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Abstract:   

We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width 

superconducting mesoscopic rings with input and output stubs and in patterned films. The transmission model explaining 

the sinusoidal oscillation of magnetoresistance is extended to address the parabolic background as a function of the magnetic 

field. Apart from the interference mechanism activated by the ring, pinned superconducting vortices as topological defects 

introduce a further interference-based distribution of supercurrents that affects, in turn, the voltmeter-sensed quasiparticles. 

The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full 

magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced 

by both the ring with its doubly-connected topology and the vortex lattice in it. 

 

In a superconducting state, vortices may nucleate to compensate the onset of supercurrents stimulated by 

magnetic fields  [1]. Vortices are quantized excitations composed by supercurrents swirling around single flux 

lines piercing a “normal” region of the superconductor. These topological defects are stiff and extended in 

size  [2]  [3]  [4]  [5] [6] [7] and affect the path and the phase evolution of coherent Cooper pairs [8].  

Measurements of Magnetoresistance Oscillations (MROs) are references to investigate vortex dynamics and 

their influence on the transport. In these acquisitions, the oscillation of resistance 𝑅 is usually discussed in 

terms of the relaxation of supercurrents induced by the onset of successive nucleation of 

vortices [9] [10]  [11]  [12] occurring at discrete values of the magnetic field. 

The growth of investigations on quantized excitations in superconducting mesoscopic systems is 

persistent  [13] [14] [15] [16], either in shape of simple rings  [17] or in combination with semiconducting 

nanostructures as building blocks for “robust” quantum bits  [18]  [19]  [20].  

However, though MROs  [21]  [22] [23] [24] [25] [26]  [27] [28]  [29]  [30] [31]  [32] [33] are recognized as 

quantum interference effects, the argument deserves further investigations, especially from the 

phenomenological point of view. In particular, the role of vortices as a source of a topological phase has not 

been directly connected with the change of measured differential voltage yet.  

Quantum interference in both normal and superconducting mesoscopic rings is inherently dependent on 

geometrical phases gained during the electron transport  [34]. The interference shows up through the sinusoidal 

oscillation of the resistance that −for superconducting samples− is usually superimposed on a parabolic 

background (PB)  [35]  [36]. The origin of the PB is attributed to the growth of supercurrents [37]  [38]  [39], 

but a dedicated discussion of the way vortex supercurrents affect the onset of the PB is still missing in literature.  

In this Letter, we address the latter issue by focusing on the origin of the PB of MROs measured in various 

types of rings  [36]  [40]  [41] and patterned films  [42]  [43] [44].   

Recently, aiming to derive a model of the MROs in both low and high critical temperature superconductors, 

we have proposed a reliable approach based on the Ginzburg-Landau theory [45] connecting quantum 
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interference to the onset of the sinusoidal constituent in MROs. Despite previous considerations  [40], the 

interference mechanism affects the dependence of the wave functions of the transmitted particles on spatial 

coordinates, rather than their density. Both the densities 𝑛𝑠 of Cooper pairs (CPs) and thermally 

activated  [46]  [47] quasiparticles (QPs), realize the mixture of transmitted particles and depend on 𝑇 only, 

while the interference-induced sinusoidal voltage Δ𝑉𝑖𝑛𝑡(𝑇, 𝐵) = 𝑅(𝑇)Δ𝐼𝑞𝑝(𝑇, 𝐵) (see Supporting 

Information) relies on the variation of the sensed QP charge. Here, the measured zero-bias resistance at 𝐵 = 0 

is 𝑅(𝑇). We will apply the same model to address the PB by the onset of vortices affecting the topology of the 

sample as further ring-like objects.  

A sketch of a typical mesoscopic ring is represented in Fig. 1, indicating the input and output stubs, through 

which the voltage across the ring is measured. A magnetoresistance (MR) is acquired in proximity of the 

critical temperature 𝑇𝑐, when the current−voltage characteristic (𝐼𝑉) displays a zero-bias resistance due to the 

thermal activation of phase slips (TAPS)  [48] (see Fig. 2(d) in  [45]) . Usually, to acquire a MR, an AC probe 

current 𝐼𝑥 is injected and a lock-in amplifier measures the voltage across the ring as a function of 𝐵.  

The sinusoidal oscillation in MR has been addressed in terms of the order parameter Ψ̃𝑟 of a finite-size ring 

defined by the inner/outer radius (𝑟𝑖/𝑜). Ψ̃𝑟 depends on the density of the dia- and paramagnetic supercurrents, 

distribution of which over the ring’s surface oscillates to fulfill the fluxoid quantization (FQ) condition.   

