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ABSTRACT
The exploitation of present and future synoptic (multiband and multi-epoch) surveys requires
an extensive use of automatic methods for data processing and data interpretation. In this work,
using data extracted from the Catalina Real Time Transient Survey (CRTS), we investigate
the classification performance of some well tested methods: Random Forest, MultiLayer
Perceptron with Quasi Newton Algorithm and K-Nearest Neighbours, paying special attention
to the feature selection phase. In order to do so, several classification experiments were
performed. Namely: identification of cataclysmic variables, separation between galactic and
extragalactic objects and identification of supernovae.

Key words: methods: data analysis – novae, cataclysmic variables – supernovae: general –
stars: variables: general – stars: variables: RR Lyrae.

1 IN T RO D U C T I O N

The advent of a new generation of multi-epoch and multiband (syn-
optic) surveys has opened a new era in astronomy allowing us
to study with unprecedented accuracy the physical properties of
variable sources. The potential of these new digital surveys, both
in terms of new discoveries as well as of a better understanding
of already known phenomena, is huge. For instance, the Catalina
Real-Time Transient Survey (CRTS, Drake et al. 2009) in less than
eight years of operation, enabled the discovery of ∼2400 supernova
(SN), ∼1200 cataclysmic variables (CV), ∼2800 active galactic
nuclei (AGN), as well as to identify brand new phenomena such as
binary black holes (Graham et al. 2015) and peculiar types of SN
(Drake et al. 2010). A discovery trend which is expected to con-
tinue and even increase when new observing facilities such as the
Large Synoptic Telecope (Closson Ferguson 2015), and the Square
Kilometre array (Yahya et al. 2015) become operational.

With these new instruments, however, both size of the data and
event discovery rates are expected to increase, from the current
∼10–102 events per night, up to ∼105–107. Only a small fraction of
these events will be targeted by dedicated follow-ups and therefore
it will become crucial to disentangle potentially interesting events
from lesser ones. With data volumes already in the terabyte and
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petabyte domain, the discrimination of time-critical information
has already exceeded the capabilities of human operators and also
crowds of citizen scientists cannot match the task. A viable approach
is therefore to automatize each step of the data acquisition, process-
ing and understanding tasks. In this work, with ’data understanding’,
we mean the identification of transients and their classification into
broad classes, such as periodic versus non-periodic, SN, CV stars,
etc.

Many efforts have been made to apply a variety of machine
learning (ML) methods to classification problems (du Buisson et al.
2015; Rebbapragada 2014; Goldstein et al. 2015; Wright et al.
2015).

Real time analysis can be performed using different methods,
among which we shall just recall those based on Random Forest
(RF; Breiman 2001) and on Hierarchical Classification (Lo et al.
2013).

Off-line classification, being less critical in terms of computing
time, can be performed with many different types of classifiers.
It is common practice to distinguish between supervised and un-
supervised methods, depending on whether a previously classified
sample is or is not used for the training phase. In the supervised cat-
egory, we have, for instance, Bayesian Network (Castill, Gutierrez
& Hadi 1997), Support Vector Machines (Chang & Lin 2011), K-
Nearest Neighbours (KNN; Hastie, Tibshirani & Friedman 2001),
RF (Breiman 2001), and Neural Networks (McCulloch & Pitts
1943). While in the unsupervised family, we mention Gaussian
Mixture Modelling (McLachlan & Peel 2001), and Self-Organizing
Maps (Kohonen 2001).
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Figure 1. An adapted version of the scheme presented in Dubath (2012)
for a general classification of variable objects.

In this work, we shall focus on off-line classification, mak-
ing use of three different machine learning methods, namely: the
MultiLayer Perceptron with Quasi-Newton Algorithm (MLPQNA,
Brescia et al. 2012), the RF (Breiman 2001) and the KNN (Hastie
et al. 2001). Most of the presented work was performed in the
framework of the Data Mining & Exploration Web Application
REsource (DAMEWARE; Brescia et al. 2014) infrastructure and
the PhotoRaptor public tool (Cavuoti et al. 2015).

The paper is structured as it follows: in Section 2, we present the
data and introduce the features extracted for the analysis. In Sec-
tion 3, we briefly describe the ML methods used for the experiments
detailed in Section 4. Results are discussed in 5.

2 TH E DATA

In what follows, we shall divide objects according to a simpli-
fied version (see Fig. 1) of the semantic tree described in Eyer &
Mowlavi (2008). From this scheme, it emerges quite naturally, the
need to split the classification task in at least three steps (e.g. Dubath
2012). In the first step, variable objects (the transients) are disentan-
gled from normal, non-variable stars. In the second step, periodic
objects are separated from non-periodic objects and, finally, in the
third and last step, one can proceed to the final classification of the
objects.

In this work we make use of 1619 light curves extracted from
the CRTS (Drake et al. 2009) public archive. CRTS is a synoptic
astronomical survey that repeatedly covers 33 000 deg2 of the sky
with the main goal of discovering rare and interesting transient
phenomena. The survey utilizes data taken in only one band (V) by
the three dedicated telescopes of the highly successful Catalina Sky
Survey near-Earth objects (NEO) project and detects and openly
publishes all transients within minutes of observation so that all
astronomers may follow ongoing events.

