad remodelling of the
enhancer and TF binding landscape, which features their
distinct differentiation state [23]. Considering that both
intrinsic and external factors modify epigenetic marks
throughout life, a major effort should be dedicated to
clarifying the relation among epigenetics, immune cell
function and immune-related disorders.

Epigenetic control of innate immune cell
function

The epigenetic scenario of innate immune cell regulation
is quite complex. Innate cells work rapidly through the
activation of short-lived transcription programs that are

dependent on dynamic chromatin states [24]. The epige-
netic regulation is crucial for the reprogramming of mac-
rophages, governing the M1/M2 phenotypes [25–27]
through histone modifications [26, 28, 29]. The H3K4-
and H3K36-specific methyltransferase SET and MYND
domain-containing 2 (Smyd2) suppresses Il-6 and Tnf
transcription and MHC-II expression and abolishes
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and extracellular signal-regulated kinase
(ERK) signalling. Moreover, macrophages expressing
high levels of Smyd2 impair Th17 but support regulatory
T (Treg) cell differentiation, leading to TGF-β increase
and IL-6 decrease [30]. M1 polarization is induced by the
silencing of the SOCS1 gene. Over-expression of SOCS1
and ten-eleven translocation methylcytosine dioxy-
genases (TET)2/TET3 and down-regulation of DNMT1
promote LPS- and IFN-γ-induced M1 activation [31–33]
(Figure 2a). SIRT1 and SIRT2, cooperating with
DNMT3b, are activated by macrophage differentiation
and suppressed by the up-regulation of inflammation-
related genes [34]. In lung and pancreatic cancer, HDAC
inhibition modulates the production of nitric oxide
(NO) in tumour associated macrophages (TAMs), leading
to an anti-tumour effect [35]. Indeed, HDAC inhibitors
modulate TAM phenotype and reduce the tumour bur-
den in a murine model of breast cancer [36]. Despite
accumulating evidences on the role of histone modifica-
tions in macrophage polarization, their specific role in
TAM activation needs further exploration. The involve-
ment of DNA methylation in modulating TAM pheno-
type is also still poorly characterized. Moreover,
epigenetic mechanisms regulate macrophage-dependent
tolerance during the exposure to the intestinal micro-
biota. Indeed, short-term stimulation of the pattern rec-
ognition receptor (PRR) NOD2 results in increased H3
and H4 acetylation on the promoters of cytokine-related
genes in macrophages [37]. However, during prolonged
NOD2 stimulation, both the acetylation and cytokine
secretion dramatically decrease. Chronic NOD2 stimula-
tion leads to up-regulation of Twist1 and Twist2 which
bind to the HDAC1 and HDAC3 promoters driving their
expression. HDAC1 and HDAC3 then mediate histone
deacetylation at cytokine-gene promoters and, in turn,
down-regulation of their expression. A similar regulatory
loop was also reported upon chronic stimulation of multi-
ple PRRs [37]. Another important aspect of epigenetics in
profiling macrophage biological functions is the ability of
local environment to shape their own identity [38]. Lavin
et al. demonstrated that tissue-resident macrophages
have distinct enhancer landscapes. More in detail, the
enhancers of the gene encoding the transcription factor
spalt-like transcription factor 1 (Sall1) are active
(H3K4me1 and H3K27ac) only in microglia, while the
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enhancers of GATA Binding Protein 6 (Gata6) gene only
in peritoneal macrophages [39]. Intriguingly, PU.1, the
macrophage lineage-determining TF, can act with other
TFs to organize the chromatin in a cell-type-specific man-
ner and is required for the deposition of H3K4me1 at
macrophage-specific enhancers [40, 41].

Mast cells are tissue-resident immune cells, playing a
key role in allergic disorders and cancer [42, 43]. A hall-
mark feature of mast cells is their high content of cyto-
plasmic secretory granules packed with specific proteases
including tryptase, chymase and carboxypeptidase A3
[44]. It has been shown that during apoptotic mast cell
death, tryptase migrates from the granule compartment
in the cytoplasm to the nucleus. H2A, H3.1 and, to a
lesser extent, H4 are cleaved in their N-terminus into
small fragments, γ-tryptase [45](Figure 2b). Histone mod-
ifications, such as ubiquitination of lysine 119 on histone
H2A (H2AK119Ub), affect mast cell biology and promote
their differentiation [46]. DNA methylation-related pro-
cesses modulate mast cell proliferation and function [47].
Indeed, mast cells lacking TET2 proliferate more than
wild-type cells suggesting that TET2 mutations may pre-
dispose to excessive mast cell proliferation [48]
(Figure 2b). Interestingly, TET2 mutations affect at least
20% of patients with mastocytosis, a clonal proliferative
disorder of mast cells, and correlate with worse overall
survival [49, 50]. By using mast cell lacking DNA

methyltransferase enzyme DNMT3A, Leoni et al. demon-
strated that this enzyme restrains mast cell response to
several stimuli, both in vitro and in vivo [51, 52]. As the
efficiency of the innate response strictly relies on cell dif-
ferentiation, proliferation and activation, epigenetic regu-
lation allows innate cells to modify their phenotype and
resolve the damage. As double edge sword, these mecha-
nisms also contribute to innate cell-related disorders
since aberrant pathways could sustain disease-associated
phenotypes.