 

 

Figure 1: Sketch of a mesoscopic ring. Input/output voltage and current leads are indicated. The shadowed 
areas near the voltage leads are the voltage sensitive areas.  

Once the order parameter of the ring is defined, we can evaluate the change in geometrical phase according to 

the transmission equation  [45] 

       Ψ̃𝑜𝑢𝑡,𝑟𝑖𝑛𝑔 = 𝑇(Φ𝑟) Ψ̃𝑖𝑛,𝑟𝑖𝑛𝑔,                                                                (1) 

where 𝑇(Φ𝑟) = (−1)𝑛 cos (𝜋
Φ𝑟

Φ0
), 𝑛 is the winding number and Φ𝑟 = 𝐵𝜋𝑟𝑎𝑣𝑔

2  with 𝑟𝑎𝑣𝑔 the average radius of 

the ring. Information on the change of the transmitted supercurrent density is obtained using the equation 

                                                                𝑱𝑠 =
𝑒 ℏ

𝑖 𝑚∗ {Ψ̃∗𝜵Ψ̃ − Ψ̃𝜵Ψ̃∗} −
2 𝑒2|Ψ̃|

2

𝑚∗ 𝑨,                                              (2)       

where 𝑒 is the electronic charge, 𝑚∗ is the effective mass of a single electron and 𝑨 = 𝛁 × 𝑩 is the vector 

potential of the magnetic field piercing the sample. Substitution of eq. (1) in eq. (2) yields 

                                                                           𝑱𝑠,𝑜𝑢𝑡 = 𝑇2(Φ𝑟) 𝑱𝑠,𝑖𝑛.                                                             (3) 
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The change of the transmitted current density must comply with the conservation of the injected probe current 

𝐼𝑖𝑛 = 𝐼𝑜𝑢𝑡, so that eq. (3) refers to a change in the spatial density of CPs.  

Thermally activated QPs propagate through the domains of the sample where 𝐽𝑠 = 0  [45] separating the 

regions of dia- and paramagnetic supercurrents. Thus, supercurrent dynamics also affect the QP spatial density 

that results in the component of current sensed by voltmeter revealing the interference mechanism. 

As previously discussed [45], 𝐵 stimulates the onset of supercurrents increasing with 𝑛𝑠 till a certain critical 

value 𝑛𝑐1
 triggers the onset of vortices  [2] [49] [50].  

Geometry, including the sizes, of the sample strongly affects the vortex supercurrents, especially because of 

the crowding effects  [51] stimulating vortices to nucleate from interconnections between stubs and each of 

the voltage leads as well as the ring. Yet, confinement and vortex stiffness determine a nonlocal  [7]  [52] 

dynamics because local distribution of vortices relies on their motion all over the mesoscopic sample. The 

onset of dia- and paramagnetic supercurrents  [53] along with antivortices [54] make the vortex matter and, 

consequently, the read out of QP density in each voltage lead very complicated (Fig. 2(a)). 

We tackle this problem by defining an average order parameter of the sample realized through the factorization 

of the swirling supercurrents in the ring Ψ̃𝑟 and the vortex supercurrents Ψ̃𝑉 (Fig. 2(b)) as shown in the equation 

 

 

 

Figure 2: (a) Scheme of supercurrents flowing in the sample in the presence of vortices. (b) A simplified vortex 
supercurrent pattern realized by sampling the real distribution by a series of swirling supercurrents at the 
nanoscale. (c) Reduction of the vortex lattice to a single vortex because of averaging of the vortex 
supercurrents. Dashed arrows sketch the paths of injected and vortex supercurrents involved in the 
interference mechanism.                      
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               �̃�𝑠𝑎𝑚𝑝𝑙𝑒 = √𝑛𝑠�̃�𝑟�̃�𝑣�̃�𝜑 = √𝑛𝑠 𝑒
𝑖

2𝜋

𝛷0
∮ 𝛬𝑱𝑠𝑟⋅𝑑𝒍

𝛾𝑟 𝑒
𝑖

2𝜋

𝛷0
 ∑ ∮ 𝛬𝑱𝑠𝑖⋅𝑑𝒍𝑖𝛾𝑖

𝑁
𝑖=1  

𝑒
𝑖

2𝜋

𝛷0
(∮ 𝑨⋅𝑑𝒍

𝛾𝑟
+ ∑ ∮ 𝑨⋅𝑑𝒍𝑖𝛾𝑖

𝑁
𝑖=1  )

