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Abstract: Systemic Sclerosis (SSc) is a heterogeneous autoimmune disease characterized by widespread
vasculopathy, the presence of autoantibodies and the progressive fibrosis of skin and visceral organs.
There are still many questions about its pathogenesis, particularly related to the complex regulation of
the fibrotic process, and to the factors that trigger its onset. Our recent studies supported a key role of
N-formyl peptide receptors (FPRs) and their crosstalk with uPAR in the fibrotic phase of the disease.
Here, we found that dermal fibroblasts acquire a proliferative phenotype after the activation of FPRs
and their interaction with uPAR, leading to both Rac1 and ERK activation, c-Myc phosphorylation
and Cyclin D1 upregulation which drive cell cycle progression. The comparison between normal
and SSc fibroblasts reveals that SSc fibroblasts exhibit a higher proliferative rate than healthy control,
suggesting that an altered fibroblast proliferation could contribute to the initiation and progression of
the fibrotic process. Finally, a synthetic compound targeting the FPRs/uPAR interaction significantly
inhibits SSc fibroblast proliferation, paving the way for the development of new targeted therapies in
fibrotic diseases.

Keywords: systemic sclerosis; urokinase receptor; N-formyl peptide receptors; fibroblast proliferation;
small molecules

1. Introduction

Systemic Sclerosis (SSc) is a complex chronic autoimmune disease that mainly affects
connective tissue, microvessels and small arteries, and is characterized by fibrosis and
vascular obliteration in the skin and internal organs, particularly the lungs, heart and
digestive tract [1,2]. The pathogenesis of SSc is extremely complex, and, despite numer-
ous studies, the mechanisms involved in its development and maintenance are still not
completely clarified.

During the past decade, most of the studies have been focused on the role of myofi-
broblasts in the pathogenesis of SSc [3]. Myofibroblasts are fibroblasts with contractile
properties that release a large amount of profibrotic extracellular matrix (ECM) molecules,
mainly collagen type I [4–6]. In 1972, it had already reported that fibroblasts obtained
from SSc skin have a profibrotic phenotype and produce more collagens than control
fibroblasts [7]. Subsequently, it was demonstrated by immunohistochemistry analysis
that fibroblasts isolated from lesional areas of skin, the esophagus, and lungs from SSc
patients express high levels of alpha smooth muscle actin (α-SMA), a typical marker of the
myofibroblast phenotype [8].
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In SSc, several mechanisms protect myofibroblasts from apoptosis, ensuring their
continued presence after their formation [9]. First, it has been observed that, in the quiescent
state, SSc myofibroblasts express less proapoptotic BAX compared to myofibroblasts from
healthy controls [10]. Secondly, in dermal fibroblasts isolated from patients with SSc, the
hyperactivation of PI3 kinase/AKT signaling facilitates myofibroblast survival through the
inhibition of BAX activity [11]. Recently, it has been reported that epigenetic modifications
can also regulate the evasion of apoptosis in myofibroblasts and specific micro RNAs
(miRNAs) have been reported to be involved in SSc fibrosis [12,13].

The innate immune system plays an important role in SSc myofibroblast survival,
formation, and function. Cells that stimulate myofibroblast functions, through the release of
profibrotic cytokines, IL-4, IL-13 and TGF-β, include mast cells, monocytes/macrophages
and T helper 2 lymphocytes [9,14,15]. Recent advances have demonstrated the involvement
of B cells in SSc-related fibrosis, as well as in the immune abnormalities. B cell depletion
therapy with rituximab has improved the extent of skin sclerosis evaluated using the
modified Rodnan skin thickness score and a skin biopsy at 12 weeks has shown a significant
reduction in myofibroblasts. Importantly, high-affinity topo I-reactive B cells, via the
differentiation of T cells into Th17 cells, can stimulate fibroblasts to release collagen and
pro-inflammatory cytokines [16].

