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DNA methylation is an epigenetic modification that plays a pivotal role in major biological mechanisms,
such as gene regulation, genomic imprinting, and genome stability. Different combinations of methylated
cytosines for a given DNA locus generate different epialleles and alterations of these latter have been
associated with several pathological conditions. Existing computational methods and statistical tests rel-
evant to DNA methylation analysis are mostly based on the comparison of average CpG sites methylation
levels and they often neglect non-CG methylation. Here, we present EpiStatProfiler, an R package that
allows the analysis of CpG and non-CpG based epialleles starting from bisulfite sequencing data through
a collection of dedicated extraction functions and statistical tests. EpiStatProfiler is provided with a set of
useful auxiliary features, such as customizable genomic ranges, strand-specific epialleles analysis, locus
annotation and gene set enrichment analysis. We showcase the package functionalities on two public
datasets by identifying putative relevant loci in mice harboring the Huntington’s disease-causing Htt
gene mutation and in Ctcf +/� mice compared to their wild-type counterparts. To our knowledge,
EpiStatProfiler is the first package providing functionalities dedicated to the analysis of epialleles compo-
sition derived from any kind of bisulfite sequencing experiment.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

DNA methylation is an epigenetic modification involved in
major biological mechanisms, such as gene regulation, genomic
imprinting, and genome stability [1,2]. In mammals, it is mostly
generated by the addition of a methyl group on the fifth carbon
of the cytosine, mainly occurring in the context of CpG dinu-
cleotides [3].

However, several recent studies have demonstrated that non-
CG methylation may also exert a functional role in certain biolog-
ical processes, especially in some tissues such as the brain [4,5].
Specific DNA methylation patterns are established during cell
development and differentiation, and they are stably inherited
across cell cycles [6]. On the other hand, stochastic and determin-
istic events drive somatic DNA methylation, making it difficult to
decode [7,8]. Disruptions of DNA methylation patterns have been
associated with several disease conditions, such as developmental
impairment, cancer and trinucleotide repeat disorders [9–12].
The gold standard to assess DNAmethylation remains the bisul-
fite sequencing, which allows the identification of methylated
cytosines at the single nucleotide level. Classical quantitative anal-
yses then rely on the calculation of the proportion of methylated
cytosines at a single position or fragment level from bulk samples.
However, bisulfite sequencing techniques are also revealing
greater complexity and qualitative approaches to the study of
DNA methylation are emerging as complementary analysis to the
classical quantitative one [13–15].

Among these latter, the epiallele-based analysis (EBA) relies on
the characterization of the specific methylation patterns present
on each sequenced molecule [16]. In particular, given a genomic
locus containing n Cs in the CpX context, all the possible combina-
tions of the methylation states of these Cs are defined as epialleles.
This type of analysis can provide additional insights about the epi-
genetic cellular heterogeneity characterizing a sample [7,17]. More
specifically, the epiallele composition observed at one locus can be
associated with different biological conditions. For example, it may
discern the presence of different cell subpopulations (or cellular
states) within the bulk sample, or it may be the expression of
stochastic DNA methylation dynamics. When characterized by
the presence of epiallele species with opposite methylation states,
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it may also depict allele-specific DNA methylation [18]. In cancer,
different epiallele compositions observed at distinct stages may
indicate the selection of specific tumor subclones or - conversely
- the stochastic gain of aberrant DNA methylation, depending on
the observed shift [7,17,19,20].

The epialleles information for a given genomic locus can be
obtained from distinct types of bisulfite sequencing experiments.
In particular, this kind of analysis can be either based on targeted
high-coverage approaches [21] or on genome-wide low-coverage
experiments [22] (see Fig. 1).

In this context, various bioinformatic tools have been developed
for extracting and analyzing epialleles from targeted [8,23] and
genome-wide bisulfite sequencing data [19,24].

The tools based on targeted DNAmethylation allow the analysis
of methylation profiles from deep targeted bisulfite sequencing.
This approach relies on the high-resolution levels obtained from
targeted bisulfite experiments and provides an in-depth character-
ization of epialleles species for one or more targeted genomic
regions and the possibility to represent and analyze the epiallele
composition using population genetics-based approaches [8,23].
The main limitation of these tools is that they can only perform
the analysis on a particular type of input data. Moreover, raw data
from deep targeted sequencing are not easily found in public data-
bases, thus making it difficult to re-use public methylation
datasets.

On the other hand, the tools that overcome these limitations by
extracting information from genome-wide experiments - such as
Methclone [19] – lack statistical functions for comparing epiallele
composition between different groups of samples. This latter
aspect is crucial when the focus of the analysis goes beyond the
simple characterization of epiallele families for one or more
regions in one or more samples. Indeed, this kind of data can be
used to compare epiallele distributions between one or more sam-
ple groups associated with different biological conditions and to
locate genomic regions whose epiallelic compositions vary
between conditions, thus leading to the discovery of novel
biomarkers that can be missed using classical quantitative
approaches.

