DOI: 10.1002/cam4.5854

REVIEW

Prevalence of cancer therapy cardiotoxicity as assessed by imaging procedures: A scoping review

Valeria Cantoni¹ | Roberta Green¹ | Roberta Assante¹ | Adriana D'Antonio¹ | Francesca Maio¹ | Emanuele Criscuolo¹ | Roberto Bologna¹ | Mario Petretta² | Alberto Cuocolo¹ 💿 🕴 Wanda Acampa¹ 💿

¹Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy ²IRCCS SYNLAB SDN, Naples, Italy

Correspondence

Wanda Acampa, Department of Advanced Biomedical Sciences University of Naples Federico II, Naples, Italy. Email: acampa@unina.it

Abstract

Background: Advances in treatment and optimization of chemotherapy protocols have greatly improved survival in cancer patients. Unfortunately, treatment can cause a reduction in left ventricular (LV) ejection fraction (EF) leading to cancer therapy-related cardiac dysfunction (CTRCD). We conducted a scoping review of published literature in order to identify and summarize the reported prevalence of cardiotoxicity evaluated by noninvasive imaging procedures in a wide-ranging of patients referred to cancer treatment as chemotherapy and/or radiation therapy.

Methods: Different databases were checked (PubMed, Embase, and Web of Science) to identify studies published from January 2000 to June 2021. Articles were included if they reported data on LVEF evaluation in oncological patients treated with chemotherapeutic agents and/or radiotherapy, measured by echocardiography and/or nuclear or cardiac magnetic resonance imaging test, providing criteria of CTRCD evaluation such as the specific threshold for LVEF decrease.

Results: From 963 citations identified, 46 articles, comprising 6841 patients, met the criteria for the inclusion in the scoping review. The summary prevalence of CTRCD as assessed by imaging procedures in the studies reviewed was 17% (95% confidence interval, 14–20).

Conclusions: The results of our scoping review endorse the recommendations regarding imaging modalities to ensure identification of cardiotoxicity in patients undergoing cancer therapies. However, to improve patient management, more homogeneous CTRCD evaluation studies are required, reporting a detailed clinical assessment of the patient before, during and after treatment.

KEYWORDS

cancer therapy, cardiotoxicity, imaging

Valeria Cantoni and Roberta Green have contributed equally as first authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2023 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

1 | INTRODUCTION

Lately, early diagnosis, progress in cancer treatment and optimization of chemotherapy protocols have improved survival in cancer patients in a meaningful way. Nevertheless, conventional and oncologic therapies have a broad range of adverse cardiac events, including myocardial toxicity.¹ Cardiooncology is a relatively new area of interest focusing on the identification, monitoring, and treatment of cardiovascular disease that occurs as a side effect of cancer treatments.² Heart failure (HF) and ventricular dysfunction represent the most troubling adverse effects. The prevalence of subclinical left ventricular (LV) dysfunction may be found as far as 42% of cancer patients in recruited treatment groups.³ HF and LV dysfunction due to therapy for cancer are associated with a 3.5-fold increase in the mortality risk.⁴ However, the frequency of cardiotoxicity depends on several variables related to cancer treatment and to patient characteristics.⁵

Cancer therapy-related cardiac dysfunction (CTRCD) has been commonly defined as a reduction in LV ejection fraction (EF) $\geq 10\%$ to a value of <50% or as a reduction in LVEF below 53% or an absolute decrease in LVEF >20%.^{6–8} However, the categorization of the severity of HF and LV dysfunction as markers of cancer therapy cardiotoxicity is extensively heterogeneous.⁹ Endomyocardial biopsy is the gold standard for the diagnosis of cardiomyocyte damage, but this procedure is hardly used due to the invasiveness and low availability.¹⁰ Noninvasive diagnostic imaging techniques as echocardiography, cardiac magnetic resonance (CMR), and nuclear testing have been widely used for the evaluation of CTRCD.¹¹

Several studies focused on the role of noninvasive diagnostic imaging techniques such as echocardiography, CMR, and nuclear cardiology in the evaluation of CTRCD.¹¹ The large volume and the heterogeneity of published studies, related to type of cancer patients, clinical characteristics of patients, treatment adopted, CRTD definition, and the method used for the diagnosis of CRTD highlight a relevant need to organize and summarize findings so that the most current and accurate information can be easily accessed. In this scenario, we conducted a scoping review of published literature designed in order to identify and summarize the available data on prevalence of cardiotoxicity evaluated by noninvasive imaging procedures in a wide-ranging of oncological patients treated with chemotherapy or radiation therapy, in order to give an updated picture of what is known about.

2 | MATERIALS AND METHODS

We performed a review of the medical literature using the standard methodology for scoping literature review as published by the Cochrane Collaboration, and according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (see the Appendix S1 for PRISMA Checklist).¹²

PubMed, Embase, and Web of Science databases were screened to identify studies published from January 2000 to June 2021. Articles search was limited to data retrieved in humans and adults and was performed adopting the following keywords: "cardio-oncology, cardiotoxicity, chemotherapy, radiotherapy, cardio-imaging, left ventricular ejection fraction, echocardiography, ultrasound, cardiac magnetic resonance (OR CMR), nuclear imaging." The complete search strategy is depicted in the Appendix S2. A screening for appropriateness of the title and abstract of potentially pertinent articles was conducted by two reviewers (V.C. and R.G.) before retrieval of the full article, and disagreements were resolved by consensus. The fullpublished studies of the abstracts identified by the reviewers were downloaded, and they individually conducted the final selection relying on the eligibility criteria; disagreements were solved by consensus. Moreover, the bibliographies of retrieved studies were manually screened for further citations.

Each article was identified evaluating journal, authors, and year of publication. To harmonize the predictors of interest, a publication was considered eligible if all of the following criteria were met: (1) the study reported LVEF data in patients with cancers treated with chemotherapeutic agents and/or radiotherapy; (2) the study provided LVEF data by echocardiography and/ or nuclear test and/or CMR evaluated before and after

FIGURE 1 Study selection process.

11397

-WILEY

	Condition Measurement	Data Analysis Coverage	Outcome Identification	Response Rate Adequate	Sample Size	Sample Target Population	Statistical Analysis	Study Partecipation	Study Subjects and Setting
Nousiainen 2002	+	+	Ŧ	Ŧ	•	?	Ŧ	Ŧ	?
Limat 2002	-	+	Ŧ	Ŧ	+	+	+	+	?
Belham 2007		+	+	Ŧ		+	+	+	?
Abu-Khalaf 2007		Ŧ	Ŧ	Ŧ		?	Ŧ	+	?
Wadhwa 2008		Ŧ	$\mathbf{+}$	+	Ð	?	Ŧ	Ŧ	Ŧ
Dodos 2008		Ŧ	$\mathbf{+}$	+	Ŧ	+	Ŧ	?	?
Yoon 2010		+	+	Ŧ	?	Ŧ	?	+	Ŧ
Stoodley 2011		Ŧ	Ŧ	Ŧ	?	?	+	+	Ŧ
Fatima 2011		?		+		$\mathbf{+}$			
Fallah-Rad 2011		+	Ŧ	Ŧ		?	+	+	Ŧ
Cochet 2011				Ŧ		?			Ð
Sawaya 2012	-	Ŧ	$\mathbf{+}$	Ŧ	?	+	+	+	Ŧ
Kang 2013		Ŧ	$\mathbf{+}$	Ŧ	+	?	Ŧ	•	?
Dores 2013		Ŧ		Ŧ		?	Ŧ	+	?
Negishi 2014		Ŧ	Ð	Ŧ		H	Ŧ	Ŧ	Ŧ
Florescu 2014		Ŧ		Ŧ		?	+	+	+
Cardinale 2015		Ŧ	H	Ŧ	+	+	+	?	?
Dogru 2015		Ŧ	H	Ŧ	Ŧ	?	+	Ŧ	Ŧ
Reuvekamp 2015		+		Ŧ	+	?	+	+	Ŧ
Tan 2015		?		Ŧ		?	?	+	+
Guerra 2015		Ŧ		Ŧ		?	Ŧ	Ŧ	?
Mele 2016		•		Ŧ		?	+	+	?
Shaikh 2016		Ŧ		Ŧ	?	+	H		+
Zhang 2017		Ŧ		Ŧ	?	+	+	+	+
Narayan 2017		•		Ŧ		<u>?</u>			?
Barthur 2017		Ŧ		+		?	H	Ŧ	
Melendez 2017				+					
Mizia-Stec 2017				Ð					
Antolin 2018				Ð					
Nowsheen 2018									
Kiein 2018									
Bergamini 2018									
Manjoob 2019									
Keramida 2019									
Fu 2019									$\overline{2}$
Suerken 2020									
Laufer Port 2020									
Sandamali 2020									
Mong 2020									
Coutinbo Cruz 2020									
Shamai 2020							2		
7ito 2020									
Giusco 2021									2
Giusca 2021									

FIGURE 2 Methodological quality of the included studies assessed with Joanna Briggs Institute Critical Appraisal tool for risk of bias and applicability concerns. The green circle represents low risk of bias, the yellow circle unclear risk of bias, and the red circle high risk of bias.

chemotherapeutic agents and/or radiotherapy; (3) the study provided criteria of CTRCD evaluation such as the specific threshold for the LVEF decrease; and (4) follow-up was at least 3 months after therapy completion. Articles were included if data were obtained from retrospective, prospective, or observational studies. In case of different studies from the same research team, potential patient population duplication was prevented by including the largest cohort only.

Patient population data were retrieved on age and on prevalence of female gender, cancer type, anticancer therapies, cardiac assessment modality, follow-up time, and cardiovascular risk factors such as diabetes, hypertension, dyslipidemia, smoking, family history of coronary artery disease (CAD), and history of CAD (including previous myocardial infarction and coronary revascularization). All articles were evaluated for methodological quality by the use of Joanna Briggs Institute Prevalence Critical Appraisal Tool.¹³

The criteria observe the following issues: representative sample ensured, appropriate recruitment ensured, adequate sample size, appropriate description and reporting of study subjects and setting, data of the identified sample adequate, the condition was measured reliably and objectively, appropriate statistical analysis, confounding factors, subgroups, differences identified and accounted for. There are four possible responses for these questions: yes, no, unclear, or not applicable.¹³ Two reviewers (V.C. and R.G.) assessed the risk of bias in each eligible article individually. Disagreements were solved by consensus. If the answers to all the signal problems were "yes," a low risk of bias was attributed to the study; if the answers to all the signal problems had one or more "no" or "unclear" values, an unclear risk of bias was used; if the answers to all the signal problems contained at least one "no" but no "yes" answers, a high risk of bias was attributed.

