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Abstract Transpiration, a process by which plants extract water from soil and trans-
mit it to the atmosphere, is a vital (yet least quantified) component of the hydrological
cycle. We propose a root-scale model of water uptake, which is based on first princi-
ples, i.e. employs the generally accepted Richards equation to describe water flow in
partially saturated porous media (both in a root and the ambient soil) and makes no
assumptions about the kinematic structure of flow in a root-soil continuum. Using the
Gardner (exponential) constitutive relation to represent the relative hydraulic conduc-
tivities in the Richards equations and treating the root as a cylinder, we use a matched
asymptotic expansion technique to derive approximate solutions for transpiration rate
and the size of a plant capture zone. These solutions are valid for roots whose size
is larger than the macroscopic capillary length of a host soil. For given hydraulic
properties, the perturbation parameter used in our analysis relates a root’s size to the
macroscopic capillary length of the ambient soil. This parameter determines the width
of a boundary layer surrounding the soil-root interface, within which flow is strictly
horizontal (perpendicular to the root). Our analysis provides a theoretical justification
for the standard root-scale cylindrical flow model of plant transpiration that imposes
a number of kinematic constraints on water flow in a root-soil continuum.
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1 Introduction

Transpiration is widely recognized to be a fundamental component of the hydrological
cycle. It is also one of the least quantified, typically relying on empirical constitutive
laws (e.g. Green et al. 2006). Fluid mechanics of transpiration involves coupled non-
linear flows in two adjacent media, a root system and an ambient soil (see the compre-
hensive reviews by Rand 1983; Passioura 1988; Green et al. 2006). These flows can
be described by the Richards equation (e.g. Warrick 2003; Sperry et al. 2002),

∂θ

∂t
= −∇ · q, q = −K(ψ)∇�, (1)

where θ ≡ θ(x, t) is the volumetric water content of a medium, K ≡ K(ψ) is the
hydraulic conductivity tensor,q(x, t) is themacroscopicDarcy flux,�(x, t) is the total
hydraulic head, and a constitutive law (retention curve) relates the two state variables θ

and�. The hydraulic head of water in a soil,� = ψ + z, consists of the pressure head
(also known as matric potential or suction) ψ = pw/γw (with pw and γw denoting
the pressure and the specific weight of water, respectively) and the elevation head z.
Pressure head in partially saturated media is less than atmospheric pressure head, i.e.
ψ < 0.

In roots, the gradient of osmotic tension π can act as an additional force (Fiscus
1975), giving rise to � = ψ + z − σπ where σ is a reflection coefficient for solutes.
However, it has long been argued (e.g. Fiscus 1975; Passioura 1988) that its influence
during periods of active transpiration is negligible because soil water is usually diluted
(Weatherley 1982). Following Roose and Fowler (2004a), Roose and Fowler (2004b),
Schneider et al. (2010) and many others, we assume that σπ � ψ + z, i.e. define the
total hydraulic head of water throughout a soil-root system as � = ψ + z. This is
appropriate for transpiration of low-salinity soil water (Green et al. 2006).

While a plethora of well-established constitutive laws and measurement techniques
can be used to describe the pressure-dependent hydraulic conductivity of soils K (ψ)

(e.g. Warrick 2003), practical limitations of dealing with live plants render in situ
determination of K (ψ) for roots more problematic (Steudle 2000). Generally, the root
conductivity depends on plant species, their age, and temperature (Lopez and Nobel
1991; Tsuda and Tyree 2000, and the references therein ). Germane to this study is
an experimental observation (ibid) that root conductivities decrease in drying soils,
causing reduction in the water flux through a root.

Modern quantitative understanding of water uptake by roots dates back to 1950–
60s mesoscopic models, which (1) treat a root as an infinite cylinder (of radius r0)
embedded in an infinite soil cylinder (of radius r1, such that r0 � r1); (2) assume that
flow from the soil into the root is strictly horizontal, i.e. employ the one-dimensional
(in the radial direction) version of (1) to model flow in the soil shell r0 < r < r1;
(3) suppose that the horizontal flow is driven by the difference in matric potentials
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Flow at the soil-root interface 1647

ψ0 and ψ1 at the boundaries r = r0 and r = r1, respectively; and (4) impose either
a given flux (for constant rate of uptake) or a given saturation (for falling rate of
uptake) at the root-soil interface r = r0 (Raats 2007, and the references therein ). A
key finding of these models is that water uptake at both meso- and macro-scales is
linearly proportional to the head difference �1 − �0 (Throughout this study we use
Raat’s definition of scales: “At the mesoscopic scale, uptake of water is represented
by a flux at the soil-root interface, while at the macroscopic scale it is represented by a
sink term in the volumetric mass balance.”). This result underpins more sophisticated
numerical models of plant transpiration and root water uptake (Roose and Fowler
2004a, b; Jong-van-Lier et al. 2006; Metselaar and Jong-van-Lier 2007; Javaux et al.
2008; Schneider et al. 2010; Couvreur et al. 2012).

We propose a root-scale analytical model, which either relaxes or eliminates the
assumptions mentioned above. Instead of using an infinite cylinder to conceptualize a
root, it imposes geometric and hydraulic constraints on its length. Our model does not
postulate the existence of a soil cylinder with a known and spatially constant hydraulic
head prescribed on its surface, and accounts for the vertical component of flow velocity
in both the root and the soil. It uses measurable hydraulic quantities (infiltration rate
and root-system suction) as input parameters, and enforces fundamental conservation
laws at the root-soil interface. In Sect. 2, we formulate a mathematical model of water
flow in soil-root systems and discuss its assumptions and limitations. In Sect. 3, we
employmatched asymptotic expansions to derive an analytical solution to this problem.
Its physical implications are discussed in Sect. 4. Salient features of our analysis are
summarized in Sect. 5.