Transcriptional memory and trained
immunity

Immunological memory has been traditionally associated
with the adaptive system but also innate immune cells
can become more protective against infections after
encountering pathogens or live attenuated vaccines, a
memory phenotype named ‘trained immunity’ [53]. This
phenomenon is based on two principal mechanisms: the
epigenetic and metabolic reprogramming of innate
immune cells. The priming event of trained immunity is
the epigenetic reprogramming that takes place upon the
first stimulus, involving stable changes allowing enhanced
responsiveness under subsequent stimulation. Therefore,
trained immunity is defined as the entire process of

F I GURE 2 Epigenetic modifications in innate immune cells. Key epigenetic mechanisms (such as methylation/acetylation of DNA and

histones) occurring in innate immune cells are implicated in proliferation, differentiation and trained immunity (a–e). Ac, acetyl; ILC,
innate lymphoid cells; Me, methyl; MHC, major histocompatibility complex; SCF receptor, stem cell factor receptor; Smyd2, SET and MYND

domain containing 2; SOCS1, suppressor of cytokine signalling 1; TET2, Tet methylcytosine dioxygenase 2; TLR, toll-like receptor; TNF,

tumour necrosis factor; Ub, Ubiquitin. Figures have been created with BioRender.com.
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increased responsiveness as a consequence of priming event
supported by epigenetic reprogramming [54, 55].

While the immunological memory of the adaptive
system is based on specific gene recombination, the
enhanced response to secondary stimulations characteris-
tic of trained immunity mostly depends on epigenetic
reprogramming acquired by innate cells during the first
microbial encounter and it is mostly characterized in macro-
phages, although also described in dendritic, natural killer
and innate lymphoid cells (DC, NK and ILCs) [53, 56–58].
As relevant examples, H3K4me3, H3K4me1 and H3K27ac
mark active promoters and distal enhancers, while the
repressive H3K9me3 and H3K27me3 are usually reduced
upon the immune training process [59–62] (Figure 2c–e).

Trained immunity is a peripheral phenomenon aris-
ing at the level of mature tissue-resident myeloid cells,
but it also occurs centrally, at the level of undifferentiated
bone marrow (BM) haematopoietic stem cell progenitors,
which epigenetic reprogramming leads to increased mye-
loid differentiation [63–65]. Central immune training
allows the endurance of the phenotype over several
months, notwithstanding the much shorter myeloid cell
average half-life in circulation [66]. BM-derived macro-
phages from mice trained with Bacillus Calmette-Guérin
(BCG) vaccination show a specific epigenetic fingerprint
including H3K4me3 and H3K27ac which is able to pro-
vide more efficient protection against subsequent Myco-
bacterium tuberculosis infection [65]. A strong indication
of the functional significance of long-term BM repro-
gramming comes from the capability of BM transplanta-
tion to transfer the trained immunity to naïve mice
[64, 65]. In the periphery, training can also lead to
immune suppression. In some circumstances, DCs are
trained to engage higher and epigenetic-dependent
transcriptional activation upon secondary stimulation;
however, lung-resident DCs can acquire a tolerogenic
memory after the resolution of pneumonia and cause
long-term susceptibility to secondary infections [67, 68]
(Figure 2c–e). Similarly, either immune activation or tol-
erance are induced in brain-resident macrophages via
changes in H3K4me1 and H3K27ac, and HDAC1/2
function, with repercussions on cerebral inflammation
and pathological grade in a mouse model of Alzheimer
disease [69, 70]. Epigenetic reprogramming is key also in
modulating NK cell memory and non-antigen-specific
ILC priming and epigenetic changes resembling a trained
phenotype have been also described in monocytes from
allergic children [71–74].

An important aspect of immune training is the inter-
laced regulation of epigenetic reprogramming and meta-
bolic modifications. Epigenetic regulation immediately
impacts the transcription and activates the expression of
metabolic enzymes, such as glycolytic hexokinase and

pyruvate kinase; while metabolic activation is key for dis-
playing full macrophagic function, it is also necessary to
produce the acetyl-CoA, thus providing with the acetyl
used by HATs [59]. Moreover, metabolic intermediates
are directly linked to modulation of histone methylation,
that is, fumarate, and some can function as methyltrans-
ferase cofactors [75–77].

There is epidemiological evidence that BCG
vaccination-dependent trained immunity protects subjects
of different ages from unrelated secondary infections,
including SARS-CoV-2 [78–82]. Recently, Katzmarski et al.
have demonstrated that trained immunity can be transmit-
ted inter- and trans-generationally, with the progeny of
trained mice (i.e., animals surviving an infective event)
showing a more accessible chromatin of BM-resident
granulocyte-monocyte progenitor cells on promoter regions
of genes driving myeloid cell activation [83]. This work has
been the first to demonstrate that infection-dependent epi-
genetic changes can transmit adaptive immune traits in
mammals, but the observation that parental BCG vaccina-
tion associates with higher early-life survival is a very
intriguing suggestion of a human ‘immunological inheri-
tance’ as well [84]. Since infections dramatically impact on
survival, the transgenerational inheritance of epigenetic
marks linked to a better host defence may represent a
strong evolutionary force in times of epidemics. In the
next future, by using animal models of diseases, it will
be important to assess whether the transmission of
monocytic cell epigenetic fingerprint primed to mount
stronger pro-inflammatory responses can also predis-
pose the progeny to dysregulated innate immune
responses and hyper-inflammatory conditions [85].