In this manuscript we present EpiStatProfiler, a new R package
providing a set of functions that allow a customized genome-wide
analysis and statistical comparison of epialleles composition
within and among different groups. In particular, EpiStatProfiler
has been developed with the ability to extract epialleles informa-
tion from any type of bisulfite sequencing data, starting from geno-
Fig. 1. Two approaches to study DNA methylation through the epialleles analysis. The fig
epialleles information from Bisulfite Sequencing data. The image is intended to highligh
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mic intervals that can be easily designed by the user in a modular
fashion. EpiStatProfiler also enables the analysis of non-CG methy-
lation, letting the user define the CX mode used to estimate the
methylation patterns in a given locus. Moreover, EpiStatProfiler is
provided with the flexible functionality to perform a strand-
specific characterization of epialleles composition. This kind of
analysis is necessary when characterizing non-CG methylation,
since these other modifications - per se - are not symmetric, but
it may also be helpful to dissect strand-specific methylation in
the CpG context, already described in literature [25].

Furthermore, the package contains a collection of statistical
functions that allow the identification of loci which differ among
groups for their epialleles composition or for an extensible set of
epiallele-derived summary statistics (e.g. Shannon Entropy).

Finally, we demonstrate the package functionalities by identify-
ing putative relevant loci in two different experimental designs.

2. Methods

2.1. RRBS raw data processing

Raw RRBS data used to demonstrate the package were down-
loaded from SRA using the GEO accession GSE147156 (considering
only the samples collected from the striatal tissue) and GSE48975.
FastQ files were processed using an in-house pipeline. Data were
quality-checked by using FastQC v0.11.9 (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/). Low-quality bases and
adapters were removed by using Trim Galore v0.6.6 with --rrbs
option (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/). Selected reads were then aligned to the mm10 refer-
ence genomes by using Bismark v0.23.0 using default parameters.
BAM files were finally sorted and indexed using the SAMtoolsKit
(https://www.htslib.org/).

2.2. Epialleles extraction algorithm implementation

To facilitate the analysis, one function has been designed to
select the genomic regions covered by a sufficient number of reads
in the BAM files. First, the coverage is calculated genome-wide at
single-base resolution, and then the contiguous regions satisfying
a user-defined coverage threshold are merged to generate a collec-
tion of genomic ranges with different lengths. The subsequent pre-
liminary step of the workflow consists in the partitioning of
covered areas into a group of regions, each one constituted by a
ure shows the two main experimental approaches currently used to retrieve the
t which are the advantages and the pitfalls characterizing each of these methods.
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contiguous set of covered sites meeting user-defined criteria as
described below. Two distinct approaches have been implemented
to achieve this step. In the first case, genomic intervals are
obtained using sliding windows of flexible length containing a
user-defined number of CpX sites, stepping up by 1 CpX site at
time. Alternatively, target regions are generated using a sliding
window with a user-defined fixed length and step sizes, containing
a user-defined minimum and maximum number of CpX sites. Since
the identified methylation patterns are derived from single frag-
ments, the maximum length of the regions depends on the read
length of the sequencing experiment. For each region to be pro-
filed, epialleles composition is extracted as described below (see
also Fig. 2). First, all the sequenced reads mapping to the corre-
sponding locus are selected. These reads are processed separately,
according to the strand on which they are aligned, and their
sequence is then compared with the reference genome at the posi-
tion of the CpX sites. Given the number of Cs in the CpX context at
one locus (n Cs) and the number of reads spanning the entire
region taken into account (n Reads), a table - composed of n Cs col-
umns and n Reads rows - is compiled row-wise as follows. For each
read and each CpX position, if a T (or an A on the reverse strand) is
found in correspondence of the reference C position, then the cor-
responding position in the table is marked as 0 (unmethylated),
otherwise as 1 (methylated). Depending on the user choice, epial-
lele composition from different strands can be analyzed separately,
thus allowing a stranded epiallele estimation, or it can be evalu-
ated independently of the originating strand.

