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Abstract: Cancer cells exhibit high levels of oxidative stress and consequently require a high amount
of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates
the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is
reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT
expression is under the control of stress-inducing conditions and of several transcription factors, such
as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces
chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the
nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists
with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and
the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH
oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimu-
lation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation
of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and
(iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate
that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identify-
ing a novel regulative pathway of the cystine/glutamate antiport that represents a new potential
therapeutical target for the treatment of human cancers.

Keywords: formyl-peptide receptor 2; NADPH oxidase; SLC7A11/xCT; glutathione; lipid
peroxidation; NRF2

1. Introduction

Due to their impaired metabolism, cancer cells exhibit enhanced demand and con-
sumption of amino acids [1]. Particularly relevant in tumor cells is the requirement for
cysteine, an amino acid essential not only in protein synthesis but also in the biosynthesis
of reduced glutathione (GSH), which plays a key role in antioxidant defenses [2]. Cancer
cells exhibit high levels of oxidative stress and, consequently, require a high demand for
cysteine from the extracellular space to provide GSH synthesis [3]. However, extracellular
cysteine is unstable and is quickly converted into cystine, which has an extracellular space
concentration higher than cysteine [4]. Therefore, cancer cells import extracellular cystine,
which is reduced to cysteine through a cytosolic NADPH-consuming reaction, which is, in
turn, used for GSH synthesis.

Cancer cells show increased expression of various cell surface amino acid trans-
porters [5], including the Solute Carrier Family 7 Member 11 (SLC7A11). SLC7A11, or xCT,
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is the light chain subunit of system xc
−, a sodium-independent, chloride-dependent plasma

membrane antiporter that mediates the cystine cellular uptake in exchange for intracellular
glutamate at a molar ratio of 1:1 [6,7]. It contains 12 transmembrane domains [8], and in
humans, the SLC7A11 gene is located on chromosome 4. SLC7A11/xCT expression is under
the control of stress-inducing conditions, such as hypoxia and metabolic stress, which
regulate the activity of several transcription factors, including nuclear factor erythroid
2-related factor 2 (NRF2) and activating transcription factor 4 (ATF4) [9,10]. Therefore,
the increased expression of SLC7A11/xCT on cancer cell surfaces enhances the uptake of
cystine for intracellular GSH synthesis [11,12].

SLC7A11/xCT is primarily expressed in the brain [13] and plays functional roles
in the pathophysiology of cancer and other diseases such as cardiovascular [14,15] and
neurodegenerative [16] disease. Glioma cancer cells release high amounts of glutamate
in the brain [17,18], suggesting the activation of the xCT system and the generation of a
glutamate-rich microenvironment, which has a significant impact on the proliferation and
matrix invasion of these cells [19]. In several tumors, SLC7A11 overexpression is associated
with poor prognosis and drug resistance [8,20–22].

Formyl-peptide receptors (FPRs) are G protein-coupled receptors (GPCR) that trans-
duce chemotactic signals and mediate either inflammatory or anti-inflammatory responses,
including cell adhesion, directed migration, and NADPH oxidase (NOX)-dependent su-
peroxide production [23]. FPR2, a member of this family, is expressed on cellular and
nuclear membranes of several cell types [24,25]. The repertoire of FPR2 ligands includes
non-formylated peptides, synthetic small molecules, such as WKYMVm peptide [26,27],
Annexin A1 (ANXA1) with anti-inflammatory activities [28,29], and Lipoxin A4 (LXA4), a
metabolite of arachidonic acid with dual anti-inflammatory and pro-resolving effects [28,30].
FPR2 can modulate pro- or anti-inflammatory responses according to the nature of its lig-
ands and/or FPR2 binding with other FPR isoforms [31].