Epigenetic control of CD4+ T cell fate
commitment

Epigenetic mechanisms drive lymphocyte differentiation
and function in response to specific developmental and
environmental signals [86, 87]. Following antigenic stim-
ulation, naïve T cells proliferate and differentiate into
effector and/or memory subsets, characterized by the
ability to produce specific cytokines; this is sustained and
temporally guided by a coordinate network of epigenetic
modifications [88]. Cytokines released in the microenvi-
ronment during T-cell receptor (TCR) activation are able
to drive a signalling cascade and activate TFs, leading to
CD4+ Th cell polarization. Epigenetic modifications con-
trol chromatin accessibility to lineage-specific master TFs
(e.g.: GATA3, T-box expressed in T cells (T-bet), retinoic
acid-related orphan receptor (ROR)γt, forkhead box P
(Foxp)3) driving CD4+ Th cell fate commitment. Signal
transducer and activator of transcription (STAT)1 signalling
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pathway promotes T-bet expression in IFN-γ-activated
CD4+ T cells. Furthermore, T-bet increases the expression
of IFN-γ and IL-12 receptors in the differentiating Th1 cells.
IL-12 signalling induces STAT4 activation, which binds to
the Ifn-γ promoter and recruits a chromatin remodelling
complex namely Brahma-related gene 1 (BRG1), leading to
nucleosome remodelling and increase of Inf-γ transcription
[89] (Figure 3a). Th1 polarization is also controlled by the
presence of permissive H4 acetylation mark at the Ifn-γ pro-
moter, which increases in activated CD4+ T cells polarized
toward Th1 (under IL-12 and IL-4 stimuli) compared to
Th2 or undifferentiated Th cells. In addition, T-bet also
inhibits the differentiation toward other CD4+ T cell subsets
by repressing their master TFs, such as GATA3 and
RORγt [90].

Activated Th2 cells show an increase of the H3K9ac
and H3K4me3 permissive marks at Il-4, Il-5 and Il-13
gene loci [91]. The accumulation of the repressive histone
mark H3K27me3 inhibits the expression of the Ifn-γ locus
by enhancer of zeste 2 polycomb repressive complex
2 subunit (EZH2), the enzymatic subunits of polycomb-

repressive complex 2 (PRC2) that catalyzes the di- and
tri-methylation of H3K27 [92] (Figure 3b). Moreover, in
Th2 cells, it has been shown that an increase of the
repressive histone modification H3K9me3 at Th1 loci
leads to the silencing of Th1 cell lineage. The H3K9me3
mark is able to recruit the epigenetic reader HP1a, the
major component of the transcriptional repressor com-
plexes leading to Th1 silencing, establishing Th2 lineage
stability [93]. Genome-wide analysis of H3K4me1 and
p300 enhancer signature in Th1 and Th2 cells revealed a
functional role for STATs proteins. It has been demon-
strated that STAT6 plays a major role in p300 binding
and H3K4me1 mark deposition in Th2 cells, while
STAT1 and STAT4 generate active enhancer landscape in
Th1 cells. These results highlight a central role of STATs
proteins as environmental sensors, remodelling enhancer
activity in differentiated Th cells [94].

TGF-β, IL-6, IL-21 and IL-23 are essential for naïve
CD4+ T cell differentiation into Th17 cells. TGF-β acti-
vates the small mother against decapentaplegic (Smad)
signalling pathway, whereas IL-6 induces the activation
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of STAT3 that binds the Il-17 promoter leading to an
increase of the H3K4me3 permissive mark at the Il-17
locus [95, 96] (Figure 3c). The deposition of either per-
missive or repressive histone marks also concerns the
specific gene loci that regulate the expression of IL-21,
another Th17-distinctive cytokine [86]. Th17 differentia-
tion is carried out by the master TF RORγt, necessary
and sufficient to induce Il-17a expression [97]. Jiang et al.
demonstrated that the Tripartite motif containing
28 (TRIM28) expression in Th17 cells is required for the
production of specific Th17 cytokines. Indeed, the bind-
ing of TRIM28 is accompanied by H3K4me3 and DNA
hydroxyl-methylation (5hmc) at specific Th17 cell-related
genes (Il-17/Il-17f, Il-21, RORc, RORα, basic leucine zipper
ATF-like transcription factor [Batf] and Irf4) and IL-6/
STAT3 signalling facilitates TRIM28 binding to the
Il-17-Il-17f locus through the induction of permissive epi-
genetic events [86] (Figure 3c). Moreover, TRIM28 binds
STAT3 and RORγt promoting the recruitment of RORγt
to its target cytokine genes [98].

The epigenetic mechanisms underlying the specificity
and plasticity of CD4+ Th cells are quite complex. Global
mapping of H3K4me3 and H3K27me3 revealed a more
complicated network in the lineage commitment of T-
helper cell subsets. Wei et al. demonstrated that, while
the signature-cytokines loci have a precise epigenetic
mark identifying the specific CD4+ Th subset, none of
the TFs ‘master regulator’ of the lineage commitment
has a defined signature. Indeed, the TF loci show a
‘poised’ state with both H3K4me3 and H3K27me3
marks, underlying some degree of plasticity and suggest-
ing a more dynamic regulation of naïve CD4+ Th cell dif-
ferentiation [99]. The complex network of molecular
mechanisms described above clearly corroborates the
dominant role of epigenetics in shaping CD4+ Th cell
lineage fate.