The sample used in this work consists of the light curves of objects
whose nature was confirmed with spectroscopic or photometric
follow-ups, and it is composed by:

(i) cataclysmic variables – CV (461 objects);
(ii) supernovae – SN (536 objects);
(iii) blazar – Bl (124 objects);
(iv) active galactic nuclei – AGN (140 objects);
(v) flare stars – Fl (66 objects);
(vi) RR Lyrae – RRL (292 objects).

2.1 Photometric features

The ability to recognize and quantify the differences between light
curves with ML methods, requires many instances of light curves
for each class of interest. As extensively discussed (cf. Bloom &
Richards 2011; Graham et al. 2012b; Donalek et al. 2013; Wright
et al. 2015), in analysing astronomical time series, it is crucial to ex-
tract from the light curves a proper set of features. Since light curves
are usually unevenly sampled, and not all instances of a certain class
are observed with the same number of epochs and S/N ratio, the use
of the light curves themselves for classification purposes is therefore
challenging, both conceptually and computationally. Therefore, the
data need to be homogenized by transforming each light curve into
a vector of real-number features generated using statistical and/or
model-specific fitting procedures.

In this work, we used the Caltech Time Series Characterization
Service (CTSCS), a publicly offered web service (Graham et al.
2012a), to derive from a given light curve a rather complete set
of features capable to characterize both periodic (Debosscher et al.
2007; Richards et al. 2011) and non-periodic behaviours.

Among the many possible features provided by the service, we
used those listed below.

(i) Amplitude (ampl): the arithmetic average between the maxi-
mum and minimum magnitude;

ampl = magmax − magmin

2
. (1)

(ii) Beyond1std (b1std): the fraction of photometric points (≤1)
above or under a certain standard deviation from the weighted av-
erage (by photometric errors);

b1std = P (|mag − mag| > σ ). (2)

(iii) Flux percentage ratio (fpr): the percentile is the value of a
variable under which there is a certain percentage of light-curve
data points. The flux percentile Fn, m was defined as the difference
between the flux values at percentiles n and m. The following flux
percentile ratios have been used:
fpr20 = F40,60/F5,95

fpr35 = F32.5,67.5/F5,95

fpr50 = F25,75/F5,95

fpr65 = F17.5,82.5/F5,95

fpr80 = F10,90/F5,95.

(iv) Lomb–Scargle periodogram (ls): the period obtained by the
peak frequency of the Lomb–Scargle periodogram (Scargle 1982);

(v) linear trend (lt): the slope of the light curve in the linear fit,
that is to say the a parameter in the following linear relation:

mag = a ∗ t + b. (3)

lt = a. (4)

(vi) Median absolute deviation (mad): the median of the devia-
tion of fluxes from the median flux;

mad = mediani(|xi − medianj (xj )|). (5)

(vii) Median buffer range percentage (mbrp): the fraction of data
points which are within 10 per cent of the median flux;

mbrp = P (|xi − medianj (xj )| < 0.1 ∗ medianj (xj )). (6)

(viii) Magnitude ratio (mr): an index used to estimate if the object
spends most of the time above or below the median of magnitudes;

mr = P (mag > median(mag)). (7)
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Classification of astronomical transients 3121

(ix) Maximum slope (ms): the maximum difference obtained
measuring magnitudes at successive epochs;

ms = max(| (magi+1 − magi)

(ti+1 − ti)
|) = �mag

�t
. (8)

(x) Percent amplitude (pa): the maximum percentage difference
between maximum or minimum flux and the median;

pa = max(|xmax − median(x)|, |xmin − median(x)|). (9)

(xi) Percent difference flux percentile (pdfp): the difference be-
tween the second and the 98th percentile flux, converted in magni-
tudes. It is calculated by the ratio F5,95 on median flux;

pdfp = (mag95 − mag5)

median(mag)
. (10)

(xii) Pair slope trend (pst): the percentage of the last 30 couples
of consecutive measures of fluxes that show a positive slope;

pst = P (xi+1 − xi > 0, i = n − 30, . . . , n). (11)

(xiii) R Cor Bor (rcb): the fraction of magnitudes that is below
1.5 mag with respect to the median;

rcb = P (mag > (median(mag) + 1.5)). (12)

(xiv) Small kurtosis (sk): the kurtosis represents the departure of
a distribution from normality and it is given by the ratio between the
fourth-order momentum and the square of the variance. For small
kurtosis, it is intended the reliable kurtosis on a small number of
epochs;

sk = μ4

σ 2
. (13)

(xv) Skew (skew): the skewness is an index of the asymmetry
of a distribution. It is given by the ratio between the third-order
momentum and the variance to the third power;

skew = μ3

σ 3
. (14)

(xvi) Standard deviation (std): the standard deviation of the
fluxes.

Table 1. Structure of the confusion matrix for a two classes ex-
periment. The interpretation of the symbols is self-explanatory. For
instance, TP denotes the number of objects belonging to the class 1
who are correctly classified.

OUTPUT
– Class 1 Class 2

TARGET Class 1 TP FN
Class 2 FP TN

3 TH E M E T H O D S

As it was said before, this work aims to classify transients using a
ML approach based on the use of various methods: MLPQNA, RF
and KNN.

MLPQNA stands for the classical MultiLayer Perceptron model
implemented with a Quasi Newton Approximation as learning rule
(Byrd, Nocedal & Schnabel 1994). This model has already been
used to deal with astrophysical problems and it is extensively de-
scribed elsewhere (Brescia et al. 2012; Cavuoti et al. 2014).