           (4)                                
 

where the first factor is the phase contribution owing to the averaged dia- and paramagnetic supercurrents in 

the ring, the second factor refers to the phase contribution of the vortex supercurrents, whereas the third factor 

depends on the total flux Φ = ∮ 𝑨 ⋅ 𝑑𝒍
𝛾𝑟

+  ∑ ∮ 𝑨 ⋅ 𝑑𝒍𝑖𝛾𝑖

𝑁
𝑖=1 = Φ𝑟 + Φ𝑣. The average supercurrent of the ring 

𝑱𝑠𝑟
 is assumed to flow along the circle 𝛾𝑟 = 2𝜋𝑟𝑎𝑣𝑔.with the average radius [45] 𝑟𝑎𝑣𝑔. The same approach is 

applied to the vortex supercurrents swirling along the circular paths 𝛾𝑖 = 2𝜋𝑟𝑖; Λ = 𝜇0𝜆2 where 𝜆 is the 

penetration depth and Φ0 is the flux quantum. 

Since the vortex nucleation in mesoscopic structures occurs through the onset of vortex rows  [9]  [12]  [55], 

the term Ψ̃𝑣 = ∏ ψ̃𝑖
𝑁
𝑖=1 = exp{𝑖

2𝜋

Φ0
 ∑ ∮ Λ𝑱𝑖 ⋅ 𝑑𝒍𝑖𝛾𝑖

𝑁
𝑖=1  } in eq. (4) accounts for the onset of the first vortex  row 

event justifying the PB in MRs. Transport measurements sense the collective coherent dynamics of all vortex 

supercurrents as if they were generated by a single effective vortex (see Fig. 2(c)), so that  

Ψ̃𝑣 = exp{𝑖
2𝜋

Φ0
 ∮ Λ𝑱𝑣 ⋅ 𝑑𝒍𝑣𝛾𝑣

 },                                                          (5) 

where 𝛾𝑣 = 2𝜋𝑟𝑣; if 𝑤 denotes the sample width, then the condition 2𝑟𝑣 < 𝑤 must be fulfilled.  The total phase 

of  Ψ̃𝑠𝑎𝑚𝑝𝑙𝑒 satisfies the FQ 

∮ (Λ𝑱𝑠𝑟
+ 𝑨) ⋅ 𝑑𝒍

𝛾𝑟
+ ∮ (Λ𝑱𝑣 + 𝑨) ⋅ 𝑑𝒍𝑣𝛾𝑣

= 𝑛Φ0,                                                        (6)                                                                      

where 𝑛 is either zero or an integer. According to eqs. (4) and (5), the total transmission equation is  

      Ψ̃𝑜𝑢𝑡 = Ψ̃𝑜𝑢𝑡,𝑟Ψ̃𝑜𝑢𝑡,𝑣,                                                                        (7) 

so that the total transmission function is  

                                                              𝑇 = cos {𝜋
Φ𝑟

Φ0
} cos {𝜋

Φ𝑣

Φ0
}                                                                   (8)                                        

and Φ𝑣 = 𝐵𝜋𝑟𝑣
2. By substituting eq. (7) in eq. (2) and with the support of eq. (8), the modulation of transmitted 

supercurrent density is obtained in the form 

                                              𝑱𝑠,𝑜𝑢𝑡 = 𝑱𝑠,𝑖𝑛
(𝑟)

cos2 {𝜋
Φ𝑟

Φ0
} + 𝑱𝑠,𝑖𝑛

(𝑣)
cos2 {𝜋

Φ𝑣

Φ0
},                                                     (9)                                              

where, as shown in Fig. 2(c), 𝑱𝑠,𝑖𝑛
(𝑟)

 and 𝑱𝑠,𝑖𝑛
(𝑣)

 refer to the input supercurrent densities corresponding to the ring 

with its doubly-connected topology and the effective vortex, respectively. The aforementioned supercurrent 

densities differ by their spatial distributions as a consequence of the different spatial position of the ring and 

the effective vortex.  

In order to measure the voltage signal Δ𝑉𝑖𝑛𝑡 related to the quantum interference, the current conservation  [45] 

as sensed by the ammeter (the corresponding quantities are labelled by the index A) can be set 

 

              𝐼𝑖𝑛
(𝐴)

= 𝐼𝑜𝑢𝑡
(𝐴)

,                                                                          (10) 

and it can be represented as follows  

                                                              𝐼𝑖𝑛,𝑞𝑝 
(𝐴)

+ 𝐼𝑖𝑛,𝑠 
(𝐴)

= 𝐼𝑜𝑢𝑡,𝑞𝑝 
(𝐴)

+ 𝐼𝑜𝑢𝑡,𝑠 
(𝐴)

,                                                           (11) 

where the subscripts qp, s refer to the temperature-based partition (see Supporting Information in [45]) into 

QPs and CPs within the injected current. The growth of 𝐵 induces vortex supercurrents to swirl either in the 
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input or in the output part of the sample. These contributions 𝐼𝑖𝑛/𝑜𝑢𝑡,𝑆𝑣