Over the last decade, we have focused on the role of a group of innate immune
receptors, N-formyl peptide receptors (FPRs), in the pathogenesis of SSc. FPRs are G
protein-coupled chemoattractant receptors that play important roles in host defense and
inflammation [17]. They are so called because their cognate agonists are peptides containing
formylated methionine (fMet), such as those derived from bacterial proteins. Three FPRs
have been identified in humans, namely FPR1, FPR2 and FPR3 [18]. Among all the ligands
for the FPRs, fMet-Leu-Phe fMLF (fMLF), a potent leukocyte chemoattractant, is most
often studied. FPR1 and FPR2 are, respectively, a high affinity receptor and low affinity
receptor for fMLF, while FPR3 does not bind fMLF. The FPR expression on epithelia seems
to be required for wound repair and the restitution of barrier integrity. In this context,
it has been demonstrated that FPR activation promotes cell migration, proliferation, and
neoangiogenesis in intestinal, lung, retinal pigment, and nasal epithelial cells [19,20].

Many functions of FPRs occur through their interaction with the urokinase-type
plasminogen activator receptor (uPAR) [21–23]. uPAR, a glycosyl-phosphatidyl-inositol-
(GPI)-anchored protein formed by three domains (DI-DII-DIII), serves to bind the urokinase
plasminogen activator (uPA) and localize the reactions of the plasminogen activation
system on the cell membrane [24–27]. After removal of the GPI anchor by proteases or
phospholipases, uPAR sheds from the cell membrane and exists as a soluble form (suPAR)
that is detectable in various body fluids [28]. uPA binding promotes the clustering of uPAR
in the cell membrane and increases its ability to bind vitronectin (VN), which is associated
with the provisional matrix in cancer and inflammation. In addition, uPAR interacts
with different transmembrane receptors, including integrins, the epidermal growth factor
receptor (EGFR), and the platelet-derived growth factor receptor (PDGFR). Both membrane
and soluble uPAR can expose a specific region, corresponding to amino acids 88–92 (SRSRY),
able to interact with FPRs and mediating uPA or fMLF-dependent cell migration. The
exposure of the SRSRY sequence is determined by a conformational change in the receptor,
upon binding to uPA, or cleavage of D1 by metalloproteases or uPA itself, thus leading to
the formation of DII-DIII-uPAR88–92 [29].

Unaccomplished data on the role of uPAR in the pathogenesis of SSc have been
reported in the literature. Manetti et al. have shown that uPAR-deficient (uPAR−/−)
mice represent a model of experimental SSc as the inactivation of the uPAR gene induces
dermal and pulmonary fibrosis and peripheral microvasculopathy. Moreover, the skin of
SSc patients exhibits a significantly decreased expression of native full-length uPAR [30].
In these studies, however, only the full-length uPAR, and not the cleaved form, was
analyzed. Recently, we have demonstrated, by immunohistochemical analysis, that SSc
skin fibroblasts overexpress all three isoforms of FPRs and DII-DIII-uPAR88–92, while full-
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length uPAR expression is downregulated. Our data assigned a crucial pathogenetic role
to DII-DIII-uPAR88–92 in SSc as the overexpression of cleaved uPAR and its relationships
with FPRs correspond to the dysfunctional activities of fibroblasts in the development of
fibrosis. Indeed, we have demonstrated that FPR activation can induce a myofibroblast
phenotype in normal dermal fibroblasts through α-SMA induction. Both in normal and
SSc fibroblasts, FPRs/uPAR crosstalk enhances the rate of wound healing, ECM deposition
and the generation of reactive oxygen species (ROS), that play a key role in the alteration of
the redox state observed in SSc. Even more interestingly, C37, a new small molecule able to
inhibit uPAR binding to FPRs, can inhibit ROS production in SSc fibroblasts [22,31].

Starting from this experimental evidence, we now analyze the effects of FPR activation
and crosstalk with uPAR on dermal fibroblast proliferation to elucidate their molecular
mechanisms and signaling pathways. The role of FPRs/uPAR crosstalk, already proven
to be important in fibroblast-to-myofibroblast transition and ROS production, will also be
studied in the proliferation of fibroblasts isolated from an SSc skin biopsy to propose new
therapeutic strategies.

