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Abstract: This paper is presented in the context of sensitivity analysis (SA) of large-scale data assimi-
lation (DA) models. We studied consistency, convergence, stability and roundoff error propagation
of the reduced-space optimization technique arising in parallel 4D Variational DA problems. The
results are helpful to understand the reliability of DA, to assess what confidence one can have that
the simulation results are correct and to determine its configuration in any application. The main
contributions of the present work are as follows. By using forward error analysis, we derived the
number of conditions of the parallel approach. We found that the parallel approach reduces the
number of conditions, revealing that it is more appropriate than the standard approach usually
implemented in most operative software. As the background values are used as initial conditions of
local PDE models, we analyzed stability with respect to time direction. Finally, we proved consistency
of the proposed approach by analyzing local truncation errors of each computational kernel.

Keywords: sensitivity analysis; data assimilation; domain decomposition; stability; consistency;
convergence

1. Introduction

Data assimilation (DA) has long played a crucial role in the quantification of uncer-
tainties in numerical weather prediction (NWP), oceanography [1,2] and, more generally,
in data science. Recently, DA has been applied more widely to numerical simulations
beyond geophysical applications [3], medicine and biological science [4] to improve the
accuracy and reliability of computational approaches. DA encompasses the entire sequence
of operations that, starting from observations/measurements of physical quantities and
with additional information, such as mathematical models governing the evolution of these
quantities, improve their estimation of a suitable function. In order to understand how such
a function is obtained, we suggest that, from a mathematical perspective, DA is an inverse
and ill-posed problem [5]. Hence, regularization methods are used to obtain a well-posed
problem. A popular approach to obtain a unique solution to DA inverse problems in
such circumstances is to formulate them as variational problems, minimizing the sum of
two terms, the first of which is a combination of the residual between the observed and
predicted outputs (the so-called misfit) in an appropriate norm and the second of which
is a regularization term that penalizes unwanted features of the parameters. The inverse
problem leads to a nonlinear variational problem in which the forward simulation model
is embedded in the residual term. When the forward model takes the form of partial
differential equations (PDEs) or some other expensive model, the result is a PDE-based
variational problem [6–10]. In this way, DA provides mathematical methods to identify
an optimal trade-off between the current estimate of the model state and the observations,
accounting for uncertainties. This poses a formidable computational challenge, making DA
an example an ill-posed inverse big data problem.
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In [11–14], we proposed a design for an innovative mathematical model and the
development and analysis of related numerical algorithms based on the simultaneous intro-
duction of space-time decomposition in the overlapping case of PDE equations governing
the physical model and the DA model. The proposed method is a so-called reduced-space
optimization technique. In such an approach, the DA model acts as a coarse/predictor
operator of local PDE models by providing the background values as initial conditions
of the local PDE models. Hereafter, we refer to such an approach as a DD-DA (domain
decomposition data assimilation) method.

In this paper, we present a sensitivity analysis (SA) and DD-DA study of consistency,
convergence, and stability, as well as a roundoff error analysis. SA refers the contributions
of uncertain data to the uncertainty of the solution. The aim of SA is to understand the
errors that arise at the different stages of the solution process, namely the uncertainty
in the mathematical model, in the model solution and in the measurements. Moreover,
approximation errors are introduced by linearization, discretization and the local model.
SA is helpful in understanding how all these errors impact the solution of a DD-DA model
and in assessing its practical configuration [15]. The main contributions of the present work
are as follows.

• By using the forward error analysis (FEA), we derive the number of conditions of
DD-DA. We find that DD-DA actually reduces the number of conditions of DA,
revealing that it is much more appropriate than the standard approach that is usually
implemented in most operative software;

• As the background values are used as initial conditions of local PDE models, we prove
that small changes in initial values must not cause large changes in the final result.
Then, we analyze the stability with respect to the time direction;

• We analyze the consistency of DD-DA in terms of local truncation errors;
• Overall, the present work complements the study reported in [16], in which the authors

performed SA of DD in 3D space in the context of a variational data assimilation
problem.

The remainder of this article is structured as follows. Section 2 provides a brief
introduction to DA, 4D variational models and DD-DA following the discretize-then-
optimize approach. The main results are presented in Section 3. Validation analysis is
addressed in Section 4 with respect to one-dimensional shallow water equations.

2. 4D Variational DA Formulation

Before presenting our results, we briefly review the main concepts of 4D variational
DA formulation. If Ω ⊂ Rn, n ∈ N is a spatial domain with a Lipschitz boundary, let

uM(t + h, x) =Mt,t+h[u(t, x)] ∀x ∈ Ω, t, t + h ∈ [0, T], (h > 0)
uM(t0, x) = u0(x) t0 ≡ 0, x ∈ Ω
uM(t, x) = f (x) x ∈ ∂Ω, ∀t ∈ [0, T]

, (1)

be a symbolic description of the model of interest, where

uM : (t, x) ∈ [0, T]×Ω 7→ uM(t, x) = [uM[1](t, x), uM[2](t, x), . . . , uM[s](t, x)] (2)

is the state function ofM, s ∈ N is the number of physical variables and f is a known
function defined based on the boundary ∂Ω.Let

v : (t, x) ∈ ∆×Ω 7→ v(t, x), (3)

be the observations function, and let

H : uM(t, x) 7→ v(t, x), ∀(t, x) ∈ ∆×Ω, (4)

denote non-linear observation mapping. To simplify future treatments, we assume s ≡ 1.
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Definition 1 (Discretization of Ω× ∆ or Mesh Generation). Let

ΩI ≡ {xĩ}ĩ∈I ⊂ Ω

be the discretization of Ω, if |I| is the cardinality of set I, then

I = {1, . . . , Np} , Np = |I| , (5)

are, respectively, the set of indices of nodes in Ω and its cardinality, i.e., the number of inner nodes
in Ω. Let

∆K ≡ {tk̃}k̃∈K ⊂ ∆

be the discretization of ∆ where

K = {1, . . . , N} , N = |K| (6)

are, respectively, the set of indices of the time variable in ∆ and its cardinality, i.e., number of time
instants in ∆. Consequently, we refer to

ΩI × ∆K ≡ {(xĩ, tk̃)}ĩ∈I; k̃∈K ⊂ Ω× ∆ (7)

as the discrete domain/mesh.

We introduce the 4D variational problem (see Figure 1).

Figure 1. The 4D variational problem.