The activation of several kinases [32,33], phosphorylation of signaling and non-
signaling proteins [26,34], and NOX-dependent generation of reactive oxygen species
(ROS) [25,29,35] are part of the downstream effects of the intracellular signaling cascades
triggered by FPR2. NOXs are cell membrane-associated complexes that generate ROS
as their primary function [36,37]. They include seven isoforms: NOX1-5 and dual oxi-
dase (DUOX) 1–2, which have similarities in both structure and enzyme function. NOXs
are expressed in a cell- or tissue-specific manner and are activated by specific mecha-
nisms and regulatory subunits. NOX2 is the most widely distributed NOX isoform in hu-
mans [36]. p22phox is a membrane partner protein and is required for NOX2 activation [38].
Other cytosolic partner proteins include RAC1, p67phox/NOX activator 1 (NOXA1), and
p47phox/NOX organizer 1 (NOXO1). The activation of NOX2 requires the phosphorylation
of p47phox, which interacts with p22phox and translocates on the membrane with other
cytosolic subunits [36]. The fully assembled NOX2 complex generates O2

−. through the
transfer of an electron from NADPH in the cytosol to molecular oxygen in the extracellular
space [39].

FPR-mediated NOX-dependent ROS production acts as a second messenger in the molecu-
lar mechanisms responsible for tyrosine kinase receptor (TKR) transactivation and, in turn, in
the activation of specific TKR-dependent intracellular signaling pathways [27,40–42].

Previously, in a phospho-proteomic analysis, we demonstrated that FPR2 stimulation
of the human CaLu-6 epithelial carcinoma cell line induced the redox-regulated phospho-
rylation of several proteins involved in cellular primary metabolism [26,34]. Furthermore,
by a metabolomic approach, we demonstrated that the metabolic pathways of glucose, glu-
tamine, and pyrimidine nucleotides are activated in FPR2-stimulated CaLu-6 cells [40,43].
Herein, we analyze the metabolic fate of glutamate in WKYMVm- and ANXA1-stimulated
cells and prove the redox-regulated activation of SLC7A11/xCT antiporter.
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2. Materials and Methods
2.1. Cell Cultures and Reagents

Anaplastic lung cancer CaLu-6 cells and HCT 116 human colon cancer cells (ATTC,
Manassas, VA, USA) were grown in Dulbecco’s modified Eagle medium (DMEM), com-
pleted with 10% fetal bovine serum (FBS) (Invitrogen Corp., Carlsbad, CA, USA) at 37 ◦C
and 5% CO2 until 70% confluency and serum-starved for 24 h. Serum-deprived CaLu-6
cells were exposed or not to 10 µM WKYMVm (Primm, Milan, Italy) or 10 nM annexin A1
(ANXA1) (Bio-Techne, Minneapolis, MN, USA) at different times. In other experiments,
cells were pretreated with 10 µM WRWWWW (WRW4) (Primm, Milan, Italy) for 15 min or
100 µM apocynin (Sigma Chemical, St. Louis, MO, USA) for 2 h before the incubation with
WKYMVm or ANXA1.

2.2. p22phoxCrispr/Cas9 Double-Nickase CaLu-6 Cells

p22phoxCrispr/Cas9 cells were created as previously described [40]. CaLu-6 cells
were transfected with a Double Nickase Plasmid or a negative control double Nickase
Plasmid (Santa Cruz Biotechnology, Irvine, CA, USA). p22phoxCrispr/Cas9 and negative
control clones were selected for puromycin and p22phox expression was tested by Western
blotting [39]. p22phox knockout and p22phox negative control clones were collected to
obtain p22phoxCrispr/Cas9 and negative control CaLu-6 cells.

2.3. Protein Extraction and Western Blot

Whole protein lysates were obtained as described elsewhere [44] by incubating the cells
with ice-cold RIPA buffer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA,
0.25% sodium deoxycholate, 1 mM NaF, 10 µM Na3VO4, 1 mM phenylmethylsulfonylflu-
oride, 10 µg/mL aprotinin, 10 µg/mL pepstatin, 10 µg/mL leupeptin). Nuclear protein
purification was performed with a Qproteome kit (Qiagen, Hiden, Germany) following the
manufacturer’s instructions.

Bradford protein assay was used to determine protein concentration (BioRAD, Her-
cules, CA, USA). Western blot analysis was performed as previously described [44]. Anti-
xCT/SLC7A11 was from Cell Signalling Technology (Danvers, MA, USA). Anti-NRF2,
anti-LAP2, anti-GAPDH, anti-tubulin were purchased from Santa Cruz Biotechnology
(Irvine, CA, USA). All primary antibodies were diluted 1:1000 v/v.