2 Problem formulation

2.1 Flow domain

A root system of a typical plant is geometrically complex, forming non-uniform
branching networks. The analysis presented below explores kinematic underpinnings
of the commonly used “cylindrical flow model” formulated as follows (Passioura
1988),

“Despite the fact that root systems are branched, that the catchments of individ-
ual roots overlap in geometrically complicated ways, and that roots growing in
real soil are typically not cylindrical because they must weave their ways past
obstructions and often have to conform to the shapes of the pores within which
they are growing, this model [water flowing radially towards a cylindrical, essen-
tially isolated, root] remains useful. It can be extended to complete root systems,
despite their complexity, by means of the simple but effective stratagem of imag-
ining that each root has exclusive access to a cylinder of soil whose outer radius,
Reff , is half the average distance between roots. Radius Reff can be calculated
as Reff = 1/

√
πρav, where ρav is the average rooting density, the length of root

in unit volume of soil.”

From the outset, it is important to recognize that what Passioura (1988) and much of
the subsequent literature on the subject call “the cylindrical flow model” refers not
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Fig. 1 Sketch of the water uptake induced by plant transpiration: a root system and its conceptualization
with a single cylindrical root of radius R and length L . The vadose zone of thickness B separates the soil
surface from the water table. Constant infiltration rate q is prescribed at the soil surface

only to root geometry but also to the flow configuration, in which water flows “radially
in response to gradients in pressure, towards a cylindrical, essentially isolated, root”.

We generalize the classical cylinder flow model by obviating the need for a priori
restrictions on flow configuration in either the root system or the ambient soil. We
consider a single root of radius R and length L in a homogeneous vadose zone (Fig. 1).
The depth to groundwater, i.e. the thickness of a partially saturated soil (vadose zone),
is denoted by B and assumed to be large enough for flow around the root to be
unaffected by the water table. Finally, we assume axial symmetry and place the outer
boundary of the flow domain at r = Reff , such that Reff � R as defined in Passioura
(1988). A baseline average rooting density ρav = 1.0 cm cm−3 (Passioura 1988)
would result in the outer radius Reff ≡ 1/

√
πρav ∼ O(1 cm). The resulting flow

domain 
 = {(r, z) : 0 ≤ r < Reff , 0 ≤ z < B} consists of two subdomains,

 = 
x ∪ 
s where 
x = {(r, z) : 0 ≤ r < R, B − L ≤ z < B} and 
s = 
/
x

represent the root (xylem) and ambient soil, respectively. (Table 1 lists these and other
symbols used in our analysis.)

2.2 Flow in ambient soil

Meteorological conditions that predominantly control transpiration rates vary rapidly
in time, exhibitingmarked diurnal fluctuations. Yet, a large number of studies reviewed
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Table 1 Summary of the physical quantities and their dimensional counterparts

Symbol Quantity Units

(r, z) Radial and vertical coordinates L

B Vadose zone thickness L

L Root length L

R Root radius L

Reff External radius of the flow domain L

ψ Pressure head L

ψ0 Prescribed root suction at z = B L

q = (qr , qz)
 Macroscopic (Darcy) flux L/T

q Infiltration rate at soil surface L/T

K0 & Kx Saturated hydraulic conductivities of xylem L/T

in the r and z Directions, respectively

Ks Saturated hydraulic conductivity of ambient soil L/T

αx Pore-size distribution parameter of xylem 1/L

αs Pore-size distribution parameter of ambient soil 1/L

� Modified Kirchhoff transform of ψ L

α Step function equal to αx in root and αs in soil 1/L

κr , κ̃r , κz & κ̃z Conductivity ratios defined in (12b) –

K = K0/Kx Conductivity anisotropy ratio in xylem –

χ = αs/αx Distribution parameter ratio –

�r , �z , �� Characteristic lengths defined in Sect. 3.2 –

ε = (�z/�r )
2 Small perturbation parameter –

Ā Dimensionless counterparts of quantities A = r, z, . . . –

(r̃ , z̃) Rescaled coordinates in boundary layer –

R = αx R/2 Scaled root radius –

J � Computed average transpiration flux –

by Raats (2007) suggest that flow in both root systems and ambient soils can be
represented by a sequence of steady states. This implies that a perturbation in the
water potential ψ propagates instantaneously through a root zone. Cowan (1965),
and the subsequent theoretical and experimental studies reviewed by Raats (2007),
demonstrated that this approximation is adequate under typical conditions. Steady-
state solutions are also used to interpret experimental data for water uptake by roots
of various plants (Raats 2007, Sect. 4.5).

We therefore consider a steady-state (∂θ/∂t = 0) version of (1) with � = ψ + z,

∇ · [Krel(ψ)∇ψ] + ∂

∂z
Krel(ψ) = 0 (r, z) ∈ 
s . (2)

This formulation implies that the soil is homogeneous and isotropic, and represents
its hydraulic conductivity K (ψ) = KsKrel(ψ) as the product of (constant) saturated
hydraulic conductivity Ks and the pressure-dependent relative hydraulic conductivity
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Krel(ψ). For the latter, we choose Gardner’s model (e.g. Warrick 2003),

Krel(ψ) = eαsψ, (3)

where αs is the pore-size distribution parameter. Due to its relative simplicity, the
exponential model (3) is often used in both theoretical and experimental investigations
of flow in partially saturated porous media. Tartakovsky et al. (2003a, 2004) provide
an extensive list of studies that employ Gardner’s model. Our choice of Gardner’s
model (3) facilitates the subsequent analytical treatment.