Definition 2. Let Ω ⊂ Rn and ∆ ⊂ R be the spatial domain and the time interval, respectively.
The 4DVAR DA problem consists of computing the so-called analysis:

uDA = argminu∈RNp×N J(u), (8)

in Ω× ∆ with
J(u) = α‖u− uM‖2

B−1 + ‖Gu− y‖2
R−1 , (9)
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where Np is the number of nodes in Ω ⊂ Rn; nobs, with nobs << Np, is the number of
observations in Ω; N is the number of time instants in ∆; α is the regularization parameter;
u0 = {u0,j}j=1,...,Np ≡ {u0(xj)}j=1,...,Np ∈ RNp is the state at time t0; the operator

Ml−1,l ∈ RNp×Np , l = 1, . . . , N, (10)

is the discretization of the linear approximation ofMtl−1,tl from tl−1 to tl ; the operator

M ∈ RNp×Np (11)

is the discretization of the linear approximation ofM, running from t0 to tN ; the matrix

uM := {uM
j,l }j=1,...,Np ;l=1,...,N ≡ {uM(xj, tl)}j=1,...,Np ;l=0,1,...,N−1 ∈ RNp×N (12)

is the solution of M, i.e., the background; y := {y(zj, tl)}j=1,...,nobs ;l=0,1,...,N−1 ∈ Rnobs×N : are the
observations; Hl ∈ Rnobs×Np , l = 0, . . . , N − 1 : is the linear approximation of the observation
mappingH; G ≡ GN−1 ∈ R(N×nobs)×Np is a block diagonal matrix G ∈ <(N×nobs)×(NP×N) such
that

G =

{
diag [H0, H1M0,1, . . . , HN−1MN−2,N−1] N > 1;
H0 N = 1.

(13)

R = diag(R0, R1, . . . , RN−1) and B= VVT are the covariance matrices of the errors on observations
and on the background, respectively.

The Space and Time DA—Driven Domain Decomposition Method

The strength of the DD-DA approach is the exploitation of the coupling between
the DA functional and the underlying PDE model. The idea goes back to the work of
Schwarz [17] on overlapping domains and to Parallel in Time (PinT) methods, introduced
by Lions [18]. Briefly, in DD-DA, DA acts as a predictor for the PDE-based local model,
providing the approximations needed to locally solve the initial value problems on each
subdomain, concurrently. Leveraging Schwarz and PinT methods’ consistency constraints
for PDEs-based models, the DD-DA framework iteratively adjusts local solutions by adding
the contribution of adjacent subdomains to the local filter, along overlapping regions. As
a consequence, this approach increases the accuracy of local solutions and it allows us to
apply in parallel both the fine and coarse solvers.

In the following, we briefly resume the method, according to its schematic description
reported in Figure 2.

We describe the DD of Ω× ∆ and of ΩI × ∆k. The DD of Ω× ∆ consists in decompos-
ing Ω ⊂ Rn into a set of subdomains Ωi such that:

Ω =
Nsub⋃
i=1

Ωi (14)

and consequently we define the set Ji, with cardinality adi, made of indices of subdomains
adjacent to Ωi;

Ji ⊂ {1, . . . , Nsub} and adi = |Ji|. (15)

For i = 1, . . . , Nsub, we define the overlap regions Ωij:

Ωij := Ωi ∩Ωj 6= ∅ ∀j ∈ Ji. (16)

We define interfaces Γij, for i = 1, . . . , Nsub:

Γij := ∂Ωi ∩Ωj j ∈ Ji. (17)
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Figure 2. Schematic description of DD-DA algorithm. DD, local model, ASM (Additive Schwarz
Method), DD-DA local solutions and global solution are identified. The Arabic numbers in paren-
theses refer to the corresponding module described in Section 2. For each module, we report its
solution.

In the same way, time interval ∆ ⊂ R is decomposed into a sequence of intervals ∆k
such that:

∆ =
Nt⋃

k=1

∆k.

Consequently, we define

{Ωi × ∆k}i=1,...,Nsub ;k=1,...,Nt (18)

as local domains.
DD of ΩI × ∆K defined in (7): for i = 1, . . . , Nsub, the set

{xĩ}ĩ∈Ii
⊂ Ωi

is made of inner nodes of Ωi where Ii is

Ii :=
{
(i− 1)

Np

Nsub
+ 1, . . . , i

Np

Nsub
+

δ

2

}
such that

I =
Nsub⋃
i=1

Ii. (19)
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I is the set of indices of inner nodes in Ω defined in (5) and

δ := |Iij| (20)

where
Iij := Ii ∩ Ij 6= ∅, ∀j ∈ Ji . (21)

Selection of inner nodes belonging to the overlap regions {Ωij}i=1,...,Nsub ,j∈Ji proceeds
in the same way. For i = 1, . . . , Nsub

ΩIi ≡ {x j̃} j̃∈Iij
⊂ Ωij , ∀j ∈ Ji

are the inner nodes of Ωij. Consequently, for i = 1, . . . , Nsub, we define the cardinality of Ii
as the number of inner nodes of Ωi and we denote it as

Nloc := |Ii| =
Np

Nsub
+

δ

2
. (22)

Finally, the selection of time values in {∆k}k=1,...,Nt proceeds as follows. For k =
1, . . . , Nt

∆Kk ≡ {tk̃}k̃∈Kk
⊂ ∆

are time values in ∆k where Kk is defined as:

Kk :=
{
(k− 1)

N
Nt

, k
N
Nt

}
,

where

Kk ∩ Kk+1 =

{
k

N
Nt

}
6= ∅ , ∀ k = 1, . . . , Nt − 1

and
Nk := |Kk| =

N
Nt

is the cardinality of Kk, i.e., the number of time values belonging to Kk, such that

K =
Nt⋃

k=1

Kk , (23)

where K is defined in (6).
Consistently with Definition 1, for i = 1, . . . , Nsub and k = 1, . . . , Nt

ΩIi × ∆Kk := {(xĩ, tk̃)}ĩ∈Ii ;k̃∈Kk
⊂ Ωi × ∆k

is the local discrete domain/mesh.
For i = 1, . . . , Nsub and k = 1, . . . , Nt, we pose

zi,k = {z(ĩ, k̃)}ĩ∈Ii ; k̃∈Kk
∈ RNloc×Nk

i.e., this is a vector defined on local domain Ωi × ∆k.
We define the restriction and extension operators underlying the DD method.