The protein bands were visualized by enhanced chemiluminescence reagent (Amer-
sham Biosciences, Little Chalfont, Buckinghamshire, UK) and quantified by densitomet-
ric analysis (Chemidoc, Bio-Rad, Hercules, CA, USA). Full blots are available in the
Supplementary Materials (Supplementary Figures S2–S6).

Each experiment and densitometric quantification were separately repeated at least
three times.

2.4. Glutathione Assay

Glutathione Assay Kit (Sigma Chemical, St. Louis, MO, USA) was used to measure
total glutathione according to manufacturer’s instructions. Briefly, for each experimental
point, 2 × 106 cells were washed in cold phosphate buffer saline (PBS) and lysed in 200 µL
of cold buffer containing 50 mM phosphate, pH 7, and 1 mM EDTA. Lysate samples were
deproteinated with a 5% (by weight) meta-phosphoric acid solution (MPA Reagent) in
purified water and incubated with working reagent solution. The optical density (OD) of
each sample was read at 412 nm at zero and after 10 min.

2.5. Lipid Peroxidation Assay

Lipid peroxidation was evaluated with Image-iT® Lipid peroxidation Kit (Invitrogen,
Carlsbad, CA, USA) following manufactures instructions. Briefly, 2 × 104 cells were plated
on µ-Slide 8 wells (Ibidi GmbH, Gräfelfing, Germany), and the day after were exposed or
not to 10 mM WKYMVm or 10 nM ANXA1 for 3, 6, or 12 h before the incubation for 2 h with
100 mM cumene hydroperoxide to induce lipid peroxidation. Untreated cells were used
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as a negative control, whereas exposure to cumene hydroperoxide was used as a positive
control (PMID: 31901729). Thirty minutes before the conclusion of cell treatments, cells
were incubated with 10 mM Image-iT® Lipid Peroxidation Sensor, which is 581/591 nm
C11 reagent and is a sensitive fluorescent report for lipid peroxidation. Nuclei staining
was performed by incubating cells with Hoechst 33343 (Invitrogen, Carlsbad, CA, USA).
Z-slice images were acquired with a Leica Thunder Imaging System (Leica Microsystems,
Wetzlar, Germany) equipped with a LEICA DFC9000 GTC camera, Lumencor fluorescence
LED light source, and 63× oil immersion objective. ImageJ software Version 1.53 was used
for the quantitative fluorescence ratio analysis of green signals at 527 nm (representing
peroxidized lipids)/red signals at 590 nm (representing non-peroxidized lipids).

2.6. Immunofluorescence

CaLu-6 cells were fixed with phosphate buffer containing 4% (w/v) paraformaldehyde
for 30 min at Room Temperature (RT), then blocked and permeabilized with 5% (w/v) BSA,
0.2% (v/v) Triton X-100 (Sigma, Saint Louis, MO, USA) and 10% (v/v) FBS in PBS for 30 min
at RT. Then, cells were stained with primary NRF2 antibody (1:200) (H-300 sc-130332, Santa
Cruz) and anti-rabbit Alexa Fluo 488-conjugated secondary antibody (1:200) (Invitrogen,
Carlsbad, CA, USA). Nuclei staining was performed by incubating cells with Hoechst 33342
(Bio-Rad Laboratories). Immunofluorescence was analyzed by Leica Thunder Imaging
System (Leica Microsystems, Wetzlar, Germany) equipped with a LEICA DFC9000 GTC
camera and Lumencor fluorescence LED light source. Z-slice images were acquired using
63× oil immersion objective.

2.7. Statistical Analysis

Data are shown as means ± SEM. Differences between groups were assessed for statis-
tical significance using the one-way analysis of variance (ANOVA) and then determined
with the least significant difference test. Data were considered statistically significant with
p < 0.05.