RF stands instead for Random Forest, a widely known ensemble
method (Breiman 2001), which uses a random subset of data fea-
tures to build an ensemble of decision trees. Our implementation
makes use of the public library scikit-learn (Pedregosa et al. 2011).
This method has been chosen mainly because it provides for each
input feature a score of importance (rank) measured in terms of its
contribution percentage to the classification results.

KNN is the well-known KNN method (Hastie et al. 2001), widely
used both for classification and regression. In the case of classifica-
tion, it tries to classify an object by a majority vote of its neighbours,
and the object is then assigned to the most common class among its
KNN.

The analysis of the results of the experiments is based on the
so-called confusion matrix (Provost, Fawcett & Kohavi 1998), a
widely used classification performance visualization matrix, where
columns represent the instances in a predicted class, and rows give
the expected instances in the known classes. In a confusion matrix
defined as in Table 1, the quantities are: TP: true positive, TN: true
negative, FP: false positive, FN: false negative.

Figure 2. Feature importance list obtained by the RF in the case of the six-class experiment, with the importance percentage for each feature.
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3122 A. D’Isanto et al.

Figure 3. ROC curves for the six-class classification for the three models used. In the case of the KNN model, the curve was obtained by taking into account the
limitations imposed by the algorithm, which are determined by the choice of the number of nearest neighbours (in this case, five neighbours induce 20 per cent
of quantization).

By combining such terms, it is then possible to derive the follow-
ing statistical parameters (in brackets the label that will be used in
the tables):

(i) overall efficiency (Eff): the ratio between the number of cor-
rectly classified objects and the total number of objects in the

data set;

Eff = T P + T N

T P + FP + FN + T N
. (15)

(ii) class purity (Pur1 and Pur2): the ratio between the number
of correctly classified objects of a class and the number of objects

MNRAS 457, 3119–3132 (2016)
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Classification of astronomical transients 3123

Figure 4. Feature importance list obtained by the RF, with the importance percentage for each feature and for the CV versus ALL classification.

classified in that class, also known as efficiency of a class;

Pur1 = T P

T P + FP
. (16)

Pur2 = T N

FN + T N
. (17)

(iii) class completeness (Comp1 and Comp2): the ratio between
the number of correctly classified objects in that class and the total
number of objects of that class in the data set;

Comp1 = T P

T P + FN
. (18)

Comp2 = T N

FP + T N
. (19)

(iv) class contamination: it is the dual of the purity. Namely, it is
the ratio between the number of misclassified object in a class and
the number of objects classified in that class. Since easily derivable
from the purity percentages, it is not explicitly listed in the results;

(v) Matthews correlation coefficient (MCC): it is an index used
as a quality measure for a two-class classification. It takes into ac-
count values derived from the confusion matrix, and can be used
also if the classes are very unbalanced. It can be regarded as a
correlation coefficient between the observed and predicted binary
classification, returning a value between −1 and 1. Where −1 in-
dicates total disagreement between prediction and observation, 0
indicates random prediction, and 1 stands for a perfect prediction
(Matthews 1975).

MCC = T P × T N − FP × FN√
(T P + FP )(T P + FN )(T N + FP )(T N + FN )

.

(20)

These parameters can be used to describe completely the distri-
bution of the blind test patterns after training.

Moreover, in order to compare the three classifiers used, we also
derived the Receiver Operating Characteristic or ROC curve plots
for the most significant experiments. An ROC curve is a graphical

diagram showing the classification performance trend by plotting
the true positive rate against the false positive rate as the classi-
fication threshold is varied (Hanley & McNeil 1982). The overall
effectiveness of the algorithm is measured by the area under the
ROC curve, where an area of 1 represents a perfect classification,
while an area of .5 indicates a useless result.

4 C LASSI FI CATI ON EXPERI MENTS

We performed the following classification experiments:

(i) multiclass (six-class), in which the whole catalogue, including
all the six classes, was separately considered, in order to investigate
the capability to correctly disentangle at once all the given categories
of variable objects;

(ii) cataclismic variables (CV) versus ALL, where the category
ALL includes AGN, SN, Fl, Bl types. Here, the RRL type was not
considered;

(iii) extra-Galactic (AGN and Bl types) versus Galactic (CV, SN
and Fl types), to search for an improvement with respect to the
previous separation. The inclusion of SN type in the Galactic class is
motivated by the fact that, even though mainly observed in external
galaxies, they are stars and therefore represent a completely different
category with respect to active galactic nuclei;

(iv) SN versus ALL, where ALL includes AGN, Bl, CV, Fl and
RRL types.

For each classification experiment, we adopted the same strategy.
First of all, we run an RF experiment using all 20 features described
in Section 2.1, in order to obtain a feature importance ranking (i.e.
the relevance of each feature to the classification expressed in terms
of information entropy). The results of the RF experiment allowed us
to select different groups of features (ordered by ranking), to be used
for a second set of binary classification experiments performed with
MLPQNA, RF and KNN. Finally, using the best set of features, we
performed an heuristic optimization of the MLPQNA parameters
(i.e. complexity of the network topology as well as the Quasi-
Newton learning decay factor), aimed at improving the classification
results.

MNRAS 457, 3119–3132 (2016)
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3124 A. D’Isanto et al.