Definition 3 (Restriction Operator). Given x ∈ RNp×N and z ∈ RNp×1, for i = 1, . . . , Nsub we
define restriction of x to Ωi by

x/Ωi := Rix = {x(ĩ, k̃)}ĩ∈Ii ,k̃∈Kk
∈ RNloc×1 (24)

x/Ωij := Rijx = {x( j̃, k̃)} j̃∈Iij ,k̃∈Kk
∈ Rδ×1
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and restriction of y to Ωi × ∆k by

z/(Ωi × ∆k) := {z(·, k̃)}k̃∈Kk
/Ωi = Ri {z(·, k̃)}k̃∈Kk

= {z(ĩ, k̃)}ĩ∈Ii ,k̃∈Kk
∈ RNloc×Nk

z/(Ωij × ∆k) := {z(·, k̃)}k̃∈Kk
/Ωij = Rij {z(·, k̃)}k̃∈Kk

= {z(ĩ, k̃)}ĩ∈Iij ,k̃∈Kk
∈ RNloc×Nk

where Ii and Iij are, respectively, set of indices of inner nodes in Ωi and Ωij, ∀j ∈ Ji.

Definition 4 (Extension operator). If x ∈ RNloc×Nk , the Extension Operator (EO) is defined by

EO(x) := RT
i x =

{
x(ĩ, k̃) if (ĩ, k̃) ∈ Ii × Kk

0 elsewhere

where RT
i is the transpose of Ri in (24) and EO(x) ≡ xEO.

For n = 0, 1, . . . fixed, we now define the local model in each subdomain Ωi × ∆k,
where i = 1, . . . , Nsub and k = 1, . . . , Nt. If u0

i,k := {uM(xĩ, tk̃)}ĩ∈Iij ,k̃∈Kk
, is the background

used as the initial value of the local model (see Figure 3), let uMi,k ,n+1
i,k be the solution of the

problem (PMi,k ,n
i,k )i=1...,Nsub ,k=1,...,Nt where:

(PMi,k ,n
i,k )i=1...,Nsub ,k=1,...,Nt :


uMi,k ,n

i,k = Mi,k un
i,k−1 + bn

i,k,

un
i,k−1 = uMi,k ,n

i,k−1
un

i,k/Γij = un
j,k/Γij, j ∈ Ji

(25)

In (25) uM
i,k and bn

i,k are, respectively, the background in Ωi × ∆k and the vector account-
ing boundary conditions of Ωi and

Mi,k := Mk/Ωi (26)

is the restriction to Ωi of the matrix

Mk ≡ Ms̄k−1,s̄k := Ms̄k−1,s̄k−1+1 · · ·Ms̄k−1,s̄k . (27)

where

s̄k :=
k−1

∑
j=1

Nj − (N − 1) and s̄0 := 0 (28)

are the first index of ∆KK and ∆K1 , respectively.

Figure 3. Initial conditions of local models in Ωi × ∆k.
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Let:
(Pn

i,k)i=1,...,Nsub ,k=1,...,Nt : uASM,n
i,k = arg min

un
i,k

Ji,k(u
n
i,k) (29)

be the local 4DVAR DA model with

Ji,k(un
i,k) := J(un

i,k)/(Ωi × ∆k) +Oij. (30)

We let
Oij := ∑

j∈Ji

β j ‖un
i,k/Ωij − un

j,k/Ωij‖2
B−1

ij
(31)

denote the overlapping operator in Γij, and

Ji,k(u
n
i,k)/(Ωi × ∆k) := αi,k ‖un

i,k − uMi,k ,n
i,k ‖B−1

i
+ ‖Gi,kun

i,k − yi,k‖2
R−1

i

denote the restriction of J to Ωi×∆k where Gi,k is the restriction of G to ∆i×Ωk. Parameters
αi,k and β j in (31) are the regularization parameters. For simplicity, we assume that αi,k =
β j = 1, for j ∈ Ji.

The gradient of Ji,k is [16]:

∇Ji,k(w
n
i,k) = (VT

i (Gi,k)
T(Ri,k)

−1Gi,kVi + Ii + adi × Bij)wn
i,k

−ci + ∑j∈Ji
Bijwn

j,k, (32)

where
wn

i,k = V−1
i (un

i,k − uMi,k ,n
i,k ), (33)

di = (vi − Gi,kuMi,k ,n
i,k ), ci = (VT

i (Gi,k)
T(Ri,k)

−1di)

where Bi = ViVT
i and Ii is the identity matrix. The solution of (Pn

i,k)i=1,...,Nsub ,k=1,...,Nt is
obtained by requiring that ∇Ji,k(w

n
i,k) = 0. This requirement leads to the linear system:

Ai,kwn
i,k = ci − ∑

j∈Ji

Bijwn
j,k, (34)

where
Ai,k = (VT

i (Gi,k)
TR−1

i,k Gi,kVi + Ii + adi × Bij). (35)

where adi are the number of subdomains adjacent to Ωi.
For each n, the r.h.s. of (34) depends on unknown value wn

j,k defined on those Ωij,
where j ∈ Ji, which are adjacent to Ωi. According to the Additive Schwarz Method (ASM)
[19] for r = 0, 1, . . . , r̄ we solve

Ai,kwr+1,n
i,k = ci − ∑

j∈Ji

Bijw
r,n
j,k , (36)

by using Conjugate Gradient (CG) method where at step r + 1, then Ωi receives wr,n
i,k from

Ωij, where j ∈ Ji, for computing the r.h.s. of (36) and finally it sends wr+1,n
i,k to Ωij, where

j ∈ Ji, for updating the r.h.s. of (36) is needed for the next iteration. At step 0, w0,n
ij ,k

is an
arbitrary initial value.

Finally, we pose
wn

i,k ≡ wr̄,n
i,k ,

and consequently we have that

uASM,n
i,k := uASM,r̄

i,k . (37)
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The local solution update is performed by using (25) and (33):

un+1
i,k = uMi,k ,n+1

i,k + Viwn
i,k = uMi,k ,n+1

i,k + [uASM,n
i,k − uMi,k ,n

i,k ]. (38)

The global solution in Ω× ∆ is

ũDD−DA,n :=
Nsub

∑
i=1

Nt

∑
k=1

(un
i,k)

EO. (39)

where (un
i,k)

EO is the extension to Ω× ∆ of local approximations computed in Ωi × ∆k. For
simplicity, we let

ũDD−DA := ũDD−DA,n̄ (40)

be the solution in Ω× ∆.
Note that Bi = RiBRT

i and Bij := B/Γij = RiBRT
ij are the restrictions of the covariance

matrix B, respectively, to subdomain Ωi and interface Γij defined in (17), while Gi,k, and
Ri,k are the restriction of Gk := Gs̄k and of Rk := diag(R0, R1, . . . , Rs̄k ) to Ωi and, finally,
uM

i,k = RiuM
k , un+1

i,k /Γij = Rijun+1
i,k , un

j,k/Γij = Rijun
k are the restriction of vectors ub

k, un+1
i,k ,

un
j,k to Ωi and to Γij, for i = 1, 2, . . . , Nsub and j ∈ Ji.

