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Abstract: HSV infections, both type 1 and type 2, are among the most widespread viral diseases
affecting people of all ages. Their symptoms could be mild, with cold sores up to 10 days of infection,
blindness and encephalitis caused by HSV-1 affecting immunocompetent and immunosuppressed
individuals. The severe effects derive from co-evolution with the host, resulting in immune evasion
mechanisms, including latency and growing resistance to acyclovir and derivatives. An efficient
alternative to controlling the spreading of HSV mutations is the exploitation of new drugs, and the
possibility of enhancing their delivery through the encapsulation of drugs into nanoparticles, such
as liposomes. In this work, liposomes were loaded with a series of 2-aminomethyl- 3-hydroxy-1,4-
naphthoquinones derivatives with n-butyl (compound 1), benzyl (compound 2) and nitrobenzene
(compound 3) substituents in the primary amine of naphthoquinone. They were previously identified
to have significant inhibitory activity against HSV-1. All of the aminomethylnaphthoquinones
derivatives encapsulated in the phosphatidylcholine liposomes were able to control the early and
late phases of HSV-1 replication, especially those substituted with the benzyl (compound 2) and
nitrobenzene (compound 3), which yields selective index values that are almost nine times more
efficient than acyclovir. The growing interest of the industry in topical administration against HSV
supports our choice of liposome as a drug carrier of aminomethylnaphthoquinones derivatives for
formulations of in vivo pre-clinical assays.

Keywords: aminomethylnaphthoquinones; herpes simplex virus type 1; liposome drug carrier;
nanoparticles

1. Introduction

Approximately 67% of people under the age of 50 are infected with Herpes Simplex
Virus 1 (HSV-1) and 13% of people aged 15–49 are infected with Herpes Simplex Virus 2
(HSV-2), urgently pushing the need for new therapies. Furthermore, in immunocompro-
mised people, such as those with advanced HIV infection, HSV may have more severe
symptoms and can also lead to more severe complications, such as encephalitis or kerati-
tis [1,2]. HSV infections are efficiently treated with antiviral drugs, such as acyclovir (ACV)
and its derivatives; however, long-term treatments may lead to drug resistance, mainly
among immunocompromised patients, representing an additional critical emergence. Thus,
there is an urgent need to explore new and effective strategies to face this problem.
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HSV-1 belongs to Alphaherpesvirinae sub-family responsible for the primary infection
of epithelial cells, primarily followed by latency in neurons, and reactivation in the orolabial
and genital mucosa throughout life. Effective treatments include the oral administration of
valaciclovir and acyclovir for orolabial HSV, both in healthy and immunocompromised
persons [3–6]. Mutations could explain the reactions against drug therapy on Thymidine
Kinase and DNA polymerase, which results in the reduction or complete deficiency that
impacts the efficacy of different anti-HSV drugs [7,8]. In addition, HSV-1 can control
innate immunity by antagonizing tumor necrosis factor α [9] or through APOBEC3B and
APOBEC3A and the degradation of tetherin [10,11].

Recent strategies to improve the biological activity of drugs against HSV-1 or HSV-2,
and to overcome the issue of resistance, include the utilization of peptides [12–17] and
nanotechnology as delivery strategies for injured tissues [12–15,18–23].

Liposomes are artificially produced vesicles that are formed by layers of natural or
synthetic phospholipids, widely exploited for diagnosis, vaccines, and delivery of nutrients
and bioactive molecules. Their bioavailability and reduced toxic effects make liposomes the
most widely used carriers among nanoparticles [24,25]. As drug delivery tools, they can
transport both hydrophilic substances that are localized in the liquid phase of the vesicles
and hydrophobic molecules immersed in the phospholipid bilayer [26,27].

Another important strategy in antiviral drug development research is based on nat-
ural compounds and the chemical synthesis of analogues of natural products, such as
lawsone (2-hydroxy-1,4-naphthoquinone), which provide unlimited availability and chem-
ical diversity. In this sense, naphthoquinone derivatives are widely recognized as potent
antiviral, antitumoral, and antiparasitic molecules, the effects of which include apoptosis,
proteasome inhibition and anti-inflammatory process control, through a reduction in INOS
expression [28–35].