We then froze the topology of the MLPQNA using one hidden
layer, while for the RF, we chose a 10 000 trees configuration, and
finally for the KNN, we chose k = 5. Moreover, we always applied
a 10-fold cross validation (Geisser 1975), in order to obtain statis-
tically more robust results (i.e. to avoid any potential occurrence
of overfitting in the training phase). In terms of performance eval-
uation, it is important to underline that we were mostly interested
to the classification purity percentages. Therefore, these indicators
have been primarily evaluated to assign the best results.

4.1 Multiclass

We performed the multiclass classification experiment, to under-
stand the behaviour of the classifiers in the most complex situation,
i.e. considering simultaneously all the six available variable object
categories. Therefore, as explained above, we performed a pre-
liminary experiment using the RF model with all available input
features, thus obtaining the feature importance ranking for this type
of classification (Fig. 2). The feature ranking, in fact, is automati-
cally provided by the RF classifier, which assigns a score to all input
features, corresponding to their relevance assumed to build the de-
cision rules of the trees during the training phase. Such information
indeed is suitable to judge the weight of each individual feature
in the decision process and to evaluate its eventual redundancy in
terms of contribution to the learning. One useful way to exploit the
feature ranking is to engage a training/test campaign, by sequen-
tially adding features to the training parameter space (in order of
their importance) and evaluating the training results, until the clas-
sification performance reaches a plateau. The final outcome of such
campaign is the best compromise between the parameter space di-
mension and the classification performance. After such preliminary
analysis, we then submitted the data set to the RF, MLPQNA and
KNN classifiers, by using respectively all, the first five and the first
three features of the ranking list in order of importance. A statistical
evaluation of the classification results is reported in Tables A4,
A5 and A6, while the ROC curves for each class are shown in
Fig. 3. From these results it appears evident the worst behaviour
of the KNN model with respect to the other classifiers. In terms of
class purity, the best behaviour is obtained by the RF model using
all available features.

4.2 CV versus ALL

We started by performing an experiment using the RF model and
all selected features. The data set was composed by 461 CV and
866 ALL objects. Results are shown in Table A5, while the feature
ranking is given in Fig. 4.

Following the feature ranking evaluation strategy, we performed
a series of experiments using the MLPQNA, RF and KNN models
using different groups of features taken in order of importance:
respectively, the first 3, 5, 6, 9, 10, 11 groups and all the 20 features
listed in Fig. 4.

In most cases, groups differing by a small number of features
(e.g. 5 and 6) led to results with similar performance and, in these
cases, we retained as representative the smaller group, assuming that
the most of the information is already contained into these groups.
Therefore, in the following description of experiments we explicitly
report the results only for these relevant cases (see Tables A4,
A5 and A6, as well as the related ROC curves in Fig. 5).

From this series of experiments, it appears clear that, regarding
MLPQNA, the best configuration is achieved using only five fea-
tures after the optimization of model parameters (ampl, mbrp, std,

Figure 5. ROC curves for the three different types of classification in the
three experiment types. In the case of the KNN model, the curve was obtained
by taking into account the limitations imposed by the algorithm, which are
determined by the choice of the number of nearest neighbours (in this case
five neighbours induce 20 per cent of quantization).
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Classification of astronomical transients 3125

Figure 6. Feature importance list obtained by the RF, with the importance percentage for each feature and for the X-GAL versus GAL classification.

lt and pa), while, for the RF, the best results were obtained by re-
taining all 20 features. Finally, the KNN, which is also the classifier
with the worst performance, gives the best result using six features
only.

4.3 Extra-Galactic versus Galactic

Also in the case of the classification experiment related to 264
EXTRA-GALACTIC, hereafter called X-GAL, ( AGN + Bl as
class 1) patterns versus 1063 GALACTIC, hereafter named GAL,
(CV + SN + Fl as class 2) patterns, we first performed a feature
ranking evaluation with the RF model, by using all available features
(see Fig. 6). Again, using the ranking list and the same feature
selection strategy described above, we performed a reduced number
of experiments using the first 5, 10, and ALL features, by applying
all three ML models.

In addition, we performed one additional experiment, using the
five features which were selected as most relevant for the CV versus
ALL classification case. Results are presented in Tables A7, A8
and A9, while the related ROC curves are shown in Fig. 5. Best
classification performance resulted with, respectively, five features
for MLPQNA (ls, lt, ms, b1std and pa) and 10 features for RF and
KNN models (ls, lt, ms, b1std, pa, skew, sk, fpr20, std, mbrp).

4.4 SN versus ALL

Finally, we performed experiments for SN (class 1), versus ALL
(all other classes, labelled as class 2), but in this case we added
to the second group also the sixth class containing RR Lyrae, thus
obtaining a sample of 536 SN and 1083 ALL class objects. Again,
we started from the feature importance evaluation shown in Fig. 7.

As it was already done in the previous cases, we performed the
classification experiments with the RF, MLPQNA and KNN models.
We report here the results obtained in the cases of, respectively, the
first 3, 5 and 10 features in the ranking list. Moreover, we performed
additional experiments using the best group of five features obtained
from the CV versus ALL experiment (see Fig. 4). Results for the
three experiments are reported in Tables A10, A11, A12 and ROC
curves in Fig. 5. The best classification performance have been

obtained with, respectively, 10 features for RF model (lt, ls, pa, skew,
ampl, ms, std, mr, fpr20, fpr35) and only 3 features for MLPQNA
and KNN classifiers (lt, ls, pa).