While more complicated constitutive relations, a plethora of which are compiled in
Section 2.5 of Warrick (2003), often fit conductivity vs. saturation (or pressure head)
data better, the reliance on the Gardner model is justified for the following reasons.
First, using such constitutive relations (e.g. the Brooks-Corey or van Genuchten mod-
els) to fit sparse, spatially heterogeneous and error-prone data might not be warranted
from the information-theory point of view. That is because these relations invariable
rely on two or more fitting parameters, whereas Gardner’s model (3) has only one.
Second, the differences between theGardnermodel and, say, the vanGenuchtenmodel
are usually limited to saturation extremes corresponding to either nearly dry or nearly
completely saturated soils, both of which detrimental to many plants. Third, the oper-
ational equivalency between various constitutive models Krel(ψ) is achieved through
their parameterization in a way that preserves themaximum value of macroscopic cap-
illary length, which is defined as Hc = ∫ ∞

0 Krel(s)ds (e.g. Tartakovsky et al. 2003a).
This quantity, which is also referred to as effective capillary drive, is directly related
to the Kirchhoff transform used in the analysis below.

External boundary conditions for the Richards equation (3) are determined by
physical processes at the soil surface (z = B) and water table (z = 0). Let q denote
a prescribed (negative for infiltration) vertical Darcy flux at the soil surface z = B
(Fig. 1) due to rainfall or irrigation. This gives rise to a boundary condition

eαsψ

(

1 + ∂ψ

∂z

)

= − q

Ks
, z = B, R < r < Reff . (4a)

The water table (z = 0) separates the (partially saturated) vadose zone where
pressure head ψ < 0 from the (fully saturated) phreatic zone where ψ > 0. Hence, a
boundary condition at the water table reads

ψ(r, 0) = 0, 0 � r < Reff . (4b)

This formulation ignores (without loss of generality of the present analysis) the cap-
illary fringe and sets atmospheric pressure head to ψatm = 0. Finally, the external
boundary r = Reff is located sufficiently far from the root as to ensure that the latter
does not affect the vertical flow (infiltration) in the rest of the soil (r ≥ Reff ). The
corresponding boundary condition is

∂ψ

∂r
(r = Reff , z) = 0, 0 ≤ z ≤ B. (5)
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2.3 Flow in root xylem

While soils might or might not be anisotropic, xylem’s morphology renders its
hydraulic conductivity anisotropic, with the longitudinal (along a root’s length) satu-
rated conductivity of xylem (Kx ) being as much as seven orders of magnitude higher
than its radial counterpart (K0) (Sperry et al. 2002). The latter can be thought of as the
harmonicmean of the low conductivities of inner and outermembranes, symplasm and
xylem that comprise a root. Consequently, we treat the xylem hydraulic conductivity
as a second-rank tensor,

K(ψ) = KsatKrel(ψ), Ksat =
(
K0 0
0 Kx

)

, Krel(ψ) = eαxψ. (6)

Dependence of the xylem’s relative conductivity Krel on matric potential ψ arises
due to cavitation; in this context, the function Krel(ψ) is referred to as a “vulnerability
curve” (Sperry et al. 1998, 2002). Here, for the reasons described in the previous
section, we adopted the Gardner model of Krel(ψ) with the pore-size distribution
parameter of the root xylem denoted by αx . Note that Gardner’s model (3) is a special
case of the Weibull distribution Krel(ψ) = exp[−(−αxψ)c] used by Sperry et al.
(1998) to represent vulnerability curves.

Finally, we use the steady-state Richards equation (1),

∇ · [K(ψ)∇ψ] + Kx
∂

∂z
Krel(ψ) = 0 (r, z) ∈ 
x , (7)

to describe flow in the root xylem.
Plant physiology suggests that no water uptake occurs at a root’s end (Rand 1983;

Passioura 1988). Thus, following Arbogast et al. (1993) and others, we impose a
no-flow boundary condition at the root cylinder’s bottom,

1 + ∂ψ

∂z
= 0 z = B − L , 0 ≤ r < R. (8)

A given pressure (suction) ψ0 is prescribed at the soil surface, z= B, i.e. ψ(r, B)=
ψ0.

2.4 Coupling conditions at root-soil interface

Let R− and R+ denote the limit r → R from the root and soil sides of the interface r =
R, respectively. Conservation of momentum and mass imposes continuity conditions
on, respectively, pressure head ψ and the radial components of Darcy’s flux qr ,

ψ(R−, z) = ψ(R+, z),

[

Kr (ψ)
∂ψ

∂r

]

r=R−
=

[

K (ψ)
∂ψ

∂r

]

r=R+
, B − L ≤ z ≤ B

(9)

where Kr is the radial component of the xylem conductivity tensorK given by (6).
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These continuity conditions crystalize the difference between our “first-principle-
based” approach and its empirical counterparts routinely used to model plant transpi-
ration (e.g. Roose and Fowler 2004a, b; Green et al. 2006, and the references therein).
Rather then enforcing the continuity of pressure across the root-soil interface r = R,
the latter postulate the linear proportionality between the transpiration rate and the
pressure (head) differenceψ(R+, z)−ψ(R−, z). We defer a further discussion of this
empirical approach to Sect. 4.