(𝑉)
 are not sensed by the ammeter, but can 

be accounted for within the voltage sensitive areas  [45], where the total charge is conserved  

                                            𝐼𝑖𝑛,𝑞𝑝 
(𝑉)

+ 𝐼𝑖𝑛,𝑠 
(𝑉)

+ 𝐼𝑖𝑛,𝑠𝑣 
(𝑉)

= 𝐼𝑜𝑢𝑡,𝑞𝑝 
(𝑉)

+ 𝐼𝑜𝑢𝑡,𝑠 
(𝑉)

+ 𝐼𝑜𝑢𝑡,𝑠𝑣 
(𝑉)

.                                             (12) 

Magnetic field breaks the symmetry: 𝐼𝑖𝑛,𝑗 
(𝑉)

≠ 𝐼𝑜𝑢𝑡,𝑗 
(𝑉)

 for 𝑗 = 𝑞𝑝, 𝑠, 𝑠𝑣, and eq. (12) can be written accounting for 

all increments:  

                                          𝐼𝑜𝑢𝑡,𝑞𝑝
(𝑉)

− 𝐼𝑖𝑛,𝑞𝑝
(𝑉)

= 𝐼𝑖𝑛,𝑠
(𝑉)

− 𝐼𝑜𝑢𝑡,𝑠
(𝑉)

+ 𝐼𝑖𝑛,𝑠𝑣

(𝑉)
− 𝐼𝑜𝑢𝑡,𝑠𝑣

(𝑉)
.                                                    (13)      

According to eqs. (29) and (30) of ref.  [45], eq. (13) turns to  

                                      
Δ𝑉𝑖𝑛𝑡(𝐵)+Δ𝑉0(𝑇)

𝑅(𝑇)
= 𝐼𝑖𝑛,𝑠

(𝑉)
sin2 𝜋

Φ𝑟

Φ0
+ 𝐼𝑖𝑛,𝑠𝑣

(𝑉)
sin2 𝜋

Φ𝑣

Φ0
,                                                     (14)  

where Δ𝑉0(𝑇) is the measured voltage for 𝐵 = 0 and 𝑅(𝑇) ≡ Δ𝑉0(𝑇)/𝐼𝑖𝑛 is the value of the zero-bias 

resistance at the temperature of the MR acquisition. Hence, the MR trend accounting for the PB is given by  

                                        𝑅(𝑇, 𝐵) = 𝑅(𝑇) (1 +
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
sin2 𝜋

Φ𝑟

Φ0
+

𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
sin2 𝜋

Φ𝑣

Φ0
),                                                   (15)                                                             

where 𝑅(𝑇, 𝐵) = Δ𝑉𝑖𝑛𝑡/𝐼𝑖𝑛. It is important, that 𝐼𝑖𝑛,𝑠𝑣
 refers to vortex supercurrents, which, according to the 

B-T phase diagram, are placed as a function of 𝐵, and hence of 𝑛𝑠, higher than those related to the full 

supercurrent phase bounded by 𝐵𝑐1(𝑇). Thus, the inequality 𝐼𝑖𝑛 < 𝐼𝑖𝑛,𝑣
(𝑉)

 is physically possible.   

The model is validated employing MROs acquired on the “wide” mesoscopic ring reported in [56]. The sample 

is realized patterning a 30 nm-thickYBa2Cu3O7- (YBCO) film. The ring has the inner and outer radii 𝑟𝑖 ≅ 70 

nm and 𝑟𝑜 ≅ 190 nm, respectively. In Fig. 3, black dots and red curves represent the experimental and 

theoretical data, correspondingly. For three temperatures of acquisition 𝑇 = 84.25K, 84.50K, 84.75K related 

to the zero-bias resistances 𝑅(𝑇) = 0.40Ω, 0.93Ω, 1.73Ω, the best matching parameters are 
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
=

0.33, 0.15, 0.06 , 
𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
= 2.37, 1.17, 0.43 with an uncertainty of about 5%. The average radii of the vortex and 

the ring are 𝑟𝑣 = 36 nm  and  𝑟𝑎𝑣𝑔 = 127 nm, respectively.  

 

Figure 3: Comparison between the experimental MRs (black circles) of an YBCO mesoscopic ring (after 
[Ref.  [56]]) and the theoretical behavior  (red curves) provided by  the present model according to eq. (15).  

The proposed model is further tested on MROs of superconducting rings with different sizes  [45]  [57] and 

nanopatterned films [39] as well (see Supporting Information). The effectiveness of the presented model and 

its direct dependence on the geometry of multiply connected samples can provide a relevant contribution for 
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solving issues on asymmetric rings presenting oscillation of critical current depending on the direction of 

injected current  [58]  [59].   