In previous work, we demonstrated that Mannich base, derived from lawsone, has the
ability to control herpesvirus replication in vitro [36–38]. Although most studies reveal that
lawsone is effective mainly on tumoral cells, we showed that aminomethylnaphthoquinone
derivatives could inhibit both the early and late phases of replication in two different
models of the Herpesviridae family: Herpes Bovine type 5 and Herpes Simplex type
1 [36,37]. Moreover, in BALB/c models, aminomethylnaphthoquinones, with a butyl
substituent, have low toxicity and could be a good candidate against HSV-1 [37].

To obtain an effective anti-HSV-1 drug, the development of a delivery strategy to
enhance internalization, reduce the administration dose and, consequently, undesired
side effects is necessary. Here, we prepared liposomes encapsulating these aminomethyl-
naphthoquinone derivatives to be analyzed in pre- and post-treatment antiherpetic assays.
To date, there are no reports in the literature on the antiviral activity of this class of com-
pounds encapsulated into liposomes. Our results suggest that ACV and naphthoquinones,
delivered through a liposomal system, may improve clinical efficacy and decrease adverse
effects, such as toxicity.

2. Results

The drugs used in this study are hydrophobic, and thus their application is somewhat
impaired. For this reason, the use of carriers is a widely accepted strategy to improve their
delivery. Liposomes represent an attractive approach to achieve this objective, since it is
possible to encapsulate both hydrophilic molecules in the core or hydrophobic molecules
in the bilayer.

We prepared liposomes encapsulating three hydrophobic molecules that were purified
by gel filtration to separate the non-encapsulated drugs. Our data clearly indicate that
the drugs are completely encapsulated in the experimental conditions used in this study.
Moreover, the ratio between the drug and the lipid concentrations is 0.01, indicating that
the encapsulated drug is at a much lower concentration, which is not able to influence
liposome packing. Figure 1 presents a scheme of the drug, encapsulated inside liposomes
and the chemical structures of the three drugs.
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Figure 1. Schematic representation of liposomes loaded with a series of 2-aminomethyl-3 hydroxy
1,4 naphthoquinones derivatives (1 to 3), used in this study to determine anti-HSV activity.

Liposomes loaded with drugs were characterized by DLS. Table 1 presents their
hydrodynamic diameters, which vary from ca. 102 to 130 nm with a polydispersity index
of lower than 0.2, indicating that monodispersed preparation is suitable for applications
in biomedicine. Furthermore, the surface charge of the liposomes, as determined by the
measurement of their zeta potential (Table 1) showed values of between −13 and −24,
indicating the colloidal stability of the prepared formulations.

Table 1. Size (diameter) and zeta potential measurements of neutral Egg-PC liposomes encapsulating the drugs.

Compound Drug (radical) Size (nm) Polydispersity Index Zeta Potential (mV)

1 n butyl 102.1 ± 1.1 0.19 ± 0.01 −24.2 ± 0.1

2 benzyl 130.1 ± 7.2 0.13 ± 0.09 −20.0 ± 0.1

3 nitrobenzene 112.6 ± 3.5 0.17 ± 0.02 −13.1 ± 0.7

Size, expressed as z-average, and polydispersity index (PDI), are measured by DLS. Data are expressed as means ± standard deviation (SD)
of three separate experiments for each of two batch formulations, with at least 13 measurements for each.

At 24 and 48 h, the release of the drug from the liposomes was observed. Our data
clearly show that the concentration of compounds encapsulated in the liposomes remained
stable for up to 48 h. The dimensions of the liposomes were also checked after 48 h, with no
significant change.

Initially, we evaluated the influence of liposomes on cell viability. For this, monolayers
of Vero cells (104 cells/mL) were incubated with several concentrations of 2-aminomethyl-
3-hydroxy-1,4 naphthoquinone derivatives that either were or were not encapsulated
in the liposome (0.5 to 10 µM) for 48 h at 37 ◦C (Table 2). Following this, 1 mg/mL of
3-(4,5-Dimethylthiazol-2-yl)-2,5 Diphenyl Tetrazolium Bromide was added to each well for
4 h at 37 ◦C and the resulting purple formazan was followed at 570 nm. Since liposomes
are considered an excellent delivery system, it may be reasonable for the liposome to
increase the cytotoxic effect on cells. The CC50 values showed that all derivatives could be
considered more toxic in the presence of Egg-phosphocholine (Table 2), but for all of the
experiments, the maximum concentration used was below that of the CC50 values.
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Table 2. Comparative analysis of CC50 (µM) values of acyclovir and 2-aminomethyl-3-hydroxy1,4
naphthoquinone derivatives, encapsulated and not encapsulated (free compounds), in liposomes
performed in Vero cells.