2.5 Integral transformation

We employ a modified Kirchhoff transformation,

�(r, z) ≡ eαz/2

ψ∫

−∞
Krel(s)ds = α−1eα(ψ+z/2), α =

{
αx (r, z) ∈ 
x

αs (r, z) ∈ 
s
, (10)

to map the Richards equations (2) and (7) onto their linear counterparts

∇2� − α2
s

4
� = 0, (r, z) ∈ 
s (11a)

and

∇ · (Ksat∇�) − α2
x

4
Kx� = 0, (r, z) ∈ 
x . (11b)

The radial (qr ) and vertical (qz) components of the volumetric flux q = (qr , qz)

defined in (1) are rewritten in terms of � as

qr
Ks

= −κ̃re
−αz/2 ∂�

∂r
,

qz
Ks

= −κ̃ze
−αz/2

(
∂�

∂z
+ α

2
�

)

, (r, z) ∈ 
,

(12a)

where

κ̃r =
{

κr = K0/Ks (r, z) ∈ 
x

1 (r, z) ∈ 
s
, κ̃z =

{
κz = Kx/Ks (r, z) ∈ 
x

1 (r, z) ∈ 
s
.

(12b)

The boundary conditions are transformed into

e−αs B/2
[
∂�

∂z
+ αs

2
�

]

z=B
= − q

Ks
, R < r < Reff ; (13)

�(r, 0) = α−1
s , 0 ≤ r < Reff ; ∂�

∂r
(r = Reff , z) = 0, 0 � z � B; (14)
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and

[
∂�

∂z
+ αx

2
�

]

z=B−L
= 0, �(r, B) = α−1

x eαx (ψ0+B/2), 0 ≤ r ≤ R. (15)

The continuity conditions (9) at the root-soil interface� = {(r, z) : r = R, B−L ≤
z ≤ B} take the form

(αx�
−)αs = (αs�

+)αx , κre
−αx z/2

(
∂�

∂r

)−
= −e−αs z/2

(
∂�

∂r

)+
, (16)

where �± ≡ �(R±, z) and (∂�/∂r)± ≡ ∂�/∂r(R±, z).

3 Perturbation solution

3.1 Dimensionless formulation

Both the identification of a small parameter and the subsequent perturbation analysis
are facilitated by recasting the flow problem (11)–(16) in a dimensionless form. We
introduce generic (as yet undefined) length scales �r , �z and �� to render dimensionless
the coordinates and dependent variable,

r̄ = r

�r
, z̄ = z

�z
, �̄ = �

��

. (17)

The Helmholtz equations (11) take a dimensionless form

(�z/�r )
2K

r̄

∂

∂ r̄

(

r̄
∂�̄

∂ r̄

)

+ ∂2�̄

∂ z̄2
− ᾱ2

4
�̄ = 0, ᾱ = α �z; (r̄ , z̄) ∈ 
̄ (18)

where K = K0/Kx for (r̄ , z̄) ∈ 
̄x and = 1 for (r̄ , z̄) ∈ 
̄s . Here 
̄ = {(r̄ , z̄) :
0 ≤ r̄ < R̄eff , 0 ≤ z̄ < B̄}, and the transformed root and soil domains are defined
respectively as 
̄x = {(r̄ , z̄) : 0 ≤ r̄ < R̄, B̄ − L̄ ≤ z̄ < B̄} and 
̄s = 
̄/
̄x , with
R̄ = R/�r , B̄ = B/�z, L̄ = L/�z and R̄eff = Reff/�r . The boundary and continuity
conditions (13)–(16) are transformed into

��

�z

∂�̄

∂ z̄
+ α��

2
�̄ =

{
0 z̄ = B̄ − L̄, 0 < r̄ < R̄

−q̄ eᾱs B̄/2 z̄ = B̄, R̄ < r̄ < R̄eff
; (19)

�̄(r̄ , 0) = 1

αs��

, 0 ≤ r̄ < ∞; �̄(r̄ , B̄) = eᾱx (ψ̄0+B̄/2)

αx��

, 0 ≤ r̄ ≤ R̄; (20)

123



1654 G. Severino, D. M. Tartakovsky

and

(αx���̄−)χ = αs���̄+, −κre
−ᾱx z̄/2

(
∂�̄

∂ r̄

)−
=e−ᾱs z̄/2

(
∂�̄

∂ r̄

)+
, B̄ − L̄ ≤ z̄ ≤ B̄;

(21)

where q̄ = q/Ks , ψ̄0 = ψ0/�z , and χ = αs/αx . The dimensionless flux q̄ =
(q̄r , q̄z)
, with q̄r = qr/Ks and q̄z = qz/Ks , is given by

q̄r = −κ̃r
��

�r
e−ᾱz̄/2 ∂�̄

∂ r̄
, q̄z = −κ̃z

��

�z
e−ᾱz̄/2

(
∂�̄

∂ z̄
+ ᾱ

2
�̄

)

. (22)

3.2 Characteristic length scales and small parameter identification

For thick vadose zones (L � B) considered in this study, the flow is characterized by
four length scales: the root length (L) and radius (R), and the macroscopic capillary
lengths of the root xylem (α−1

x ) and the ambient soil (α−1
s ). We identify a small

parameter ε suitable for a perturbation analysis of (18)–(22) by relating �r , �z and ��

in (17) to these four characteristic length scales as follows. In the root’s absence, the
flow (infiltration) would be vertical and described by the last two terms on the left-
hand-side of (18). The root locally perturbs this background flow, introducing a radial
dependence of the state variables in its vicinity. To account for this phenomenon, we
define a small parameter in (18) as ε ≡ (�z/�r )

2 � 1, while requiring ᾱ ≡ α�z � ε.
The same line of reasoning applied to the boundary conditions (19) and (20) suggests
order relations ��/�z � ε and α�� � ε. In summary, we require the generic length
scales �r , �z and �� to satisfy inequalities