Control of gene expression by epigenetic modifica-
tions seems to play an essential role also in the develop-
ment of cytokine-skewed T-follicular helper (Tfh) cells.
For instance, STAT4 transduces signals from the IL-12
receptor and controls permissive H3K36me3 and
H3K4me3 modifications that regulate gene loci important
in Th1 and Tfh cell differentiation (i.e., Bcl6, Pdcd1, and
Il-21) [100]. Moreover, Tfh1 cell differentiation, driven by
IL-12, occurs through the phosphorylation of STAT1 and
STAT4 proteins involved in the suppression of the his-
tone repressive mark H3K27me3 on the Tbx21 and Bcl6
gene loci [101, 102] (Figure 3d). This determines IL-12-
driven expression of Tfh cell-associated genes, such as
ICOS and Bcl-6 [102]. In addition, STAT3, which trans-
duces signals from the IL-6 receptor, also regulates the
commitment of CD4+ T cells to either a Tfh1 or Th1 phe-
notype by regulating T-bet expression [103]. Tfh cells

coproducing IL-17 in addition to IL-21, termed Tfh17
cells, have been described in mice and shown to share
many characteristics of Th17 cells, in that their differenti-
ation is dependent on RORγt, as well as on receptor
ligation via IL-6, IL-21 and TGF-β and to expand in
response to IL-23 [97, 104–108]. c-Maf, important in the
induction of both ICOS and Bcl-6, leads to co-expression
of IL-17 and IL-21 [104, 109, 110]. Since disrupted T-cell
fate commitment is involved in a variety of pathological
conditions, such as autoimmune and allergic disorders,
future studies on the epigenetic mechanisms driving T-
cell differentiation and function will contribute to the
understanding of these diseases supporting the develop-
ment of novel therapeutic strategies.

Epigenetic signature locks up immune
tolerance through Foxp3

Foxp3 is essential for the generation and function of Treg
cells, the CD4+ T cell subset that restrains improper and
hazardous immune responses toward the self [111].
Foxp3+ Treg cells are either produced in the thymus (thy-
mus-derived Treg, tTreg cells) or induced in the periph-
ery (peripheral-derived Treg, pTreg cells) from
conventional T (Tconv) cells. The establishment of the
Treg cell-specific epigenetic pattern occurs before and
does not depend on Foxp3 expression at early stages of
tTreg cell generation [7, 112]. The Foxp3 locus contains
conserved non-coding sequences (CNSs) acting as key
functional enhancers for the induction and stabilization
of Foxp3 expression (Figure 3e). Genetic deletion studies
have shown that CNS3 and CNS1 control the induction
of Foxp3 in the thymus and in the periphery, respectively
[113]. Foxp3 transcription is initiated after thymic
CD4-single positive T cells receive strong and persistent
TCR stimulation as well as CD28, IL-2 and TGF-β signals.
In addition to the binding of NF-κB (c-Rel) to CNS3, the
Foxp3 promoter is bound by TCR-induced TFs, such as
nuclear factor of activated T-cells (NFAT), activator pro-
tein 1 (AP-1) and nuclear receptor subfamily (Nr4a).
CNS1 contains the TGF-β-response element, which acti-
vates Foxp3 transcription in a TGF-β- and TCR-
dependent fashion during pTreg cell generation [113].
The recently identified Foxp3 enhancer region (CNS0)
contributes to the induction of Foxp3 both in the thymus
and in the periphery, through specific changes in chro-
matin conformation and gene looping. Located upstream
of the transcription start site, it binds the HMT KMT2D
(also known as MLL4) which increases the H3K27me1,
distinctive of primed and active enhancers. Moreover,
other TFs, such as the genome organizer Satb1, the non-
canonical BAF chromatin-modifying complex component
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BRD9 and STAT5 also bind CNS0; through chromatin
looping, TCR-induced TFs may interact with the distal
enhancers to form a Foxp3-inducing enhanceosome
[114]. In addition, CNS0- and CNS3-double deletion
almost completely abrogates tTreg and pTreg cell devel-
opment due to decreased stability of Foxp3 gene [115].

The demethylation of CpG islands in Treg cell-
specific demethylation region (TSDR) of mouse and
human effector Treg cells associates with stable Foxp3
expression. This region is contained in the CNS2 and,
when demethylated, is bound by Foxp3, RUNX1-core
binding factor (CBF)-β and STAT5. Intriguingly, CNS2
demethylation begins after Foxp3 transcription has
started and Foxp3 itself may concur to this DNA demeth-
ylation process. Indeed, after several cell divisions,
CNS2-deficient Treg cells lose Foxp3, indicating CNS2
importance for its maintenance [115]. This process
underlines two regulatory checkpoints in Treg cell differ-
entiation and stability: the initial transcriptional activa-
tion of Foxp3 and the subsequent CNS2 demethylation,
required to establish faithful epigenetic memory of Foxp3
expression and secure Treg cell lineage commitment. In
addition, through the binding of STAT5 to CNS2, IL-2
signalling may strengthen Foxp3 transcription [113]
(Figure 3e). However, Foxp3 expression can be tuned in
response to different environmental cues, particularly in
conditions of limiting extracellular IL-2 or glucose avail-
ability. Indeed, IL-2 shows two mechanisms of enhancing
Foxp3 expression: via the activation of the CNS2
enhancer and via the repression of the Foxp3 long inter-
genic noncoding RNA (Flicr), which modifies chromatin
accessibility in the CNS3 region and negatively tunes
Foxp3 expression [116]. Furthermore, the binding of the
glycolytic enzyme enolase-1/myc-binding protein-1
(ENO-1/MBP-1) to Foxp3 promoter and CNS2 during gly-
colysis inhibition has been shown to determine its tran-
scriptional repression during iTreg cell generation [117]
(Figure 3e).