2.3. Bisulfite conversion quality check

To ensure that the status of cytosines methylation is properly
assessed in the analyzed regions, the bisulfite conversion efficiency
can also be monitored. In all the experiments where non-CG
methylation can be considered as a minor phenomenon, it can be
assumed that all the cytosines that are not in the CG context are
converted to thymines upon bisulfite treatment. Thus, bisulfite
efficiency is calculated for each sequenced molecule as the per-
centage of CHH cytosines (except those Cs in the CG context) that
have been converted among all the CHH cytosines that are located
in the covered genomic interval. The reads with low conversion
efficiency can be optionally removed from the epiallele matrix.
Then, the coverage for each interval is recalculated and only those
regions that meet the user requirements are retained for the anal-
ysis. The same rationale is used when the pattern examined
through the epialleles analysis is different from ‘‘CG”, but in this
case the cytosines in the CG context are not considered to calculate
the ratio of cytosines subjected to conversion.
Fig. 2. EpiStatProfiler workflow: epialleles extraction. The figure shows the first three modu
are described. BAM files are loaded along with the reference genome file and then are fil
where to perform epialleles profiling. This can be achieved using one of the two differen
epialleles composition from each of the regions obtained from the previous step. Two dif
the epialleles counts for each region, and a summary data frame containing a set of use
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2.4. Ambiguous reads and polymorphisms

The presence of ambiguous reads is also tracked during the
extraction step. When filling the binary epialleles matrix, if nor a
T (or A) or a C is found in the correspondence of a CpX site, the cor-
responding cell is filled with the value of 2. These reads are then
excluded while extracting the epialleles information.

2.5. Output generation

Two different outputs are generated starting from the binary
epiallele matrix related to one locus. The first one is a compressed
epiallele table. To build this output, each row of the binary epiallele
matrix is converted to a string that represents one epiallele species.
The compressed table is then created by reporting the count for
each epiallele species found at the analyzed locus. The second out-
put is obtained by applying a customizable set of functions that
take the binary matrix as input and compute, each one, a given
summary statistic. A data frame that contains the computed sum-
mary statistics is then generated. The number and the type of func-
tions to compute summary statistics over the epiallele binary
matrix can be easily changed and extended with user defined
functions.

2.6. Available summary statistics

The following predefined set of summary statistics have been
implemented in EpiStatProfiler.

2.6.1. Number of CpX sites
The number of CpX sites (n) defines the set of CpX positions

used to retrieve the epialleles information in one analyzed region.
This is useful when using sliding windows of the same length con-
taining a variable number of CpX sites. It can be used to normalize
other statistics.

2.6.2. Number of reads spanning the entire locus
The number of reads (c) indicates the number of sequenced

reads that entirely cover the analyzed locus.

2.6.3. Mean distance between CpGs
The average distance between the cytosines in the CpX context

(expressed in bp) defines at which extent cytosines are aggregated
in the analyzed region. It is calculated using the following formula:
les of the EpiStatProfiler workflow. In the left part (a) the data loading and filtering
tered to select only covered loci. In the second step (b) the user defines the regions
t approaches shown in the Figure. The last module (c) consists in the extraction of
ferent outputs are created in this step: the compressed epialleles matrix, containing
r-defined epialleles-based statistics.
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d ¼
Xn
i¼1

ðpi � piþ1Þ
 !

=n

n = number of CpX � 1.
p = position (bp) of the CpX site in the analyzed region.

2.6.4. Observed epialleles species
The number of observed epialleles is also reported. This is calcu-

lated by counting the number of the unique epialleles observed in
the analyzed region.

2.6.5. Singleton
This function returns the number of epialleles species found in a

single copy among the sequenced reads associated with the region.
This latter is informative about the number of rare epialleles that
are found in the analyzed region.

2.6.6. Epiallele with the highest frequency
The epiallele with the highest frequency is obtained by report-

ing the string associated with the highest count in the epialleles
matrix.

2.6.7. Shannon entropy
The Shannon entropy is used as a measure of probabilistic

uncertainty. Having the epialleles composition, the Shannon
entropy estimates how heterogeneous is the population of the epi-
alleles species at one locus, with values ranging from 0 (when all
the reads carry the same epiallele) to n_CpX (when all possible epi-
allele states are found with equal frequency).

Given n_CpX sites in the region, the Shannon entropy is calcu-
lated as:

H ¼ -
Xe

k¼1
pk� log2pk

where e is the maximum number of distinct epiallele species that

can be observed in one locus (2n CpX sites) and pk represents the fre-
quency of the k-th epiallele.

2.6.8. Average DNA methylation
Given the population of epialleles in one genomic region, the

average DNA methylation in the region is also calculated. This is
done dividing the number of methylated cytosines (m) in the bin-
ary matrix by the total number of cytosines in all the sequenced
reads.

a ¼ m=n � c
n = number of CpX sites in the locus.
c = sequenced reads covering the locus.

2.7. Statistical testing

The comparison of epialleles compositions among groups at
multiple genomic regions is performed using PERMANOVA, a
non-parametric multivariate statistical test. Having the epiallele
composition matrix at one locus for each sample, this analysis is
based on the prior calculation of distances between each pair of
samples in the dataset. The test calculates whether the distances
among samples belonging to different groups are higher than the
distances found among samples within the same group. The signif-
icance of the result is then computed by calculating the chances
that the same difference observed within sample data can also
be obtained by randomly allocating the samples to the different
groups through a series of n permutations. Finally, a p-value is
assigned to each analyzed genomic region. Adjusted p-values are
also calculated using the fdr method. The test has been imple-
mented using the adonis2 function from the vegan R package
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[26], which provides tools for descriptive community ecology. A
post-hoc analysis is performed when comparing the epialleles
composition matrices among more than two groups, and this is
achieved by using the pairwise.adonis R package. Dimensionality
reduction is also performed to visualize data using the Principal
Component Analysis (PCA) and the Canonical Correspondence
Analysis (CCA).