(
�z

�r

)2

≡ ε � 1, ε � α��, ε � ��

�z
, ε � α�z . (23)

Selection of a set of the soil and root parameters L , R, αs and αx as the length scales
�r , �z and �� is non-unique. It should be guided by site- and plant-specific values of
these parameters and reflects a broad range of applicability of the perturbation solutions
derived below. According to its definition in (10), the parameter α takes the values
of αx and αs in 
s and 
x , respectively. A possible choice of the length scales that
satisfies the order relations (23) is

�z ≡ α−1
s , �r ≡ R, �� ≡ L . (24)

A number of productive soils exhibit the macroscopic capillary length α−1
s =

O(10−1 ÷ 10 cm) (Tartakovsky et al. 2003b, Fig. 1). Consider, as an example, mature
main roots of grapevine (Vitis viniferaL.)with the ratio of L/R = 42 cm /0.2 cmgrown
in a soil with α−1

s = 10−1cm. For these parameters, (23) and (24) yield ε = 0.25,
α�� ∼ O(102), ��/�z = 420 and α�z ∼ O(1). A large variety of chaparral plants
provide another pertinent example. According to Hellmers et al. (1955), largest roots
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of California scrub oak (Qifercuis duitnos Nutt.) exhibit R = 3.8 cm and L = 457
cm. For the median range of capillary lengths, α−1

s = O(10−1 ÷ 1cm), this results
in ε ∼ 6.25 × (10−6 ÷ 10−4), α�� ∼ O(102 ÷ 103), ��/�z ∼ O(102 ÷ 103)
and α�z ∼ O(1). Another set of the length scales is provided by (24) in which the
last inequality is replaced by �� ≡ α−1

x . Thus the order relations (23) between the
characteristic length scales account for a number of physical settings. In essence, our
solution is valid for roots whose size is larger than the macroscopic capillary length
of a host soil.

3.3 Outer solution

We look for a solution of (18)–(21) in the form of an asymptotic expansion in the
small parameter ε,

�̄(r̄ , z̄) =
∞∑

k=0

εk �̄k(r̄ , z̄). (25)

Boundary-value problems for �̄k(r̄ , z̄) are derived by substituting (25) into (18)–
(21) and collecting the terms of k-th order in ε. In particular, the leading term in the
expansion (25) satisfies

∂2�̄0

∂ z̄2
− ᾱ2

4
�̄0 = 0, (26)

subject to the corresponding boundary conditions (19) and (20). This yields

�̄0(z̄) = e−ᾱz̄/2

α ��

⎧
⎪⎨

⎪⎩

eᾱx (ψ̄0+B̄) in 
̄x

1 − q̄ (eᾱs z̄ − 1) in 
̄s .

(27)

It follows from (22) and (27) that the zeroth-order approximation of the Darcian
flux, q̄0 ≡ (q̄r0, q̄z0)
, has components

q̄r0 = 0, q̄z0 =

⎧
⎪⎨

⎪⎩

0 in 
̄x

q̄ in 
̄s .

(28)

The absence of derivatives with respect to r̄ in the differential equation (26)—and
the resulting lack of radial dependence of its solution (27)—implies that the continuity
conditions (21) on the interface r̄ = R̄ between 
̄s and 
̄x cannot be enforced. This
indicates a singular nature of the asymptotic expansion (25), similar to that encountered
in perturbation analyses of viscous flow past a sphere (e.g. Cohen and Kundu 2004),
free-surface flow to a well (Dagan 1968), and transport of kinetically sorbing solutes
in porous media (e.g. Severino et al. 2006).
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Higher-order terms in the expansion (25) can be computed in an identical manner.
Combinedwith their leading-order counterpart (27), they describe vertical flow in both
the root (
̄x ) and the ambient soil (
̄s) except in the regions adjacent to the boundary
r̄ = R̄ separating the two. We proceed to derive a solution for this boundary layer.

3.4 Inner (boundary-layer) solution

In the region adjacent to the root-soil interface r̄ = R̄, the pressureψ and its Kirchhoff
transform � vary rapidly with the radius r̄ . The derivatives with respect to r̄ in (18)
become large enough that even multiplied by ε � 1 they cannot be neglected. To
account for this behavior, we invoke the principle of the least degeneracy (Dyke 1975)
to rescale the coordinates such that the leading-order term contains all the operator
components that were neglected in the leading-order of the outer expansion. Within
the boundary layer, we rescale the coordinates (r̄ , z̄) as

z̃ = ε1/4 z̄, r̃ = ε−1/2

{
r̄ − R̄ for r̄ ≥ R̄

R̄ − r̄ for r̄ ≤ R̄
. (29)

Rewriting (18) in the (r̃ , z̃) coordinates gives equations for �̄ in the boundary layer
(denoted below by �̃),

1

R̄ + √
ε r̃

∂

∂ r̃

[

(R̄ + √
ε r̃)

∂�̃

∂ r̃

]

+ √
ε

∂2�̃

∂ z̃2
− ᾱ2

s

4
�̃ = 0 in 
̃s (30a)

and

K0/Kx

R̄ − √
ε r̃

∂

∂ r̃

[

(R̄ − √
ε r̃)

∂�̃

∂ r̃

]

+ √
ε

∂2�̃

∂ z̃2
− ᾱ2

x

4
�̃ = 0 in 
̃x , (30b)

where 
̃s and 
̃x are the regions of the boundary layer outside and inside the root,
respectively. Equations (30) are subject to the continuity conditions (21).