Given the disparity of study designs, treatment, and population in the literature considered, a descriptive summary approach was used with the results presented in narrative form and in tables. However, a quantitative synthesis was also performed to calculate a summary estimate of the prevalence of cardiotoxicity. A quantitative synthesis was also performed to calculate a summary estimate of the prevalence of cardiotoxicity in overall population and

ГС	NI ET AL																				_ <u>C</u> a	ance	ər N	/led	licir	ne	oen Acce	/	NI	LE	ΞY	1	1399
	Prior CAD (%)	ю	ı	С		7	ı	7	6	ı	ı	ı	ı	ı	ı	ı	ı	б	ı	ı	1	ı	ı	16	ı		7	1	10	ı	14	1	(Continues)
	Diabetes (%)	1	1	2	1	7	1	17	4	0	14	7	1	4	11	9	0	4	9	4	0	9	7	26	1	8	10	17	13	1	11	6	
	Family history of CAD (%)					20					29				19			7				29	33						43			5	
	Smoking (%)					17	1		25		17	13.5	7	29	J.	38	30	18	26	16	10	16	20	1		9	24	28	44.8	1	16	9	
	Dyslipidemia (%)		1	1		13	1	26	21	1	36	1	22		25	18	12	7.5	20	ı	21	19	30	43	1	17	7	29	ı	17	18	8	
	Hypertension (%)	14	1	10		11	18	32	25	0	12	6	32	13	35	20	0	23	53	14	24	42	30	52	1	27	24	41	42	21	33	29	
	Age (year)	53	59	50 ± 18	57	52 ± 10	46 ± 1	52	49±9	44 ± 10	47±9	58	50 ± 10	53 ± 13	55 ± 14	49 ± 14	51 ± 8	50 ± 13	45 ± 13	53±9	50 ± 10	56 ± 13	53 ± 11	62 ± 14	50 ± 12	48	52 ± 11	52 ± 14	58	49	53 ± 12	61 ± 12	
	Female (%)	39	43	29	100	100	52	53	100	74	100	100	100	59	100	80	100	74	46	100	100	96	66	45	50	100	100	70	46	100	100	98	
	Patients (n)	28	135	51	32	152	100	88	52	42	42	118	81	75	51	159	40	2625	50	77	29	69	30	80	82	135	41	112	67	142	428	146	
		Nousiainen et al. ¹⁶	Limat et al. ¹⁷	Belham et al. ¹⁸	Abu-Khalaf et al. ¹⁹	Wadhwa et al. ²⁰	Dodos et al. ²¹	Yoon et al. ²²	Stoodley et al. ²³	Fatima et al. ²⁴	Fallah-Rad et al. ²⁵	Cochet et al. ²⁶	Sawaya et al. ²⁷	Kang et al. ²⁸	Dores et al. ²⁹	Negishi et al. ³⁰	Florescu et al. ³¹	Cardinale et al. ³²	Dogru et al. ³³	Reuvekamp et al. ³⁴	Tan et al. ³⁵	Guerra et al. ³⁶	Mele et al. ³⁷	Shaikh et al. ³⁸	Zhang et al. ³⁹	Narayan et al. ⁴⁰	Barthur et al. ⁴¹	Meléndez et al. ⁴²	Mizia-Stec et al. ⁴³	Antolín et al. ⁴⁴	Nowsheen et al. ⁴⁵	Klein et al. ⁴⁶	

TABLE 1 Demographic data and clinical characteristics of patients.

11400

							Family history of		Prior
	Patients (n)	Female (%)	Age (year)	Hypertension (%)	Dyslipidemia (%)	Smoking (%)	CAD (%)	Diabetes (%)	CAD (%)
Bergamini et al. ⁴⁷	162	100	59 ± 12	35	15	ı		4	
Mahjoob et al. ⁴⁸	52	78	44		1	14		ı	
Keramida et al. ⁴⁹	101	100	54±11	15	1	1		1	1
Yu et al. ⁵⁰	47	100	52	17	11	30		6	0
Suerken et al. ⁵¹	71	68	54±4	50	11	12		17	4
Ben Abdallah et al. ⁵²	66	100	47±9	ı	1	ı		ı	
Laufer-Perl et al. ⁵³	237	70	62	38	23	31		22	12
Sandamali et al. ⁵⁴	196	100	54 ± 11	0	1	ı		ı	0
Wang et al. ⁵⁵	65	52	51 ± 13	32	1	31		15	ı
Coutinho Cruz et al. ⁵⁶	105	100	54 ± 12	0	1	ı	0	0	ı
Shamai et al. ⁵⁷	43	60.5	58 ± 16	37	19	26		15	2
Zito et al. ⁵⁸	146	98	56 ± 11	35	25	20	1	16	I
Giusca et al. ⁵⁹	61	82	54±15	36	15	7		7	
Abbreviation: CAD, coronary	r artery disease.								

CANTONI ET AL.

3 | RESULTS

The PRISMA flowchart is depicted in Figure 1. The databases search identified 1251 potentially eligible records. Among these, 288 were duplicates and then discharged, leaving 963 citations. The reviewers removed 884 citations evaluating the appropriateness of titles and abstracts of these studies, leaving 79 articles. Then, each reviewer blindly evaluated the full text of these articles, excluding 33 articles. Finally, 46 articles including 6841 patients were analyzed.

The quality assessment of included were summarized in Figure 2. The domains that showed an unclear risk of bias were "study subjects and setting" and "sample target population." The domain that showed a high risk of bias was "sample size." These results could be due to the lack of description of patient characteristics and small number of patients evaluated in some studies.

Table 1 showed the demographic data and clinical characteristics of patients.^{16–59} Cancer type, treatment, and imaging technique for each study are reported in Table 2.^{16–59} Patient population ranged from 28 to 2625 subjects. Mean age ranged from 44 to 62 years, with the prevalence of women ranging from 29% to 100%. Mean follow-up was 9.7 ± 1.3 months.

The summary prevalence of CTRCD assessed by imaging procedures in the studies reviewed was 17% (95% CI, 14–20) and the heterogeneity was 96% (Figure 3). The prevalence of CTRCD for studies published from 2011 to 2021 (16%; 95% CI, 13–19) was lower (p<0.05) compared with studies published from 2000 to 2010 (22%; 95% CI, 14–29).

4 | DISCUSSION

In our scoping review, we aimed to identify the incidence of cardiotoxicity in oncological patients by noninvasive imaging procedures in order to support clinicians in assessment and management of cardiotoxicity in oncological patients. As shown in Figure 3, the summary prevalence of cardiotoxicity in the studied population is around 17%.
 TABLE 2
 Cancer type, treatment, and imaging technique for each study.

Cancer Medicine

	Cancer type	Treatment	Imaging	Definition of CTRCD
Nousiainen et al. ¹⁶	LNH	ANT+RT	Nuclear	Decrease of LVEF >10% to \leq 50%
Limat et al. ¹⁷	LNH	ANT+RT	Nuclear	Decrease of LVEF ≥15% or decrease of LVEF to <50%
Belham et al. ¹⁸	Different	ANT	Echo	Decrease of LVEF >10%
Abu-Khalaf et al. ¹⁹	Breast	ANT + TAX + RT	Nuclear	$LVEF \leq 50\%$
Wadhwa et al. ²⁰	Breast	TZB+RT	Nuclear	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Dodos et al. ²¹	Different	ANT	Echo	Decrease of LVEF >20% or decrease of LVEF >10% to <55% or HF
Yoon et al. ²²	Different	ANT+TZB	Echo-Nuclear	LVEF <55%
Stoodley et al. ²³	Breast	ANT	Echo	Decrease of LVEF $\geq 10\%$ to $< 50\%$
Fatima et al. ²⁴	Different	ANT	Echo-Nuclear	Decrease of LVEF $\geq 10\%$ to $< 50\%$
Fallah-Rad et al. 2011 ²⁵	Breast	ANT+TZB+RT	CMR	Decrease of LVEF >10% to <55% with signs or symptoms of HF
Cochet et al. 2011 ²⁶	Breast	ANT + 5FU + TAX + TZB + RT	Nuclear	Decrease of LVEF ≥10% but <20% of baseline Decrease of LVEF <50% or ≥20% of baseline or HF
Sawaya et al. ²⁷	Breast	ANT + TZB + RT + TAX	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Kang et al. ²⁸	LNH	ANT (CHOP)	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Dores et al. ²⁹	Breast	ANT + TAX + TZB	Echo	LVEF <55% or decrease of LVEF >10%
Negishi et al. ³⁰	Different	ANT+TZB+RT	Echo	Decrease of LVEF ${>}10\%$ to ${<}55\%$
Florescu et al. ³¹	Breast	ANT	Echo	Decrease of LVEF ≥10% to <55% without signs or symptoms
Cardinale et al. ³²	Different	ANT+RT	Echo	Decrease of LVEF >10% to ${<}50\%$
Dogru et al. ³³	LYM; Breast	ANT	Echo	LVEF <55%
Reuvekamp et al. ³⁴	Breast	ANT+RT+TZB	Nuclear	LVEF <50% or a drop of ${\geq}10\%$
Tan et al. ³⁵	Breast	ANT + RT + TZB + TAX	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Guerra et al. ³⁶	Breast	ANT + TAX	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Mele et al. ³⁷	Breast	ANT + TAX + TZB + RT	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Shaikh et al. ³⁸	AML	MITOXANTRONE	Echo	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF
Zhang et al. ³⁹	LNH	ANT	Nuclear	Decrease of LVEF $\geq 10\%$ to $< 50\%$
Narayan et al. ⁴⁰	Breast	ANT + TZB + RT	Echo	Decrease of LVEF ${\geq}10\%$ to ${<}50\%$
Barthur et al. ⁴¹	Breast	ANT + TZB + TAX + RT	CMR	Decrease of LVEF ≥10% to <55% or decrease of LVEF ≥5% to <55% with signs or symptoms of HF

11401

WILEY

TABLE 2 (Continued)