5 D I SCUSSI ON

From the experiments previously described, we can notice that, in
this context (as imposed by the structure of the parameter space and
the size of the data), the RF performs on average slightly better than
MLPQNA and objectively better than KNN.

The results presented in the previous paragraph show that at
least in presence of such a limited training set the six-class experi-
ment is outperformed by the binary classification experiments. The
performance achieved by the RF and MLPQNA models for the
classes which are more relevant for our work, for instance SNs and
CVs categories, led us to investigate two cases of binary classi-
fication, respectively, SN versus ALL and CV versus ALL. Fur-
thermore, we approached also the possibility to enclose Blazars
and AGN in a single class compared with other categories, thus
obtaining a third binary classification experiment, named X-GAL
versus GAL. We removed the RR Lyrae category from the binary
classification experiments, due to their periodic behaviour, which
introduces a very well-defined signature in the data. This has been
also derived from the multiclass experiment results, showing how
the RR Lyrae objects are easy to classify, thus being not required
their inclusion. Only in the case of the SN versus ALL experiment,
in order to be as general as possible, we re-introduced the RR Lyrae
category.

A first interesting result is that, in spite of the ranking orders
obtained for the different experiments and of the results assigned
as best, in all cases an accuracy above 80 per cent of efficiency
is obtained using the same five most relevant features of the ex-
periment CV versus ALL (ampl, mbrp, std, lt and pa). This can
be understood by comparing the first five positions of the rank-
ing list obtained from the RF for all classification cases, as re-
ported in Figs 4, 6 and 7. In fact, we can notice that among the
first five features of Fig. 4, there are two (lt and pa) in common
with other cases, while the two features ampl and ls are in com-
mon between two groups of features (Figs 4 and 7). Moreover, the
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3126 A. D’Isanto et al.

Figure 7. Feature importance list obtained by the RF, with the importance percentage for each feature and for the SN versus ALL classification.

feature std is often present within the best groups among different
experiments.

Concerning the MCC, this value is almost always above 0.50
for the MLPQNA and RF. In fact, just one experiment shows an
MCC below this value, while the best one is 0.74. Therefore, we can
conclude that the observed classification with these three classifiers,
is close to the expected one, and that the model shows a proper
behaviour.

The three classifiers perform differently on different types of
objects and, as usual in classification experiments, this implies that
the overall performance can be increased by combining the output of
the three models. To verify this hypothesis we analysed the overall
efficiency variation by taking into account the objects classified by
single models and those equally classified by the combination of
MLPQNA and RF, MLPQNA and KNN, RF and KNN, and by all
three classifiers together.

For this analysis shown in Tables 2, 3 and 4, we performed
experiments by randomly splitting the catalogue into a training

Table 2. Statistical analysis on the test output for the best experiments of
CV versus ALL classification for the three models (5∗ in Table A4 for the
MLPQNA, 20 in Table A5 for the RF, and 6 in Table A6 for the KNN).
The first row reports the total amount of test objects. Second, third and
fourth rows indicate the overall efficiency obtained by the three models.
While the fifth row reports the number of objects equally classified by the
three models (i.e. only the objects for which the three models provide the
same classification). Finally, the last four rows report the overall efficiencies
referred only to the equally classified objects.

CV versus ALL Size Fraction

Total test objects 266 –
MLPQNA Eff 224 84 per cent
RF Eff 231 87 per cent
KNN Eff 199 75 per cent
(MLPQNA and RF and KNN) equally classified 189 71 per cent
(MLPQNA and RF) Eff 216 89 per cent
(MLPQNA and KNN) Eff 177 90 per cent
(RF and KNN) Eff 184 90 per cent
(MLPQNA and RF and KNN) Eff 174 92 per cent

and a blind test set, containing respectively the 80 per cent and the
20 per cent of the data. The increase in performance is quite evident.
These results are also visualized as Venn diagrams in Fig. 8.

The relevance of the various features in the experiments can be
better investigated by looking at their distributions. For the sake of
clarity in Fig. 9, we show a few relevant examples. In panels a,
b and c we show the distribution of the features lt, pa and ls for
the SN versus ALL experiment while in panel d and e, we show
instead the distribution the parameter std in the SN versus ALL
and in the CV versus ALL experiments. Finally, in panel f, we
show the distribution of the ampl feature in the CV versus ALL
experiment. In all cases, what appears evident is that individual
features fail to separate unequivocally the classes, thus confirming
that their combination is needed to achieve a proper classification.
Nevertheless, the different roles played by the std (panels d and e)
in the experiments SN versus ALL and CV versus ALL (cf. Figs 4
and 7, respectively) is confirmed by the histograms.

Table 3. Statistical analysis on the test output for the best experiments of
X-GAL versus GAL classification for the three models (5∗ in Table A7
for the MLPQNA, 10 in Table A8 for the RF, and 10 in Table A9 for the
KNN). The first row reports the total amount of test objects. Second, third
and fourth rows indicate the overall efficiency obtained by the three models.
While the fifth row reports the number of objects equally classified by the
three models (i.e. only the objects for which the three models provide the
same classification). Finally, the last four rows report the overall efficiencies
referred only to the equally classified objects.