In [11,12], the authors proved that the minimum of J can be obtained by patching
together local solutions obtained as the minimum of local functions Ji,k. In this way, the
global minimum can be searched for among the global minima of the local functional.

3. Sensitivity Analysis

As already said, the core of the DD-DA approach is that the DA model acts as
coarse/predictor operator to solve the local PDE model by providing the background
values as initial conditions of the local PDE models. Then, we analyze the propagation of
the errors with respect to the time direction. In the following, we use ‖ · ‖ = ‖ · ‖2.We refer
to ‖zi,k‖2 = ‖{zi,k(ī, k̄)}ī∈Ii ,k̄∈Kk

‖2 where z ∈ RNp×N and zi,k := z/(Ωi × ∆k) and Ii and Kk
are defined in (19) and (23), respectively.

Lemma 1. [20] Let R > 0 and T ≥ 0 be two positive constant quantities. If we have a sequence Ek
which is such that for k = 1, . . . , Nt:

|Ek| ≤ (1 + R)|Ek−1|+ T

then it holds:

|Ek| ≤ eNtR|E1|+
eNtR − 1

R
T .

Definition 5. Let un+1
i,k and ũn+1

i,k be, respectively, the numerical solution at step (n + 1) in (38)
and the corresponding floating point representation. Fixed n, for i = 1, . . . , Nsub, k = 1, . . . , Nt let

Rn+1
i,k := un+1

i,k − ũn+1
i,k (41)

denote the round-off error in Ωi × ∆k.

From (25), the numerical solution at step (n + 1) can be written as follows:

un+1
i,k = (Mi,kun+1

k−1 + bn+1
i,k ) + [uASM,n

i,k − (Mi,kun
i,k−1 + bn

i,k)]

= Mi,kun+1
i,k−1 + δ(un

i,k)

consequently, the corresponding floating point representation is

ũn+1
i,k = Mi,kũn+1

i,k−1 + δ(ũn
i,k) + ρn+1

k
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where δ(un
i,k) := (uASM,n

i,k −Mi,kun
i,k−1) + (bn+1

i,k − bn
i,k) and ρn+1

k is the local round-off error.
Fixed n + 1, we have that

‖Rn+1
i,k ‖ = ‖un+1

i,k − ũn+1
i,k ‖ = ‖Mi,kun+1

i,k−1 + δ(un
i,k)−Mi,kũn+1

i,k−1 − δ(ũn
i,k)− ρn+1

k ‖
≤ ‖Mi,kun+1

i,k−1 −Mi,kũn+1
i,k−1‖+ ‖δ(u

n
i,k)− δ(ũn

i,k)‖+ |ρ
n+1
k |

≤ ‖Mi,k‖‖un+1
k−1 − ũn+1

k−1‖+ ‖u
ASM,n
k − ũASM,n

k ‖
+‖Mi,kun

i,k−1 + bn
i,k − (Mi,kũn

i,k−1 + b̃n
i,k)‖+ ‖b

n+1
k − b̃n+1

i,k ‖
+|ρn+1

k |;

from (25) it is
‖bn+1

i,k − b̃n+1
i,k ‖ = ‖Mi,kun+1

i,k−1 −Mi,kũn+1
i,k−1‖

and according to [16] we let µ(Mi,k) ≥ ‖Mi,k‖, where µ(Mi,k) denotes the condition number
of Mi,k, then

‖Rn+1
i,k ‖ ≤ µ(Mk

i )‖u
n+1
k−1 − ũn+1

k−1‖+ ‖u
ASM,n
k − ũASM,n

k ‖+ ‖uMi,k ,n
i,k − ũMi,k ,n

i,k ‖
+µ(Mi,k)‖un+1

k−1 − ũn+1
k−1‖+ µ(Mi,k)‖un

i,k−1 − ũn
i,k−1‖+ |ρ

k
i |

and in compact form

‖Rn+1
k ‖ ≤ 2µ(Mi,k)‖Rn+1

i,k−1‖+ ‖R
ASM,n
i,k ‖+ ‖RM,n

i,k ‖+ µ(Mi,k)‖Rn
i,k−1‖+ |ρ

k
i |

where
RASM,n

i,k := uASM,n
i,k − ũASM,n

i,k RMi,k ,n
i,k := uMi,k ,n

i,k − ũMi,k ,n
i,k . (42)

Using Lemma 1, with R = 2µ(Mi,k)− 1 and H = RASM,n
i,k + RMi,k ,n+1

i,k + µ(Mi,k)Rn
i,k−1 +

ρk
i , it follows that:

‖Rn+1
k ‖ ≤ eNtR‖Rn+1

i,1 ‖+
eNtR − 1
Rµ(Mi,k)

[
‖RASM,n

i,k ‖+ ‖RMi,k ,n
i,k ‖+ µ(Mi,k)‖Rn

k−1‖+ ρk
i

]
.

then, it is

‖Rn+1
k ‖ ≤ eNtR‖Rn+1

i,1 ‖+
eNtR − 1

R

[
‖RASM,n

i,k ‖+ ‖RMi,k ,n
i,k ‖+ ‖Rn

i,k−1‖
]
+

eNtR − 1
R

ρk
i . (43)

The upper bound in (43) is made of three terms: the first one represents the propagation
of the error introduced on the first time interval, the second one represents the propagation
of the error introduced at the previous step and the last term depends on the local round-off
error. In particular, we note that, as expected, round-off error propagation grows with Nt,
i.e., the number of subdomains of ∆.

3.1. Convergence, Consistence and Stability of DD-DA Method

In [12], we proved the convergence of the outer loop, i.e.:

limn→∞‖ũDD−DA,n+1 − ũDD−DA,n‖ = 0 (44)

where uDA,n is defined in (39). The convergence of ASM is proved in [19].

3.1.1. Consistence

We analyze the consistence in terms of the local truncation errors EMi,k
i,k , EASM

i,k , Ei,k and
Eg, which are reported in Figure 4.