Acyclovir 1 2 3

encapsulated 13 ± 1 15 ± 1 11 ± 1 13 ± 2

free 15 ± 1 19 ± 1 22 ± 2 17 ± 2

Our results also highlighted the influence of the substituent on the values of CC50.
The presence of benzyl in the primary amine of naphthoquinone derivatives influenced
the compound 2 value (11 ± 1 µ), which was shown to be the most toxic among all of the
derivatives. Both compound 3, with the nitrobenzene substituent, and acyclovir present
the same CC50 values (13 ± 2 and 13 ± 1 µM, respectively), while the presence of a butyl
radical in compound 1 was determined to have minimal harmful effects on Vero cells
(15 ± 1 µM).

To verify if the encapsulated compounds could also inhibit HSV-1 replication, we
performed a yield-reduction assay (Figure 2). Briefly, after incubation with HSV-1 (MOI of
0.1) for 1 h at 37 ◦C, cells were washed with MEM 5% FCS and incubated with acyclovir,
or each of the aminomethylnaphthoquinone derivatives encapsulated in liposomes at
concentrations ranging from 0.01 to 10 µM for 24 h in atmosphere, with 5% CO2 at 37 ◦C.
After the dilution (1:10) of the viral suspension, new 24-well plates were used to determine
the EC50 values, based on viral control. EC50 is a measure of the inhibition of viral
replication in the presence of several drug concentrations, and the lowest is the EC50 value;
the most effective is the drug which controls in vitro replication.
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Figure 2. Effects of 2-aminomethyl-3-hydroxy-1,4 naphthoquinones encapsulated in liposomes on
HSV-1 replication. After infection (MOI = 0.1) Vero cells (3 × 105 cells/well) were grown in the
presence of 0.01 to 10 µM of compounds 1–3 for 24 h. Inhibition was calculated based on plaque-
forming units of viral control. The results were expressed as the Mean ± SD of three independent
experiments. p < 0.05 control group.

All of the encapsulated 2-aminomethyl-3-hydroxy-1,4 naphthoquinone derivatives
exhibited lower EC50, compared to the positive control acyclovir (see Table 3). The
presence of nitrobenzene (compound 3) and benzyl (compound 2) substituents in the
aminomethylnaphthoquinone structures conferred the best results for viral inhibition with
0.36 ± 0.04 µM and 0.56 ± 0.02 µM, respectively, and almost four and nine times the activ-
ity of acyclovir in the same conditions (3.16 ± 0.09 µM). Even compound 1, with the lowest
antiviral activity among derivatives (1.73 ± 0.08 µM), showed that the butyl substituent
was more effective than acyclovir in inhibiting HSV-1 replication (Table 3).
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Table 3. Values of cell viability (CC50), antiviral activity (EC50) and selective index (SI) of acyclovir
and 2-aminomethyl-3-hydroxy-1,4 naphthoquinones derivatives encapsulated in liposomes.

Drug (radical) CC50, µM EC50, µM(*) SI, CC50/EC50

Acyclovir 13 ± 1 3.16 ± 0.09 4.1

1 (n butyl) 15 ± 1 1.73 ± 0.08 8.7

2 (benzyl) 11 ± 1 0.56 ± 0.02 20

3 (nitrobenzene) 13 ± 2 0.36 ± 0.04 36
(*) EC50–drug concentration, which reduced 50% of HSV-1 replication when compared to control. SI represents
the ratio between cytotoxicity and the antiviral effect and indicates effectiveness of drugs.

In terms of toxicity and antiviral effect, the selective index (SI), calculated through the
CC50/EC50 ratio, represents how promising the candidate is for further in vitro and in vivo
studies. First, our results showed that all encapsulated compounds presented higher SI
values compared to acyclovir (SI = 4.1) (Table 3). In fact, the relationship between CC50
and EC50 represents the lowest value of this series (SI = 8.7 µM) for the n-butyl derivative
(compound 1), but still almost twice that of the control; in particular, although being less
toxic, compound 1 had the highest EC50 value. Among all derivatives, the most rele-
vant antiviral activity was obtained with the nitrobenzene radical (compound 3) (SI = 36),
mainly due the significant reduction in drug concentration to the EC50 (0.36 ± 0.04), fol-
lowed by compound 2 (with benzyl radical) (SI value of 20), which also had significant
biological activity.