2. Results
2.1. FPR Activation Promotes Proliferation in a Normal Human Dermal Fibroblast Cell Line

Fibrosis represents the hallmark of Systemic Sclerosis (SSc), the end stage triggered by
different pathological events [32].

There is evidence linking the urokinase receptor (uPAR) with N-formyl peptide re-
ceptors (FPRs), both highly expressed in SSc patients, and suggesting that it may have a
central role in fibrosis and in fibroblast-to-myofibroblast transition [22,31].

Since the proliferation of skin fibroblasts is a key factor in SSc dermal fibrosis, we
investigated the role of uPAR and FPRs in skin fibroblast proliferation. To this aim, we
evaluated cell proliferation at 0, 24, 48, 72 and 144 h after stimulation with specific FPR
agonists. The proinflammatory chemoattractant fMLF was used at two concentrations
10−4 M and 10−8 M because FPR1 and FPR2 have high and low affinity, respectively, for
fMLF [18]. The synthetic WKYMVm hexapeptide was used at a concentration of 10−8 M
and the synthetic soluble uPAR84–95 peptide, containing the uPAR-derived 88SRSRY92

sequence and able to interact with FPRs on the cell surface and to activate their signals,
was used at 10−8 M. In these preliminary studies, the BJ cell line has been used as a human
dermal fibroblast model.

As shown in Figure 1A, all the agonists were significantly able to induce BJ prolif-
eration, thus suggesting that both FPRs and FPRs/uPAR interaction are involved in the
regulation of fibroblast proliferation. fMLF 10−4 M significantly enhanced fibroblast prolif-
eration at 24, 48 and 144 h; fMLF 10−8 M significantly induced the fibroblast proliferation
at 24, 48 and 72 h, exerting no effects at 144 h. Importantly, fMLF stimulation displayed a
bell-shaped response curve typical for chemokines [33,34]. The WKYMVm synthetic pep-
tide and the synthetic soluble uPAR84–95 exhibited a similar behavior. WKYMVm peptide
significantly enhanced the proliferation at 24, 48, and 72 h, and uPAR84–95 peptide exerted
its effects at 24 and 72 h.

Subsequently, we asked which isoforms of the FPR family are stimulated by the ag-
onists used in previous experiments. To answer this question, we performed fibroblast
proliferation assays in the presence of specific anti-FPR antibodies, following stimulation
with agonists. Figure 1B shows that fMLF, at both a high (10−4 M) and low (10−8 M) concen-
tration, was unable to elicit proliferation in the presence of antibodies directed against FPR1
and FPR2. As expected, in the presence of the anti-FPR3 antibody, cells still proliferated;
indeed, FPR3 does not bind to fMLF. The WKYMVm synthetic peptide is mostly described
as a FPR2 agonist [35]; interestingly, we observed that WKYMVm stimulation was also
unable to elicit cell proliferation in the presence of anti-FPR3 antibodies, thus indicating
the involvement of this receptor in FPR-mediated proliferative response. The synthetic
soluble uPAR84–95 peptide behaved as a the WKYMvm peptide, confirming that uPAR84–95
induced basophil chemotaxis mainly by activating FPR3 and, to some extent, FPR2 [36].
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From these experiences, we would highlight that: (i) FPR activation promotes dermal
fibroblast proliferation; (ii) FPRs/uPAR crosstalk is involved in dermal fibroblast prolif-
eration; (iii) uPAR, in the synthetic soluble form containing the uPAR-derived 88SRSRY92

sequence, is able to interact also with FPR3 isoforms on the cell surface.
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Figure 1. (A) Effects of fMLF, WKYMVm and uPAR84–95 synthetic peptides on BJ cell proliferation.
Values are mean ± SEM of three experiments. * p < 0.05, ** p < 0.001. (B) Effects of anti-FPR1,
anti-FPR2 and anti-FPR3 Abs on BJ cell proliferation. BJ cells were treated with medium alone (100%)
or medium with stimulus (white columns), in the presence of anti-FPR1 (grey columns), anti-FPR2
(light gray columns) and anti-FPR3 (dark grey columns) Abs. Results are expressed as percent
increase in optical density value over untreated cells (dashed lines). Values are mean ± SEM of three
experiments. * p < 0.05, ** p < 0.001.