Similar to[21], local truncation errors EMi,k
i,k , EASM

i,k , Ei,k in Ωi × ∆k and Eglob in Ω× ∆
are defined as the remainder after the solutions uM of the model (1) and the solution uDA
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of the 4D-DA problem (8) are substituted into the discrete models. To this aim, we give the
following definitions.

Definition 6. We define

uM→M := M · {uM(xi, tk)}ĩ∈I; k̃∈K (45)

as the approximation in Ω × ∆ of uM, defined in (1), obtained by replacing uM evaluated in
ΩI × ∆K and defined in (1), into M, which is defined in (11).

Figure 4. Local truncation errors related to each module of DD-DA.

Definition 7 (Local truncation errors in Ωi × ∆k). ∀i = 1, . . . , Nsub and k = 1, . . . , Nt, at
iteration n̄, we define

EMi,k ,n̄
i,k :=

∥∥∥uM→M/(Ωi × ∆k)− uMi,k ,n̄
i,k

∥∥∥ (46)

as the local truncation error of Mi,k restricted to Ωi × ∆k;

EASM,n̄
i,k :=

∥∥∥uDA/(Ωi × ∆k)− uASM,n̄
i,k

∥∥∥ (47)

as the local truncation error of ASM restricted to Ωi × ∆k;

En̄
i,k :=

∥∥∥uDA/(Ωi × ∆k)− un̄
i,k

∥∥∥ (48)

as the local truncation error of DD-DA restricted to Ωi × ∆k;

Eglob :=
∥∥∥uDA − ũDD−DA

∥∥∥ (49)

as the local truncation error of DD-DA in Ω× ∆.
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The DD-4DVAR method needs few iterations of the outer loop over n to update the
approximation in (38). Consequently, in the following analysis, we neglect the dependency
on n̄ of uMi,k ,n̄

i,k , uASM,n̄
i,k and un

i,k, defined, respectively, in (25), (29) and (38) and EMi,k ,n̄
i,k ,

EASM,n̄
i,k and En̄

i,k in Ωi × ∆k, defined, respectively, in (46), (47) and (48).
For i = 1, . . . , Nsub and k = 1, . . . , Nt, we pose

ũi,k := un̄
i,k. (50)

From (50), the approximation in Ω× ∆ defined in (40) becomes

ũDD−DA =
Nsub

∑
i=1

Nt

∑
k=1

ũEO
i,k . (51)

For i = 1, . . . , Nsub and k = 1, . . . , Nt, we pose

uASM
i,k = uASM,n̄

i,k ; uMi,k
i,k = uMi,k ,n̄

i,k ; ui,k = un̄
i,k. (52)

Consequently, from (52) we pose

EMi,k
i,k = EMi,k ,n̄

i,k , (53)

as the local model truncation error inΩi × ∆k;

EASM
i,k = EASM,n̄

i,k , (54)

as the local ASM truncation error in Ωi × ∆k in (47);

Ei,k = En̄
i,k. (55)

as the local truncation error Ωi × ∆k in (48).
We introduce the definition of consistency of the DD-DA method. We pose ‖ · ‖ = ‖ · ‖2.

(We refer to ‖zi,k‖2 = ‖{zi,k(ī, k̄)}ī∈Ii ,k̄∈Kk
‖2 where z ∈ RNp×N and zi,k := z/(Ωi × ∆k) and

Ii and Kk are defined in (19) and (23), respectively).

Definition 8 (Consistency of DD-DA method). The DD-DA method is said to be consistent if

lim
∆x, ∆t→0

Eg = 0

where
∆x := maxi=1,...,Nsub(∆x)i

and {(∆x)i}i=1,...,Nsub are spatial-step sizes of Mi,k;

∆t := maxk=1,...,Nt(∆t)k

and {(∆t)k}k=1,...,Nt are time-step sizes of Mi,k .

In order to prove the consistency, we perform the analysis of local truncation errors
EMi,k

i,k , EASM
i,k , Ei,k and Eglob, defined, respectively, in (53), (54), (55) and (49).

Assumption 1. (Local truncation error of Model in Ωi × ∆k) Let

EMi,k
i,k = O((∆x)p

i + (∆t)q
k), ∀(i, k) ∈ {1, . . . , Nsub} × {1, . . . , Nt} (56)

be the local truncation error defined in (53) where (∆x)i and (∆t)k are spatial and temporal step
sizes of Mi,k, defined in (26), and p and q are the order of convergence in space and in time. In the
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experimental results (see Section 4), in order to discretize the Shallow Water Equations (SWEs)
model, we consider Lax–Wendroff scheme [22]. Hence, in that case, p = q = 2.

Lemma 2 (Local truncation error of ASM in Ωi × ∆k). Let us consider the following quantities:
σ2

0 , observational error variance; Bi = ViVT
i , restriction to Ωi of covariance matrices of the error

on background; Gi,k, restriction to Ωi × ∆k of matrix G defined in (13); adi, number of subdomains
adjacent to Ωi, defined in (15); Bij = VijVT

ij , restriction to Ωij of the covariance matrix of the error
on the background; µ(Vi), µ(Gi,k), µ(Mi,k) and µ(Vij), condition number of Vi, Gi,k, Mi,k and
Vij, respectively. Then, ∀i = 1, . . . , Nsub and k = 1, . . . , Nt, it holds that:

EASM
i,k ≤ µDD−DA

i,k × EASM
i,1 (57)

where

µDD−DA
i,k :=

[
1 +

1
σ2

0
µ2(Vi)µ

2(Gi,k) + adi × µ2(Vij)

]
µ(Mi,k). (58)

Proof. As in [16], it is

‖uDA/(Ωi × ∆k)− uASM
i,k ‖ ≤ µ(Ji,k)µ(Mi,k)× ‖uDA/(Ωi × ∆1)− uASM

i,1 ‖ (59)

where ‖uDA/(Ωi × ∆1)− uASM
i,1 ‖ is the error in Ωi × ∆1. As proved in [16], it is

µ(Ji,k) = µ(Ai,k) (60)

where Ji,k and Ai,k are, respectively, defined in (30) and (35), and by using triangle inequality,
it is

µ(Ai,k) ≤ 1 +
1
σ2

0
µ2(Vi)µ

2(Gi,k) + adi × µ(Bij) (61)

≤ 1 +
1
σ2

0
µ2(Vi)µ

2(Gi,k) + adi × µ2(Vij), (62)

From (59) and (61), the (57) follows.