Overall, despite the well-known epigenetic regulation
at the Foxp3 locus, the underlying mechanisms that regu-
late the stability of the Treg cell pool remain unclear, par-
ticularly the role of DNA methylation in sealing their
fate. Recently, the epigenetic regulator ubiquitin-like
with plant homeodomain and RING finger domains
1 (Uhrf1), which regulates de novo DNA methylation via
the recruitment of DNMT3a and DNMT3b, has been
shown to control the maintenance of DNA methylation
at inflammatory gene loci, essential for stabilizing the
identity and suppressive function of mature Treg cells.
Indeed, despite preserving Foxp3 expression and methyl-
ation pattern, Foxp3+ Treg cells from Uhrf1 chimeric
knockout mice exhibit down-regulation of genes associ-
ated with Treg-suppressive function [118]. In all, the

summarized evidence from the literature underlines how
sophisticated is the epigenetic control of Foxp3 in the
complex scenario that governs T cell fate, from the thy-
mus to the acquired regulation in the periphery.

T regulatory cell plasticity as novel
regulator of immune tolerance

There is increasing evidence that the loss of Foxp3 is the
molecular driver of Treg cell plasticity, defined as the atti-
tude to convert into potentially pro-inflammatory Th cell
subsets. At the same time, Foxp3 expression is sufficient
to completely reprogram T cells from a pro-inflammatory
to a suppressive phenotype. Indeed, thanks to its coopera-
tive interaction with TFs that affect gene expression
through chromatin modification, Foxp3 alters the expres-
sion of genes encoding for pro-inflammatory cytokines
and Th-lineage TFs. Indeed, it interacts with NFAT,
Eosinophilia familial (Eos), acute myeloid leukaemia
1 protein (AML1), GATA-3, RORγt as well as with chro-
matin modifiers such as the class II HDAC7-9 and the
HAT tat-interactive protein (TIP)-60 [119]. In humans,
Foxp3 gene encodes for different splicing variants. The
full-length (Foxp3fl) transcript and those lacking the
region encoded by exon 2 (Foxp3Δ2) are the most abun-
dant isoforms, while forms lacking the region encoded by
exon 7 (Foxp3Δ7 and Foxp3Δ2Δ7) are less frequent
[120]. Despite their role has not been completely
addressed, it is evident that Foxp3 interaction with spe-
cific cofactors is affected when the splicing event impairs
the relative binding domain. Indeed, the Foxp3 exon2
(Foxp3E2) encodes the protein domain responsible for
the binding to RORα and RORγt; as a consequence,
Foxp3Δ2 does not confer proper suppressive ability to
Treg cells [121]. Similarly, loss of the exon7 (E7), encod-
ing part of the leucine-zipper domain, alters homo- and
hetero-association of Foxp3 and its DNA binding [122].
In addition, the different Foxp3 domains fulfil discernible
functions in gene regulation. More in detail, most
Foxp3-regulated genes are affected by loss of the proline-
rich (ProR) domain involved in the recruitment of class I
HDACs to Foxp3 target genes, such as Il-2 and Ifnγ,
where deacetylation establishes silent chromatin during
Treg cell fate commitment. The regulatory mechanism of
the ProR domain involves the subdomain encoded by
exon 1 and the four amino-acid motifs within exon
2 (m4.2) [119]. Treg cells that have lost Foxp3
expression—hence defined ‘ex-Foxp3’—mostly convert
into Th2-like cells upon in vitro stimulation under non-
polarizing conditions, as they overexpress several
Th2-specific genes, such as Il-4, Il-5 and Il-13, the tran-
scription factor GATA3 and the surface receptor G
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protein-coupled receptor (GPR)44. Multiple studies have
suggested that, during infection, exposure of Treg cells to
pro-inflammatory cytokines (such as TGF-β and IL-6)
drives Foxp3 loss and conversion into Th17-like effector
cells, to facilitate appropriate immune responsiveness.
On the contrary, the molecular mechanism governing
Treg cell resilience to inflammation-induced Foxp3 desta-
bilization remains elusive. Intriguingly, Li et al. identified
methyl-CpG binding protein 2 (MeCP2) as a crucial
player in the epigenetic machinery that confers Treg cell
stability during inflammation. Indeed, MeCP2 is specifi-
cally recruited to the CNS2 region, where it collaborates
with cAMP responsive element binding protein 1 (Cpb1)
to promote H3ac, thereby counteracting inflammation-
induced epigenetic silencing of Foxp3 [123]. However, an
important aspect that needs to be considered is the pres-
ence of non-suppressive Foxp3+ T cells in the immune
system and loss of Foxp3 in Treg cells under certain con-
ditions; therefore, functional Treg cells can be more accu-
rately defined as the T cell subset holding the Treg-cell
type epigenome, rather than Foxp3 alone. This
epigenome-based definition of Treg cells would enable
better understanding of functional stability, plasticity,
and heterogeneity of Treg cells, in both physiological and
pathological conditions.