Following Verhulst (2005), we introduce an auxiliary function

φ(r̃ , z̃) = �̃(r̃ , z̃) −
m∑

k=0

εk �̄k(z̃), (31)

where the last term represents the m-th order approximation of the outer expan-
sion (25). This facilitates the subsequent matching of the inner and outer expansions
by ensuring zero overlap between the inner and outer solutions. It follows from (18)
that

ᾱ2
s

4
�̄k − √

ε
∂2�̄k

∂ z̃2
≡ ᾱ2

s

4
�̄k − ∂2�̄k

∂ z̄2
= 0 for any k. (32)
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Hence, substituting (31) into (30) yields

1

R̄ + √
ε r̃

∂

∂ r̃

[

(R̄ + √
ε r̃)

∂φ

∂ r̃

]

+ √
ε

∂2φ

∂ z̃2
− ᾱ2

s

4
φ = 0 in 
̃s (33a)

and

K0/Kx

R̄ − √
ε r̃

∂

∂ r̃

[

(R̄ − √
ε r̃)

∂φ

∂ r̃

]

+ √
ε

∂2φ

∂ z̃2
− ᾱ2

x

4
φ = 0 in 
̃x . (33b)

We look for a solution of (33) in the form of an asymptotic expansion

φ(r̃ , z̃) =
m∑

k=0

εk/2 φk(r̃ , z̃) + O(εm+1/2). (34)

Substituting (34) into (33), using an expansion (R̄±√
ε r̃)−1 = 1/R̄∓√

ε r̃/R̄2 +
O(ε), and collecting the terms of order ε0, we obtain a leading-order equation

K∂2φ0

∂ r̃2
− ᾱ2

4
φ0 = 0 in 
̃s ∪ 
̃x . (35)

Its general solution is

φ0(r̃ , z̃) = c(z̃) e−ᾱr̃/2
√K + b(z̃) eᾱr̃/2

√K in 
̃s ∪ 
̃x (36)

where c(z̃) and b(z̃) are “constants” of integration. For this expression to remain finite
as ε → 0, the definition of r̃ in (29) requires that b(z̃) ≡ 0. Hence, it follows from (31)
that

�̃0(r̃ , z̃) = �̄0(z̃) + e−ᾱr̃/2
√K

{
cx (z̃) in 
̃x

cs(z̃) in 
̃s
. (37)

The constants of integration cx (z̃) and cs(z̃) are determined from the continuity
conditions (21) at the root-soil interface r̃ = 0, leading to

�̃0(r̃ , z̃) = �̄0(z̃) + ξ(z̃)

α��

exp

[
ᾱ

2

(
z̃

ε1/4
− r̃√K

)] {
Ks/

√
K0Kx in 
̃x

1 in 
̃s
(38)

where ξ(z̃) is a solution of the transcendental equation

[
Ks ξ√
K0Kx

+ eᾱx (ψ̄0+B̄−z̃/ε1/4)
]χ

= ξ + e−ᾱs z̃/ε1/4 − q̄(1 − e−ᾱs z̃/ε1/4). (39)
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3.5 Matched asymptotic expansion and composite solution

According to Prandtl’s limit matching principle (e.g. Dyke 1975, Ch. 5.7) �̄u , a
uniformly valid (composite) zeroth-order approximation of �̄, is obtained by summing
up the corresponding inner (�̃0) andouter (�̄0) solutions and subtracting their common
part �̄com. Accounting for (38), this yields

�̄u = −�̄com + 2�̄0(z̃) + ξ

α��

exp

[
ᾱ

2

(
z̃

ε1/4
− r̃√K

)] {
Ks/

√
K0Kx in 
̃x

1 in 
̃s
.

(40)

Since far away from the root (r → ∞) �̄u = �̄0, the common part �̄com = �̄0.
Thus, (40) and (27) give

�̄u = 1

α ��

⎧
⎪⎨

⎪⎩

eᾱx (ψ̄0+B̄−z̄/2) + Ksξ√
K0Kx

e−αx�r (R̄−r̄)/(2
√K) in 
̄x

(1 + q̄) e−ᾱs z̄/2 − q̄ eᾱs z̄/2 + ξ e−αs�r (r̄−R̄)/(2
√K) in 
̄s

. (41)

This expression for the normalized Kirchhoff transform, αs�
u exp(−αs z/2), is

plotted in Fig. 2 as a function of the dimensional radius αsr . It illustrates the boundary-
layer behavior at the soil-root interface αs R = 2.0, for the parameter values reported
in Table 2. Note that the boundary layer is wider in the root than in the soil. This is in
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Fig. 2 Radial profiles of the normalized Kirchhoff potential αs�u exp(−αs z/2), for several values of the
normalized infiltration rate q̄ = q/Ks . The root-soil interface is located at αs R = 2.0. The boundary layer
around the interface, within which the Kirchhoff potential changes with r , is asymmetric. Its dimensionless
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Fig. 3 Radial profiles of normalized pressure αsψ , for several values of normalized infiltration rate q̄ =
q/Ks . The root-soil interface is located at αs R = 2.0. Pressure ψ is maximum at the root-soil interface,
from which it decays faster in the root than in the soil. Changes in infiltration rate q affect the pressure in
the root more than in the soil

accordance with (38), which predicts that the widths of the boundary layer in the root
and soil are O(K√

ε) and O(
√

ε), respectively.
Pressure distribution ψ(r̄ , z̄) in the root-soil continuum is computed from (10)

as α ψ = −α z/2 + ln(α ���̄u). Its graphical representation in Fig. 3 reveals that
the pressure ψ reaches its maximum value at the root-soil interface r = R, from
which it decreases linearly inside the root (r < R) and monotonically outside the
root (r > R). Away from the root (r � R) the pressure reaches its asymptotic
value of αsψ∞ = −αs z + ln

[
1 − q̄ (eαs z − 1)

]
. The pressure distribution predicted

with (41), and depicted in Fig. 3, supports plant physiology studies [see e.g. Rand
(1983), Passioura (1988)], which found that water suction (negative pressure) along
the xylem is at least an order of magnitude higher than that in both the root-soil
interface and the ambient soil.