Open Access

	Cancer type	Treatment	Imaging	Definition of CTRCD
Meléndez et al. ⁴²	Different	ANT + TAX + TZB + ALK	CMR	Decrease of LVEF $>10\%$ to $<50\%$
Mizia-Stec et al. ⁴³	LNH	ANT (CHOP) + RT	Echo	Decrease of LVEF $\geq 10\%$
Antolín et al. ⁴⁴	Breast	ANT+RT	Echo	LVEF <50%
Nowsheen et al. ⁴⁵	Breast	ANT+TZB	Echo	Decrease of LVEF $\geq 10\%$ to $<53\%$
Klein et al. ⁴⁶	Breast	ANT + TZB + RT	Nuclear	Decrease of LVEF <50% or decrease of LVEF >10%
Bergamini et al. ⁴⁷	Breast	ANT + TZB	Echo	Decrease of LVEF <50% or decrease of LVEF >10% with or without symptoms
Mahjoob et al. ⁴⁸	Different	ANT	Echo	Decrease of LVEF $>10\%$ to $<53\%$
Keramida et al. ⁴⁹	Breast	TZB+RT	Echo	Decrease of LVEF $\geq 10\%$ to $< 50\%$
Yu et al. ⁵⁰	Breast	RT + CHT	Echo	Decrease of LVEF ≥10% to <53% or decrease of LVEF >16%
Suerken et al. ⁵¹	Different	ANT + TAX + TZB + CYCP	CMR	Decrease of LVEF ≥5% or a drop <50% or decrease of LVEF >10% to <53%
Ben Abdallah et al. ⁵²	Breast	ANT + 5 FU + RT + TAX	Echo	Decrease of LVEF $>10\%$ to $<53\%$
Laufer-Perl et al. ⁵³	Different	CHT+RT+TZB	Echo	Decrease of LVEF $>10\%$ to $<53\%$
Sandamali et al. ⁵⁴	Breast	ANT+RT	Echo	Decrease of LVEF $> 10\%$
Wang et al. ⁵⁵	LNH	ANT	Echo	Decrease of LVEF $>10\%$ to $<53\%$
Coutinho Cruz et al. ⁵⁶	Breast	ANT+RT	Echo	Decrease of LVEF $>10\%$ to $<54\%$
Shamai et al. ⁵⁷	Sarcoma	ANT	Echo	Decrease of LVEF $>10\%$ to $<53\%$
Zito et al. ⁵⁸	Breast	ANT	Echo	Decrease of LVEF ${\geq}10\%$ to ${<}50\%$
Giusca et al. ⁵⁹	Different	ANT + TZB + RT + TAX + CYCP	CMR	Decrease of LVEF $>10\%$ to $<53\%$

Abbreviations: ALK, alkylating agents; ANT, anthracycline; CHOP, cyclophosphamide, doxorubicin, oncovin and prednisone; CHT, different type of treatment; CMR, cardiac magnetic resonance; CTRCD, cancer therapeutics related cardiac dysfunction; CYCP, cyclophosphamide; Echo, echocardiography; FU, fluorouracil; HF, heart failure; LNH, lymphoma non Hodgkin; LVEF, left ventricular ejection fraction; LYP, lymphoma; RT, radiotherapy; TAX, taxane; TZB, trastuzumab.

Diagnosis of cardiac functional impairment plays a key role for clinical decision-making in oncological patients referred to chemotherapy and/or radiation therapy. Moreover, a challenge for the diagnostic procedures should be the early assessment of cardiotoxicity. The Imaging and Cardio-Oncology Study Groups of the HF Association analyzed the timely evidence for the role of cardiovascular imaging, such as echocardiography, CMR, CT, and nuclear testing, before and after cancer treatment.¹¹ In addition, The International Cardio-Oncology Society has recently developed criteria in the identification of CTRCD based on LVEF, echocardiographic global longitudinal strain, and blood biomarkers.⁹ In these documents, it was outlined that echocardiography is the first-step imaging technique for the identification of cardiotoxicity through the evaluation of LVEF.¹⁰ Other echocardiographic indices, such as the global longitudinal LV strain, have been more recently introduced for the early identification of cardiac toxicity.²⁴ Those indications have been confirmed and detailed by the recently published ESC guidelines,

which have reported a clear scheduled timing follow-up by prechemotherapy CAD patients' risk assessment and type of administrated chemotherapy showing the 3D echocardiography as the gold standard, using CRM and radionuclide angiography only when echocardiography is not available or not diagnostic.⁶⁰

Recent evidence about the need of early diagnosis and rigorous follow-up in cancer patients who underwent chemotherapy or radiotherapy led an incrementing effort in the definition of new protocols, within each diagnostic method, providing a timely diagnosis and a better patient management to cardiologists and oncologists.^{61,62}

Scoping reviews are a type of systematic review, focusing on large and heterogeneous body of literature relative to a research topic of interest. They are particularly useful for knowledge synthesis in case of lack of understanding of key conceptions within a topic and when a research topic is of a complex nature. In the field of cardio-oncology, the large volume and the disparateness of published work, related to type of cancer patients, clinical characteristics of patients, the treatment adopted, CRTD definition, and