 A consistent demonstration of the change in distribution of transmitted QPs must involve a measurement 

realized through Hall probes at the input and output stubs. Hints on the valuable use of the Hall probes are 

indirectly provided by the sign-reversal effect  [60]  [61] measured in planar films. In this regard, CPs, QPs 

and vortices are considered mutually connected by the interactions, which can provide an edge imbalance 

charge measurable through the Hall resistance.  

In conclusion, we have extended the transmission model developed for the sinusoidal constituent in MROs of 

superconducting rings to the onset of the PB. We have argued that the onset of vortices and related vortex 

supercurrents affects the topology of the current flow. Consequently, the full MR dynamics can be addressed 

through the interference of the constituents of the order parameter induced by both the ring with its doubly-

connected topology and the vortex lattice. The PB is inherent to the development of vortex supercurrents, 

which affect the path of QPs, introducing a further voltage variation that follows a sinusoidal law similarly to 

the arguments presented for the supercurrents in a ring [45]. Since the vortex size is much smaller than the 

ring’s size, typical narrow-range acquisitions prevent from observation of the background oscillation. 
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1 Classical representation of Δ𝑉𝑖𝑛𝑡 

The measured voltage due to the interference mechanism Δ𝑉𝑖𝑛𝑡 is dependent on both the resistance at 

temperature 𝑇 and the change in the sensed QP current through the expression 

Δ𝑉𝑖𝑛𝑡(𝑇, 𝐵) = 𝑅(𝑇)Δ𝐼𝑞𝑝(𝑇, 𝐵).                                                            (S1) 

According to eq. (15), Δ𝐼𝑞𝑝 relies on the flux dependent variation of the sensed CPs deriving from the change 

in the spatial distribution of injected supercurrents. The voltage leads sense different densities of QPs though 

its total current remains constant. Assuming 𝑅(𝑇) as the value of resistance (QP density) measured for 𝐵 = 0, 

the equivalent classical circuit resorting the interference phenomenon is reported in Fig. S1.  

 

 

Figure S2: Equivalent classical circuit interpretating 𝛥𝑉𝑖𝑛𝑡. 

The voltage leads measure over two identical circuits presenting the same resistance but fed with different QP 

currents 𝐼1,2. From the classical point of view, the voltmeter measurement is a sort of a trans-resistance 

acquisition because the two stubs are decoupled like the input and output leads of an operational amplifier [1]. 

According to the scheme of Fig. 1S, we have 

Δ𝑉 = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = 𝑅(𝐼1 − 𝐼2).                                               (S2) 

that has the same structure as eq. (S1) has. 

2.1 Application of the transmission model to patterned films and stripes 
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The validation of the transmission model can be extended to other multiply-connected superconducting 

structures. Here, we focus on three distinct publications presenting MRO on a patterned film [2], on a holed 

stripe [3] and on a film with an array of pinning centers [4].  

Case 1 

The patterned film is 26 nm thick and made of La1.84Sr0.16CuO4 (LSCO). The film is patterned as a grid of 

noninteracting square loops. Each loop has an area of 100 × 100 𝑛𝑚2 and the wire realizing the web is about 

𝑤 = 25𝑛𝑚 wide. The sample presents a full transition temperature at about 𝑇0 ≅ 26𝐾 (see Fig. 2 of  [2]). The 

MRO employed to validate the model has been acquired at 𝑇 = 29.5𝐾 (see Fig. 6 of  [2]). In Fig. 2S(a), a 

comparison between the experimental (black dots) and the model (red curve) is represented. The experiment 

shows damped oscillations with a flux periodicity consistent with 𝐵𝑐2~2𝑇 extracted by eye from Fig. 3 of [2].  

  

 

Figure S2: In (a), (b) and (c), the black circles represent the MROs measured in [2],[3] and [4], respectively. Red curves are obtained 
using our transmission model. 