In comparison, the inhibitory effect of non-encapsulated derivatives was clearly
observed in compound 1 (butyl) and compound 2 (benzyl), with the most effective SI
values (1.52 and 1.16, respectively, data not shown). In concentrations of up to 10 µM,
the CC50/EC50 ratio provides compound 2 (benzyl) with the highest SI value (20.75), mainly
due the lower toxicity (CC50 = 22.0 ± 1.6 µM); the highest antiviral effects
(EC50 = 1.06 ± 0.49 µM) were observed in compound 1 with n-butyl—SI = 9.6
(CC50 = 19 ± 1.52 µM and EC50 = 1.98 ± 0.3 µM)—and compound 3 with nitrobenzene—
SI value of 5.48 (CC50 = 17.0 ± 2.0 µM; EC50 = 3.1 + 0.18 µM).

The comparison of the SI values with free and encapsulated derivatives showed
that liposomes, as carriers, enhanced the antiviral effect of these compounds, even with
discreet toxicity.

We performed a series of attachment and time-addition assays. First, the infected
Vero cells, with HSV-1 (MOI of 0.1) in the presence of 2-aminomethyl-3-hydroxy-1,4 naph-
thoquinone derivatives and acyclovir, were encapsulated in liposomes for 2 h at 4 ◦C.
Following this, the cells were washed twice with ice-cold PBS and covered with 5% MEM
and 2% methylcellulose for 48h at 37 ◦C. The virus-binding assay demonstrated moderate
activity for all compounds and acyclovir. The maximum inhibition did not exceed 58.3%
with compound 3 (nitrobenzene) and 49.7% with compound 2 (benzyl) at 10 µM. However,
the n-butyl substituent (compound 1) had the lowest inhibition value (37.6%), but this was
still higher compared to the 30.5% of acyclovir (Figure 3).

The time of addition assay is a common approach for determining how long the
addition of a specific compound could remain efficient for controlling viral replication in cell
culture. For this purpose, in order to compare if liposomes were also able to inhibit the early
and late phases of HSV-1 replication, we used protocols, already published by our group,
with free derivatives [38]. Briefly, after initial HSV-1 infection with 0.1 MOI, Vero cells
were washed with PBS and incubated with MEM 5%BFS for 3 h post infection (hpi) or
6 hpi at 37 ◦C. Subsequently, the medium was replaced by naphthoquinone derivatives,
and acyclovir was encapsulated into liposomes with concentrations corresponding to four
times the EC50 values for an additional 3 h or 14 h of incubation. Our results showed that
all compounds were effective in blocking the early phase (3–6 hpi) of HSV-1 replication
(Figure 4). Compounds 1 (n-butyl radical) and 2 (benzyl radical) showed very similar
inhibition values (69% and 65%, respectively), while compound 3 was the least efficient
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(58%) in terms of controlling the early phase of HSV-1 replication, probably targeting the
essential components of virus replication, such as polymerase, thymidine kinase and the
helicase-primase (58%).
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Figure 4. Time of addition assay. Vero cells were first incubated with HSV-1 (MOI = 0.1) for 1 h, then
acyclovir (12.6 µM), compound 1 (6.92 µM), 2 (2.24 µM) and 3 (1.44 µM) were added at different
incubation times, as indicated. The level of infection was determined 48 h later by plaque-forming
unit counts. The results are expressed as Mean ± SD of three independent experiments. p < 0.05
control group.

Moreover, the efficacy of compound 3 was evident in the late phase (85%), proving to
be more active than all aminomethylnaphthoquinones; however, this tendency was also
observed for compound 1 (70%) and compound 2 (78%), indicating that all series act as
blockers of both phases (Figure 4). In fact, the most effective was compound 3, with a
significant SI value (36), having equal the ability to keep the cells alive while blocking some
of the still-unknown targets of HSV-1 replication.

3. Discussion and Conclusions

Over the last few decades, anti-HSV-1 drug development has essentially been based
on the modification of the acyclovir prototype; as a matter of fact, currently, the three classes
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of licensed HSV-1 drugs act on viral DNA replication. The typical use of acyclovir and
penciclovir often presents limitations due to their side effects and low efficacy, determined
by drug-resistant strains. Viral resistance to ACV has been shown to be more common in
immunocompromised patients undergoing long-term therapy, as seen for most other viral
infections, highlighting the need for new drugs with novel mechanisms of action [39,40].