To compare the distributions of user defined summary statis-
tics, a non-parametric test is adopted to assess whether the differ-
ence among the groups is statistically significant. In this case a
non-parametric test was used since the distribution of the test
variable cannot be predicted a priori. The Wilcoxon test is used
to compare genomic regions when only two groups are available,
otherwise Kruskal-Wallis test is adopted. Finally, to compare mean
values of summary statistics considering a covariate (e.g., time), an
analysis of covariance (ANCOVA) is implemented.

2.8. Association with genes

Differentially heterogeneous regions are associated with closest
genes in EpiStatProfiler using the regsToPathway function. This lat-
ter is based on the annotatePeak function from the ChIPseeker R
package [27]. Each region is annotated considering the
regions ± 1000 kb flanking the TSS of genes as promoters. The
annotation of each region - based on the relative localization to
its closest gene - can be: ‘‘Distal intergenic”, ‘‘Promoter”, ‘‘Exonic”,
‘‘Intronic”, ‘‘3’ UTR”, and ‘‘5’ UTR”.

2.9. DMP (Differentially methylated Positions) detection

The quantitative analysis of DNA methylation was performed
by using the R package methylKit [28]. Methylation calls were per-
formed starting from the aligned bam files using the processBis-
markAln function, by considering only CpG sites covered by at
least 10 reads and present in at least 3 samples per group.

Differentially methylated positions were detected by calling the
calculateDiffMeth function and by selecting the sites having a q.-
value � 0.05 and an absolute average methylation difference
�25 %.

2.10. Enrichment analysis for genomic regions

To test the enrichment of CTCF binding sites within the set of
significant genomic regions obtained from the analysis of dataset
2 (GSE48975), we first retrieved CTCF ChIP-seq peaks of mouse
lung tissues from two ENCODE assays (ENCFF491RJK,
ENCFF605YVN), then we generated a bed file containing only the
overlap between the peaks from the two experiments and finally
passed it along with the bed files containing significant regions
to the bedtools fisher tool.

3. Results

Here we introduce EpiStatProfiler, a novel workflow for the
qualitative analysis of DNA methylation from bisulfite sequencing
data. It contains a set of functions dedicated to the extraction and
statistical analysis of epialleles derived from bisulfite sequencing
experiments. EpiStatProfiler is distributed as an open-source R-
package and is publicly available on GitHub (https://github.com/
BioinfoUninaScala/epistats).

3.1. Input data loading

The first module is dedicated to input data filtering and to the
design of the regions to be profiled. Input data required by EpiS-

https://github.com/BioinfoUninaScala/epistats
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tatProfiler is represented by aligned BAM files derived from bisul-
fite sequencing experiments, along with a reference genome file in
FASTA format. To restrict the assessment of the epiallele composi-
tion to regions with sufficient read coverage, the genomic regions
from the bam files are filtered based on a user-defined coverage
threshold, as described in the Methods section. Alignments can
be optionally restricted to a subset of chromosomes of interest
from the experiment by using dedicated functions. At the end of
the filtering steps, the regions satisfying user parameters are con-
verted to a GenomicRanges object.

3.2. Using sliding windows to design target regions

The target regions can be designed based on several user-
defined criteria. First, it must be decided which type of sliding win-
dow system should be used to construct the regions. The package
has two distinct functions that correspond to two different
approaches described in the Methods section. Regardless of the
chosen system, the user must set the pattern to be searched for
within the genome to build up the analysis window set. If the user
is interested in CG methylation, this parameter will be equal to
’CG’, otherwise one of ’CA’, ’CC’ or ’CT’. The functions that build
these regions have also been implemented to return the genomic
coordinates of the analyzed cytosines.

3.3. Extracting epialleles composition

The epiallele composition is extracted from each region
obtained in the previous step. Before executing the extraction,
the user can fine tune different parameters guiding the extraction
step. More specifically, the user can decide whether to apply fur-
ther filters on the input data, such as the removal from the epiallele
composition of those reads that do not satisfy a certain threshold of
bisulfite conversion. By the end of the extraction step, two different
outputs are returned for each analyzed region. The first one is a
compressed matrix that represents the epiallele composition by
storing the number of occurrences of each epiallele in that region.
The second is a data frame containing as many columns as the
number of different summary statistics calculated on the raw bin-
ary epiallele matrix as input. The user can pass to the function a list
of one or more statistics chosen from those provided within the
package and can further provide user-defined functions imple-
menting other statistics of interest. Finally, a third output contain-
ing the regions excluded from the analysis is generated. Each of
these described outputs is locally saved as a text file.