2.2. Rac1 and ERK1/2 Activation by FPRs in Dermal Fibroblast Proliferation

uPAR-mediated cell migration, allowed by uPAR interactions with FPRs and β1
integrins, involves small GTPase Rac1 as signaling mediators [37]. In addition, FPR stimu-
lation determines ROS production through the Rac1 and ERK1/2 signaling pathways [21].
uPAR-dependent signaling pathways may also lead to the activation of ERK1/2 MAPKs
through the activation of PI3K [38]. Thus, to identify the signaling pathways involved in
FPRs-induced proliferation, we focused on the small Rac1 GTPase and ERK1/2 pathways.

We analyzed dermal fibroblast proliferation after stimulation with optimal concen-
trations of fMLF (10−4 M), uPAR84–95 (10−8 M) and WKYMVm peptide (10−8 M). These
analyses were performed in the presence of specific inhibitors: NSC23766 (25 µM), a Rac-
specific GEF (guanine nucleotide exchange factor) Trio and Tiam1 inhibitor and selumetinib
(2.5 µM), a specific MEK 1/2 inhibitor (Figure 2).

BJ cells were unable to proliferate in presence of selumetinib at all time points. Instead,
NSC23766 solely inhibited fibroblast proliferation in response to uPAR84–95 (10−8 M) and
WKYMVm peptide (10−8 M) at 72 h. These results demonstrated that FPR isoforms,
after binding to ligands, trigger different signaling pathways, as already suggested in
the literature [39,40]. The MAPK signaling pathway was directly activated by all three
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FPR isoforms whereas Rac1 GTPase seems to be downstream of FPR3 activation, since
NSC23766 inhibited fibroblast proliferation at 72 h in response to uPAR84–95 and WKYMVm
peptides, but not fMLF.
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Figure 2. BJ cells were treated with fMLF, WKYMVm peptide, or uPAR84–95, in the presence of
selumetinib (white columns) and NSC23766 (black columns). Medium alone values (negative control)
were subtracted, and results were expressed as percent increase in optical density value over stimulus
alone. Values are mean ± SEM of three experiments. * p < 0.05. FCS-treated cells were examined in
parallel, as controls, and are shown in insets.

2.3. uPAR/FPRs Crosstalk-Dependent c-Myc Phosphorylation and Cyclin D1 Expression in
Normal Human Dermal Fibroblasts

Upon activation, intracellular domains of FPRs mediate signaling to G-proteins, which
trigger several signal transduction pathways, phosphorylation and the nuclear transloca-
tion of regulatory transcriptional factors, calcium release and the production of oxidant
compounds [18]. Further studies are required to better define the intracellular signaling
pathways triggered by FPR activation and crosstalk with uPAR.

Thus, we focused on the most significant intracellular pathways for cell cycle pro-
gression and cell proliferation, such as c-Myc phosphorylation and cyclin D1 induction, in
response to FPRs/uPAR crosstalk activation in dermal fibroblasts, using uPAR84–95 peptide
(10−8 M).

The c-Myc transcription factor is a potent regulator of cell growth, proliferation,
apoptosis, differentiation, and metabolism [41]. c-Myc protein stability is regulated by
phosphorylation at threonine 58 (Thr58) and serine 62 (Ser62) residues. Ser62 phosphoryla-
tion by cyclin-dependent kinases (CDKs) or extracellular signal-regulated kinase increases
protein stability, while Thr58 phosphorylation by GSK3 promotes Ser62 dephosphorylation
and targets c-Myc for degradation [42].
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Cyclin D1 is a key intracellular mediator of extracellular signals, which regulates cell
proliferation and is responsible for cell cycle progression in the transition from G0/G1 to S
phase [43].