In recent years, the literature has been filled with scientific reports of natural and
synthetic compounds with anti-herpetic activities [24,41–43]; unfortunately, most present a
significant level of toxicity. In this sense, liposomes act as efficient vehicles, significantly
reducing the dose of the drug being administered and, thus, its toxic level, as demonstrated
for liposomal formulations containing doxorubicin [44] and amphotericin [45].

This work evaluated the antiviral activities of the naphthoquinone derivative encap-
sulated into liposomes and compared them with those of free drugs. Naphthoquinones are
natural compounds that are widely found in plants, microorganisms, and animals with
significant biological activities (anti-inflammatory, anti-microbial and cytotoxic) against
cancer. Inside cells, they produce stable free radicals, inducing oxidative stress and caspase
3/7 activity, and irreversibly complex proteins, generally leading to the inactivation and
loss of protein function in many types of cells [28]. Although natural and synthetic, naph-
thoquinones have been extensively studied as anticancer drugs. Some derivatives, such as
lawsone and 2-aminomethyl-3-hydroxy-1,4 naphthoquinones have also been shown to
have antiviral activities against bovine herpesvirus (BoHV-5) and HSV-1 [36,38].

Previous studies with 2-aminomethyl-3 hydroxy 1,4 naphthoquinones, carrying butyl
and benzyl substitutions, found that they were the most promising compound against
HSV-1, with SI values of 1.52 and 1.16, respectively, which are higher than ACV (SI = 0.80).
The same effectiveness was observed with nitrobenzene derivative in the inhibition of
BoHV-5 replication, demonstrating possibly different targets in the same viral family,
despite the same control on the early and late phases of replication [36,38] Furthermore,
pre-clinical studies with BALB/c demonstrated that the oral administration of compound 1
(butyl) has no effect on transaminases level or kidneys functions, excluding possible side
effects after the oral administration of the substance [37].

These compounds were encapsulated in neutral PC liposomes to verify the possible
differences in biological activities of aminonaphthoquinones, with concentrations up to
10 µM. The hypothesis is that liposomes could improve biological activity, enhancing
solubilization and reducing administration dose. Our viability results demonstrate a
discrete reduction in CC50 values of the 2-aminomethyl-3hydroxy-1,4 naphthoquinones in
the presence of liposomes. Nevertheless, antiviral activity improves.

The first antiviral assay demonstrated several differences, which are likely based on
substitutions in the amino or naphthoquinone structure. The presence of substitutions
provided an antiviral effect higher than drug control (acyclovir). In particular, nitrobenzene
derivate (compound 3) gives the highest antiviral effect with a value of 0.36 µM. However,
the EC50 differences between compounds 2 and 3 were not significant compared to acyclovir.
The selective index (SI) calculated by the ratio between cytotoxic and antiviral values gives
to compound 3 the most effective antiviral effect (SI = 36) and almost nine times the value
obtained for acyclovir (SI = 4). Comparing the biological parameters concerning compound
2, with substituted benzene, we found that there was both a reduction in cell viability and
antiviral effects with an SI value of 20. The benzyl substitution confers to compound 2 a
higher activity compared to compound 1 (SI = 8.7). our results using free compounds with
concentrations up to 10 µM showed that for n-butyl substituted derivative, the same EC50
value showed when encapsulated into liposomes (1.73 µM). [38]. However, the different SI
value for the encapsulated drug could reduce the toxic effect, which is important mainly in
prolonged therapies. The other two derivatives, benzyl and substituted nitrobenzene, being
more hydrophobic than compound 1, showed an enhancement in their antiviral effect when
delivered through liposomes. It is likely that, when located in the bilayer of the liposomes,
they are more easily delivered inside the Vero cells, where they can exert their activity.
It is interesting to note that, in our previous study, the benzyl-substituted derivative
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was the most effective antiviral compound in the series, but when encapsulated into
liposomes, it was replaced by compound 3, showing that the aliphatic group of compound
1 in the liposome structure affected the available concentration of this derivative to the
cell. The formulation containing the acyclovir required higher concentration for activity,
compared to the free molecule. That being said, it still undoubtedly presents an advantage,
as the SI value was increased by more than five times (4.1 µM) compared to free acyclovir
(0.80 µM). In conclusion, for the first time, we demonstrated that liposomes can equally be
considered a suitable carrier for acyclovir and naphthoquinones derivatives.