3. Results and Discussion
3.1. FPR2 Agonists Induce SLC7A11/xCT Expression in CaLu-6 Cells

A metabolomic analysis performed in FPR2-stimulated CaLu-6 cells revealed enhanced
concentrations of glutamine and glutamate [43]. Glutamate can derive from glutamine
through a reaction catalyzed by glutaminase, and, accordingly, we previously demonstrated
that the glutamine transporter ASCT2 is up-regulated in FPR2-stimulated CaLu-6 cells
and that ASCT2 over-expression correlates with an increased uptake of glutamine [43].
Glutamate dehydrogenase catalyzes the NAD(P)H-dependent conversion of glutamate
in α-ketoglutarate, the most important carbon source in the tricarboxylic acid cycle [45].
Therefore, glutamate represents a crucial player in cancer cells characterized by rapid
proliferation and high metabolism rate [46]. Glutamate also participates in the biosynthesis
of GSH, a tripeptide composed of cysteine, glycine, and γ-linked glutamate [2], which is
involved in the maintenance of redox homeostasis.

In normal cells, de novo synthesis of cysteine can cope with the GSH biosynthetic
demand; on the contrary, since high levels of oxidative stress are detectable in cancer
cells, biosynthesis or catabolic supply of cysteine resulting from protein degradation is
insufficient to meet the demand for antioxidant defense systems [47].

Since SLC7A11/xCT represents the major regulator of metabolic reprogramming in
cancer cells that depend on extracellular cystine for survival [48], we analyzed its expression
in FPR2-stimulated CaLu-6 cells. We observed that both WKYMVm and ANXA1 induce a
time-regulated overexpression of SLC7A11/xCT (Figure 1A,C), which was prevented by
preincubation with WRWWWW peptide (WRW4), an FPR2 antagonist (Figure 1B,D). The
time course was different for the two FPR2 agonists. Cells exposed to WKYMVm showed
a maximum expression of SLC7A11/xCT after 12 h (Figure 1A), whereas in ANXA1-
stimulated CaLu-6 cells, maximum expression of SLC7A11/xCT was detectable after 6 h
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(Figure 1C). The different behavior of the two agonists reflects the promiscuity of FPR2,
which is activated by a large number of ligands and thus is subjected to different conforma-
tional changes upon ligand binding [49]. Consistently, we observed both WKYMVm- and
ANXA1-time regulated increase of SLC7A11/xCT expression in HCT 116 human colon
cancer cells (Supplementary Figure S1), which constitutively express FPR2 [50,51].
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Figure 1. Formyl-peptide receptor 2 (FPR2) stimulation promotes SLC7A11/xCT expression. CaLu-6
cells were serum-starved for 24 h and then stimulated for 1, 6, 12, or 24 h with WKYMVm (A)
or ANXA1 (C) or preincubated for 15 min with WRWWWW (WRW4) before the stimulation with
WKYMVm for 12 h (B) or ANXA1 for 6 h (D). Fifty-five micrograms of whole lysates were resolved
on 10% SDS-PAGE and incubated with an anti-SLC7A11/xCT (α-SLC7A11/xCT) antibody. An
anti-tubulin (α-tubulin) antibody was used as a control of protein loading. Data are representative
of 4 different experiments. * p < 0.05 compared to unstimulated cells. § p < 0.05 compared to
stimulated cells.
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3.2. FPR2-Dependent SLC7A11/xCT Expression Requires a Functional NADPH Oxidase

Cancer cells aberrantly reprogram several metabolic pathways to adapt themselves to
environmental changes and to support the high-energy demands, thus promoting survival
and proliferation. Metabolic reprogramming rewires resources for survival and allows can-
cer cells to maintain a reduction–oxidation balance [52]. The improved energy metabolism
that supports the enhanced proliferation rate further increases oxidative stress [53]. ROS
can be beneficial at low levels in the promotion of cellular signaling and in the mainte-
nance of cellular homeostasis [54]. In tumor cells, an enhanced production of ROS, or
dysregulation of ROS levels, results in oxidative stress, which can contribute to cancer
initiation and progression [55–57]. High levels of ROS concentration induce cell death by
DNA damage. Cells developed different antioxidant defense mechanisms to neutralize
ROS and thus maintain redox balance in eukaryotic cells. While in the cytosol, a reducing
environment is generally preserved, the extracellular environment is highly oxidizing.
SLC7A11/xCT maintains the cystine/cysteine redox cycle across the cell membrane to
regulate oxidative stress in the tumor microenvironment [58]. Residual cysteine from GSH
synthesis is exported and quickly oxidized to cystine. Extracellular cystine is continuously
imported by SLC7A11/xCT, thus generating the cystine/cysteine redox cycle, resulting
in a reduced extracellular environment that promotes the growth and survival of cancer
cells [59]. Other efficient antioxidant cellular defense systems include non-thiol-dependent,
such as superoxide dismutase and catalase enzymes, and thiol-dependent antioxidant sys-
tems that include the thioredoxin (Trx) system, which acts through its disulfide reductase
activity [60–63].