The parabolic background is driven by the first vortex nucleation event that scales like 𝐵𝑐1~
Φ0

𝑤2 = 3.2 𝑇 [5], 

because the magnetic penetration depth is comparable with wires width. Hence, wires are so narrow to make 

𝐵𝑐1 comparable to 𝐵𝑐2. As a matter of the fact, the experimental trend is similar to the MRs of aluminum rings 

[6]. The presence of a damping factor modifies eq. (16) in the following form: 

     𝑅1(𝑇, 𝐵) = 𝑅(𝑇) (1 +
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
𝔇𝑟sin2 𝜋

Φ𝑟

Φ0
+

𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
sin2 𝜋

Φ𝑣

Φ0
),                                      (S3) 

where 𝔇𝑟 = 𝑒−𝐵2/𝐵𝑟
2
 defines the damping of sinusoidal oscillations as a function of 𝐵𝑟~𝐵𝑐1 [7]. The fitting 

parameters are 𝑅(𝑇) = 24.7 Ω, 𝐼𝑖𝑛,𝑠
(𝑉)

𝐼𝑖𝑛⁄ = 0.15, 𝐼𝑖𝑛,𝑠𝑣

(𝑉)
𝐼𝑖𝑛⁄ = 1.25, 𝑟(Φ𝑟) = 53 𝑛𝑚, 𝑟(Φ𝑣) = 12.5 𝑛𝑚 and 

𝐵𝑟 = 1.25 𝑇. 

Case 2 

The system investigated in [3] is a Nb slab 100nm thick and 385 nm wide patterned with a series of periodic 

square holes 120nm in size. The MR curves we are interested in, present a hole period of 385nm and have been 

extracted from the Fig. 5(a) of [3] (curve made of violet triangles). In Fig. 2S(b), the experimental curves are 

compared with the model results obtained by us. As distinct  from the Case 1, the MR presents the transition 

up to the normal state reached at about 𝑅𝑛 = 27.9 Ω. Therefore, the vortex supercurrent contribution also 

presents a damping factor, and the MR curve follows the trend 

𝑅2(𝑇, 𝐵) = 𝑅(𝑇) (1 +
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
𝔇𝑠𝑞sin2 𝜋

Φ𝑠𝑞

Φ0
+

𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
𝔇𝑣sin2 𝜋

Φ𝑣

Φ0
),                                   (S4) 
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where 𝔇𝑠𝑞 = 𝑒−𝐵2/𝐵𝑠𝑞
2

 and 𝔇𝑣 = 𝑒−𝐵2/𝐵𝑣
2
. The matching of the model with the experimental curves is 

obtained using 𝑅(𝑇) = 12 Ω, 𝐼𝑖𝑛,𝑠
(𝑉)

𝐼𝑖𝑛⁄ = 0.5,  𝐼𝑖𝑛,𝑠𝑣

(𝑉)
𝐼𝑖𝑛⁄ = 2.3, 𝑟(Φ𝑠𝑞) = 151 𝑛𝑚, 𝑟(Φ𝑣) = 48 𝑛𝑚, 𝐵𝑠𝑞 =

0.05 𝑇 and 𝐵𝑣 = 1.5𝑇.  

Case 3 

Large superconducting bridges functionalized with an array of pinning centers display peculiar MRO 

presenting deep and sharp minima (vortex matching effect),  which are placed according to the fields 𝐵𝑖 =
Φ0

𝑎2 , 

where 𝑎 is the average distance between the pinning centers. These latter can be obtained through two main 

routes: patterning of antidots [8] or ion irradiation [4]. Pinning centers govern the nucleation of vortices at 

some specific locations, but the unavoidable presence of interstitial ones promotes the onset of pinned vortices 

presenting slightly different radii. Hence, the sinusoidal in MR is a function of a series of fluxes Φ𝑝𝑖𝑛,𝑖 = 𝐵𝜋𝑟𝑖
2 

with 𝑟𝑖 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] ranging around 𝑎. 

Here, we refer to the measurements conducted over a bridge of YBa2Cu3O7−δ (YBCO) 50𝜇𝑚 wide and 50nm 

thick, in which a square array of pinning centers was imprinted through the deposition of a PMMA mask and  

O+ ion irradiation. The sample  is realized with defects having a diameter of 40nm and period of 120nm. 

Measurement, reported as black dots in Fig. 2S(c), has been extracted from the Fig. 4(c) of [4] referring to the 

one acquired with the lowest excitation current. The curve has been traced out with the function 

                        𝑅3(𝑇, 𝐵) = 𝑅(𝑇) (1 +
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
𝔇𝑝𝑖𝑛 ∑ sin2 Φ𝑝𝑖𝑛

Φ0

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

+
𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
sin2 𝜋

Φ𝑣

Φ0
) ,                              (S5) 

where the sum runs over pinned vortices ranging in radius between 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥, 𝔇𝑝𝑖𝑛 = exp −𝐵2/𝐵𝑝𝑖𝑛
2  is 

the damping factor relative to the sinusoidal, and the last term on the right is the interstitial vortices 

contribution. By employing the parameters 𝑅(𝑇) = 5.4 Ω, 
𝐼𝑖𝑛,𝑠

(𝑉)

𝐼𝑖𝑛
= 1.3, 

𝐼𝑖𝑛,𝑠𝑣

(𝑉)

𝐼𝑖𝑛
= 2.5, 𝑟𝑚𝑖𝑛 = 58𝑛𝑚, 𝑟𝑚𝑎𝑥 =

68𝑛𝑚, 𝑟𝑣 = 25𝑛𝑚, 𝐵𝑝𝑖𝑛 = 0.4𝑇 we have obtained the red curve in Fig. 2S(c). 