To identify the possible targets of encapsulated drugs, we choose specific points in
HSV-1 replication. First the virion attaches to the cell membrane and, after penetration,
the early and late phases of HSV-1 replication. These experiments allowed us to compare
the results with those previously obtained for the free derivatives.

Viral inhibition during the attachment phase was not efficient with liposomes, reaching
a maximum value of 58% with compound 3 and 50% with compound 2 at 10 µM. The lowest
activity was obtained with the n-butyl substituent (38%), but we showed that all derivative
formulations were still more effective than acyclovir (30%).

The use of four times the EC50 values at the time of the addition assay showed that
all compounds were more effective than acyclovir in controlling viral infection during
the early and late phases of replication. At the same time, the importance of incuba-
tion in the early phase represents the possible blockage of proteins involved in viral
DNA replication, such as the viral polymerase and thymidine kinase of HSV, the latest
tagged in the maturation and budding of the virion from the nucleus of the infected
cell. The nitrobenzene-substituted derivatives revealed the lowest activity during the first
3 and 6 h post infection, but butyl- and benzene-substituted molecules also present very
similar inhibition percentages that were considered to be not so effective, compared to that
shown in the late phase. Accordingly, our previous results revealed that these naphtho-
quinone derivatives could interact with the proteins responsible for organizing the viral
nucleocapsid, and this fact supports our objective of searching for a new target other than
the thymidine kinase of HSV-1. The efficacy of compound 3 was evident (85%), followed
by compound 1 (70%) and compound 2 (78%). We conclude this preliminary study with
the observation that the neutral liposome could carry anti-HSV-1 compounds of naphtho-
quinone origin, and further studies are necessary to enhance internalization and unravel
the mechanism of their activity.

4. Materials and Methods
4.1. Compounds

Three molecules of 2-aminomethyl-3-hydroxy-1,4-naphthoquinones 1–3 (Figure 1)
were synthesized as Mannich bases with some modifications [46]. Their identities were
confirmed by 1H NMR (Varian VNMRS 300 MHz spectrometer) and their purity deter-
mined by elemental analysis (Perkin-Elmer CHN 2400 micro analyzer at Central Analítica
IQ-USP, SP, Brazil) and melting point measurements (Digital Melting Point IA9100, Ther-
moFischer Scientific, Waltham, MA, USA). They were dissolved in dimethyl sulfoxide
(DMSO), 100% sterile, and stored at −20 ◦C. The stock solutions (50 mM) were diluted in
MEM (Sigma-Aldrich) for the tests.

4.2. Cell Culture and Virus

Vero cells (ATCC CCL-81) from African green monkey kidney cells (Cercopithecus
aethiops) were cultured in Minimum Essential Medium (MEM) (Sigma-Aldrich, St. Louis,
MO, USA.), supplemented with 5% FBS (HyClone, Logan, UT, USA), 100 U/mL penicillin
and 100 mg/mL streptomycin at 37 ◦C in 5% CO2 atmosphere. For all antiviral tests, HSV-1
strain SC-16 (ATCC) and fibroblast cells at 80% confluence were used.
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4.3. Liposome Preparation

Lipid stock solutions of egg phosphatidylcholine (PC) (Avanti Polar Lipid Inc., Al-
abaster, AL, USA) (0.1 mM) were prepared in chloroform, containing 30% vol. methanol.
Mixtures of appropriate amounts of PC and aminomethylnaphthoquinones (0.5 to 10 mM)
were prepared, and the organic solvent was evaporated under a gentle stream of nitro-
gen. Following this, lipid films were kept in a vacuum overnight to remove the residual
organic solvent and hydrated with PBS buffer at pH 7.4 for 1 h. The lipid suspension
was freeze–thawed 6 times, LUVs were passed for 10 cycles through a 100 nm pore size
according to the extrusion method [47] (LipexTM, Avanti Polar Lipid Inc., Alabaster, AL,
USA). Unloaded drugs were removed by the Sephadex G50 column to purify the final
formulation and evaluate the efficiency of encapsulation. Dynamic light scattering (DLS)
measurements were made using Zetasizer Nano-ZS (Malvern Instruments, Worcestershire,
UK), to check the Zeta potential, size, expressed as z-average, and polydispersity index
(PDI) of the loaded liposomes (Table 1).