Nousiainen et al. 2002 0 0 36 (021, 0.54) 1.19 Limat et al. 2002 0 0.28 (0.14, 0.28) 2.32 Belham et al. 2007 0.28 (0.16, 0.38) 1.73 Abu-Khalaf et al. 2008 0.24 (0.18, 0.31) 2.32 Dodos et al. 2008 0.24 (0.18, 0.31) 2.32 Dodos et al. 2010 0.24 (0.19, 0.66) 1.52 Stoodley et al. 2011 0.44 (0.19, 0.46) 1.52 Fatima et al. 2011 0.24 (0.19, 0.46) 1.52 Stoodley et al. 2011 0.24 (0.19, 0.46) 1.52 Stoodley et al. 2011 0.24 (0.19, 0.46) 1.52 Stoodley et al. 2011 0.44 (0.07, 0.28) 1.88 Sawaya et al. 2012 0.44 (0.07, 0.28) 1.88 Sawaya et al. 2012 0.44 (0.07, 0.28) 1.88 Sawaya et al. 2014 0.44 (0.07, 0.28) 1.88 Cardinale et al. 2015 0.44 (0.07, 0.28) 1.88 Sawaya et al. 2014 0.46 (0.08, 0.19) 2.25 Cardinale et al	Author	Year	CTRCD	Weight %
Limat et al. 2002 Beham et al. 2007 Abu-Khalaf et al. 2007 Abu-Khalaf et al. 2008 Yoon et al. 2019 Yoon et al. 2010 Yoon et al. 2010 Yoon et al. 2010 Yoon et al. 2010 Yoon et al. 2010 Yoon et al. 2010 Yoon et al. 2010 Falima et al. 2011 Falima et al. 2012 Falima et al. 2013 Falima et al. 2014 Falima et al. 2015 Falima et al. 2015 Falima et al. 2016 Falima et al. 2017 Falima et al. 2018 Falima et al. 2019 Falima et al. 2010 Falima et al. 2020 Falima et al. 2020 Falima et al. 2020 Falima et al. 2020	Nousiainen et al.	2002	0.36 (0.21, 0.54)	1.19
Beham et al. 2007 Wadtwa et al. 2008 Wadtwa et al. 2008 Dodos et al. 2008 Over at al. * 2010 Yoon et al. * 2010 Yoon et al. * 2010 Fatima et al. * 2011 Fatima et al. * 2011 Fatima et al. * 2011 Cochet et al. 2013 Cochet et al. 2013 Cochet et al. 2013 Cochet et al. 2014 Cochet et al. 2014 Cochet et al. 2015 Cochet et al. 2014 Cochet et al. 2015 Cochet et al. 2016 Cochet et al. 2016 Cochet et al. 2016 Cochet et al. 2016 Cochet et al. 2017 Cochet et al. 2016 Cochet et al. 2017 Cochet et al. 2017 Cochet et al. 2016 Cochet et al. 2017 Cochet et al. 2017 Co	Limat et al.	2002	0.20 (0.14, 0.28)	2.32
Abu-Khalaf et al. 2007 240 0.001, 0.16) 2.40 Vadrwa et al. 2008 0.15 0.024 (0.18, 0.29) 2.29 Yoon et al. 2010 0.15 0.16 0.02, 0.00, 0.10) 2.61 Stoodley et al. 2011 0.02 0.00, 0.00 1.92 0.02 0.00, 0.10) 2.61 Falma et al. 2011 0.15 0.16 0.12, 0.00, 0.10) 2.61 1.52 Falma et al. 2011 0.15 0.16 0.10, 0.23) 2.35 1.63 Cochet et al. 2011 0.15 0.16 0.02 0.00, 0.00, 0.07) 2.75 Swaya et al. 2012 0.02 0.00	Belham et al.	2007	0.25 (0.16, 0.39)	1.73
Wadhwa et al. 2008	Abu-Khalaf et al.	2007	0.03 (0.01, 0.16)	2.40
Dodos et al. 2008 0.15 (0.09, 0.23) 2.29 Yoon et al. 2010 0.18 (0.12, 0.28) 2.17 Stoodley et al. 2011 0.02 (0.00, 0.10) 2.61 Falima et al. 2011 0.23 (0.13, 0.39) 1.63 Cochet et al. 2011 0.18 (0.10, 0.23) 2.25 Falima et al. 2011 0.3 (0.19, 0.46) 1.52 Falima et al. 2011 0.33 (0.19, 0.46) 1.52 Falima et al. 2011 0.33 (0.19, 0.46) 1.52 Falima et al. 2011 0.33 (0.19, 0.46) 1.52 Stoodley et al. 2013 0.33 (0.02, 0.43) 1.33 Kang et al. 2014 0.09 (0.00, 0.07) 2.75 Negishi et al. 2015 0.09 (0.00, 0.10) 2.75 Cardinale et al. 2015 0.09 (0.00, 0.10) 2.75 Degiver et al. 2015 0.33 (0.17, 0.49) 1.26 Cuerral et al. 2016 0.33 (0.17, 0.49) 1.26 Zuera et al. 2016 0.35 (0.26, 0.46) 1.91 Narayan et al. 2017 0.35 (0.26, 0.46)	Wadhwa et al.	2008	0.24 (0.18, 0.31)	2.32
Yoon et al. ** Yoon et al. ** Stoodley et al. 2011 Fatima et al. * 2011 Fatima et al. * 2011 Cochet et al. 2011 Cochet et al. 2012 Sawaya et al. 2012 Cochet et al. 2014 Cochet et al. 2015 Dores et al. 2015 Cochet et al. 2015 Cochet et al. 2016 Cochet et al. 2017 Negishi et al. 2015 Guerra et al. 2015 Sawaya et al. 2015 Cochet et al. 2016 Cochet et al. 2016 Cochet et al. 2017 Meize Action 2017 Cochet et al. 2016 Cochet et al. 2017 Meize-Stec et al. 2017 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2017 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2017 Cochet et al. 2018 Cochet et al. 2017 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2017 Cochet et al. 2018 Cochet et al. 2018 Cochet et al. 2019 Cochet et al. 2018 Cochet et al. 2019 Cochet et al. 2020 Cochet et al. 2020 Coc	Dodos et al.	2008	0.15 (0.09, 0.23)	2.29
Yoon et al. * Stoodley et al. 2010 Fatima et al. * 2011 Fatima et al. * 2012 Fatima et al. * 2013 Fatima et al. * 2014 Fatima et al. * 2017 Fatima et al. * 2017 Fatima et al. * 2018 Fatima et al. * 2019 Fatima et al. * 2017 Fatima et al. * 2018 Fatima et al. * 2019 Fatima et al. * 2019 Fatima et al. * 2019 Fatima et al. * 2020 Fatima et al. * Cancer therapy related cardiac dysfunction * Fatima et al. * Cancer therapy relat	Yoon et al. **	2010 ++	0.18 (0.12, 0.28)	2.17
Stoodley et al. 2011 0.02 (0.00, 0.10) 2.61 Fallan +Rad et al. 2011 0.24 (0.13, 0.39) 1.63 Cochet et al. 2011 0.16 (0.01, 0.23) 2.35 Fallan +Rad et al. 2011 0.14 (0.07, 0.28) 1.88 Sawaya et al. 2012 0.14 (0.07, 0.28) 1.88 Sawaya et al. 2013 0.19 (0.06, 0.17) 2.75 Negishi et al. 2014 0.00 (0.00, 0.07) 2.75 Negishi et al. 2015 0.09 (0.08, 0.10) 2.75 Reuvekamp et al. 2015 0.09 (0.08, 0.10) 2.75 Guerra et al. 2016 0.09 (0.00, 0.10) 2.75 Shaikh et al. 2016 0.44 (0.33, 0.56) 1.82 Zhan et al. 2016 0.44 (0.33, 0.55) 1.85 Zhaikh et al. 2017 0.45 (0.10, 0.21) 2.39 Miza-Stec et al. 2017 0.46 (0.10,	Yoon et al. *	2010	0.40 (0.30, 0.50)	1.92
Failan-Rad et al. 2011 0.31 (0.19, 0.46) 1.52 Cochet et al. 2011 0.15 (0.10, 0.23) 2.35 Cochet et al. 2011 0.15 (0.10, 0.23) 2.35 Sawaya et al. 2012 0.16 (0.10, 0.23) 2.35 Kang et al. 2013 0.19 (0.11, 0.29) 2.08 Dores et al. 2014 0.09 (0.00, 0.07) 2.75 Negishi et al. 2014 0.09 (0.06, 0.14) 2.66 Cardinale et al. 2015 0.09 (0.08, 0.10) 2.72 Dogu et al. 2015 0.03 (0.02, 0.07) 2.23 Reuvekamp et al. 2015 0.04 (0.00, 0.07) 2.75 Guerra et al. 2015 0.02 (0.00, 0.19) 2.23 Pathy et al. 2016 0.03 (0.02, 0.12) 2.72 Shaikh et al. 2016 0.04 (0.30, 0.39) 1.89 Meie et al. 2016 0.03 (0.00, 0.12) 2.72 Shaikh et al. 2016 0.03 (0.00, 0.12) 2.72 Shaikh et al. 2016 0.03 (0.00, 0.12) 2.72 Shaith et al. 2017 0.02 (0.00, 0.13)	Stoodley et al.	2011 🔶	0.02 (0.00, 0.10)	2.61
Fallah-Rad et al. 2011 Cochet et al. 2011 Fallah-Rad et al. 2011 Cochet et al. 2011 Fallah-Rad et al. 2011 Cochet et al. 2011 Cochet et al. 2011 Cochet et al. 2012 Kang et al. 2013 Cardinale et al. 2013 Cardinale et al. 2015 Florescu et al. 2015 Florescu et al. 2015 Cardinale et al. 2016 Cardinale et al. 2016 Cardinale et al. 2016 Cardinale et al. 2017 Cardinale et al. 2016 Cardinale et al. 2017 Cardinale et al. 2016 Cardinale et al. 2017 Cardinale et al. 2018 Cardinale et al. 2018 Cardinale et al. 2019 Cardinale et al. 2020 Coutinb Cruz et al. 2020 Cardinale	Fatima et al. **	2011	0.31 (0.19, 0.46)	1.52
Cochet et al. 2011 Faima et al. 2011 Kang et al. 2012 Kang et al. 2013 Cores et al. 2013 Units (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Fallah-Rad et al.	2011	0.24 (0.13, 0.39)	1.63
Fatima et al. 2011 0.14 (0.07, 0.28) 1.88 Sawaya et al. 2012 0.32 (0.23, 0.43) 1.93 Marge et al. 2013 0.00 (0.00, 0.07) 2.75 Negishi et al. 2014 0.90 (0.05, 0.14) 2.56 Florescu et al. 2015 0.90 (0.05, 0.14) 2.56 Dorus et al. 2015 0.90 (0.05, 0.14) 2.56 Dorus et al. 2015 0.90 (0.05, 0.14) 2.56 Guerra et al. 2015 0.47 (0.36, 0.58) 1.82 Guerra et al. 2016 0.44 (0.03, 0.55) 1.82 Mele et al. 2016 0.44 (0.33, 0.55) 1.85 Zhang et al. 2017 0.44 (0.33, 0.55) 1.85 Marayan et al. 2017 0.23 (0.16, 0.32) 2.20 Mizia-Stee et al. 2017 0.16 (0.10, 0.23) 2.39 Barthur et al. 2018 0.46 (0.20, 0.08) 2.66 Nowsheen et al. 2018 0.46 (0.30, 0.17) 2.24 Meindez et al. 2019 0.46 (0.20, 0.17) 2.42 Marijoab et al. 2019 0.16 (0.10, 2.17)	Cochet et al.	2011	0.15 (0.10, 0.23)	2.35
Sawaya et al. 2012 Kang et al. 2013 Dores et al. 2013 Negishi et al. 2014 Cardinale et al. 2015 Guerra et al. 2015 Guerra et al. 2015 The tal. 2015 Guerra et al. 2015 Character therapy related cardiac dysfunction A cancer therapy related cardiac dysfunction 0.32 (0.23, 0.43) 1.93 0.19 (0.11, 0.29) 2.08 0.09 (0.05, 0.14) 2.56 0.09 (0.05, 0.14) 2.56 0.09 (0.08, 0.10) 2.75 0.09 (0.08, 0.10) 2.75 0.09 (0.08, 0.10) 2.75 0.09 (0.08, 0.10) 2.75 0.08 (0.03, 0.19) 2.23 0.08 (0.03, 0.19) 2.23 0.08 (0.03, 0.19) 1.26 0.08 (0.03, 0.12) 2.72 0.08 (0.00, 0.12) 2.72 0.08 (0.00, 0.12) 2.72 0.08 (0.00, 0.12) 2.72 0.08 (0.00, 0.13) 2.53 0.09 (0.00, 0.13) 2.54 0.016 (0.10, 0.22) 2.62 0.04 (0.02, 0.08) 2.66 0.04 (0.02, 0.17) 2.24 0.04 (0.02, 0.08) 2.66 0.03 (0.02) 1.71 2.42 0.15 (0.00, 0.25) 2.12 1.17 1.17 (0.10, 0.25) 1.18 1.17 (0.10, 0.25, 0.77) 2.42 1.17 (0.10, 0.05, 0.17) 2.42 1.17 (0.10, 0.05, 0.17) 2.42 1.17 (0.10, 0.05, 0.17) 2.42 1.17 (0.10, 0.05, 0.17) 2.44 1.17 (0.10, 0.05, 0	Fatima et al. *	2011	0.14 (0.07, 0.28)	1.88