3.4. Dedicated statistical module

Once the epiallele composition of all the passing filter regions
from each sample of the dataset is available, the analysis can con-
tinue with the computation of one or more statistical functions
provided with the package aimed at identifying regions whose epi-
allele composition differs among sample groups. These functions
can be divided into two groups: a first set of functions working
directly on the epiallele matrices and a second setworking with
the computed summary statistics.

3.4.1. Functions working on epialleles matrices
The functions working on the count matrices (Fig. 3a) consider

the epialleles observed in one region as a population of individuals
(represented by the set of reads covering that region) belonging to
different species (represented by the different epiallelic conforma-
tions). PERMANOVA, described in the Methods section, is imple-
mented in EpiStatProfiler in the epiStat function. The input data
needed to run these functions are the list of the epialleles matrices
from all the samples and a table containing sample metadata. The
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user must then indicate which columns are the ones containing the
group and the sample information. Additional parameters can be
set to perform the analysis, such as the minimum number of sam-
ples in each group required to carry out the analysis. The function
returns as output a data frame containing all the regions analyzed
as rows, along with the results of the statistical test.

Additional functions are provided to perform tests on single
regions data. The pairtest function can be used to perform the pair-
wise comparison (see Methods) when more than two groups are
present, in order to detect which group is mostly contributing to
the dissimilarity observed in the tested locus. Finally, a function
is provided to identify the epiallele species driving the dissimilar-
ities between the groups in each genomic region. Both these func-
tions require as one parameter the ID of the region to be analyzed.

3.4.2. Functions working on summary statistics
The package contains two functions (Fig. 3b) that compare the

summary statistics values among groups: diffStat and diffModel.
These latter accept as input the table containing the summary
statistics for each analyzed interval. The first one is aimed at iden-
tifying the regions which differ among the provided groups for a
given statistic. The user can indicate which statistic has to be
selected to perform the test. The output is a table containing the
IDs of each region and the result of the test, this latter reported
through the (adjusted) p-value. Additional information is also
added to the output, such as the name of the test used to perform
the analysis (see Methods section) and the median values of the
input statistic for each group.

On the other hand, the diffModel function performs the analysis
of covariance (ANCOVA) described in the Methods section. This can
be useful to evaluate whether the groups differ for one statistic
across different levels of another variable (e.g., different time
points). The dependent variable and the covariate can be provided
by the user through the function parameters. The output consists
of a table containing the IDs of each region, along with the result
of the statistical test, the p-values referring to the effects of single
variables taken alone and those related to their interaction terms.
The coefficients of the fitted model are also reported in the output,
as well as the slopes of the regression lines for each group.

The results obtained by applying these two sets of functions
have different and complementary biological relevance. The func-
tions handling epiallele composition allow the comparison of gen-
eral differences in the epiallele population. Summary statistics, on
the other hand, can be used to compare specific aspects of epialle-
les populations such as epialleles clonality, richness or the pres-
ence of rare epialleles.

3.5. Results visualization

Once one or more regions of interest are selected, the user can
run functions provided by EpiStatProfiler to plot the epiallelic
information related to these regions. Two different functions are
implemented in the package to visualize data by obtaining ordina-
tion plots for each locus. They perform the two ordination analyses
described in the Methods, the PCA and CCA respectively. Both func-
tions take as input the compressed epiallele matrices along with
the samples metadata and the ID of the region of interest, return-
ing the ordination plot.

3.6. Functional analysis

Finally, to investigate the biological functions eventually linked
to the identified differences in epiallele composition, EpiStatPro-
filer is provided with the regsToPathway function to associate sig-
nificant regions with genes. The user just needs to specify the
reference genome to be used for the association analysis. The out-



Fig. 3. Statistical module. The figure shows the main statistical tests implemented in EpiStatProfiler to compare epiallele composition among/between groups. The left panel
(a) shows the test statistics used to compare the raw epialleles counts among different groups. In this case a non-parametric multivariate test (PERMANOVA) is adopted. In
the right panel (b) are described the tests used to compare the epiallele-based summary statistics among/between groups. The first type is a non-parametric test. The choice
of the test (Wilcoxon vs. Kruskal-Wallis) depends on the number of groups provided by the user. The second one is a linear model which performs an analysis of covariance.
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put of this function is a table containing several information
related to each region-gene association, such as the distance to
TSS, the type of association (Exonic, Intronic, Intergenic, etc. . .)
and the gene symbol. This information can then be used to perform
further downstream analyses, such as gene enrichment analysis
(see Case of Study below).
3.7. Case of study

To showcase the EpiStatProfiler workflow, we report the analy-
sis of two datasets consisting of RRBS and enhanced RRBS data
from two distinct experimental designs.