We observed that the treatment of fibroblast cells with uPAR84–95 peptide induced a
time-dependent phosphorylation of c-Myc at Ser62 residue and upregulation of Cyclin D1,
as compared to cells at T0 (Figure 3).
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Figure 3. (A) BJ cells, treated with uPAR84–95 peptide for 0, 5, 15 and 30 min, were lysed and subjected
to Western blot analysis with anti-phospho-c-Myc, c-Myc and Cyclin D1 Abs and anti-β-actin A.
(B) Densitometric analysis of the Western blot bands has been performed using ImageJ’s gel analysis
software (version 1.53m; National Institute of Health, Bethesda, MD, USA); after normalization by
β-actin, the values were expressed as a fold change over the control (T0).

These results show that FPRs, beyond their role in host antimicrobial defense, also
exert important effects on cell cycle progression and dermal fibroblast proliferation, after
interacting with the SRSRY domain of uPAR, confirming our hypothesis that FPRs/uPAR
crosstalk plays a crucial role in many pathogenetic aspects of SSc.

2.4. FPR/uPAR-Dependent Proliferation of Normal and SSc Primary Dermal Fibroblasts

The data obtained in previous experiments clarified the molecular mechanisms through
which FPRs/uPAR crosstalk regulates cell growth and proliferation in a human healthy
dermal fibroblast cell line. From then on, we focused our attention on primary dermal
fibroblasts from skin biopsies of SSc patients and healthy donors to allow a better under-
standing of the dynamics of cellular responses to FPR activation and FPRs/uPAR crosstalk
in SSc.

First, we compared cell proliferation between normal and SSc fibroblasts to determine
whether different growth rates could be found in these cells. To this end, we used fMLF
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10−4 M, fMLF 10−8 M, uPAR84–95 peptide 10−8 M and WKYMVm peptide 10−8 M as
proliferative stimuli, and FCS as a generic stimulus. As shown in Figure 4, at 24 h after cell
stimulation no effects were recorded; at 48 h, SSc fibroblasts showed a significant increase in
proliferation in response to FCS, as compared to normal fibroblasts. At 72 h, SSc fibroblasts
proliferated more than normal fibroblasts in response to FCS and WKYMVm peptide, while
at 144 h SSc fibroblasts showed a significant increase in proliferation in response to FCS,
uPAR84–95 and WKYMVm peptide, as compared to normal fibroblasts.
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Figure 4. Normal and SSc fibroblasts were treated with medium containing 0.1% BSA (negative
control), 10% FCS (positive control), fMLF, WKYMVm peptide and uPAR84–95 peptide. Results are
expressed as percent increase in optical density value over starting (T0). The statistical significance
was determined by comparing SSc to normal fibroblasts. Values are mean ± SEM of three experiments.
* p < 0.05.

These results demonstrate that FPR activation and FPRs/uPAR interaction are impli-
cated in primary fibroblast proliferation and can confer a higher proliferative phenotype to
SSc fibroblasts.

2.5. Effect of Selective Inhibitors of FPRs/uPAR Crosstalk on SSc Fibroblast Proliferation

Recently, our group reported new promising lead compounds for pharmaceuticals
in cancer and inflammation. These compounds, named C6 and C37, are uPAR inhibitors
identified through structure-based virtual screening (SB-VS) of the National Cancer Institute
(NCI, National Health Institutes, Bethesda, MD, USA) Diversity Set II [44].

C6 and C37 inhibit uPAR interaction with FPRs by targeting the uPAR chemotactic
domain comprising aa 88–92 (SRSRY sequence), which can mediate uPAR’s interaction
with FPRs. C6 interacts with S88 and R91, preventing the structural interaction between
uPAR and FPRs; C37 interacts only with the R91 side chain, thus slightly inhibiting the
structural FPRs/uPAR interaction [45].

Therefore, we aimed to investigate whether the inhibition of the structural and func-
tional interaction between FPRs and uPAR could affect the proliferative activity of fibrob-
lasts from SSc patients. These cells were incubated, at different time points, with DMSO
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alone (vehicle control) and specific agonists, alone or in the presence of 20 µM of C6 and
C37. As shown in Figure 5, C6 dramatically reduced the cell proliferation, whereas C37 did
not exert any inhibitory effects on SSc fibroblast proliferation.
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results were expressed as percent decrease in stimulus plus compounds over stimulus alone (100%).
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Hence, the inhibition of the FPRs/uPAR interaction by C6 showed that FPRs are not
able to elicit cell proliferation alone, but they engage uPAR on the cell surface to trigger
fibroblast proliferation.