The uniformly valid expression for the Darcian flux q̄u = (q̄ur , q̄uz )
 is obtained by
substituting (41) into (22),

q̄ur (r, z) = δ

2
ξ exp

[

− δ α

2
√K (r − R)

]

, q̄uz (r, z) = q̄z0− 2 δ√K

(

1+ ξ ′

ᾱ ξ

)

q̄ur (r, z),

(42)

where ξ ′ is the derivative of ξ(z̄). The vertical component q̄uz approaches (exponen-
tially) its far-field value of q̄z0 as r becomes large. This solution reflects the fact that
far away from the root-soil interface the flux q̄u is vertical (Fig. 4). The radial com-
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Fig. 4 Radial profiles of normalized vertical flux q̄z = qz/Ks , for several values of normalized infiltration
rate q̄ = q/Ks . The root-soil interface is located at αs R = 2. Outside the boundary layer, the vertical flux
in the soil quickly reaches its far-field value q̄z0 as r increases

ponent q̄ur is non-zero only in the zone adjacent to the root-soil interface, decreasing
exponentially with distance r (Fig. 5).

4 Results and discussion

The closed-form analytical solutions developed above enable us to derive from “first
principles” two fundamental quantities of interest, plant’s transpiration rate and root’s
capture zone. Unless specified otherwise, all the figures presented in this section corre-
spond to the parameter values summarized in Table 2. They give rise to dimensionless
parameters αs B = −αsψ0 = 104, Ks/

√
K0Kx = 103, αs z = 9800, αs R = 2, and

K = 10−2.

4.1 Transpiration rate

For a root with circular cross-section A = πR2, the Darcian flux in the root zone
quz (r) and the plant transpiration rate Qt are related by Qt = 2π

∫ R
0 |quz (r)| r dr . The

corresponding average transpiration flux J � is defined as J � = Qt/(πR2). Using the
dimensional form of quz (r) in (42), we obtain

J � =8 Ks

(
K0/Kx

αx R

)2 (

ξ+ ξ ′

αx

) [
αx R

2

√
Kx

K0
+exp

(

−αx R

2

√
Kx

K0

)

−1

]

. (43)
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Fig. 5 Normalized radial flux q̄r = qr /Ks as a function of normalized radial distance αsr , for several
values of normalized infiltration rate q̄ = q/Ks . The root-soil interface is located at αs R = 2. The radial
flux is non-zero only in the boundary layer around the root-soil interface. Significant anisotropy of the root
conductivity (K � 1) is responsible for the asymmetry of the boundary layer within which qr decays to
zero (much faster in the root than in the soil)

To the best of our knowledge, (43) is the first closed-form analytical expression
that relates plant transpiration to the soil (Ks and αs) and root (K0, Kx , αx , and R)
properties. It provides physical insight into the coupled nonlinear processes involved
in root water uptake and, more generally, plant transpiration.

For a given set of hydraulic properties of the root xylem (K0, Kx and αx ) and
the soil (Ks and αs), the average transpiration flux J � (Fig. 6a) decreases, and the
transpiration rate Qt (Fig. 6b) increases, with the root radius R. While the former is
in the dimensionless form that represents a wide range parameter combinations, the
latter corresponds to the hydraulic properties specified in the beginning of this section.
The values of Qt in Fig. 6b are in line with the measurements (e.g. Steppe et al. 2005).
The mean transpiration flux J � is related to the pressure ψ at the center of the root.
In particular, for z = B the value ψ� of the pressure determining the transpiration
flux (43) is

ψ� = α−1
x ln

[
Ks ξ(B)√
K0Kx

e−R + eαxψ0

]

. (44)

These estimates of transpiration flux J � and root suction ψ� come with a caveat
associated with the steady-state nature of our model (see the discussion in Sect. 2.2).
While vadose zoneprocesses are seldomstationary, the steady-state assumption is valid
for precipitation or irrigation events leading to prolonged infiltration (e.g. Severino
and Indelman 2004). As discussed in Sect. 2.2, steady-state solutions are building
blocks in transient models that represent plant transpiration by a sequence of steady
states. Moreover, in practice, plant transpiration rate is estimated by multiplying the
maximum (i.e. steady-state) transpiration with a crop coefficient (Allen et al. 1998).
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Fig. 6 a Average transpiration flux J �, normalized with Ksq�
r = Ks (K0/Kx )

2(ξ + ξ ′/αx ), as a function
of the scaled root radiusR. Our model predicts that this relationship is a universal feature of water uptake
by a single root, which is independent of the soil and root hydraulic properties. b Dependence of the
transpiration rate Qt on the root radius R for the parameter values listed in the Table 2

4.2 Capture zone

The soil region affected by a root’s water uptake is referred to as a plant capture zone
(PCZ). Estimating its size is essential for agriculture and phytoremediation, a process
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Fig. 7 Scaled trajectories αs Z(r; δρ) of particles released on the soil surface at a relative distance δρ from
the root. The solid (red) line δρ = 1.0 delineates the plant capture zone (PCZ). Particles released on the
soil surface at distance r ≤ R�

p (or δρ ≤ 1.0) are captured by the root

in which plants are used to extract pollutants from contaminated soils. To delineate the
PCZ, we compute a trajectory Z = Z(r; Rp) of a particle released on the soil surface
(Z = B) at a distance r = Rp by solving numerically an ordinary differential equation

dZ

dr
= quz (r, Z)

qur (r, Z)
. (45)