The first dataset comprises heterozygous Htt knock-in (Q175)
and wild-type (Q20) mice [29], derived from an experiment
designed to identify putative methylation signatures in mouse
models carrying the causative mutation of the Huntington disease.

The input dataset consists of 8 different samples from each
group, retrieved from the striatal tissue of 3 weeks old mice. We
processed the raw fastq files (see Methods) and then, starting from
aligned bam files, we implemented the EpiStatProfiler workflow as
described below.

We first selected all the genomic regions covered (end to end)
by at least 30 reads in each of the input Bam files and we then
designed the target regions using EpiStatProfiler in the ‘‘sliding
window” mode with a fixed window length of 70 bp (based on
the average read length of this specific sequencing experiment).
We executed the workflow to extract epialleles composition in
both the CG and CA contexts. To identify the genomic regions
whose epiallele composition differs in terms of clonality between
the HD and the wild-type samples we used the diffStat function
and compared the Shannon entropy values between the two condi-
tions by using a Wilcoxon non-parametric test. The statistically
significant loci were obtained by filtering the regions having: i) a
p.value � 0.05 and ii) an absolute median Shannon entropy differ-
ence �0.10 between the two groups (Fig. 4a). Overall, we found
370 significant regions that underwent a significant Shannon
entropy change in the HD group when considering the CG context
and 183 significant regions when looking at the CA methylation
(all belonging to the plus strand).

We further filtered the significant regions, by retaining only
those ones which were also found to be significantly different by
running the epiStat function, which directly compares the epialle-
les composition among groups. In this way, we identified 135
regions (colored dots in Fig. 4a, CG methylation) characterized by
either different epiallele composition and epigenetic clonality
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(measured through their Shannon entropy) among groups in the
CG context, along with 30 regions in the CA context (colored dots
in Fig. 4a, CA methylation). As proof of concept, we reported as
example one significant region which shows an increased Shannon
entropy in the HD group and a significantly different epiallele com-
position compared to the wild-type group (barplots in Fig. 4b). This
latter region is located in the first exon of the Rrs1 gene, whose
altered expression is commonly described in knock-in mice models
of HD disease [30].

Next, we associated these significant regions with genes (coding
and non-coding) and retained only those (n = 102 for CG context
and n = 11 fort CA context) annotated in functional domains (Pro-
moter = 45, Intron = 25, Exon = 26, UTRs = 6 in CG context and Pro-
moter = 1, Intron = 8, Exon = 2 in CA context). We then used the
genes found to be associated with our significant regions in both
CG and CA contexts (CG genes = 83, CA genes = 11) to perform a
differential gene set enrichment analysis using g:Profiler [31] to
identify specific biological processes. We found significantly
enriched GO biological terms implicated in the disease pathogene-
sis looking at both CG and CA methylation signatures (see Table 1)
[32,33].

We then followed the same workflow to analyze a dataset con-
sisting of whole lung tissue samples from Ctcf hemizygous knock-
out (Ctcf +/�, n = 8) and wild-type (n = 7) mice. To identify genomic
regions undergoing epialleles heterogeneity alterations between
the Ctcf +/� and the wild-type mice we used both the diffStat
and the epiStat functions, as described above. Here, we could iden-
tify 623 significant regions which differed for their Shannon
entropy and their epialleles composition between the two condi-
tions in the CpG context (Fig. 5a), with most of them
(n = 435/623, in blue in Fig. 5a) showing an increase of Shannon
entropy levels in Ctcf +/� depleted samples (as in Fig. 5c).

We then associated the above reported significant regions with
genes and retained only those (n = 549 for CG context) annotated
in functional domains (Promoter = 97, Intron = 88, Exon = 227,
UTRs = 137). We then used the genes found to be associated with
our significant regions (CG genes = 217) to perform a differential
gene set enrichment analysis using g:Profiler [31] (Supplementary
File 1) [31]. Of note, we could identify an enrichment of genes
described as CTCF targets. To better explore this observation, we
assessed whether the obtained significant genomic regions were
enriched for CTCF binding sites. In particular, we tested their over-
lap with CTCF-binding regions derived from mouse whole lung tis-
sues from ENCODE and found a statistically significant enrichment
(Fisher’s exact test p.value < 2.5078e-76, Fig. 5b).



Fig. 4. Description of the significant differentially epigenetic heterogeneous regions found in CG and CA contexts. (a) Relevant loci of HD mice are shown using volcano plot. Loss
and gain in clonality composition are marked in violet-red and blue respectively. The relevant loci were obtained by filtering the regions having a p.value � 0.05 and being
characterized by an absolute median Shannon entropy difference �0.10 between the two groups and further selected for being characterized by a significantly different
epialleles composition among the two groups (PERMANOVA p.value � 0.05). (b) A significant region obtained from the filtering processes used as proof of concept. Regions
coordinates and functional annotation are reported on the top of the barplots. (c) Overlap of the genes associated with significant regions obtained performing the qualitative
(DHR = differentially heterogeneous regions) and the quantitative (DMP = differentially methylated positions) analyses, respectively, within the classical CG context. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Results of the gene set enrichment analysis (Dataset 1).