Theorem 1. (Local truncation error in Ωi × ∆k) ∀i = 1, . . . , Nsub; k = 1, . . . , Nt, it holds that:

Ei,k ≤ µDD−DA
i,k × EASM

i,1 + 2× EMi,k
i,k (63)

where µDD−DA
i,k is defined in (58).

Proof. From (52) and (38), Ei,k defined in (55) can be rewritten as follows:

Ei,k := ‖uDA/(Ωi × ∆k)− ui,k‖
= ‖uDA/(Ωi × ∆k)− uMi,k ,n̄

i,k − (uASM,n̄−1
i,k − uMi,k ,n̄−1

i,k )‖ ;

by using the triangle inequality, it is

Ei,k ≤ ‖uDA/(Ωi × ∆k)− uASM,n̄
i,k ‖+ ‖uMi,k ,n̄−1

i,k − uMi,k ,n̄
i,k ‖ ; (64)

as consequence of Lemma 2 and (54), we have that

Ei,k ≤ µDD−DA
i,k × EASM

i,1 + ‖uMi,k ,n̄−1
i,k − uMi,k ,n̄

i,k ‖ (65)
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where EASM
i,1 is defined in (54) and µDD−DA

i,k is defined in (58). In particular, by adding and

subtracting uM→M/(Ωi × ∆k) in ‖uMi,k ,n̄−1
i,k − uMi,k ,n̄

i,k ‖, we obtain:

‖uMi,k ,n̄−1
i,k − uMi,k ,n̄

i,k ‖ = ‖(uMi,k ,n̄−1
i,k − uM→M/(Ωi × ∆k))

+ (uM→M/(Ωi × ∆k)− uMi,k ,n̄
i,k )‖

and by using the triangle inequality

‖uMi,k ,n̄−1
i,k − uMi,k ,n̄

i,k ‖ ≤ ‖uMi,k ,n̄−1
i,k − uM→M/(Ωi × ∆k)‖

+ ‖uM→M/(Ωi × ∆k)− uMi,k ,n̄
i,k ‖

= EMi,k ,n̄
i,k + EMi,k ,n̄−1

i,k .

(66)

{ũDD−DA,n}n∈N is a convergent sequence, then it is a Cauchy sequence. From (39), we find
that {uMi,k ,n

i,k }n∈N is also a Cauchy sequence, i.e.,

∀ ε > 0 ∃ N > 0 : ‖uMi,k ,n
i,k − uMi,k ,m

i,k ‖ ≤ ε ∀n, m > N. (67)

In particular, the equation (67) is true for n = n̄ and m = n̄− 1, assuming that n̄ is
large enough. Consequently, we can neglect the dependency on the outer loop in EMi,k ,n̄

i,k

and EMi,k ,n̄−1
i,k in (66), i.e.,

‖uMi,k ,n̄−1
i,k − uMi,k ,n̄

i,k ‖ ≤ 2EMi,k
i,k (68)

where EMi,k
i,k is defined in (53). From (65), (66) and (68), we obtain the thesis in (63).

Lemma 3. If e0, the error on initial condition of M in (11) is equal to zero, i.e.,

e0 = 0 (69)

then
Ei,k ≤ c((∆x)p

i + (∆t)q
k) (70)

where Ei,k is the local truncation error defined in (55) and c is positive constant independent on DD.

Proof. By applying Theorem 1 to EASM
i,1 on Ωi × ∆1, we obtain

EASM
i,1 ≤ Fi,1e0/Ωi. (71)

where Fi,1 is defined in (58) and e0/Ωi is the restriction of e0 to Ωi. As it is e0/Ωi = 0, then
by replacing e0/Ωi = 0 in (71), it results that

EASM
i,1 = 0 (72)

consequently, we have that
EASM

i,k = 0. (73)

From (73), (56) and (63), we obtain the thesis in (70).

Theorem 2. ( Truncation error in Ω×∆) Under the assumption of Lemma 3 in (69), the truncation
error in Ω× ∆ is such that

Eglob ≤ c(NsubNt)[(∆x)p + (∆t)q], (74)
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where c > 0 is a positive constant independent on DD.

Proof. From (51), it results that Eglob, which is defined in (49), can be rewritten as follows:

Eglob :=
∥∥∥uDA − ũDD−DA

∥∥∥ =

∥∥∥∥∥uDA −
Nsub

∑
i=1

Nt

∑
k=1

ũi,k

∥∥∥∥∥
by applying the restriction and extension operator (Definitions 3 and 4) to uDA, we obtain

Eglob =

∥∥∥∥∥Nsub

∑
i=1

Nt

∑
k=1

[
(uDA/(Ωi × ∆k))

EO − ũi,k

]∥∥∥∥∥
by using the triangle inequality, it is

Eg =

∥∥∥∥∥Nsub

∑
i=1

Nt

∑
k=1

[
(uDA/(Ωi × ∆k))

EO − ũi,k

]∥∥∥∥∥
≤

Nsub

∑
i=1

Nt

∑
k=1

∥∥∥(uDA
i,k )EO − ũi,k

∥∥∥ =
Nsub

∑
i=1

Nt

∑
k=1

Ei,k

(75)

where Ei,k is defined in (55). From Lemma 3, we have

Nsub

∑
i=1

Nt

∑
k=1

Ei,k ≤ c
Nsub

∑
i=1

Nt

∑
k=1

((∆x)p
i + (∆t)q

k)

= c

[
Nt

Nsub

∑
i=1

(∆x)p
i + Nsub

Nt

∑
k=1

(∆t)q
k

]
,

(76)

and consequently

Eglob ≤ c

[
Nt

Nsub

∑
i=1

(∆x)p
i + Nsub

Nt

∑
k=1

(∆t)q
k

]
.

By defining

∆x := maxi=1,...,Nsub(∆x)i

∆t := maxk=1,...,Nt(∆t)k

we obtain

Eglob ≤ c

[
Nt

Nsub

∑
i=1

(∆x)p
i + Nsub

Nt

∑
k=1

(∆t)q
k

]

≤ c

[
Nt

Nsub

∑
i=1

(∆x)p + Nsub

Nt

∑
k=1

(∆t)q

]
≤ c(NsubNt)[(∆x)p + (∆t)q].

Hence, the (74) is proved.