Several diseases, including cancer, depend on the aberrant activation and/or ex-
pression of NOXs, which play a key role in the regulation of the metabolism of can-
cer [40,43,64,65]. Previously, we demonstrated that in non-phagocytic cells, FPR2 stim-
ulation triggers ERK-, PKCα-, and PKCδ-dependent p47phox phosphorylation and NOX
activation [25,66]. Therefore, we analyzed the role of ROS generated by NOX in the FPR2-
dependent SLC7A11/xCT overexpression. CaLu-6 cells were preincubated with apocynin,
a reversible inhibitor of NOX activity that hampers the assembly of the p47phox subunit
with the membrane complex [67], and then stimulated with the FPR2 agonists. Obtained
results show that either WKYMVm- or ANXA1-dependent SLC7A11/xCT expression was
prevented by blocking NOX functions (Figure 2A,C). By CRISPR/Cas9-based genome
editing, we generated a Calu-6 cell line expressing a non-functional form of p22phox, a
membrane partner of NOX (p22phoxCrispr/Cas9) [29] and, consistently, we observed that in
these cells, the ability of WKYMVm and ANXA1 to induce SLC7A11/xCT expression was
prevented (Figure 2B,D).

Taken together, these results prove that FPR2-dependent SLC7A11/xCT expression
requires a functional NADPH oxidase.

3.3. WKYMVm and ANXA1 Stimulation Induces the Synthesis of Glutathione

GSH and Trx systems depend on NADPH for their reducing power. Interestingly,
NADPH is also the substrate of NOXs and a regulator of their enzyme activity [68]. NADPH
derives from the metabolism of glucose through the pentose phosphate pathway (PPP),
where glucose-6-phosphate dehydrogenase represents the rate-limiting enzyme [69]. Previ-
ously, we demonstrated that FPR2 stimulation by WKYMVm or ANXA1 promotes NADPH
production and activates the non-oxidative phase of PPP [43].

SLC7A11/xCT imports extracellular cystine in exchange for intracellular glutamate.
Cysteine is further utilized to synthesize GSH through a two-step process that first pro-
duces γ-glutamylcysteine from cysteine and glutamate by γ-glutamylcysteine synthetase,
then GSH from γ-glutamylcysteine by glutathione synthetase [8,70,71]. We previously
demonstrated that ASCT2 transporter expression is up-regulated in FPR2-stimulated cells
and is correlated to an increased uptake of glutamine [43]. Therefore, glutamate needed for
GSH synthesis can be derived by glutamine through a reaction catalyzed by glutaminase.
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Figure 2. Formyl-peptide receptor 2 (FPR2)-induced SLC7A11/xCT expression depends on NADPH
oxidase activity. Serum-starved CaLu-6 cells were pretreated with apocynin (A,C) and then stimulated
with WKYMVm (A) or ANXA1 (C). CaLu-6-controlCrispr/Cas9 cells (CTR) and p22phoxCrispr/Cas9

(p22phoxCrispr) cells were serum-starved for 24 h and then stimulated with WKYMVm (B) or ANXA1
(D). Fifty-five micrograms of whole lysates were resolved on 10% SDS-PAGE and incubated with an
anti-SLC7A11/xCT (α-SLC7A11/xCT) antibody. An anti-tubulin (α-tubulin) antibody was used as a
control of protein loading. Data are representative of 3 different experiments. * p < 0.05 compared to
unstimulated cells. § p < 0.05 compared to stimulated cells.