Source Term name Term ID Adjusted p.value

CG methylation GO:BP embryonic morphogenesis GO:0048598 2.100 � 10�2

CG methylation GO:BP cell differentiation GO:0030154 3.949 � 10�2

CG methylation GO:BP cellular developmental process GO:0048869 4.500 � 10�2

CG methylation GO:BP regulation of cellular metabolic process GO:0031323 4.661 � 10�2

CG methylation GO:BP cerebellar molecular layer development GO:0021679 4.980 � 10�2

CA methylation KEGG Glutathione metabolism KEGG:00480 3.058 � 10�2

CA methylation WP Oxidative stress and redox pathway WP:WP4466 1.880 � 10�2
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Finally, to compare our results with those obtained from a clas-
sical quantitative analysis, we performed a differential methylation
analysis in both datasets (see Methods). In particular, we analyzed
cytosines in the CpG context covered by at least 10 reads whose
methylation status could be assessed in at least 3 samples per
group. We then selected differentially methylated positions by fil-
tering the sites showing a qvalue � 0.05 and a methylation differ-
ence percentage > 25 % among the two groups (WT and HD, WT
and Ctcf +/�). Referring to the canonical CG context, we evaluated
the overlap of the genes associated with the significant regions
identified through the two different analyses (Genes DHR, Genes
DMP). We found that the two approaches detected significant loci
that had some overlaps, showing that the qualitative analysis can
capture additional methylation changes events that could be
missed by standard DNA methylation analyses (Fig. 4c, Fig. 5d) [8].
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4. Discussion

In this manuscript we presented EpiStatProfiler, an R package
for the qualitative analysis of DNA methylation sequencing exper-
iments. A plethora of methods aimed at identifying genomic
regions showing differential DNA methylation patterns among dif-
ferent biological conditions have been proposed in literature, with
most of them relying on a quantitative view of the observed
methylation levels for a given locus and their tests based on the
comparison of bulk-average DNA methylation levels.

A more recent approach to the study of this modification is
based on a qualitative evaluation of DNA methylation patterns,
relying on the possibility to characterize specific DNA methylation
patterns at the single molecule resolution. Given a genomic locus
containing individual CpX sites, and starting from a bisulfite



Fig. 5. Description of the significant differentially epigenetic heterogeneous regions found in CG contexts in dataset 2 (wild-type and Ctcf +/� samples). (a) Differentially
heterogeneous epigenetic regions between wild-type and Ctcf +/� mice are highlighted using a volcano plot. Loss and gain of epigenetic heterogeneity are marked in violet-
red and blue respectively. The relevant loci were obtained by filtering the regions having a p.value � 0.05 and being characterized by an absolute median Shannon entropy
difference �0.10 between the two groups and further selected for being characterized by a significantly different epialleles composition among the two groups (PERMANOVA
p.value � 0.05). (b) Scaled Venn diagram showing the enrichment of CTCF binding sites in regions showing statistically significant epiallele heterogeneity between the wild-
type and Ctcf +/� samples. (c) Barplots showing the proportion of observed epialleles (different colors) in all the analyzed samples in a selected significant region (coordinates
and annotation shown on the top of the barplots). (d) Venn diagram showing the overlap between the genes associated with significant regions from the qualitative
(DHR = differentially heterogeneous regions, green) and the quantitative (DMP = differentially methylated positions, blue) analyses within the CpG context. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sequencing experiment, it is possible to estimate the distribution
of the distinct methylation patterns (epialleles) that can be
observed among all the possible ones. The most relevant aspect
of this characterization is that it can be used as a proxy to evaluate
the cell-to-cell epigenetic heterogeneity within a sample; an infor-
mation that is often poorly covered within standard quantitative
analysis.

We developed a comprehensive tool to support the analysis and
statistical comparison of the epiallele composition within and
among samples in the R environment.

Compared with existing tools (see Table 2), EpiStatProfiler pro-
vides additional functionalities improving the extraction of epialle-
les and offer various statistical tests to identify relevant loci that
Table 2
Comparison of existing tools which perform epialleles extraction from bisulfite sequencin

Programming
language

Input data Type of experiment

ampliMeth
Profiler

Python FASTA
files

Targeted

mHapTools C, Command line BAM files Genome-wide
methclone C ++ BAM files Targeted, Genome-wide
EpiStat Profiler R BAM files Targeted, Genome-

Wide
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could be further investigated as putative epigenetic biomarkers.
Indeed, most of the existing tools (see Table 2) are not exhaustive
in the set of analysis they carry out and they lack dedicated statis-
tical tests for the comparisons of epialleles composition between
different groups for a given experimental design.