2.2 Discussion  

Damping factors are phenomenological parameters governing the onset of decoherence driven by the magnetic 

field. If the acquisition range is large, MRO are traced out using damping parameters in both the sinusoidal 

and background contributions, but the zero-field resistance 𝑅(𝑇) is enough to describe the evolution of MRs 

even if they present a three-fold variation of resistance as shown in the above cases. Do damping factors 

account for the increase of QP density that grows up to 𝑅𝑁? No they do not. In fact, damping factors are 

different for the geometrical and vortex contribution highlighting that 𝔇’s are not related to the growth of QP 

density. Damping factors explain the reduction of asymmetry in the distribution of transmitted QPs. The degree 

of asymmetry, regarding the ring driven interference, relies on the oscillation amplitude of the effective radius 

that being a function of 𝐽𝑐/𝐽𝑠 [9] lowers if 𝐵 − and consequently 𝐽𝑠 − approaches a critical value. Hence, 

factors 𝔇  deliver the lowering of Δ𝐼𝑞𝑝 in place of defining the transformation of CPs in QPs. As a matter of 

fact, 𝑅(𝑇) can be assumed  constant in eqs. (S3), (S4) and (S5). We argue, in agreement with the 

phenomenology of Case 2, that the growth of MRs up to 𝑅𝑁 can happen keeping the QP density constant.  

To discern on vortex or QP constituents of the normal state, more investigations are needed. MRs at high fields 

must be acquired to realize if the normal state for 𝐵 > 𝐵𝑐 is the same recorded for 𝑇 > 𝑇𝑐. MRs [10] [2] [11] 

show that the resistive state for 𝐵~𝐵𝑐2 −when the resistance is flat and basically independent on 𝐵 − is still 

dependent on 𝑇 despite the state for 𝑇 > 𝑇𝑐 where the resistance in not dependent on 𝐵 at all. We speculate 

that the normal state for 𝑇 < 𝑇𝑐 can be effectively reached only injecting high currents [12] [13] guaranteeing 

the appropriate heating for the transition to the normal state.  

3 Enhancement of superconductivity in nanowires  
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Our model is useful to address the phenomenon of the enhancement of superconductivity observed through 

the 𝐼𝑐 of superconducting nanowires [14] [15] [16] [17]. We argue that the mechanism governing the 𝐼𝑐 

enhancement is based on the remarkable difference between the nanowire and stub sizes. Fig. S3(a) provides 

a pictorial representation of the sample under investigation. A nanowire of width 𝑤 bridges two large stubs, 

whose transversal dimensions 𝐿𝑥, 𝐿𝑦 fulfil 𝑤 ≪ 𝐿𝑥, 𝐿𝑦. Consequently, the nanowire first critical field 

𝐵𝑐𝑛
~Φ0/𝑤2 is quite larger than that for both the left (𝐿) and the right (𝑅) stubs, which behave as plane films. 

We focus on the range 𝐵 < 𝐵𝑐𝑛
, when the stubs are experiencing the mixed state, whereas the nanowire is fully 

superconducting. The nanowire decouples the interference phenomena occurring in the two stubs inducing the 

value of each voltage lead 𝑉𝐿 and 𝑉𝑅 to depend exclusively on the vortex dynamics of the corresponding stub. 

This fact is a clear consequence of the standard application of the transmission model that, as usual, starts from 

the current conservation.   

     𝐼𝑖𝑛
𝐿 = 𝐼𝑜𝑢𝑡

𝑅 ,                                                                             (S6) 

Which, in terms of QPs and CPs contributions, can be expressed as (in the following the subscript i stands for 

in and o for out) 

                                                          𝐼𝑖,𝑠
𝐿 − 𝐼𝑜,𝑠

𝑅 = 𝐼𝑖,𝑞𝑝
𝐿 − 𝐼𝑜,𝑞𝑝

𝑅 .                                                                   (S7)  

 

Figure S3: (a) Pictorial representation of a nanowire sample realized between large stubs. (b) Simulations of 𝛥𝑉𝑖𝑛𝑡 as a function of the 
change in the vortex flux area between the two stubs 