Kang et al. 2013 0:9 (0:11, 0:29) 2.08 Dores et al. 2014 0.00 (0:00, 0:07) 2.75 Negishi et al. 2014 0.35 (0:22, 0:50) 1.44 Elorescu et al. 2015 0.09 (0:08, 0:10) 2.75 Dogru et al. 2015 0.47 (0:36, 0:58) 1.82 Tan et al. 2016 0.33 (0:17, 0:49) 1.26 Guerra et al. 2016 0.00 (0:00, 0:12) 2.72 Shaikh et al. 2016 0.33 (0:17, 0:49) 1.26 Zhang et al. 2017 0.44 (0:33, 0:55) 1.85 Mele et al. 2016 0.36 (0:26, 0:46) 1.91 Marayan et al. 2017 0.44 (0:33, 0:55) 1.85 Melendaz et al. 2017 0.16 (0:10, 0:23) 2.39 Melendaz et al. 2017 0.15 (0:08, 0:25) 2.12 Antolin et al. 2018 0.44 (0:02, 0:08) 2.66 Nowsheen et al. 2018 0.46 (0:02, 0:08) 2.61 Kein et al. 2019 0.15 (0:00, 0:21) 2.46 Mahjoob et al. 2019 0.46 (0:02, 0:17) <t< td=""><td>Sawaya et al.</td><td>2012</td><td>0.32 (0.23, 0.43)</td><td>1.93</td></t<>	Sawaya et al.	2012	0.32 (0.23, 0.43)	1.93
Dores et al. 2013 0.00 (0.00, 0.07) 2.75 Negishi et al. 2014 0.09 (0.05, 0.14) 2.56 Dorgue tal. 2015 0.09 (0.08, 0.19) 2.23 Degrave tal. 2015 0.047 (0.36, 0.58) 1.82 Tan et al. 2015 0.47 (0.36, 0.58) 1.82 Guerra et al. 2016 0.47 (0.36, 0.58) 1.82 Shaikh et al. 2016 0.44 (0.33, 0.55) 1.85 Shaikh et al. 2017 0.44 (0.33, 0.55) 1.85 Narayan et al. 2017 0.44 (0.32, 0.55) 1.85 Narayan et al. 2017 0.44 (0.32, 0.25) 2.12 Narayan et al. 2017 0.46 (0.10, 0.23) 2.30 Nelendez et al. 2017 0.46 (0.10, 0.23) 2.30 Nowsheen et al. 2018 0.46 (0.10, 0.23) 2.20 Nowsheen et al. 2018 0.46 (0.22, 0.08) 2.66 Narayan et al. 2019 0.16 (0.02, 0.17) 2.46 Mahjoob et al. 2019 0.16 (0.02, 0.17) 2.46 Nowsheen et al. 2019 0.16 (0.00, 0.17)	Kang et al.	2013	0.19 (0.11, 0.29)	2.08
Negishi et al. 2014 009 (0.05, 0.14) 2.56 Florescu et al. 2014 0.35 (0.22, 0.50) 1.44 Cardinale et al. 2015 0.08 (0.03, 0.19) 2.23 Reuvekamp et al. 2015 0.47 (0.36, 0.58) 1.82 Tan et al. 2016 0.33 (0.17, 0.49) 1.26 Guerra et al. 2016 0.28 (0.18, 0.39) 1.89 Mele et al. 2016 0.44 (0.33, 0.55) 1.85 Zhang et al. 2017 0.35 (0.22, 0.46) 1.91 Narayan et al. 2017 0.36 (0.00, 0.12) 2.72 Melendez et al. 2017 0.44 (0.33, 0.55) 1.85 Melendez et al. 2017 0.16 (0.10, 0.23) 2.39 Barthur et al. 2017 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.47 (0.36, 0.717) 2.44 Mahjoob et al. 2019 0.16 (0.05, 0.17) 2.42 Vuet al. 2019 0.16 (0.02, 0.21) 2.46 Sandamali et al. 2020 0.10 (0.04, 0.21)<	Dores et al.	2013 ◆	0.00 (0.00, 0.07)	2.75
Florescu et al. 2014 Cardinale et al. 2015 Reuvekamp et al. 2015 Tan et al. 2015 Tan et al. 2015 Tan et al. 2015 Shaikh et al. 2016 Zhang et al. 2017 Narayan et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Klein et al. 2018 Klein et al. 2018 Mele et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Klein et al. 2018 Mele et al. 2018 Mele et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Mele et al. 2018 Mele et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Mele et al. 2018 Mele et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Mele et al. 2018 Mele et al. 2018 Mele et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Mele et al. 2019 Yu et al. 2019 Yu et al. 2020 Coutinho Cruz et al. 2021 Coutinho Cruz et al. 2021 Coutinho Cruz et al. 2020 Coutinho Cruz et	Negishi et al.	2014	0.09 (0.05, 0.14)	2.56
Cardinale et al. 2015 Dogru et al. 2015 Tan et al. 2015 Guerra et al. 2015 Tan et al. 2015 Guerra et al. 2016 The et al. 2016 Character therapy related cardiac dysfunction Coveral (l*2 = 96.01%, p = 0.00) Overall (l*2 = 96.01%, p = 0.00) Coveral (l*2 = 96.01%, p = 0.0	Florescu et al.	2014	0.35 (0.22, 0.50)	1.44
Dogru et al. 2015 0.08 (0.03, 0.19) 2.23 Reuvekamp et al. 2015 0.47 (0.36, 0.58) 1.82 Guerra et al. 2016 0.28 (0.18, 0.39) 1.89 Mele et al. 2016 0.04 (0.33, 0.55) 1.85 Shaikh et al. 2016 0.47 (0.36, 0.58) 1.89 Mele et al. 2017 0.47 (0.36, 0.55) 1.85 Shaikh et al. 2017 0.46 (0.10, 0.23) 2.33 Melendez et al. 2017 0.16 (0.10, 0.23) 2.39 Matipost et al. 2017 0.23 (0.16, 0.32) 2.20 Mizia-Stec et al. 2017 0.15 (0.08, 0.25) 1.12 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.16 (0.15, 0.22) 2.62 Mahjoob et al. 2019 0.04 (0.02, 0.08) 2.66 Vu et al. 2019 0.05 (0.03, 0.08) 2.88 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.88 Coutinho Cruz et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.17 (0.10,	Cardinale et al.	2015 🔶	0.09 (0.08, 0.10)	2.75
Revekamp et al. 2015 0.47 (0.36, 0.58) 1.82 Tan et al. 2015 0.31 (0.17, 0.49) 1.26 Guera et al. 2016 0.28 (0.18, 0.39) 1.89 Mele et al. 2016 0.00 (0.00, 0.12) 2.72 Shaikh et al. 2017 0.44 (0.33, 0.55) 1.85 Narayan et al. 2017 0.44 (0.33, 0.55) 1.85 Narayan et al. 2017 0.35 (0.26, 0.46) 1.91 Narayan et al. 2017 0.16 (0.10, 0.23) 2.39 Barthur et al. 2017 0.23 (0.16, 0.32) 2.20 Mizia-Stec et al. 2017 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.15 (0.08, 0.22) 2.62 Klein et al. 2018 0.15 (0.00, 2.01) 2.46 Mahjoob et al. 2019 0.16 (0.00, 0.17) 2.42 Yu et al. 2020 0.03 (0.02, 0.03) 2.66 Vang et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Vang et al. 2020 0.16 (0.05, 0.17) <	Dogru et al.	2015	0.08 (0.03, 0.19)	2.23
Tan et al. 2015 Guerra et al. 2015 Guerra et al. 2016 Chara et al. 2016 Chara et al. 2016 Chara et al. 2017 Narayan et al. 2017 Narayan et al. 2017 Mizia-Stec et al. 2017 Mizia-Stec et al. 2018 Klein et al. 2018 Klein et al. 2018 Chara et al. 2019 Chara et al. 2020 Coutinho Cruz et	Reuvekamp et al.	2015	0.47 (0.36, 0.58)	1.82
Guerra et al. 2015 0.28 (0.18, 0.39) 1.89 Mele et al. 2016 0.00 (0.00, 0.12) 2.72 Shaikh et al. 2017 0.44 (0.33, 0.55) 1.85 Melendez et al. 2017 0.44 (0.33, 0.55) 1.85 Melendez et al. 2017 0.02 (0.00, 0.13) 2.53 Melendez et al. 2017 0.22 (0.00, 0.33) 2.53 Momente al. 2017 0.23 (0.16, 0.32) 2.20 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.18 (0.15, 0.22) 2.62 Mahjoob et al. 2019 0.16 (0.04, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.48 Vu et al. 2020 0.10 (0.04, 0.21) 2.48 Va et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.17 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.05, 0.17) 2.29 Surfer-Perl et al. 2020 0.17 (0.10, 0.28) </td <td>Tan et al.</td> <td>2015</td> <td>0.31 (0.17, 0.49)</td> <td>1.26</td>	Tan et al.	2015	0.31 (0.17, 0.49)	1.26
Mele et al. 2016 0.00 (0.00, 0.12) 2.72 Shaikh et al. 2017 0.44 (0.33, 0.55) 1.85 Zhang et al. 2017 0.44 (0.33, 0.55) 1.85 Marayan et al. 2017 0.44 (0.33, 0.55) 1.85 Marayan et al. 2017 0.66 (0.10, 0.23) 2.39 Mathematical et al. 2017 0.23 (0.16, 0.32) 2.20 Mizia-Stec et al. 2017 0.51 (0.08, 0.25) 2.12 Antolin et al. 2018 0.44 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.44 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.34 (0.27, 0.42) 2.21 Matigo bt al. 2019 0.06 (0.02, 0.17) 2.42 Vu et al. 2020 0.06 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.66 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.66 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.66 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.16 (0	Guerra et al.	2015	0.28 (0.18, 0.39)	1.89
Shaikh et al. 2016 Zhang et al. 2017 Narayan et al. 2017 Narayan et al. 2017 Barthur et al. 2017 Melendez et al. 2017 Mizia-Stec et al. 2017 Antolin et al. 2018 Bergamini et al. 2018 Klein et al. 2019 Yu et al. 2019 Suerken et al. 2019 Yu et al. 2019 Yu et al. 2019 Suerken et al. 2019 Yu et al. 2020 Coulinho Cruz et al. 2020 Quitho Cruz et al. 2020 Quet al. 2020 Quet al. 2020 Quet al. 2020 Quet al.	Mele et al.	2016	0.00 (0.00, 0.12)	2.72
Zhang et al. 2017 0.35 (0.26, 0.46) 1.91 Narayan et al. 2017 0.16 (0.10, 0.23) 2.39 Barthur et al. 2017 0.02 (0.00, 0.13) 2.53 Melendez et al. 2017 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.16 (0.03, 0.07) 2.42 Vu et al. 2019 0.02 (0.00, 0.03) 2.56 Suerken et al. 2020 0.06 (0.02, 0.17) 2.29 Suerken et al. 2020 0.06 (0.03, 0.08) 2.68 Sandamai et al. 2020 0.05 (0.03, 0.08) 2.68 Vang et al. 2020 0.06 (0.02, 0.17) 2.44 Shamai et al. 2021 0.06 (0.00, 0.03) 2.76 Giusca et al. 2021 0.22 4 0.00 (0.00, 0.03) 2.76 Outrinho Cruz et al. 2021 0.22 4 0.16 (0.02, 0.27) 2.44 Outol (0.02, 0.27) <td>Shaikh et al.</td> <td>2016</td> <td>0.44 (0.33, 0.55)</td> <td>1.85</td>	Shaikh et al.	2016	0.44 (0.33, 0.55)	1.85
Narayan et al. 2017 0.16 (0.10, 0.23) 2.39 Barthur et al. 2017 0.02 (0.00, 0.13) 2.53 Melendez et al. 2017 0.23 (0.16, 0.32) 2.20 Antolin et al. 2018 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.46 (0.10, 0.21) 2.46 Nowsheen et al. 2018 0.46 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.16 (0.00, 0.17) 2.42 Yu et al. 2019 0.10 (0.05, 0.17) 2.42 Yu et al. 2020 0.06 (0.02, 0.17) 2.49 Suerken et al. 2020 0.05 (0.03, 0.08) 2.66 Var et al. 2020 0.06 (0.02, 0.17) 2.42 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.03) 2.76 Giusca et al. 2021 0.22 0.10 (0.05, 0.17) 2.44 Shamai et al. 2021 0.22 0.10 (0.00, 0.03) 2.76 Giusca et al. 2021	Zhang et al.	2017	0.35 (0.26, 0.46)	1.91