X-GAL versus GAL Size Fraction

Total test objects 266 –
MLPQNA Eff 236 89 per cent
RF Eff 243 91 per cent
KNN Eff 224 84 per cent
(MLPQNA and RF and KNN) equally classified 223 84 per cent
(MLPQNA and RF) Eff 233 92 per cent
(MLPQNA and KNN) Eff 211 92 per cent
(RF and KNN) Eff 216 93 per cent
(MLPQNA and RF and KNN) Eff 210 94 per cent
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Table 4. Statistical analysis on the test output for the best experiments of
SN versus ALL classification for the three models (3∗ in Table A10 for
the MLPQNA, 10 in Table A11 for the RF, and 3 in Table A12 for the
KNN). The first row reports the total amount of test objects. Second, third
and fourth rows indicate the overall efficiency obtained by the three models.
While the fifth row reports the number of objects equally classified by the
three models (i.e. only the objects for which the three models provide the
same classification). Finally, the last four rows report the overall efficiencies
referred only to the equally classified objects.

SN versus ALL Size Fraction

Total test objects 325 –
MLPQNA Eff 278 85 per cent
RF Eff 288 89 per cent
KNN Eff 241 74 per cent
(MLPQNA and RF and KNN) equally classified 238 73 per cent
(MLPQNA and RF) Eff 271 90 per cent
(MLPQNA and KNN) Eff 220 89 per cent
(RF and KNN) Eff 229 90 per cent
(MLPQNA and RF and KNN) Eff 218 91 per cent

Given the peculiar shape of the SN light curves, it is not a surprise
that in the experiment SN versus ALL, the lt has a relevance of
24 per cent followed in third position by pa with a relevance of
7.7 per cent. The fact that in this experiment the Lomb–Scargle
index (ls) is ranked second, might seem strange since it is used as
an indication of periodic behaviour. The histogram in panel c shows,
however, that this is due to the fact that on average objects in the SN
class (being non-periodic) have an ls much smaller than the ALL
class.

In the specific context of the CRTS, a completeness of
∼96 per cent and a purity of 84 per cent in the SN versus ALL
classification experiment imply that the sample of candidate SNs
produced with our method, would correctly identify ∼2520 out of
the 2631 confirmed SNs and would produce a sample of ∼420
possibly spurious objects. These results, however cannot be easily
extrapolated to other surveys, since the performance of the method
depends drastically on the parameter space covered by the training
sample, which as it has been discussed before, is strictly depending
on the specific survey.

The capability to disentangle SN class objects through the most
relevant selected features appears evident by comparing them
among each other. In particular from Figs 10 and 11, it is pos-
sible to locate sub-regions entirely populated by SN-type objects
(those labelled as A in the plots), as well as regions characterized
by a weak (labelled as B) or strong (labelled as D) density of SN-
type objects. This implies that, besides the particular choice of the
classifier, in the parameter space defined by the most relevant fea-
tures there are combined ranges of feature distributions (for in-
stance, ls, pa, lt and std) able to classify SN-type objects from the
rest of the data types with a high confidence. This evidence is also
confirmed by the purity percentages obtained in the case of SN
versus ALL experiment by the three classifiers used.

6 C O N C L U S I O N S

This work focused on the use of three well-tested ML methods,
respectively, RF, MLPQNA (Multi Layer Perceptron trained by the
Quasi Newton learning rule) and KNN, to classify transient objects
and it is a first step towards a framework where different classifiers
shall work in collaborative way on the same data to obtain a reliable,
accurate and reproducible classification of variable objects.

Figure 8. Venn diagrams showing all the objects (left-hand column) and
the correctly classified objects (right-hand column), based on efficiency, for
the three different types of classification in the three experiment types. The
intersection areas then show the objects that are classified in the same way
by different methods. Values are taken from Tables 2, 3 and 4, respectively.

We run a multiclass (all six object categories available) and de-
rived three types of binary classification experiments: (i) CV versus
ALL (AGN, SN, Fl, Bl types); (ii) Extra-Galactic (AGN and Bl
types) versus Galactic (CV, SN and Fl types); (iii) SN versus ALL
(AGN, Bl, CV, Fl and RRL types).

Taking into account the results of the binary classification ex-
periments only, the performance can be summarized as it follows:
for the SN versus ALL, the best method is RF, which achieves a
∼87 per cent efficiency, with a completeness of ∼73 per cent and
a purity for SNs of ∼86 per cent. In the same experiment, the
MLPQNA obtains a slightly higher purity (∼90 per cent) at a price
of a lower completeness (∼61 per cent). In the CV versus ALL,
the best performance is achieved by the MLPQNA (∼86 per cent
efficiency with a completeness of ∼79 per cent and a purity for
CVs of ∼80 per cent). It is however worth noticing that the com-
bination of the outcome of the three models allows us to achieve
better performance (∼92 per cent efficiency for both experiments).
Finally, in the third experiment (X-GAL versus GAL), the best
results were achieved by the RF model, obtaining ∼92 per cent ef-
ficiency, with a X-GAL class completeness of ∼69 per cent and a
purity of ∼88 per cent.

By exploiting the feature importance score provided by the RF
model, the ranking between feature grouping and classification per-
formance was investigated and it led to the identification of a special
group of features which carry most information, regardless the spe-
cific experiment. This is a crucial issue since, in the big data regime
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3128 A. D’Isanto et al.