Epigenetic mechanisms underlying CD8+

T cell functions

Transcriptional and epigenetic regulation has been
described as a major actor in early CD8+ effector and
memory cell fate decisions. While DNMT3a knockout
CD8+ T cells maintain their effector function, there is a
strong increase in the development of memory precur-
sors; this is secondary to the ineffective repression of the
transcription factor T-cell factor 1 (Tcf1) due to the lack
of DNMT3a binding to the Tcf1 promoter (Figure 4a).
Therefore, DNMT3a is considered a decisive regulator
that fine-tunes early effector/or memory fate decisions
[124]. It is worth noticing that CD8+ cytotoxic T cells ter-
minate CD4 transcription by up-regulating RUNX3,
which binds the identical cis-element as RUNX1. Verbaro
et al. demonstrated that the HMT G9a is required for
CD8+ T cell development in non-inflammatory condi-
tions. Indeed, it interacts with RUNX3 leading to the
silencing of genes involved in Th cell commitment; the
deletion of G9a in T cells is able to reactivate the expres-
sion of several genes implicated in CD4+ T cell lineage
decision [125] (Figure 4a). Moreover, Tsao et al. evalu-
ated the transcriptome and epigenome of differentiating
CD8+ T cells in mice, highlighting the central role of
BATF. Through genome-scale profiling, they observed

that BATF induces transcriptional changes in stimulated
naïve cells and establishes the effector cell transcriptional
and epigenetic program through the cooperation with a
network of TFs (Irf4, RUNX3 and T-bet) [126]. The HMT
SUV39h is responsible for H3K9me3, driving transcrip-
tional silencing [127]. Together with SUV39h, PRC2 is
induced during CD8+ T cell activation, leading to repres-
sion and regulation of effector/memory differentiation.
Since SUV39h1 plays a critical role in the establishment
of the chromatin marks that silence stem/memory genes
during CD8+ T effector differentiation, SUV39h1-
defective cells show increased long-term memory repro-
gramming capacity [128] (Figure 4b). Recently, the pro-
tein arginine methyltransferase-1 (PRMT1) has been
shown to epigenetically control and enhance CD8+ T cell
polyfunctionality, as the ability to produce IL-2. PRMT1
determines an increase of the permissive transcription
marker H4K3me2 at the Il-2 promoter following
Wingless-related integration site (Wnt) activation [129].
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TCR MHC-I TCR MHC-I

(a) (b)
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Tcf1

Me

Stem memory
genesTh genes

G9aDNMT3a

Runx3

F I GURE 4 Epigenetic modifications in effector/memory

CD8+ cells. Epigenetic events that regulate effector (a) and memory

(b) CD8+ cells. DNMT, DNA methyltransferase; G9a, G9a

methyltransferase; Me, methyl; MHC, major histocompatibility

complex; PRC2, polycomb repressive complex 2; RUNX, Runt-

related transcription factor; Tcf1, T-cell factor 1; TCR, T-cell

receptor. Figures have been created with BioRender.com.
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In all, these data underline the contribution of the epige-
netic changes in the regulation of CD8+ effector/memory
differentiation.

Epigenetic control of B cell activation

Naïve B cells display an inactive epigenetic profile char-
acterized by a genome-wide DNA hypermethylation and
histone deacetylation [130], except for B-cell lineage
genes, such as CD19, Pax5, Ebf1 and Spib, appearing in
an active epigenetic state [131]. B-cell activation, occur-
ring through the B-cell receptor (BCR) and the binding of
the Toll-like receptor (TLR) to antigenic epitopes and
pathogen-associated molecular patterns (PAMPs), leads
to the induction of H3K4me3, H3K9ac and H3K14ac to
the promoter regions of activation-induced cytidine deam-
inase (AID), involved in DNA methylation dynamics of
the germinal centre (GC) B cells [132, 133](Figure 5a).
Epigenetic modifications have also been considered cru-
cial during immunoglobulin (Ig) class switch DNA
recombination and somatic hypermutation, through a
CREB binding protein (CREBBP)- and AID-dependent
mechanism [134, 135]. Plasma cells display a transcrip-
tional signature distinct from that of B cells, due to the
acquisition of permissive histone modifications, including

H3K4me1 and H3K4me4 in active promoters and distal
enhancers [136, 137]. Overexpression of Blimp-1
(encoded by Prdm1) in peripheral mature B cells pro-
motes antibody production, whereas Blimp-1-specific
deletion in plasma cells leads to the loss of antibody pro-
duction despite the retention of the plasma cell-related
transcriptional markers [138]. Blimp-1 is a transcriptional
repressor with a DNA-binding activity conferred by five
zinc-finger motifs and requires the association with his-
tone deacetylases and hGroucho to induce transcriptional
repression [139–141]. The differentiation of activated B
cells into plasma cells requires coordinated changes in
the expression of many genes, including the silencing of
B cell-associated transcripts encoding the TFs Pax5,
Bach2 and Bcl-6, and the activation of a plethora of
plasma cell-specific genes [136, 142]. In activated B cells,
Bcl-6, metastasis-associated 1 family member (MTA)3,
Pax5 and microphthalmia-associated transcription factor
(MITF) are important to repress plasma cell formation.
On the contrary, in plasma cells, Bcl-6, MTA3, Pax5 and
MITF are repressed by the coordinated action of Blimp1,
X-box-binding protein (XBP)1 and IRF4, leading to the
silencing of the B-cell gene-expression program [142,
143]. In particular, Blimp-1 induces histone deacetylation
in the promoter regions of Bcl6, Pax5 and Spib genes
allowing a low histone acetylation levels in plasma cells
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together with a decreased c-Myc expression [139]
(Figure 5b). Furthermore, Blimp-1 has been found to
bind to H3K9MT G9a, driving its recruitment to the pro-
moter regions of Spib and Pax5, leading to gene silencing
[144]. Histone modifications affect the hallmark genes of
memory B cells, such as CD38 in mouse and CD27 in
human [135, 145]. Quiescent memory B cells display
reduced lysine methylation levels compared with active
memory B cells [146]. EZH2, which catalyses H3K27me3,
is highly expressed in human GC B cells, where it
represses Blimp1 and Irf4 expression to constrain termi-
nal B-cell differentiation induced by IL-21 (Figure 5c).
Through the chromatin silencing at these gene loci,
EZH2 ensures the persistence of B cells in the GC reac-
tion, enabling the generation of high-affinity antibodies
and memory B cells. The inhibition of EZH2 in murine
GC B cells causes a profound impairment of memory B
cell formation and dramatically affects humoral immu-
nity [147].