4.4. In Vitro Drug Release

The in vitro drug release from liposomes was determined using UV–vis spectropho-
tometry. Liposomes encapsulating the drug were dialyzed against water under continuous
stirring at 37 ◦C; 100 mL aliquots were withdrawn at 24 and 48 h and replaced with an
equal volume of fresh water. The free drug was quantified based on the UV– vis absorbance
at 260 nm, using a previously established calibration curve.

4.5. Cytotoxicity Assay

Vero cells cultivated in 96-multiwell plates (1 × 104 cells/well) were incubated with
liposomes coupled to 2-aminomethyl-3-hydroxy-1,4-naphthoquinones in different concen-
trations (0.5, 1, 5 and 10 µM) for 48 h at 37 ◦C and 5% CO2 atmosphere. Then, 50 µL of
3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl MTT (1 mg/mL, Sigma-Aldrich, St Louis, MO,
USA) was added to each well for 4 h at 37 ◦C [48]. The MTT reduction in living cells creates
formazan, a purple compound that is absorbed at 570 nm. The 50% cytotoxic concentration
(CC50) was calculated by linear regression analysis of the dose–response curves.

4.6. Antiviral Assays

For all antiviral assays, strain SC-16 HSV-1 was used at a multiplicity of infection (MOI)
of 0.1 to infect Vero cells at 3 × 105 cells/well using a modified yield reduction assay [49].
All aminomethylnaphthoquinone derivatives were previously diluted in pre-chilled MEM
with 5% FCS.

4.6.1. Yield Reduction Assay

To determine the HSV-1 title, Vero cells maintained in 24-multiwell plates
(3 × 105 cell/well) were infected with HSV-1 strain SC-16 (MOI of 1) for 1 h at 37 ◦C
and 5% CO2 atmosphere.

After the removal of the viral inoculum, cells were treated with 0.01 µM to 10 µM
of compound 1, 2, 3 and ACV encapsulated in liposomes for 24 h at 37 ◦C and 5% CO2
atmosphere. Then, the cells were subjected to three cycles of freezing and thawing and the
inoculum diluted (1:10) to a new infection in 24-multiwell plates (105 cells/well) for 1 h
at 37 ºC and 5% CO2 atmosphere. The cells were covered with MEM 2X, 5% FCS and 2%
methylcellulose for 48h at 37 ◦C and the viral title was determined by the number of viral
plaque units per mL (PFU/mL). EC50 values, which means the drug concentration able to
inhibit 50% of the viral plaque formation, were determined by linear regression compared
to the untreated infected control.

4.6.2. Attachment Assay

A virus-binding assay was performed with pre-chilled Vero cells at 4 ◦C for 1 h in
24-well plates (3 × 105 cell/well). The medium was removed, and the monolayers were
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inoculated with HSV-1 (0.1 PFU/cell) in the presence of 0.5 µM, 1 µM, 5 µM and 10 µM
of compound 1, 2, 3 or ACV with liposomes for 2 h at 4 ◦C. Then, cells were washed
three times with iced PBS and covered with MEM 2X, 5% of fetal bovine serum and 2%
methylcellulose for 48 h at 37 ◦C. The number of viral plaque units per mL (PFU/mL) was
calculated, corresponding to inhibition based on viral control.

4.6.3. Time-of-addition Assay

To verify if the series of 2-aminomethyl-3 hydroxy 1,4 naphthoquinone compounds
could inhibit the early and late phases of HSV-1 replication, after 1 h of viral incubation
(MOI of 0.1) at 37 ◦C, Vero cells were washed three times with MEM, 5% FBS and incubated
during 3 h or 6 h. Then, four times the EC50 values of each liposome were added to
the medium and incubated for an additional 3 h or 14 h, representing, respectively, the
early (3–6 h) and late (6–20 h) phases of HSV-1 replication. At the end of incubation, the
supernatant was recovered, diluted (1:10) and the percentage of viral inhibition was defined
using plaque assay counts, based on the HSV-1 control.

4.7. Statistical Analysis

All assays were performed at least three times in triplicate and the statistical analysis
was performed using GraphPad Prism 7.0 (GraphPad Software Inc., San Diego, USA). The
analysis of variance test was used, followed by multiple comparisons using the Kruskal–
Wallis test. Differences were considered statistically significant when p < 0.05
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