The current conservation also implies that the output current from the left stub is equal to the input one in the 

right stub, so that 

            𝐼𝑜
𝐿 = 𝐼𝑜,𝑠

𝐿 + 𝐼𝑜,𝑞𝑝
𝐿 = 𝐼𝑖

𝑅 = 𝐼𝑖,𝑠
𝑅 + 𝐼𝑖,𝑞𝑝

𝑅 ,                                                              (S8) 

which can be subtracted from eq. (S7) to obtain 

                                       𝐼𝑖,𝑠
𝐿 − 𝐼𝑜,𝑠

𝐿 + 𝐼𝑖,𝑠
𝑅 − 𝐼𝑜,𝑠

𝑅 = 𝐼𝑜,𝑞𝑝
𝐿 − 𝐼𝑖,𝑞𝑝

𝐿 + 𝐼𝑜,𝑞𝑝
𝑅 − 𝐼𝑖,𝑞𝑝

𝑅 .                                           (S9) 

Supercurrents and QP contribution can be expressed as [9] 

                                      𝐼𝑜,𝑞𝑝
𝐿 − 𝐼𝑖,𝑞𝑝

𝐿 =
Δ𝑉𝑖𝑛𝑡

𝐿 +Δ𝑉0

𝑅(𝑇)
 ;   𝐼𝑜,𝑞𝑝

𝑅 − 𝐼𝑖,𝑞𝑝
𝑅 =

Δ𝑉𝑖𝑛𝑡
𝑅 +Δ𝑉0

𝑅(𝑇)
  ,                                        (S10) 

 

                                   𝐼𝑖,𝑠
𝐿 − 𝐼𝑜,𝑠

𝐿 = 𝐼𝑖,𝑠
𝐿 sin2 𝜋

Φ𝐿

Φ0
;   𝐼𝑖,𝑠

𝑅 − 𝐼𝑜,𝑠
𝑅 = 𝐼𝑖,𝑠

𝑅 sin2 𝜋
Φ𝑅

Φ0
                                           (S11)  

allowing to rewrite eq. (S9) in this way: 

                                   𝐼𝑖,𝑠
𝐿 sin2 𝜋

Φ𝐿

Φ0
+ 𝐼𝑖,𝑠

𝑅 sin2 𝜋
Φ𝑅

Φ0
=

Δ𝑉𝑖𝑛𝑡
𝐿 +Δ𝑉0

𝐿

𝑅(𝑇)
+

Δ𝑉𝑖𝑛𝑡
𝑅 +Δ𝑉0

𝑅

𝑅(𝑇)
,                                          (S12) 

where  Δ𝑉0
𝐿,𝑅

 represents the voltage of each stub for 𝐵 = 0 with respect to the ground. Eq. (S12) means that 

the nanowire decouples the two vortex dynamics so that the following equations hold true 
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                                                            {

Δ𝑉𝑖𝑛𝑡
𝐿 +Δ𝑉0

𝐿

𝑅(𝑇)
= 𝐼𝑖,𝑠

𝐿 sin2 𝜋
Φ𝐿

Φ0
,

Δ𝑉𝑖𝑛𝑡
𝑅 +Δ𝑉0

𝑅

𝑅(𝑇)
= 𝐼𝑖,𝑠

𝑅 sin2 𝜋
Φ𝑅

Φ0
.
                                                         (S13) 

Eqs. (S13) enable one to evaluate the measured voltage drop across the device Δ𝑉𝑖𝑛𝑡 = Δ𝑉𝑖𝑛𝑡
𝑅 − Δ𝑉𝑖𝑛𝑡

𝐿  to be  

    Δ𝑉𝑖𝑛𝑡(𝑇, 𝐵) = 𝑅(𝑇) (𝐼𝑖,𝑠
𝑅 sin2 𝜋

Φ𝑅

Φ0
− 𝐼𝑖,𝑠

𝐿 sin2 𝜋
Φ𝐿

Φ0
) + 𝑐𝑜𝑛𝑠𝑡,                                  (S14) 

where 𝑐𝑜𝑛𝑠𝑡 = Δ𝑉0
𝑅 − Δ𝑉0

𝐿. Eq (S14) drives the variation of the voltage range, in which the 𝐼𝑐 is extracted. 

As discussed in the article, the lowering of Δ𝑉𝑖𝑛𝑡 versus 𝐵 implies the enhancement of the critical current that 

is the amount of injected current 𝐼𝑐(𝑉) relative to a voltage drop 𝑉 ≤ 𝑉𝑡ℎ. In Fig. S3(b), a simulation of Δ𝑉𝑖𝑛𝑡 

is reported according to a slight change in the effective vortex flux area between the two stubs. Setting a 

mismatch between Φ𝐿 and Φ𝑅 of about a few percent, we obtain a result similar to what was measured in [14], 

in which 𝐼𝑐 grew up to about 2T.  
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