The epigenetic code of autoimmune
disorders

Loss of immune tolerance in autoimmune disorders does
not seem to be triggered by specific genetic mechanisms,
although they can confer susceptibility to those diseases
[148]. As described above, the dynamic control of the
chromatin conformation plays a key role in the regula-
tion of lymphocyte commitment and functionality, and
therefore impacts on the induction of the autoimmune
attack [149]. Recent studies have demonstrated that epi-
genetic changes may be crucial in clinical manifestations
of autoimmune diseases such as SLE, systemic sclerosis
(SSc), multiple sclerosis (MS), rheumatoid arthritis (RA),
Sjogren’s syndrome (SS), autoimmune thyroid disease
(AITD) and type 1 diabetes (T1D); this is also confirmed
by the discordant onset rate in monozygotic twins
[150–154]. Several epigenetic drugs (Epidrugs), like
HDAC or DNMT inhibitors (HDACi or DNMTi, respec-
tively), are now under investigations as promising thera-
peutic tools in autoimmunity, also in combination with
other pharmacological agents [155, 156] (Table 1).

In SLE, the hypomethylation of genes, such as
CD11a, perforin, CD70 and CD40L, seems to contribute
to their overexpression that drives CD4+ T cell autoreac-
tivity [157, 158] and treatment with DNMTi has been
shown to induce a lupus-like syndrome in a murine
model [159–161]. Again, H3 modifications appear to be
prevalent in SLE patients as testified by the augmented
levels of H3K27me3 and H3 hypoacetylation in CD4+ T
cells that correlate with active disease [157, 162], revers-
ible by administration of HDACi such as trichostatin A

(TSA) [163] (Table 1). An unbalance of histone acetylase/
deacetylase activity has been reported by Huber et al. also
in synovial tissues of patients with RA [164]. Histone
modifications are also involved in the process of angio-
genesis, of paramount importance in the maintenance of
synovial tissue inflammation, as testified by the therapeu-
tic effect of an HDACi—FK228—occurring through the
down-regulation of specific angiogenic-related factors,
namely Hypoxia-induced factor-1α (HIF-1 α) and Vascu-
lar Endothelial Growth Factor (VEGF) [165]. Lastly,
another HDACi—Largazole—has been shown to reduce
the expression of intracellular adhesion molecule-1 (ICAM-
1) and the vascular adhesion molecule-1 (VCAM-1) which
control leukocyte migration to the inflammatory joints
[166] (Table 1). The effect of HDAC1i has been confirmed
in juvenile idiopathic arthritis, in which HDAC1i—Givino-
stat—improves the clinical picture with an excellent safety
profile and, thus, supports the contribution of histone modi-
fication to the onset of inflammation in this autoimmune
disorder [167].

In patients with SSc, DNMT downregulation has been
reported to support the overexpression of several genes
involved in disease progression, such as CD40L, CD11a
and CD70 [168–170]. Moreover, hypomethylation of the
type I IFN signalling pathway-associated genes, such as
myxoma resistance protein (MX)1, interferon-induced pro-
tein 44 like (IFI44L), Poly (ADP-Ribose) polymerase
(PARP), STAT1 and ubiquitin-specific peptidase (USP)8,
has been reported in both CD4+ and CD8+ T cells of SSc
patients [171]. Furthermore, reduced acetylation levels in
both H3 and H4 of SSc fibroblasts have been demon-
strated [172, 173]. Treatment with TSA seems to reduce
fibrosis and collagen expression in SSc fibroblasts cul-
tured in vitro [174]. Recently, the evolutionarily con-
served Wnt pathway, which regulates crucial aspects of
cell fate determination during embryogenesis, has also
been reported to increase skin fibrosis in SSc patients via
epigenetic dysregulation; treatment with 5-azacitidine
(5-Aza) abolishes the fibrotic phenotype [175–177]. Note-
worthy, in peripheral blood cells of SS patients, the same
hypomethylation of the type I IFN signalling pathway-
associated genes is coupled with hypermethylation of
RUNX1 and Foxp3 genes, important in the control of
Treg cell generation and function [178, 179] (Table 1).