Barthur et al. 2017 Melendez et al. 2017 Mizia-Stec et al. 2017 Antolin et al. 2018 Klein et al. 2018 Klein et al. 2018 Klein et al. 2018 Mahjoob et al. 2019 Yu et al. 2019 Suerken et al. 2020 Yu et al. 2020 Autolin holdshift = 1. 202	Narayan et al.	2017	0.16 (0.10, 0.23)	2.39
Melendez et al. 2017 0.23 (0.16, 0.32) 2.20 Mizia-Stec et al. 2017 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.34 (0.27, 0.42) 2.21 Bergamini et al. 2019 0.15 (0.08, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.46 Keramida et al. 2019 0.10 (0.05, 0.17) 2.42 Yu et al. 2019 0.04 (0.02, 0.08) 2.66 Suerken et al. 2020 0.10 (0.04, 0.21) 2.18 Laufer-Peri et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Shamai et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.14 (0.07, 0.27) 1.41 Shamai et al. 2021 0.15 (0.08, 0.26) 2.08 Overall (I^2 = 96.01%, p = 0.00) .2 .4 .6 .8	Barthur et al.	2017 -	0.02 (0.00, 0.13)	2.53
Mizia-Stec et al. 2017 0.15 (0.08, 0.25) 2.12 Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.34 (0.27, 0.42) 2.21 Bergamini et al. 2019 0.15 (0.00, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.18 Keramida et al. 2019 0.10 (0.05, 0.17) 2.42 Yu et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.42 (0.31, 0.54) 1.78 Coutinho Cruze tal. 2020 0.05 (0.03, 0.08) 2.68 Sandamai et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruze tal. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruze tal. 2020 0.17 (0.10, 0.28) 2.06 Overall (l^2 = 96.01%, p = 0.00) 0.2 4 .6 .8	Melendez et al.	2017	0.23 (0.16, 0.32)	2.20
Antolin et al. 2018 0.04 (0.02, 0.08) 2.66 Nowsheen et al. 2018 0.18 (0.15, 0.22) 2.62 Bergamini et al. 2019 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.46 Keramida et al. 2019 0.10 (0.04, 0.21) 2.46 Yu et al. 2019 0.10 (0.05, 0.17) 2.42 Suerken et al. 2020 0.06 (0.02, 0.17) 2.29 Suerken et al. 2020 0.06 (0.03, 0.17) 2.36 Laufer-Perl et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.10 (0.05, 0.17) 2.34 Wang et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.10 (0.05, 0.17) 2.44 Shamai et al. 2020 0.17 (0.10, 0.28) 2.05 Outinho Cruz et al. 2021 0.16 (0.08, 0.26) 2.08 Overall (I^2 = 96.01%, p = 0.00) 0.17 (0.14, 0.20) 100.00 Image: total 2021 0.2 4 6 .8 Cancer therapy related cardiac dys	Mizia-Stec et al.	2017	0.15 (0.08, 0.25)	2.12
Nowsheen et al. 2018 0.18 (0.15, 0.22) 2.62 Klein et al. 2018 0.18 (0.15, 0.22) 2.62 Mahjoob et al. 2019 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.18 Keramida et al. 2020 0.06 (0.02, 0.17) 2.42 Suerken et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.02, 0.17) 2.36 Coutinho Cruz et al. 2020 0.05 (0.03, 0.08) 2.68 Osta et al. 2021 0.00 0.010 (0.05, 0.17) 2.44 Shamai et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.17 (0.10, 0.28) 2.05 Overall (I^2 = 96.01%, p = 0.00) 0.10 (0.05, 0.17) 2.44 0.10 (0.05, 0.27) 1.91 0.00 (0.00, 0.03) 2.76 0.15 (0.08, 0.26) 2.08 0.17 (0.14, 0.20) 100.00 1 1 1 1 1 -2 0 .2 </td <td>Antolin et al.</td> <td>2018 -</td> <td>0.04 (0.02, 0.08)</td> <td>2.66</td>	Antolin et al.	2018 -	0.04 (0.02, 0.08)	2.66
Klein et al. 2018 0.34 (0.27, 0.42) 2.21 Bergamini et al. 2019 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.18 Yu et al. 2019 0.06 (0.02, 0.17) 2.29 Suerken et al. 2020 0.06 (0.02, 0.17) 2.42 Ben Abdallah et al. 2020 0.06 (0.02, 0.17) 2.36 Laufer-Perl et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Vang et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2021 0.17 (0.14, 0.20) 100.00 Zito et al. 2021 0.2 2.4 0.6 .8 Overall (1^2 = 96.01%, p = 0.00) 2.2 4 .6 .8	Nowsheen et al.	2018	0.18 (0.15, 0.22)	2.62
Bergamini et al. 2018 0.15 (0.10, 0.21) 2.46 Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.18 Keramida et al. 2019 0.10 (0.05, 0.17) 2.42 Yu et al. 2020 0.06 (0.02, 0.17) 2.29 Suerken et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.17 (0.10, 0.27) 1.91 Zito et al. 2021 0.15 (0.08, 0.26) 2.08 Overall (l^2 = 96.01%, p = 0.00) 2.2 4 .6 .8	Klein et al.	2018	0.34 (0.27, 0.42)	2.21
Mahjoob et al. 2019 0.10 (0.04, 0.21) 2.18 Keramida et al. 2019 0.10 (0.05, 0.17) 2.42 Suerken et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.42 (0.31, 0.54) 1.78 Sandamali et al. 2020 0.55 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.10 (0.05, 0.17) 2.34 Wang et al. 2020 0.33 (0.27, 0.40) 2.34 Octuinho Cruz et al. 2020 0.10 (0.05, 0.17) 2.44 Shamai et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.10 (0.05, 0.17) 2.44 Shamai et al. 2020 0.10 (0.05, 0.17) 2.44 Succe et al. 2021 0.10 (0.05, 0.17) 2.44 Overall (l^2 = 96.01%, p = 0.00) 0.17 (0.14, 0.20) 100.00 Image: the cardiac dysfunction 0.17 (0.14, 0.20) 100.00	Bergamini et al.	2018	0.15 (0.10, 0.21)	2.46
Keramida et al. 2019 0.10 (0.05, 0.17) 2.42 Yu et al. 2019 0.66 (0.02, 0.17) 2.29 Suerken et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.08 (0.03, 0.17) 2.36 Laufer-Perl et al. 2020 0.10 (0.05, 0.17) 2.42 Wang et al. 2020 0.42 (0.31, 0.54) 1.78 Coutinho Cruz et al. 2020 0.33 (0.27, 0.40) 2.34 Shamai et al. 2020 0.10 (0.05, 0.17) 2.44 Shamai et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.14 (0.07, 0.27) 1.91 Zito et al. 2021 0.15 (0.08, 0.26) 2.08 Overall (I^2 = 96.01%, p = 0.00) 0.2 4 .6 .8	Mahjoob et al.	2019	0.10 (0.04, 0.21)	2.18
Yu et al. 2019 0.06 (0.02, 0.17) 2.29 Suerken et al. 2020 0.42 (0.31, 0.54) 1.78 Ben Abdallah et al. 2020 0.42 (0.31, 0.54) 1.78 Laufer-Perl et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.17 (0.10, 0.28) 2.05 Shamai et al. 2020 0.14 (0.07, 0.27) 1.91 Zito et al. 2021 0.14 (0.07, 0.27) 1.91 Overall (I^2 = 96.01%, p = 0.00) 0.27 (0.00) 2.08 0.17 (0.14, 0.20) 100.00 Image: the state of the state	Keramida et al.	2019	0.10 (0.05, 0.17)	2.42
Suerken et al. 2020 Ben Abdallah et al. 2020 Laufer-Perl et al. 2020 Sandamali et al. 2020 Wang et al. 2020 Coutinho Cruz et al. 2020 Shamai et al. 2020 John Shamai et al. 2020 Coutinho Cruz et al. 2020 Shamai et al. 2020 John Shamai et al. 2021 John Shamai et al. 2021 John Shamai et al. 2021 Overall (I^2 = 96.01%, p = 0.00) John Shamai et al. John Shamai et al. 2021 John Shamai et al. 2021 John Shamai et al. 2021 Overall (I^2 = 96.01%, p = 0.00) John Shamai et al. John Shamai et al. 2021 John S	Yu et al.	2019	0.06 (0.02, 0.17)	2.29
Ben Abdallah et al. 2020 0.08 (0.03, 0.17) 2.36 Laufer-Perl et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.33 (0.27, 0.40) 2.34 Wang et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.14 (0.07, 0.27) 1.91 Shamai et al. 2021 0.14 (0.07, 0.27) 1.91 Zito et al. 2021 0.15 (0.08, 0.26) 2.08 Overall (I^2 = 96.01%, p = 0.00) 0.2 4 .6 .8	Suerken et al.	2020	0.42 (0.31, 0.54)	1.78
Laufer-Perl et al. 2020 0.05 (0.03, 0.08) 2.68 Sandamali et al. 2020 0.33 (0.27, 0.40) 2.34 Wang et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.14 (0.07, 0.27) 1.91 Shamai et al. 2021 0.05 (0.08, 0.26) 2.08 Giusca et al. 2021 0.17 (0.14, 0.20) 100.00 Overall (I^2 = 96.01%, p = 0.00) 2.2 .4 .6 .8	Ben Abdallah et al.	2020	0.08 (0.03, 0.17)	2.36
Sandamali et al. 2020 Wang et al. 2020 Coutinho Cruz et al. 2020 Shamai et al. 2020 Shamai et al. 2020 Zito et al. 2021 Giusca et al. 2021 Overall (I^2 = 96.01%, p = 0.00) -2 And the rapy related cardiac dysfunction -2	Laufer-Perl et al.	2020	0.05 (0.03, 0.08)	2.68
Wang et al. 2020 0.17 (0.10, 0.28) 2.05 Coutinho Cruz et al. 2020 0.10 (0.05, 0.17) 2.44 Shamai et al. 2021 0.14 (0.07, 0.27) 1.91 Zito et al. 2021 0.00 (0.00, 0.03) 2.76 Giusca et al. 2021 0.15 (0.08, 0.26) 2.08 Overall (I^2 = 96.01%, p = 0.00) 0.17 (0.14, 0.20) 100.00 Image: the state of the	Sandamali et al.	2020	0.33 (0.27, 0.40)	2.34
Coutinho Cruz et al. 2020 Shamai et al. 2020 Zito et al. 2021 Giusca et al. 2021 Overall (I^2 = 96.01%, p = 0.00) 0.10 (0.05, 0.17) 1 1 2 0 .2 .4 .6 .8	Wang et al.	2020	0.17 (0.10, 0.28)	2.05
Shamai et al. 2020 Zito et al. 2021 Giusca et al. 2021 Overall (I^2 = 96.01%, p = 0.00) 0.14 (0.07, 0.27) Image: the state of the	Coutinho Cruz et al.	2020	0.10 (0.05, 0.17)	2.44
Zito et al. 2021 Giusca et al. 2021 Overall (I^2 = 96.01%, p = 0.00) 0.00 (0.00, 0.03) I I 2 0 .2 .4 .6 .8 Cancer therapy related cardiac dysfunction	Shamai et al.	2020	0.14 (0.07, 0.27)	1.91
Giusca et al. 2021 Overall (I ^A 2 = 96.01%, p = 0.00) 2 0 .2 .4 .6 .8 Cancer therapy related cardiac dysfunction	Zito et al.	2021 🔶	0.00 (0.00, 0.03)	2.76
Overall (I^2 = 96.01%, p = 0.00) • • •	Giusca et al.	2021	0.15 (0.08, 0.26)	2.08
2 0 .2 .4 .6 .8 Cancer therapy related cardiac dysfunction	Overall (I^2 = 96.01%,	p = 0.00)	0.17 (0.14, 0.20)	100.00
2 0 .2 .4 .6 .8 Cancer therapy related cardiac dysfunction				
Cancer therapy related cardiac dysfunction			6	I
	2	Cancer therapy related cardiac dysfunction	.0	.0