We measured total glutathione in FPR2-stimulated cells and observed that both
WKYMVm and ANXA1 induce a time-dependent increase of glutathione concentration
(Figure 3A,C), which was prevented by the FPR2 antagonist WRW4 (Figure 3B,D). In
WKYMVm- and ANXA1-stimulated cells, the maximum glutathione concentration is de-
tectable after 12 h and 6 h, respectively (Figure 3A,C) and correlates with the maximum
expression of SLC7A11/xCT induced by the two agonists (Figure 1A,C). FPR2-dependent
enhanced concentration of glutathione strictly depends on receptor stimulation since prein-
cubation with WRW4 prevents glutathione synthesis (Figure 3B,D).
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Figure 3. WKYMVm and ANXA1 promote an increase in total glutathione levels. Serum-starved
CaLu-6 cells were stimulated with WKYMVm (A) or ANXA1 (C), and total glutathione was measured
according to manufacturer’s instruction. Cells were also preincubated for 15 min with WRWWWW
(WRW4) and then stimulated with WKYMVm (B) or ANXA1 (D). Data are representative of 3 different
experiments. * p < 0.05 compared to unstimulated cells. § p < 0.05 compared to stimulated cells.

3.4. Lipid Peroxidation Is Prevented in FPR2-Stimulated CaLu-6 Cells

Membrane polyunsaturated fatty acid phospholipids (PUFA-PLs) are susceptible to
peroxidation due to the presence of weak C-H bonds [72]. Non-enzymatic lipid perox-
idation starts when an ·OH mediates the remotion of a bisallylic hydrogen atom from
PUFA-PLs, resulting in the production of a PL radical (PL·). The peroxyl radical (PLOO·) is
generated when PL· reacts with molecular oxygen. PLOO· then removes hydrogen from
another PUFA and creates PL hydroperoxides (PLOOH). PLOOH production is propagated
by lipid free radicals, primarily PLOO· and alkoxyl PL radicals (PLO·), reacting with PUFA-
PLs [73]. This process results in the accumulation of dangerous lipid peroxides, which have
an impact on the disruption of plasma membrane integrity and organelle membranes [74].

In the enzymatical lipid peroxidation process, several nonheme iron dioxygenases,
such as lipoxygenases (LOXs), prostaglandin synthase 2/cyclooxygenase 2, and cytochrome
P450 reductase, oxidize PUFA-PLs into PLOOH through their catalytic activities [75]. Long-
chain saturated fatty acids (SFA) are another target of lipid peroxidation. The peroxisomal
enzyme fatty acyl-CoA reductase 1 reduces SFA to fatty alcohols, which are incorporated
into the sn-1 position of PUFA-PLs, generating polyunsaturated ether phospholipids which
can be hyperoxidized [14,76].

PUFA oxidation increases when GSH in cells is exhausted [77], proving that it strictly
depends on GSH concentration. Since SLC7A11/xCT antiporter provides cysteine for GSH
synthesis, its inactivation potently induces lipid peroxidation, and conversely, its overex-
pression in cancer cells promotes GSH biosynthesis and prevents lipid peroxidation [4].
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Since we found that, in CaLu-6 cells, FPR2 stimulation with two different agonists
induced SLC7A11/xCT overexpression (Figure 1) and increased glutathione concentration
(Figure 3), we also analyzed lipid peroxidation and showed that either WKYMVm or
ANXA1 prevented time-dependent lipid peroxidation induced by cumene hydroperoxide
(Figure 4A,B).

3.5. Nuclear Translocation of NRF2 Depends on FPR2 Stimulation

SLC7A11/xCT expression can be modulated by hypoxia, amino acid starvation,
metabolic stress, genotoxic stress, and other stress-inducing conditions, but the main
molecular mechanism of control is transcriptional regulation. NRF2 and ATF4 are two tran-
scription factors that regulate stress-induced SLC7A11/xCT transcription [78,79]. Kelch-like
ECH-associated protein (KEAP1) acts as a cytoplasmic repressor of the NRF2 oxidative
responsive transcription factor. Under normal physiological conditions, NRF2 is inhibited
by binding to KEAP1 and degraded in the proteasome. In cellular stress conditions, the
proteasomal degradation of NRF2 is hampered, leading to its stabilization and nuclear
translocation. In the nucleus, NRF2 heterodimerizes with an array of transcriptional regu-
latory proteins, such as Jun and Fos, and interacts with antioxidant response cis-elements
(AREs) located within promoter regions regulating SLC7A11/xCT transcription [80]. NRF2
overexpression enhances SLC7A11/xCT levels, resulting in increased GSH biosynthesis
and in the protection of cells from oxidative damage [16]. The transcription of several other
antioxidant response-associated target genes, such as NADPH-generating enzyme genes, is
also regulated by NRF2 [81].