Recent studies have highlighted the correlation
between the hypomethylation of specific genes and the
pathogenesis of MS. For example, the peptidyl arginine
deiminase (PAD) promoter types II and IV, involved in
the process of citrullination of the basic myelin protein
(MBP); the Il-17a promoter that correlates with increased
numbers of Th17 cells; the HLA-DRB1 locus and several
genes involved in oxidative stress, hippocampal atrophy
and neuronal differentiation [180–182]. Moreover,
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hypermethylation of the Foxp3 promoter has been
described in experimental autoimmune encephalomyeli-
tis (EAE) mice [183] (Table 1).

Finally, a global DNA hypomethylation has been
reported in AITD, due to genetic polymorphisms of
regulatory genes, such as DNMT1 or methionine synthase
reductase (MTRR) [184]. In addition, Graves’ disease
(GD) patients show elevated levels of H3K4me3 and
H3K27Ac in CD4+ and CD8+ T cells [185]. In T1D patients,
Foxp3 hypermethylation in CD4+ T cells results in its
reduced expression and altered Treg cell generation [186].
Furthermore, high levels of H3K9me2 in the cytotoxic T-
lymphocyte antigen 4 (CTLA4) promoter have been reported
during T-cell activation [187]. Finally, recent evidence exists
that the use of TSA in mice may protect from T1D through
the epigenetic modulation of Foxp3, Il-22 and Il-23 in the
pancreas and of genes encoding for Il-4, Il-18, Il-23 and Il-
27p28 in splenic lymphocytes [188] (Table 1).

In addition to the epigenetic modifications of specific
target genes, their regulation also involves dynamic com-
munication between promoters and several distant
enhancers allowing a reliable transfer of regulatory infor-
mation over distance. As reported in a recent study based
on a new approach for fine mapping causal genetic
variants for 21 autoimmune disorders, most of causal
determinants are represented by a very specific subset of
enhancers involved in T-cell stimulation [189]. Mumbach

et al. used the histone modification correlating with
active enhancers and promoters (H3K27ac) as a bait in
their recently developed HiChIP method, to map pro-
tein–centric chromatin interactions. In this way, they
were able to obtain high-resolution maps of enhancer–
promoter contacts in primary naïve CD4+, Treg and
Th17 cells; they identified several chromatin loops shared
by all three cell types with the 91% of the loop anchors
associated with either an enhancer or a promoter. They
found that most of disease-associated enhancers are able
to contact other genes beyond the nearest in the genome,
increasing the number of potential target genes for auto-
immune and cardiovascular diseases [190].

Taken together, these findings underline how
defects in the epigenetic control of immune cell func-
tion can concur to autoimmune disease pathogenesis
and progression.

CONCLUDING REMARKS

Healthy immunity relies on the immune cell ability to
finely tune in a constantly changing environment. This
ability is guaranteed by the functional diversity of the dif-
ferentiated immune cells and by their high level of plas-
ticity, considered as the capacity to adapt to the
extracellular milieu. Nonetheless, either failure to adapt

TAB L E 1 Autoimmune disorders and the underlying epigenetic alterations, with reference to their target genes or cell types and the

epigenetic drugs (epidrugs) mitigating their phenotypes, as reviewed in the text

Autoimmune
disorder

Epigenetic
alteration Target/cell type Epidrug References

SLE DNA methylation ITGAL; PRF1; TNFSF5; TNFSF7 5-azacytidine,
procainamide,
hydralazine

[158, 191, 192]

Histone modification T cells Trichostatin A [163, 193, 194]

RA Histone modification Synovial fibroblasts and T cells Givinostat [167, 195]

HIF1α and VEGF in synovial fibroblasts
TNF-α pathway in synovial fibroblasts

FK228
Largazole

[165]
[166]

SSc DNA methylation CD40L; CD11a; CD70
Wnt pathway
MX1; IFI44L; PARP; STAT1; IFI44L; USP8

5-azacytidine [171, 176, 177]

Histone modification Fibroblasts Trichostatin A [174]

SS DNA methylation MX1; IFI44L; PARP; STAT1; FI44L; USP8; RUNX1;
Foxp3; PAD2; PAD4; Il-17A

5-azacytidine [178, 196]

MS DNA methylation HLA-DRB1; ARSB; KCTD11; Foxp3 [180–183]

AITD DNA methylation T cells [184]

GD Histone modification T cells [185]

T1D DNA methylation Foxp3; Il-4; Il-18; Il-22; Il-23; Il-27p28 Trichostatin A [188]

Abbreviations: AITD, autoimmune thyroid disease; GD, Graves’ disease; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus;
SS, Sjogren’s syndrome; SSc, systemic sclerosis; T1D, type 1 diabetes.
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or loss of cell homeostasis can trigger an exaggerated
immune response supporting the development of
immune-related disorders. This research field has signifi-
cantly advanced through the knowledge that epigenetic
mechanisms support cell diversification while maintain-
ing immune system integrity. Moreover, what is now
emerging is that epigenetic mechanisms, already thought
to dictate the memory of the environmental stimuli, may
also contribute to the persistence of disease-associated
phenotypes. It seems reasonable to attenuate pro-
inflammatory responses by pharmacological ‘removal’ of
the diseased-epigenetic modification, followed by restora-
tion of the healthy gene expression pattern. In this con-
text, several epidrugs are now under investigation to
restore immune tolerance, as promising tools for future
clinical trials in human autoimmune disorders. The com-
plete understanding of the epigenetic underpinnings dur-
ing immune cell differentiation and acquisition of cell
stability will shed more light into their pathological dys-
regulation and help to delineate novel therapeutic strate-
gies to halt immune disorders.
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