3. Discussion

The role of FPRs associated with inflammation and the development of fibrosis has
been increasingly investigated in recent years [17,46].

Among elucidated molecular aspects of the pathogenesis of Systemic Sclerosis (SSc),
our group has previously suggested that FPRs play an important role in the induction of
the myofibroblast phenotype and in the generation of Reactive Oxygen Species (ROS). The
dysfunctional behavior of FPRs, in the context of SSc-associated fibrosis, could be due to
their structural interaction with a specific cleaved form of uPAR, DII-DIII-uPAR88–92, which
is overexpressed in SSc skin fibroblasts. Therefore, targeting the FPRs/uPAR crosstalk
represents a suitable therapeutic approach to prevent fibrosis progression.

Hence, we examined the FPR’s ability to also elicit cell growth and proliferation in
normal dermal fibroblasts, using the BJ cell line as a model.

We demonstrated that FPR stimulation with specific agonists could induce fibroblast
proliferation. FPRs recognize many agonists, which comprise three subtypes, pathogen-
derived, host-derived, and synthetic molecules. We focused on E. coli-derived fMLF,
WKYMVm, a synthetic hexapeptide isolated from a random peptide library, and uPAR84–95,
a peptide containing the uPAR-derived 88SRSRY92 sequence able to interact with FPRs,
thus mimicking the effects of FPRs engagement by native uPAR on the cell surface. Our
study demonstrated that fMLF can induce fibroblast proliferation through FPR1 and FPR2
activation, while uPAR84–95 and WKYMVm peptides also bind FPR3.
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Moreover, fibroblast proliferation induced by FPR stimulation was totally abrogated by
the pretreatment of BJ cells with selumetinib, a specific ERK1/2 inhibitor. The pretreatment
with a Rac1 inhibitor, NSC23766, exhibited effects only in response to uPAR84–95 and
WKYMVm peptides. These findings indicate that FPRs, by interacting with uPAR, can
induce fibroblast proliferation through the activation of ERKs and that Rac1 is involved
in the integration of FPR-dependent signaling pathways, unlike what was found in FPRs-
mediated ROS production [22]. As shown by the inhibition of WKYMVm and uPAR84–95-
dependent fibroblast proliferation by NSC23766, Rac-1 appears to be exclusively involved
in the proliferative signaling downstream of FPR3.

The analysis of the molecular mechanism underlying FPRs/uPAR network revealed
that FPRs, activated by uPAR84–95 peptide, were able to regulate cell cycle progression
through c-Myc serine 62 phosphorylation and Cyclin D1 upregulation.

After establishing the role of FPRs and their crosstalk with uPAR in the proliferation of
a healthy fibroblast cell line, we pursued our studies on primary cultures of skin fibroblasts
isolated from biopsies of SSc patients and healthy control subjects. Human fibroblasts
isolated from affected skin are an ex vivo organ model of fibrosis with a great potential
for investigating the mechanisms underlying SSc-related fibrosis. Since fibroblasts are the
effector of SSc-related fibrosis, their utility in experimental assays and their contribution to
drug development and clinical trials for SSc have been reported [47].

The proliferative potential, both in basal conditions and in response to FPR agonists,
was higher in SSc fibroblasts than in normal fibroblasts, suggesting that SSc progressive
fibrosis could be linked to an aberrant activation of FPR signaling induced by the upregula-
tion of DII-DIII-uPAR88–92. It is conceivable that the overexpression of DII-DIII-uPAR88–92
on the cell surface of SSc fibroblasts leads to the constitutive activation of FPRs, thus
resulting in pathological tissue fibrosis.