ATF4 binds to cis-response elements located in promoter regions of the SLC7A11/xCT
gene, allowing the cells to adapt and respond to stress [82]. NRF2 and ATF4 can interact and
regulate SLC7A11/xCT expression cooperatively [82]. In addition to the transcriptional reg-
ulation, SLC7A11/xCT is also regulated through post-transcriptional or post-translational
mechanisms, protein–protein interactions, and transporter activity [8,83].
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Figure 4. Incubation with WKYMVm or ANXA1 protects CaLu-6 cells from lipid peroxidation.
Serum-starved CaLu-6 cells (untreated) were exposed for 3, 6, or 12 h (hrs) to WKYMVm (A) or
ANXA1 (B) before the incubation for 2 h with 100 µM cumene hydroperoxide (cumene). Cells
were stained with BODIPY 581/591 C11 fluorescent reporter for lipid peroxidation; the reagent
shifted the fluorescence emission peak from 590 nm (red) to 510 nm (green). Nuclei of live cells
were stained with Hoechst 33342 (blue). Quantitative fluorescence analysis is reported as the ratio
of red signal at 590 nm (representing non-peroxidized lipids)/green signal at 510 nm (representing
peroxidized lipids). Figures show representative fluorescence merged images of lipid peroxidation.
Scale bar = 100 µm. All data are representative of three independent experiments. * p < 0.05 compared
to cumene hydroperoxide (cumene) treated cells.

In Western blot experiments, we observed a time-dependent increase of nuclear NRF2
in either WKYMVm- or ANXA1-stimulated CaLu-6 cells (Figure 5A,C). Furthermore, the
preincubation WRW4 prevents NRF2 nuclear translocation (Figure 5B,D). Consistently,
also immunofluorescence assays revealed FPR2-dependent NRF2 nuclear translocation
upon WKYMVm (Figure 6) and ANXA1 (Figure 7) stimulation. Similarly, in ARPE-19 cells,
LXA4, which exerts its anti-inflammatory, pro-resolving, and antioxidant effects by binding
to FPR2 [84], ameliorates NRF2 nuclear translocation and its DNA-binding activity [85].
Resolvin D1 (RvD1) also promotes inflammation resolution by binding to FPR2 [86], but
its effects on NRF2 and NOX-dependent ROS generation are different. RvD1-mediated
protection is mediated by inhibition of assembly of the NOX2 complex via prevention of
p47phox phosphorylation, lipid peroxidation, and NRF2 translocation [87].
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Figure 5. Formyl-peptide receptor 2 (FPR2) stimulation promotes NRF2 nuclear translocation. Serum-
starved CaLu-6 cells were stimulated for the indicated times with WKYMVm (A) or ANXA1 (C) in
the presence or absence of WRWWWW (WRW4) (B,D). Fifty micrograms of nuclear lysates were
resolved on 10% SDS-PAGE and probed with an anti-NRF2 antibody (α-NRF2). An anti-LAP2 (α-
LAP2) antibody was used as a control of protein loading. Fifty micrograms of a cytosolic fraction
(Cyto.) was loaded, and an anti-GAPDH antibody (α-GAPDH) was used as a control of cytosolic
proteins. Data are representative of 3 different experiments. * p < 0.05 compared to unstimulated cells.
§ p < 0.05 compared to stimulated cells.
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Figure 6. WKYMVm promotes formyl-peptide receptor 2 (FPR2)-dependent NRF2 nuclear transloca-
tion. Nuclear localization of NRF2 in WKYMVm-stimulated cells was detected by using immunofluo-
rescence staining. Cells were serum-deprived for 24 h and then incubated with WKYMVm for the
indicated times in the presence or absence of an FPR2 antagonist. Incubation for 2 h with 200 mM
diethyl maleate (DEM) was used as a positive control of NRF2 nuclear translocation. Cells were
incubated with an anti-NRF2 primary antibody followed by incubation with an anti-rabbit Alexa
Fluo 488-conjugated secondary antibody (NRF2, green signal). To visualize vital nuclei, cells were
also incubated with Hoechst 33342 (blue signal). Images were captured and merged using the Leica
Thunder Imaging System (merge). Data are representative of 4 different experiments.
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Figure 7. Annexin A1 (ANXA1) enhances NRF2 nuclear translocation in a formyl-peptide receptor
2 (FPR2)-dependent manner. Immunofluorescence staining of CaLu-6 cells exposed to ANXA1.
Serum-starved cells were stimulated with ANXA1 for the indicated times in the presence or absence
of WRW4. Incubation for 2 h with 200 mM diethyl maleate (DEM) was used as a positive control of
NRF2 nuclear translocation. Cells were incubated with an anti-NRF2 primary antibody followed by
incubation with an anti-rabbit Alexa Fluo 488-conjugated secondary antibody (NRF2, green signal).
To visualize vital nuclei, cells were also incubated with Hoechst 33342 (blue signal). Images were
captured and merged using the Leica Thunder Imaging System (merge). Data are representative of
4 different experiments.
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4. Conclusions