FIGURE 3 Forest plot of cancer therapeutics related cardiac dysfunction (CTRCD) prevalence in the overall studies. Horizontal lines represent 95% confidence interval (CI) of the point estimates. The diamond represents the pooled estimate (size of the diamond = 95% CI). The dashed vertical line represents the overall point estimate.

the method used for the diagnosis of CRTD highlight a relevant need to organize and summarize findings so that the most current and accurate information can be easily accessed.

Our review indicated as a main issue the overall low quality of the included studies (Figure 2), mostly related to patient sample size and study design. Most of the included and analyzed studies enrolled a small number of patients. Moreover, most of them considered a prevalent female population undergoing chemotherapy for breast cancer, limiting the external validity for patients with other type of cancer and for male patients. Additionally, the patients' cohorts are characterized by heterogeneous cancer type and different chemotherapy protocol with different treatment duration time.

From our study, it also emerged that the summary prevalence of CTRCD was slightly lower for studies published from 2011 to 2020 as compared to those published from 2000 to 2010 (16% vs. 22%). It should be considered that the chemotherapies have significantly changed over WILEY-Cancer Medicine

time, especially those for breast cancer. Indeed, the large majority of studies evaluating CTRCD in breast cancer included in our search were published after 2010 where the therapy regiment reached an optimization in terms of pharmaceutical type, doses, cycles, and combined therapy. Furthermore, the improvement in regime treatments as well the evolution in the methods linked to each imaging procedure could have had a significant role in the reduction of CTRCD prevalence observed after 2010.^{63,64}

Taking into account the above-quoted guidelines, more homogeneous CTRCD evaluation studies should be designed in the future, reporting a detailed clinical assessment of the patient before, during, and after treatment. Moreover, standardized imaging modality and follow-up for each chemotherapy scheme are imperative to obtain homogenous data for a useful analysis. Limitations of our study may include the searching MEDLINE, which could not include all the studies published in the literature, even if we have chosen the most various patter of keywords on the topic. We decided to exclude from our MEDLINE search studies published before the 2000, to reach as much as possible the most recent clinical and imaging overview in the CTRCD evaluation. This literature analyses may be used as a starting point for future studies, which aim to analyze CTRCD in oncologic patients, understanding which kind of clinical and methodological errors should be avoided to reach a strong conclusion that may lead the ordinary clinical practice.

5 | CONCLUSIONS

The findings of this scoping review endorse the recommendations regarding imaging modalities to ensure identification of cardiotoxicity in patients undergoing cancer therapies. However, to improve patient management, more homogeneous CTRCD evaluation studies are required, reporting a detailed clinical assessment of the patient before, during, and after treatment.

AUTHOR CONTRIBUTIONS

Valeria Cantoni: Data curation (equal); formal analysis (equal); investigation (equal); methodology (equal); software (equal); writing – original draft (equal). Roberta Green: Data curation (equal); formal analysis (equal); investigation (equal); methodology (equal); software (equal); writing – original draft (equal). Roberta Assante: Data curation (equal); investigation (equal); methodology (equal); writing – original draft (equal); writing – review and editing (equal). Adriana D'Antonio: Data curation (equal); investigation (equal); writing – original draft (equal). Francesca Maio: Data curation (equal); investigation (equal); methodology (equal); writing – original draft (equal); writing – review and editing (equal). **Emanuele Criscuolo:** Data curation (equal); methodology (equal). **Roberto Bologna:** Data curation (equal); methodology (equal). **Mario Petretta:** Data curation (lead); formal analysis (lead); methodology (lead); software (lead); supervision (lead); writing – original draft (lead); writing – review and editing (lead). **Alberto Cuocolo:** Data curation (lead); methodology (lead); supervision (lead); writing – original draft (lead); writing – review and editing (lead). **Wanda Acampa:** Conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); supervision (lead); writing – original draft (lead); writing – review and editing (lead).

ACKNOWLEDGMENTS

We thank the Department of Advanced Biomedical Science, University of Naples, Federico II for the technical and scientific support.

CONFLICT OF INTEREST STATEMENT The authors made no disclosures.

DATA AVAILABILITY STATEMENT Not applicable.

ORCID

Roberta Green [©] https://orcid.org/0000-0003-2659-2318 Alberto Cuocolo [©] https://orcid.org/0000-0003-3431-7658 Wanda Acampa [©] https://orcid. org/0000-0003-2187-4076

REFERENCES

- Chen-Scarabelli C, McRee C, Leesar MA, Hage FG, Scarabelli TM. Comprehensive review on cardio-oncology: role of multimodality imaging. *J Nucl Cardiol*. 2017;24:906-935. doi:10.1007/ s12350-016-0535-y
- Taylor J. Heart disease and cancer: the new discipline of cardioncology. *Eur Heart J.* 2012;33:151-152. doi:10.1093/ eurheartj/ehs105
- Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. *J Clin Oncol.* 2002;20:1215-1221. doi:10.1200/JCO.2002.20.5.1215
- Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. *N Engl J Med.* 2000;342:1077-1084. doi:10.1056/NEJM200004133421502
- Cardinale D, Biasillo G, Salvatici M, Sandri MT, Cipolla CM. Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. *Expert Rev Mol Diagn*. 2017;17:245-256. doi:10.1 080/14737159.2017.1283219
- Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. *Ann Oncol.* 2020;31:171-190. doi:10.1016/j.annonc.2019.10.023

- Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology. *Eur Heart J.* 2016;37:2768-2801. doi:10.1093/eurheartj/ehw211
- Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *J Am Soc Echocardiogr.* 2014;27:911-939. doi:10.1016/j.echo.2014.07.012
- Herrmann J, Lenihan D, Armenian S, et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. *Eur Heart J*. 2022;43:280-299. doi:10.1093/eurheartj/ehab674
- Mason JW, Bristow MR, Billingham ME, Daniels JR. Invasive and noninvasive methods of assessing adriamycin cardiotoxic effects in man: superiority of histopathologic assessment using endomyocardial biopsy. *Cancer Treat Rep.* 1978;62:857-864.
- Celutkien J, Pudil R, Lopez-Fernandez T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology. *Eur J Heart Fail*. 2020;22:1504-1524. doi:10.1002/ejhf.1957
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. *PLoSMed*. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
- Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *Int J Health Policy Manag.* 2014;3:123-128. doi:10.15171/ijhpm.2014.71
- Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. *Biometrika*. 1934;26:404-413. doi:10.1093/biomet/26.4.404
- 15. Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. *Stat Med.* 2002;21:1539-1558. doi:10.1002/sim.1186
- Nousiainen T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. *Br J Cancer*. 2002;86:1697-1700. doi:10.1038/sj.bjc.6600346
- Limat S, Demesmay K, Voillat L, et al. Early cardiotoxicity of the CHOP regimen in aggressive non-Hodgkin's lymphoma. *Ann Oncol.* 2003;14:277-281. doi:10.1093/annonc/mdg070
- Belham M, Kruger A, Mepham S, Faganello G, Pritchard C. Monitoring left ventricular function in adults receiving anthracycline-containing chemotherapy. *Eur J Heart Fail*. 2007;9:409-414. doi:10.1016/j.ejheart.2006.09.007
- Abu-Khalaf MM, Juneja V, Chung GG, et al. Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A), paclitaxel (T), and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer. *Breast Cancer Res Treat*. 2007;104:341-349. doi:10.1007/s10549-006-9413-7
- 20. Wadhwa D, Fallah-Rad N, Grenier D, et al. Trastuzumab mediated cardiotoxicity in the setting of adjuvant chemotherapy

for breast cancer: a retrospective study. *Breast Cancer Res Treat*. 2009;117:357-364. doi:10.1007/s10549-008-0260-6