Thus, we analyzed the effects of small molecules targeting FPRs/uPAR crosstalk, C6
and C37 on SSc fibroblast proliferation. In our previous work, C6 and C37 had already been
tested on cancer cells and we had observed a significant inhibition of cell proliferation in
RAS-mutated cells after C37 treatment, while C6 did not exert any effect [45]. Conversely,
SSc fibroblast proliferation was exclusively inhibited by C6, while C37was inactive. These
results could be explained by the different binding activities of C6 and C37 to uPAR; C6
completely prevents the structural interaction between uPAR and FPRs, whereas C37 only
slightly inhibits the structural FPRs/uPAR interaction. Additionally, C37, with a slightly
better affinity, and C6 can inhibit uPAR binding to vitronectin (VN); indeed, C6 mimics VN
itself, extending into the uPAR-VN binding site, while C37 entirely fills the VN recognition
pocket of the receptor [45]. Thus, the differences in uPAR inhibition by specific small
molecules indicate that uPAR contacts different molecular partners on the cell surface in
chronic inflammation and tumorigenesis. Based on our results, we could hypothesize that
FPRs/uPAR crosstalk is crucial in chronic inflammation, while uPAR’s binding to VN and
its crosstalk with EGFR is preferentially used by cancer cells to proliferate.

In our previous work, the treatment of SSc fibroblasts with C37 resulted in a strong in-
hibition of ROS production, whereas C37 did not exert any effects on cell proliferation in the
present data [22]. Hence, C37 inhibits the oxidative stress, while C6 blocks the proliferation
of SSc fibroblasts. All together, these results indicate that FPR-dependent cell proliferation
requires the expression of DII-DIII- uPAR88–92, whereas FPR-mediated ROS requires the
expression of full-length uPAR including D1, as the formation of multimolecular complex,
including vitronectin and integrins, is necessary. In fact, C37 that is active mainly on the
uPAR/VN interaction blocks ROS generation, but not cell proliferation in SSc fibroblasts.
An illustrated explanation of our hypotheses is reported in Figure 6.
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4. Materials and Methods
4.1. Peptides and Chemicals

The hexapeptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm) was synthesized and
HPLC purified (95%) by Innovagen (Lund, Sweden); the peptide uPAR84–95 was synthe-
sized by PRIMM (Milan, Italy) and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)
was obtained from Calbiochem (La Jolla, CA, USA). Protein concentration was determined
with a modified Bradford assay (Bio-Rad Laboratories, Munchen, Germany). ECL Plus
was obtained from GE Healthcare (Buckinghamshire, UK). The protease and phosphatase
inhibitors were obtained from Calbiochem. Rabbit anti-FPR1, mouse anti-FPR2, rabbit
anti-FPR3, rabbit anti-phospho-c-myc, mouse anti-c-myc, rabbit anti-ciclyn D1 were from
Santa Cruz Biotechnology (Santa Cruz, CA, USA); mouse anti-β-actin was obtained from
Sigma-Aldrich (St. Louis, MO, USA); secondary anti-mouse and anti-rabbit antibodies
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coupled to HRP were from Bio-Rad (Munchen, Germany). NSC23766 was from Calbiochem,
and selumetinib (AZD6244) was from AstraZeneca (Cambridge, UK); C6 and C37 were
from the NCI/DTP Open Chemical Repository (Available from: http://dtp.cancer.gov
(accessed on 12 August 2013). They were dissolved in dimethyl sulfoxide (DMSO), stored
at −20 ◦C and added to the cell culture at final concentrations, as indicated in the text.

4.2. Tissues and Patient Samples

Three females affected by SSc, observed from January 2020 to December 2023 in the
Day Hospital of Department of Translational Medical Sciences of the University of Naples
Federico II, were classified according to the American College of Rheumatology Criteria
as having limited cutaneous (n = 2) or diffuse cutaneous (n = 1). The informed consent
was signed by the patients enrolled in the study. The mean age of patients was 53 y (range,
48–61 y). Clinically involved skin was defined as values of skin thickness ≥ 2, according to
the modified Rodnan skin thickness score. SSc patients admitted for the study were positive
for antinuclear antibodies with a speckled pattern evaluated by indirect immunofluores-
cence. SSc patients with diffuse cutaneous form presented anti-SCL-70 topoisomerase I
positivity, and patients with limited cutaneous SSc were positive for anticentromere (CENP-
B). SSc patients enrolled in this study had no other overlapping autoimmune, rheumatic
and/or connective tissue diseases. The punch biopsy was performed 30 days after all
patients were washed out of steroids. Control donors were matched with each SSc patient
for age, sex and biopsy site.