3.1.2. Stability

Now, we prove the stability of the method with respect to the time direction, and
assuming that the predictive model is stable. We will perform SA by obtaining worst-case
error bounds with the aid of the condition number.
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We assume that the discrete scheme applied to the model M in (1) is stable, i.e.,
∃D > 0 such that

‖uM − vM‖ ≤ D e0, (77)

where uM is the computed solution of M in (11) and vM is the solution of M̄, where M̄ is
obtained by adding error e0 to initial condition of M. For simplicity of notations in the
sequel, we omit any subscripts ofM.

Definition 9 (Propagation error from ∆k−1 to ∆k). Let ṽDD−DA be the solution in Ω × ∆
computed by adding the perturbation ek to the initial condition of PMi,k ,n

i,k , defined in (25). We define

Ēk := ‖ũDD−DA/∆k − ṽDD−DA/∆k‖ (78)

as the propagation error from ∆k−1 to ∆k.

Theorem 3 (Stability). If the error on initial condition of M in (11), is equal to zero, i.e.,

e0 = 0 (79)

then, ∀k = 1, . . . , Nt ∃ Ck > 0 such that

Ēk ≤ Ck ēk

where Ck is a constant depending on the model and on the ASM; ēk is the perturbation on the initial
condition of PMi,k

i,k , defined in (25).

Proof. To simplify the notations in the proof, we consider ēk = ē, ∀k = 1, . . . , Nt. From
(38), (52) and using the triangle inequality, we obtain

Ēk := ‖ũDD−DA/∆k − ṽDD−DA/∆k‖ ≤ ‖(u
Mi,k ,n̄
i,k )EO/∆k − (vMi,k ,n̄

i,k )EO/∆k‖

+ ‖(uMi,k ,n̄−1
i,k )EO/∆k − (vMi,k ,n̄−1

i,k )EO/∆k‖

+ ‖(uASM,n̄
i,k )EO/∆k − (vASM,n̄

i,k )EO/∆k‖.

(80)

From (67) and (54), we can neglect the dependency on n̄, i.e.,

Ēk ≤2 ‖(uMi,k
i,k )EO/∆k − (vMi,k

i,k )EO/∆k‖+ ‖(uASM
i,k )EO/∆k − (vASM

i,k )EO/∆k‖. (81)

From the assumption on the model, we may say that ∃D̄ > 0 such that

‖(uMi,k
i,k )EO/∆k − (vMi,k

i,k )EO/∆k‖ ≤ D̄ e0. (82)

where e0 is the error on the initial condition of M in (11). By adding and subtracting
uDA/∆k to

[
(uASM

i,k )EO/∆k − (vASM
i,k )EO/∆k

]
and using the triangle inequality, it is

‖(uASM
i,k )EO/∆k − (vASM

i,k )EO/∆k‖ ≤ ‖uDA/∆k − (uASM
i,k )EO/∆k‖

+‖uDA/∆k − (vASM
i,k )EO/∆k‖.

(83)

From (83) and (57), we obtain

‖(uASM
i,k )EO/∆k − (vASM

i,k )EO/∆k‖ ≤ µDD−DA
k EASM

1 + µ̄DD−DA
k ĒASM

1 (84)
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where

EASM
1 = ‖uDA/∆1 − (uASM

i,1 )EO/∆1‖
ĒASM

1 = ‖uDA/∆1 − (vASM
i,1 )EO/∆1‖.

(85)

and

µDD−DA
k :=

[
1 +

1
σ2

0
µ2(V)µ2(G/∆k)

]
µ(M/∆k)

µ̄DD−DA
k :=

[
1 +

1
σ2

0
µ2(V)µ2(G/∆k)

]
µ(M̄/∆k)

(86)

with σ0 denoting the observational error variance, B = VVT the covariance matrix of the
error on the background to Ω, G the matrix defined in (13), M defined in (11) and M̄ the
discrete model obtained by considering initial error e0 on the initial condition of M. By
applying (57) to EASM

1 and ĒASM
1 in (85), we obtain

‖(uASM
i,k )EO/∆k − (vASM

i,k )EO/∆k‖ ≤ µDD−DA
k µDD−DA

1 e0 + µ̄DD−DA
k µ̄DD−DA

k ē. (87)

From (81), (82) and (84), it is

Ēk ≤ 2 D̄× e0 + µDD−DA
k µDD−DA

1 e0 + µ̄DD−DA
k µ̄DD−DA

1 ē

and from the hypothesis in (79), we obtain

Ēk ≤ µ̄DD−DA
k µ̄DD−DA

1 ē (88)

Consequently, for k = 1, . . . , Nt , we find that ∃ Ck > 0 such that

Ēk ≤ Ck ē (89)

where
Ck := µ̄DD−DA

k µ̄DD−DA
1 . (90)

The thesis is proved.

From Theorem 3, we obtain the stability of DD-DA.
Remarkfrom Lemma 2 it follows that the quantity µDD−DA

i,k can be regarded as the
condition number of local problems restricted to the space-time directions. Further, in
Theorem 3, we study the propagation error along the time direction according to the
forward error analysis. As a consequence, we may say that µDD−DA

k can be regarded as
the condition number of local problems restricted to the time direction. In [16], the authors
apply the SA to the reduced DA functional obtained by applying domain decomposition
across space. The results in [16] proved that Tikhonov regularization revealed to be more
appropriate than truncation of EOFs to improve the conditioning of the covariance matrix.
The results obtained in the present study complement the study in [16].

4. Validation Analysis

The validation is performed mapping the space-time domain (Figure 5) on the high
performance hybrid computing architecture of the SCoPE (Sistema Cooperativo Per Elab-
orazioni scientifiche multidiscipliari) data center, which is located in the University of
Naples Federico II. Specifically, the architecture is composed of eight nodes that consist of
distributed memory DELL M600 blades. The blades are connected by a 10 Gigabit Ethernet
technology and each of them is composed of 2 Intel Xeon@2.33 GHz quadcore processors
sharing the same local 16 GB RAM memory for a number of 8 cores per blade and of 64 total
cores. Experimental results allow us to verify that the experimental order of consistency
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corresponds to the theoretical one obtained in Theorem 2 and that the local problems are
well-conditioned. We consider the following experimental setup .

Figure 5. Space-time domain decomposition.

4DVAR DA setup.