11405

-WILEY

- Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. *Clin Res Cardiol.* 2008;97:318-326. doi:10.1007/ s00392-007-0633-6
- 22. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? *J Am Coll Cardiol*. 2010;56:1644-1650. doi:10.1016/j. jacc.2010.07.023
- Stoodley PW, Richards DA, Hui R, et al. Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. *Eur J Echocardiogr.* 2011;12:945-952. doi:10.1093/ejechocard/ jer187
- 24. Fatima N, Zaman MU, Hashmi A, Kamal S, Hameed A. Assessing adriamycin-induced early cardiotoxicity by estimating left ventricular ejection fraction using technetium-99m multiple-gated acquisition scan and echocardiography. *Nucl Med Commun.* 2011;32:381-385. doi:10.1097/MNM.0b013e328343ceb9
- 25. Fallah-Rad N, Walker JR, Wassef A, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. *J Am Coll Cardiol.* 2011;57:2263-2270. doi:10.1016/j.jacc.2010.11.063
- Cochet A, Quilichini G, Dygai-Cochet I, et al. Baseline diastolic dysfunction as a predictive factor of trastuzumab-mediated cardiotoxicity after adjuvant anthracycline therapy in breast cancer. *Breast Cancer Res Treat*. 2011;130:845-854. doi:10.1007/ s10549-011-1714-9
- Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. *Circ Cardiovasc Imaging*. 2012;5:596-603. doi:10.1161/CIRCIMAGING.112.973321
- Kang Y, Xu X, Cheng L, et al. Two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T in early detection and prediction of cardiotoxicity during epirubicine-based chemotherapy. *Eur J Heart Fail*. 2014;16:300-308. doi:10.1002/ejhf.8
- 29. Dores H, Abecasis J, Correia MJ, et al. Detection of early subclinical trastuzumab-induced cardiotoxicity in breast cancer patients. *Arq Bras Cardiol.* 2013;100:328-332. doi:10.5935/ abc.20130050
- Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. *Eur Heart J Cardiovasc Imaging*. 2014;15:324-331. doi:10.1093/ehjci/jet159
- Florescu M, Magda LS, Enescu OA, Jinga D, Vinereanu D. Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. *J Am Soc Echocardiogr.* 2014;27:83-92. doi:10.1016/j.echo.2013.10.008
- Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. *Circulation*. 2015;2(131):1981-1988. doi:10.1161/ CIRCULATIONAHA.114.013777

WILEY-Cancer Medicine

- Dogru A, Cabuk D, Sahin T, Dolasik I, Temiz S, Uygun K. Evaluation of cardiotoxicity via speckle-tracking echocardiography in patients treated with anthracyclines. *Onkologie*. 2013;36:712-716. doi:10.1159/000356850
- Reuvekamp EJ, Bulten BF, Nieuwenhuis AA, et al. Does diastolic dysfunction precede systolic dysfunction in trastuzumabinduced cardiotoxicity? Assessment with multigated radionuclide angiography (MUGA). JNucl Cardiol. 2016;23:824-832. doi:10.1007/s12350-015-0164-x
- 35. Tan TC, Bouras S, Sawaya H, et al. Time trends of left ventricular ejection fraction and myocardial deformation indices in a cohort of women with breast cancer treated with anthracyclines, taxanes, and trastuzumab. *J Am Soc Echocardiogr*. 2015;28:509-514. doi:10.1016/j.echo.2015.02.001
- Guerra F, Marchesini M, Contadini D, et al. Speckle-tracking global longitudinal strain as an early predictor of cardiotoxicity in breast carcinoma. *Support Care Cancer*. 2016;24:3139-3145. doi:10.1007/s00520-016-3137-y
- Mele D, Malagutti P, Indelli M, et al. Reversibility of left ventricle longitudinal strain alterations induced by adjuvant therapy in early breast cancer patients. *Ultrasound Med Biol.* 2016;42:125-132. doi:10.1016/j.ultrasmedbio.2015.09.008
- Shaikh AY, Suryadevara S, Tripathi A, et al. Mitoxantroneinduced cardiotoxicity in acute myeloid leukemia-a velocity vector imaging analysis. *Echocardiography*. 2016;33:1166-1177. doi:10.1111/echo.13245
- Zhang CJ, Pei XL, Song FY, et al. Early anthracycline-induced cardiotoxicity monitored by echocardiographic doppler parameters combined with serum hs-cTnT. *Echocardiography*. 2017;34:1593-1600. doi:10.1111/echo.13704
- Narayan HK, French B, Khan AM, et al. Noninvasive measures of ventricular-arterial coupling and circumferential strain predict cancer therapeutics-related cardiac dysfunction. JACC Cardiovasc Imaging. 2016;9:1131-1141. doi:10.1016/j.jcmg.2015.11.024
- Barthur A, Brezden-Masley C, Connelly KA, et al. Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. *J Cardiovasc Magn Reson*. 2017;19:44. doi:10.1186/s12968-017-0356-4
- 42. Meléndez GC, Sukpraphrute B, D'Agostino RB Jr, et al. Frequency of left ventricular end-diastolic volume-mediated declines in ejection fraction in patients receiving potentially cardiotoxic cancer treatment. *Am J Cardiol.* 2017;15(119):1637-1642. doi:10.1016/j.amjcard.2017.02.008
- Mizia-Stec K, Elżbieciak M, Wybraniec MT, et al. Chemotherapy and echocardiographic indices in patients with non-Hodgkin lymphoma: the ONCO-ECHO study. *Med Oncol.* 2017;35:14. doi:10.1007/s12032-017-1075-2
- 44. Antolín S, Acea B, Albaina L, et al. Primary systemic therapy in HER2-positive operable breast cancer using trastuzumab and chemotherapy: efficacy data, cardiotoxicity and long-term follow-up in 142 patients diagnosed from 2005 to 2016 at a single institution. *Breast Cancer*. 2018;11:29-42. doi:10.2147/BCTT. S179750
- Nowsheen S, Aziz K, Park JY, et al. Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. *J Am Heart Assoc.* 2018;7:e008637. doi:10.1161/ JAHA.118.008637
- Klein R, Nadouri D, Osler E, Johnson C, Dent S, Dwivedi G. Diastolic dysfunction can precede systolic dysfunction

on MUGA in cancer patients receiving trastuzumab-based therapy. *Nucl Med Commun.* 2019;40:22-29. doi:10.1097/MNM.000000000000941

- Bergamini C, Dolci G, Rossi A, et al. Left atrial volume in patients with HER2-positive breast cancer: one-step further to predict trastuzumab-related cardiotoxicity. *Clin Cardiol.* 2018;41:349-353. doi:10.1002/clc.22872
- Mahjoob MP, Sheikholeslami SA, Dadras M, et al. Prognostic value of cardiac biomarkers assessment in combination with myocardial 2D strain echocardiography for early detection of anthracycline-related cardiac toxicity. *Cardiovasc Hematol Disord Drug Targets*. 2020;20:74-83. doi:10.2174/18715 29X19666190912150942
- Keramida K, Farmakis D, Bingcang J, et al. Longitudinal changes of right ventricular deformation mechanics during trastuzumab therapy in breast cancer patients. *Eur J Heart Fail*. 2019;21:529-535. doi:10.1002/ejhf.1385
- Yu AF, Ho AY, Braunstein LZ, et al. Assessment of early radiation-induced changes in left ventricular function by myocardial strain imaging after breast radiation therapy. *J Am Soc Echocardiogr.* 2019;32:521-528. doi:10.1016/j.echo.2018.12.009
- Suerken CK, D'Agostino RB Jr, Jordan JH, et al. Simultaneous left ventricular volume and strain changes during chemotherapy associate with 2-year post chemotherapy measures of left ventricular ejection fraction. *J Am Heart Assoc*. 2020;9:e015400. doi:10.1161/JAHA.119.015400
- Ben Abdallah I, Ben Nasr S, Chourabi C, et al. The predictive value of 2D myocardial strain for Epirubicin-induced cardiotoxicity. *J Oncol.* 2020;2020(30):5706561. doi:10.1155/2020/5706561
- Laufer-Perl M, Arnold JH, Mor L, et al. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. *Clin Res Cardiol.* 2020;109:255-262. doi:10.1007/s00392-019-01508-9
- Sandamali JAN, Hewawasam RP, Fernando MACSS, et al. Anthracycline-induced cardiotoxicity in breast cancer patients from southern Sri Lanka: an echocardiographic analysis. *Biomed Res Int*. 2020;2020:1847159. doi:10.1155/2020/1847159
- 55. Wang B, Yu Y, Zhang Y, et al. Speckle tracking echocardiography in the early detection and prediction of anthracycline cardiotoxicity in diffuse large B-cell lymphoma treated with (R)-CHOP regimen. *Echocardiography*. 2020;37:421-428. doi:10.1111/ echo.14622
- 56. Coutinho Cruz M, Moura Branco L, Portugal G, et al. Threedimensional speckle-tracking echocardiography for the global and regional assessments of left ventricle myocardial deformation in breast cancer patients treated with anthracyclines. *Clin Res Cardiol.* 2020;109:673-684. doi:10.1007/s00392-019-01556-1
- Shamai S, Rozenbaum Z, Merimsky O, et al. Cardio-toxicity among patients with sarcoma: a cardio-oncology registry. *BMC Cancer*. 2020;20:609. doi:10.1186/s12885-020-07104-9
- 58. Zito C, Manganaro R, Cusmà Piccione M, et al. Anthracyclines and regional myocardial damage in breast cancer patients. A multicentre study from the Working Group on Drug Cardiotoxicity and Cardioprotection, Italian Society of Cardiology (SIC). Eur Heart J Cardiovasc Imaging. 2021;22(22):406-415. doi:10.1093/ ehjci/jeaa339
- 59. Giusca S, Korosoglou G, Montenbruck M, et al. Multiparametric early detection and prediction of cardiotoxicity using myocardial strain, T1 and T2 mapping, and biochemical markers: a longitudinal cardiac resonance imaging study during 2years

Cancer Medicine

 Hennigs A, Riedel F, Marmé F, et al. Changes in chemotherapy usage and outcome of early breast cancer patients in the last decade. *Breast Cancer Res Treat.* 2016;160:491-499. doi:10.1007/

SUPPORTING INFORMATION

s10549-016-4016-4

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Cantoni V, Green R, Assante R, et al. Prevalence of cancer therapy cardiotoxicity as assessed by imaging procedures: A scoping review. *Cancer Med.* 2023;12:11396-11407. doi:<u>10.1002/cam4.5854</u>

of follow-up. *Circ Cardiovasc Imaging*. 2021;14:e012459. doi:10.1161/CIRCIMAGING.121.012459

- 60. Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). *Eur Heart* J. 2022;43:4229-4361. doi:10.1093/eurheartj/ehac244
- 61. Madonna R, Cadeddu C, Deidda M, et al. Cardioprotection by gene therapy: a review paper on behalf of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology. *Int J Cardiol.* 2015;191:203-210. doi:10.1016/j. ijcard.2015.04.232
- Madonna R, Cadeddu C, Deidda M, et al. Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. *Heart Fail Rev.* 2015;20:621-631. doi:10.1007/s10741-015-9497-4
- Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. *CA Cancer J Clin.* 2016;66:271-289. doi:10.3322/caac.21349