The protocol has been approved by the Institutional Review Board (or Ethics Commit-
tee) of Naples “Federico II” and is performed according to Good Clinical Practice guidelines
and the Declaration of Helsinki.

4.3. Cell Cultures

The BJ (human foreskin fibroblasts; ATCC accession number CRL-2522) was from
ATCC (LGC Standards, Milan, Italy) and were grown in DMEM (Life Technologies, Carls-
bad, CA, USA) with 10% FBS. BJ cells were obtained from ATCC at the 6th passage,
subcultured and frozen in stock vials; they were used between the 1st and 10th passage
in culture.

Primary skin fibroblasts isolated from punch biopsies of SSc and healthy skin were
mechanically dissociated under a light microscope and trypsinizated, as previously de-
scribed [31,48]. Cells were plated and cultured in monolayer in DMEM (Life Technologies)
supplemented with 10% heat inactivated FBS (Life Technologies), 100 U/mL penicillin G
sodium and 100 mg/mL streptomycin sulfate, at 37 ◦C, in a humidified atmosphere of 5%
CO2. Fibroblasts from both normal subjects and SSc patients were used between the 3rd
and 10th passage in culture.

4.4. Fibroblast Proliferation Assay

Human skin fibroblasts were serum-starved overnight using DMEM 0.1% BSA, plated
at 5 × 103 cells/well in 96-well plates, and incubated with cell culture medium alone
or with specific agonists, fMLF (10−8 M), uPAR84–95 (10−8 M) and WKYMVm peptide
(10−8 M), or with 10% FBS for 1, 24, 48, 72 and 144 h at 37 ◦C, 5% CO2. At the end of
the incubation, 20 µL/well CellTiter-96 was added. After incubation at 37 ◦C for 2 h, the
absorbance was determined by an ELISA reader (Bio-Rad) at a wavelength of 490 nm.

4.5. Western Blot

Cells were harvested in RIPA lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM
Na2 EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophos-
phate, 1 mM β-glycerophosphate, 1 mM Na3VO4 and 1 µg/mL leupeptin) supplemented
with a cocktail of proteases and phosphatases inhibitors. Fifty micrograms of protein
were electrophoresed on a 10% SDS-PAGE and transferred onto a polyvinylidene fluoride
membrane. The membrane was blocked with 5% nonfat dry milk and probed with specific
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antibodies: rabbit anti-phospho-c-myc (1 µg/mL), mouse anti-c-myc (1 µg/mL), rabbit
anti-ciclyn D1 (1 µg/mL) and mouse anti-actin (0.5 µg/mL). Finally, washed filters were
incubated with HRP-conjugated anti-rabbit or anti-mouse Abs. The immunoreactive bands
were detected by a chemiluminescence kit and quantified by densitometry (ChemiDoc XRS,
Bio-Rad).

4.6. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 5.0 software (GraphPad).
All the experiments were performed at least in triplicate. The results are expressed as
mean ± SEM. Values from groups were compared using a paired Student’s t-test [49].
Differences were considered significant when p < 0.05.

5. Conclusions

The dermal fibroblasts are crucial executors of wound healing, and their prolifera-
tion is a key determinant during the cascade of healing. Our results suggested that the
FPRs/uPAR axis is involved in dermal fibroblast proliferation and cell cycle progression.
The proliferation of dermal fibroblasts is dysregulated in SSc, and FPRs/uPAR targeting
may be a suitable strategy for anti-fibrotic intervention. In fact, the inhibition of FPRs/uPAR
by specific small molecules blocks dermal fibroblast proliferation. These findings will pro-
vide new targets and strategies for clinical interventions in chronic skin wounds and
fibroproliferative disease.
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