EpiStatProfiler has been designed to extract epialleles informa-
tion from any kind of bisulfite sequencing data, whereas tools such
as AmpliMethProfiler and Methclone have been mainly developed
for specific types of experiments (targeted vs genome-wide,
respectively).

Compared to the other tools and in relation to the possibility to
analyze different type of bisulfite sequencing experiments, EpiS-
tatProfiler provides dedicated functions to select, filter and analyze
g data.

Stranded
analysis

Non-CpG
methylation

Statistics Bisulfite conversion
QC

No No Yes Yes

No No No No
No No No Yes
Yes Yes Yes Yes



A. Sarnataro, G. De Riso, S. Cocozza et al. Computational and Structural Biotechnology Journal 20 (2022) 5925–5934
subset of genomic regions from the whole assay. This is especially
useful when dealing with wide low-coverage assays (like WGBS
and RRBS) to retrieve only regions of interest characterized by a
sufficient quality and depth.

In contrast, AmpliMethProfiler has been specifically developed
to analyze amplicon-based bisulfite sequencing data, retrieving
the epialleles composition from one or few target regions, while
Methclone has the ability to filter genomic regions covered by a
minimum number of reads but it limits the analyses to a maximum
amount of 10 CpGs per region. Moreover, Methclone does not
allow the specification of custom window size for the region selec-
tion (which could be useful when analyzing long-read sequencing
experiments).

Furthermore, EpiStatProfiler implements some additional func-
tionalities which are not foreseen in the other approaches indi-
cated in Table 2. EpiStatProfiler workflow is indeed provided
with the option to extract epialleles based on non-CpG sites. Other
types of DNA modification, such as CA methylation, have been
described to exert an important biological role in some systems
and, particularly, in brain tissues. EpiStatProfiler allows the
analysis of epialleles composition in these contexts, a feature that
has never been described in literature to our knowledge, thus pro-
viding the opportunity to investigate strand-specific DNA methyla-
tion. Furthermore, compared with other tools, EpiStatProfiler is
intended to carry out the analysis starting from any type of exper-
imental design. Methclone can identify genomic regions harboring
large changes in the clonality of their epialleles by calculating the
combinatorial entropy of the epialleles distribution observed in
two samples only (Diagnosis and Relapse). On the other hand,
EpiStatProfiler is provided with statistical tools aimed at the iden-
tification of regions with different epialleles composition in two or
more sample groups or time points.

By showcasing the EpiStatProfiler workflow in the identification
of epigenetic signatures in the RRBS-based dataset, we demon-
strated that this kind of approach can identify epigenetic signa-
tures within regions associated with genes implied in disease
pathogenesis in Huntington mice models. The enrichment results
showed that the analysis of the CA and CG contexts is able to cap-
ture different sets of GO biological terms associated with the dis-
ease pathogenesis (see Table 1).

Indeed, among the enriched terms, we found biological path-
ways which are widely described as dysregulated in Huntington’s
models [32–35] (see Table 1). In particular, regarding the CG con-
text, we found significantly enriched GO biological terms associ-
ated with developmental processes [32,34], such as ‘‘embryonic
morphogenesis” and ‘‘cell differentiation”, along with more specific
pathways involved in the pathogenesis of Huntington’s disorder,
such as ‘‘cerebellar molecular layer development” [35] (see Table 1,
CG Methylation). In addition, we also found enriched terms sus-
tained from the genes obtained from the CA methylation analysis,
and these were also associated to specific pathways, in particular
the ‘‘glutathione metabolism” pathway, whose dysregulation has
been previously described in Huntington’s disease knock-in striatal
cells [33] (see Table 1, CA methylation).

Furthermore, we were able to identify genomic regions showing
significant changes in their epiallele heterogeneity in lung tissue of
mice characterized by the genetic disruption of one Ctcf allele. The
obtained results show that significant regions are characterized by
an increased epiallele entropy when Ctcf is depleted, which is com-
patible with other observations describing the ability of CTCF to
decrease cellular expression heterogeneity by stabilizing
promoter-enhancer interactions [36,37]. Finally, the enrichment
analysis of these genomic regions revealed that they are signifi-
cantly enriched for CTCF-binding sites, suggesting the existence
of specific dynamics of cellular heterogeneity disruption when Ctcf
is depleted [36].
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In conclusion, EpiStatProfiler represents a valuable tool for the
characterization of the epialleles composition in various biological
systems supporting researchers in exploring epigenetic informa-
tion from a complementary point of view. EpiStatProfiler is avail-
able at https://github.com/BioinfoUninaScala/epistats.
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