Figure 9. Distribution of the lt (panel a), pa (panel b), ls (panel c) and std (panel d) in the case SN versus ALL experiment. The diagram shows a zoomed
portion of the distribution to better visualize the region of interest. Red colour is related to SN objects, dark grey colour to ALL class objects, while dark brown
shows the overlay area of the histogram. Panels (e) and (f): distribution of the, respectively, std and ampl features in the case of CV versus ALL experiment.
Purple colour is related to CV objects, dark grey represent the ALL class objects, while in dark purple is shown the overlay area of the histogram.

which is typical of future surveys the identification of an optimal
set of feature is needed in order to reduce computing time.

Overall, RF and MLPQNA achieve better results when the clas-
sifiers are used in combination. The combined and hierarchical use
of a wide set of classifiers could be finalized into a framework hav-
ing as main purpose the capability to disentangle and identify the
largest variety of variable objects (Donalek et al. 2013).
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Classification of astronomical transients 3129

Figure 10. Panel (a): comparison of features std versus lt in the case of SN versus ALL experiment; panel (b): the same plot but between pa and lt features;
panel (c): the same plot but between ls and lt features. Red colour is related to SN objects and black to ALL class objects. The labels indicate, respectively,
(A) pure SN region (i.e. a region populated only by SN objects), (B) sparse SN region (weak percentage of SN objects), (C) mixed zone and (D) almost pure
SN region. The overabundance of points having lt = 0 reflects the fact that RRL and AGN as well as any other impulsive variable have in average a constant
behaviour.
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3130 A. D’Isanto et al.

Figure 11. Panel (a): comparison of features std versus ls in the case of SN versus ALL experiment; panel (b): the same plot but between pa and ls features;
panel (c): the same plot but between std and pa features. Red colour is related to SN objects and black to ALL class objects. The labels indicate, respectively,
(A) pure SN region (i.e. a region populated only by SN objects), (B) sparse SN region (weak percentage of SN objects), (C) mixed zone and (D) almost pure
SN region. The vertical structure at ls = 1 is an effect introduced by the sampling frequency of the survey (the structure is mainly populated by AGN, Bl
and SN).
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APPENDI X A : EXPERI MENT TABLES

Table A1. Results of the experiments with the MLPQNA for the six-class
experiment, obtained using the features in order of importance, following
the list of Fig. 2. All the results are in percentage.

Statistics All features Five features Three features

Eff 72.46 73.85 73.54
Comp CV 71.43 73.63 72.53
Comp SN 63.21 78.30 80.19
Comp Bl 31.58 26.31 26.82
Comp AGN 61.29 58.06 74.19
Comp Fl 47.37 52.63 57.89
Comp RRL 84.74 96.61 91.52
Pur CV 57.52 71.28 74.16
Pur SN 65.69 76.85 76.58
Pur Bl 33.33 29.41 23.43
Pur AGN 76.00 64.28 58.97
Pur Fl 90.00 83.33 68.75
Pur RRL 87.72 86.36 77.14

Table A2. Results of the experiments with the Random Forest for the
six-class experiment, obtained using the features in order of importance,
following the list of Fig. 2. All the results are in percentage.

Statistics All features Five features Three features

Eff 79.14 77.30 72.08
Comp CV 79.12 79.12 68.13
Comp SN 83.96 83.96 78.30
Comp Bl 36.84 31.58 26.31
Comp AGN 77.42 67.74 64.52
Comp Fl 52.63 47.37 52.63
Comp RRL 94.91 93.22 93.22
Pur CV 74.22 73.47 66.67
Pur SN 76.72 76.72 74.11
Pur Bl 50.00 37.50 31.25
Pur AGN 85.71 80.77 74.07
Pur Fl 100.00 81.82 71.43
Pur RRL 93.33 94.83 87.30

Table A3. Results of the experiments with the KNN for the six-class ex-
periment, obtained using the features in order of importance, following the
list of Fig. 2. All the results are in percentage.

Statistics All features Five features Three features

Eff 55.38 66.77 61.54
Comp CV 64.83 68.13 68.13
Comp SN 62.26 72.64 58.49
Comp Bl 15.79 10.53 5.26
Comp AGN 61.29 61.29 48.39
Comp Fl 10.53 36.84 47.37
Comp RRL 52.54 84.74 76.27
Pur CV 55.14 63.26 59.61
Pur SN 55.46 66.38 65.38
Pur Bl 16.67 10.00 12.50
Pur AGN 70.37 70.37 57.69
Pur Fl 25.00 87.50 52.94
Pur RRL 67.39 89.28 68.18
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Table A4. Results of the experiments with the MLPQNA for the CV
(class 1) versus ALL (class 2) classification, obtained using the features
in order of importance, following the list of Fig 4. All the results are in
percentage, except the MCC. The last row (5*) refers to the best result,
obtained with an optimization of the model configuration parameters.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 77.82 69.23 82.28 67.02 83.72 0.51
3 79.70 54.94 92.57 79.36 79.80 0.53
5 82.71 70.33 89.14 77.11 85.24 0.61
6 79.70 67.03 86.28 71.76 83.42 0.54
9 80.07 73.63 83.43 69.79 85.88 0.56
10 77.82 72.53 80.57 66.00 84.94 0.52
11 79.70 73.63 82.86 69.07 85.80 0.56
5* 86.09 79.12 89.71 80.00 89.20 0.69