• Ω = (0, 1) ⊂ R: spatial domain;
• ∆ = [0, 1.5] ⊂ R: time interval;
• Np = 640: numbers of inner nodes of Ω defined in (5);
• N = 9, 20: numbers of occurrences of time in ∆;
• nobs = 64: number of observations considered at each step l = 0, 1, . . . , N;
• y ∈ RN×nobs : observations vector at each step l = 0, 1, . . . , N. Observations are

obtained choosing (randomly) these values among the values of the state function (the
so called background) and perturbing (randomly) them. (We choice the observation in
this way because the experimental set up is aimed to validate the sensitivity analysis
of DD-DA instead of the reliability of DD-DA method);

• Hl ∈ Rnobs×Np : piecewise linear interpolation operator whose coefficients are com-
puted using the nodes of Ω nearest to the observation values;

• G ∈ RN×nobs×Np : obtained as in (13) from the matrix Hl , l = 0, 1, . . . , N;
• σ2

m = 0.5, σ2
0 = 0.5: model and observational error variances;

• B ≡ Bl = σ2
m C: covariance matrix of the error of the model at each step l = 0, 1, . . . , N,

where C ∈ RNp×Np denotes the Gaussian correlation structure of the model errors
in (91);

• Rl = σ2
0 Inobs ,nobs ∈ Rnobs×nobs : covariance matrix of the errors of the observations at each

step l = 0, 1, . . . , N − 1.
• R ∈ RN×nobs×N×nobs : a diagonal matrix obtained from the matrices Rl , l = 0, 1, . . . , N − 1.

DD-DA setup: we consider the following setup:

• p = Nsub × Nt: number of cores;
• Nsub: number of spatial subdomains;
• Nt = 4: number of time intervals;
• δ: number of inner nodes of overlap regions defined in (20);
• Nloc: inner nodes of subdomains defined in (22);
• ∆x and ∆t: spatial and temporal step sizes of Mi,k defined in (26);
• C := {ci,j}i,j=1,...,Np ∈ RNp×Np : the Gaussian correlation structure of the model error

where

ci,j = ρ|i−j|2 , ρ = exp
(
−∆x2

2

)
, |i− j| < Np/2 for i, j = 1, . . . , Np . (91)
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Given δ, Nsub, Nt, we introduce

ep
∆x,∆t := ‖uDA − ũDD−DA‖2, (92)

where uDA denotes the minimum of the 4DVAR (global) functional J in (9) while ũDD−DA is
obtained by gathering all minima of the local 4DVar functionals Ji,k, in (30), by considering
different values of δ defined in (20). uDA ∈ RNp×N is computed by running the DD-DA
algorithm for Nsub = 1, while ũDD−DA ∈ RNp×N is computed by gathering local solutions
obtained by running the DD-DA algorithm for different values of Nsub > 1 and with δ ≥ 0,
as shown in Figure 6.

Figure 6. Decomposition of the spatial domain Ω ⊂ R in two subdomains {Ωi}i=1,2 by identifying
overlap region Ω12 defined in (16) and interfaces Γ12 and Γ21 defined in (17). On the left case δ = 0,
i.e., no inner nodes in Ω12, on the right case δ = 2, i.e., two inner nodes in overlap region Ω12.

In the following, we present the experimental results of the consistency and the stability
analysis by considering the initial boundary problem of the Shallow Water Equations
(SWEs) in 1D. The discrete model is obtained using the Lax–Wendroff scheme [22] on
Ω× ∆ where the orders of convergence in space and time are equal to 2.

• Consistency. From Table 1, we obtain

ep
∆x
d , ∆t

d
≈

ep
∆x,∆t

d2 d = 1, 2, 4, 6, 8, 10. (93)

As shown in Table 1 and Figure 7, the experimental order of consistency corresponds
to the theoretical one obtained in Theorem 2.

• Stability. In Table 2 and Figure 8, we report values of Ēk for different values of the

perturbation ēk on the initial condition of PMi,k
i,k defined in (25). Then, we may estimate

Ck in (90). In particular, we found that

Ck ≈ 2.00× 101 ∀k = 1, . . . , Nt.

Consequently, the local problems with initial boundary problem of SWEs 1D, are
well-conditioned with respect to the time direction.
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Table 1. We fix Np = 640, the number of inner nodes in Ω, N = 9 the number of time values in ∆,
Nsub = 4 the number of spatial subdomain and Nt = 4 time intervals. We report the values of ep,
which is defined in (92), for different values of ∆x and ∆t, the spatial and temporal step sizes of Mi,k
defined in (26).

d ∆x
d

∆t
d ep

∆x
d , ∆t

d

ep
∆x,∆t
d2

1 7.87× 10−3 1.09× 10−1 1.53× 10−2 1.53× 10−2

2 3.92× 10−3 5.47× 10−2 9.01× 10−4 3.83× 10−3

4 1.96× 10−3 2.74× 10−2 6.45× 10−4 9.56× 10−4

6 1.30× 10−3 1.83× 10−2 3.65× 10−4 2.39× 10−4

8 9.78× 10−4 1.37× 10−2 3.99× 10−4 4.25× 10−4

10 7.81× 10−4 1.10× 10−2 3.77× 10−4 1.53× 10−4

Table 2. We fix Np = 640, the number of inner nodes in Ω, N = 20 the number of instants of time in
∆, Nsub = 4 the number of spatial subdomains and Nt = 4 time intervals. For k = 1, 2, 3, 4, we report
the values of Ēk defined in (78) for different perturbations ēk to the initial condition of PMi,k

i,k , defined
in (25).

ēk Ēk

3.03× 10−6 6.05× 10−5

3.02× 10−5 6.06× 10−4

3.01× 10−4 6.08× 10−3

3.05× 10−3 6.04× 10−2

Figure 7. Values of ep
∆x
d , ∆t

d
(orange dashed line) and

ep
∆x,∆t
d2 (blue full line) for d = 1, 2, 4, 6, 8, 10 reported

in Table 1.
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Figure 8. Values (ēk, Ēk) as reported in Table 2.

5. Conclusions

This work concerns the sensitivity analysis for large scale DA problems that need
parallel solutions. We feel that the whole analysis of uncertainties becomes crucial for the
emerging approaches integrating DA with deep learning approaches. We derived and
discussed the main sources of errors of the parallel DD-DA framework. We prove that
the order of consistence depends on the order of local models and introduce the condition
number of local problems. As the core of such a parallel approach is that the DA model acts
as coarse/predictor operator solving the local PDE model, we analyze error propagation
with respect to time direction. Validation analysis confirms that the experimental order of
consistency corresponds to the theoretical one. Finally, we note that the SA results in [16]
proved that Tikhonov regularization revealed to be more appropriate than truncation of
EOFs to improve the conditioning of the covariance matrix. Our results here complement
the study in [16] and we may conclude that the same findings hold true for DD-DA, too.
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