The process of tumorigenesis is largely driven by metabolic reprogramming. A sig-
nificant alteration in metabolic pathways leads to metabolic rewiring and upregulation of
the production of ROS in tumor cells. Therefore, understanding the mechanisms behind
these metabolic changes and ROS production may hold crucial implications for the devel-
opment of effective cancer therapies. Cellular stress conditions are responsible for NRF2
heterodimerization and its interaction with ARE cis-elements. The observation reported in
this study, that FPR2 signaling triggers NRF2 activation, leads to the question of how many
and which genes are NRF2-regulated upon FPR2 stimulation. The identification of these
genes could reflect new potential targets for therapies for human cancers. In this study,
we have not focused on FPR2-dependent NRF2-regulated genes, and further studies are
required for their identification. Oxidative stress is also responsible for the accumulation of
peroxided lipids, which are involved in ferroptosis processes. Ferroptosis is iron-dependent
cell death, different from apoptosis, necrosis, autophagy, and other forms of cell death [88].
Our results show that FPR2 signaling prevents lipid peroxidation. However, we did not
investigate ferroptosis processes in FPR2-stimulated CaLu-6 cells.

Cancer metabolism is characterized by the deregulated uptake of amino acids that
arises from a complex interplay between signaling pathways and transporters compared to
adjacent normal tissue tumors showing high expression of several members of the amino
acid transporters family, which is associated with tumor progression, clinical outcome,
and treatment resistance. While significant attention has been given to the functional
characterization of amino acid transporters in various human malignancies, research on
their potential use as molecular biomarkers and therapeutic targets is still in its early stages.
Therapeutic targeting of amino acid transporters is difficult since tumors often activate
survival mechanisms, such as autophagy, when amino acid levels are low to overcome nu-
trient stress. However, inhibiting amino acid uptake can enhance cell death and sensitivity
to conventional cancer treatments, especially in autophagy-deficient tumor cells. Although
several preclinical methods could potentially inhibit amino acid transporters, none of them
have been tested in clinical trials yet.

SLC7A11/xCT is highly expressed in a variety of tumors, and this correlates with
the proliferation, invasion, metastasis, and drug resistance of cancer. This antiporter is
an attractive target for anti-cancer therapy due to its role in GSH synthesis. Although the
targeted therapy of tumors with SLC7A11/xCT has been investigated [22,52], many obser-
vations indicate that inhibitors of this antiport lack specificity and that several associated
side effects may limit their functions. Consequently, the identification of extremely suc-
cessful and specific SLC7A11/xCT inhibitors is of great relief for the development of new
drugs for the treatment of tumors. In this context, the observation that FPR2 agonists and
NOX modulate SLC7A11/xCT expression and activity provides alternative possibilities to
control the cystine/glutamate antiport and thus to develop new therapeutical strategies for
the treatment of human cancers.
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