Table A5. Results of the experiments with the RF for the CV (class 1)
versus ALL (class 2) classification, obtained using the features in order of
importance, following the list of Fig. 4 and a cross validation with k = 10.
All the results are expressed as percentages, except the MCC.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 84.02 70.01 91.81 81.96 85.12 0.64
3 77.47 60.49 86.87 71.18 80.46 0.49
5 83.04 71.57 89.38 78.17 85.50 0.62
6 83.49 71.83 89.89 79.21 85.62 0.63
9 84.85 74.46 90.74 81.09 86.84 0.66
10 85.08 74.73 90.86 81.28 86.99 0.67
11 84.32 72.97 90.63 80.55 86.21 0.65

Table A6. Results of the experiments with the KNN for the CV (class 1)
versus ALL (class 2) classification, obtained using the features in order of
importance, following the list of Fig. 4 and a cross validation with k = 10.
All the results are expressed as percentages, except the MCC.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 78.07 57.75 89.04 73.71 79.82 0.50
3 77.32 59.80 86.94 71.42 80.19 0.49
5 78.07 67.95 83.62 68.91 82.98 0.52
6 79.65 70.04 84.96 71.55 84.00 0.55
9 78.82 64.75 86.51 71.90 82.08 0.52
10 78.75 63.55 87.03 72.33 81.79 0.52
11 78.22 61.87 87.23 72.14 81.10 0.51

Table A7. Results of the experiments with the MLPQNA for the X-GAL
(class 1) versus GAL (class 2) classification, obtained using the features
in order of importance, following the list of Fig. 6. All the results are in
percentage except the MCC. The row (5†) is referred to the features selected
in the CV versus ALL experiment. The 5* is the best result obtained by
optimizing the model parameters, while the last row (5†*) is the best result
obtained in the case of CV versus ALL experiments.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 87.97 66.00 93.05 68.75 92.20 0.60
5 88.34 72.00 92.13 67.92 93.43 0.63
10 86.09 72.00 89.35 61.02 93.24 0.58
5† 88.34 66.00 93.52 70.21 92.24 0.61
5* 88.72 68.00 93.52 70.83 92.66 0.62
5†* 88.72 66.00 93.98 71.74 92.27 0.62

Table A8. Results of the experiments with the RF for the X-GAL (class 1)
versus GAL (class 2) classification, obtained using the features in order of
importance, following the list of Fig. 6, and a cross validation with k =
10. All the results are in percentage except the MCC. The last row (5†) is
referred to the features selected in the CV versus ALL experiment.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 91.41 66.69 97.64 87.87 92.17 0.71
5 90.73 66.40 96.90 84.50 92.04 0.69
10 91.71 68.51 97.55 88.19 92.58 0.73
5† 88.47 59.91 95.46 76.37 90.64 0.61

Table A9. Results of the experiments with the KNN for the X-GAL
(class 1) versus GAL (class 2) classification, obtained using the features
in order of importance, following the list of Fig. 6, and a cross validation
with k = 10. All the results are in percentage except the MCC. The last row
(5†) is referred to the features selected in the CV versus ALL experiment.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 89.83 71.83 94.44 76.30 92.98 0.68
5 87.80 64.68 93.73 72.19 91.35 0.61
10 90.05 70.33 95.32 78.71 92.59 0.68
5† 86.66 65.09 91.96 67.46 91.39 0.58

Table A10. Results of the experiments with the MLPQNA for the SN
(class 1) versus ALL (class 2) classification, obtained using the features
in order of importance, following the list of Fig. 7. All the results are in
percentage except the MCC. The last column (3*) is referred to the best
results obtained by an optimization of the model parameters.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 80.00 68.87 85.39 69.52 85.00 0.54
5† 85.23 71.70 91.78 80.85 87.01 0.66
3 84.92 62.26 95.89 88.00 84.00 0.65
5 85.23 72.64 91.32 80.21 87.34 0.66
10 82.15 77.36 84.47 70.69 88.52 0.60
3* 85.23 61.32 96.80 90.28 83.79 0.66

Table A11. Results of the experiments with the RF for the SN (class 1)
versus ALL (class 2) classification, obtained using the features in order of
importance, following the list of Fig. 7, and a cross validation with k = 10.
All the results are in percentage except the MCC.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 86.60 71.84 93.62 84.47 87.26 0.68
5† 85.98 72.23 92.76 82.67 87.14 0.67
3 85.30 69.74 92.77 82.27 86.26 0.65
5 86.54 72.53 93.27 83.71 87.46 0.68
10 87.34 72.81 94.25 86.00 87.72 0.70

Table A12. Results in percentage, except the MCC, of the experiments with
the different groups of features from Fig. 7, obtained using the KNN for the
classification SN (class 1) versus ALL (class 2) and a cross validation with
k = 10.

Features Eff Comp1 Comp2 Pur1 Pur2 MCC

20 76.47 57.98 85.92 66.89 80.33 0.45
5† 82.03 63.37 91.21 78.38 83.40 0.58
3 83.32 66.33 91.58 79.38 84.66 0.61
5 79.87 59.39 89.89 74.00 81.81 0.52
10 79.25 65.67 85.81 69.25 83.58 0.52
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