A trajectory bounding the PCZ originates on the soil surface at the critical distance
R�
p, which is defined as a solution of Z(0; R�

p) = L where L is the root’s length.
Let ρ = αs(r − R) denote the dimensionless radial coordinate that varies between

the root (r = R) and a point r = Rp > R on the soil surface at which a particle has
been released. Let us define a dimensionless critical distance ρ� = αs(R�

p − R) and
introduce a maximum distance ratio δρ = (Rp − R)/(R�

p − R). Trajectories Z(ρ; δρ)

with a label δρ ≤ 1 belong to the PCZ (Fig. 7). In other words, any particle released
on the soil surface at distance r ≤ R�

p will be captured by the root, while particles
released at distance r > R�

p will not.
Figure 8 reveals that the dimensionless critical distance ρ� decreases monotoni-

cally with the normalized infiltration rate q/Ks . This is to be expected, since smaller
infiltration values cause the root to draw water from larger volumes of the ambient
soil. For the same reason, ρ� increases with the dimensionless root length αs L .

Combined with the definition of dimensionless critical distance ρ�, Fig. 8 suggests
that for a given infiltration rate q a root in a soil with larger saturated conductivity Ks

and/or the Gardner parameter αs would have a larger capture zone (i.e. larger ρ� or
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Fig. 8 Dependence of the critical distance of the plant capture zone, ρ�, on infiltrating rate q/Ks , for
several values of scaled root length αs L . The critical distance defines the maximum radial extent of the
capture zone. The monotonic decrease of ρ� with q/Ks indicates that smaller infiltration values cause the
root to draw water from larger volumes of the ambient soil. For the same reason, ρ� increases with the
dimensionless root length αs L

R�
p). Larger values of Ks result in larger values of vertical flux qz , thus enhancing the

vertical infiltration and hence reducing the amount of water available for root water
uptake. Large values of αs have a similar effect. They represent soils with reduced soil-
water retention, which are conducive to gravity-driven (vertical) flows (Philip 1968),
once again reducing the amount of water available for root water uptake and causing
the root to “interrogate” large volumes of the ambient soil. Finally, Fig. 8 suggests
that, for given soil and root parameters, roots with larger lengths L have larger ρ� and
hence capture zones.

4.3 Comparison with empirical models of plant transpiration

Our root-scale model of water uptake is based on first principles, i.e. employs the
generally accepted Richards equation to describe water flow in partially saturated
porous media (both in a root and the ambient soil) and makes no assumptions about
the kinematic structure of flow in a root-soil continuum. That is in contrast with the
existing root-scale (Type I) and mesoscale (Type II) models (Green et al. 2006; Raats
2007): the former impose a priori constraints on the kinematic structure of flow, such
as the assumptions (ii)–(iv) discussed in the Introduction; and the latter are entirely
empirical. The classification of root water uptake models into Types I and II is due to
Green et al. (2006).

Our analytical solution (see Sect. 3.4) provides a theoretical justification for several
assumptions that underpin the existing Type I models. Specifically, it demonstrates
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that flow is strictly horizontal (perpendicular to the root) in the boundary layer on both
side of the soil-root interface. This provides a theoretical justification for empirical
infinite-soil-cylinder mesoscopic models (Raats 2007, and the references therein) .
They assume that flow is horizontal and driven by the difference in matric potentials
ψ0 and ψ1 imposed at the surfaces of the soil shell R < r < r1, where r1 is an
arbitrarily assigned external radius of the soil cylinder. Our solution suggests that the
radius r1 of such soil cylinders is given by the boundary layer thickness ε. The latter
varies with the root geometry and/or hydraulic properties of the root and the ambient
soil, as discussed in Sect. 3.2.

5 Summary and concluding remarks

We derived, from first principles, a closed-form analytical solution for plant transpi-
ration, i.e. for flow of water from the partially saturated ambient soil to a plant’s root.
The underlying model consists of two three-dimensional Richards’ equations that are
coupled at the root-soil interface. The root is conceptualized as a cylinder of length
L and radius R. The system behavior is controlled by vertical and horizontal length
scales �z and �r . For a wide range of natural conditions, ε = (�z/�r )

2 � 1 and serves
as a perturbation parameter.

A matched asymptotic expansion technique was used to derive approximate solu-
tions for transpiration rate and the size of a plant capture zone (PCZ). To the best of
our knowledge, this is the first closed-form analytical expression that relates a plant’s
transpiration rate to the soil and root hydraulic properties by relying on first principles,
rather than phenomenology. As such, it sheds new light on plant transpiration, one of
the least-understood components of the hydrological cycle.

Our analysis leads to the following major conclusions.

– Away from the root-soil interface the water flux q is vertical. The radial component
of q is non-zero only within the boundary layer adjacent to the root-soil interface.
This provides a theoretical justification for the currently used empirical “infinite
soil cylinder” mesoscopic models.

– The radial component of q decays exponentially with the radial distance from the
soil-root interface as consequence of the rapid variation due to the boundary-layer
transitional effect.

– The PCZ size increases as the infiltration rate decreases relative to the radial flux
at the soil-root interface.

Several assumptions underpin the presented model (see Sect. 2). Some of them can
be relaxed or altogether eliminated within our analytical framework. � The assump-
tion of soil homogeneity was used to treat soil hydraulic properties as constants. It
can be relaxed by assuming that a soil is statistically homogeneous (i.e. its parameters
have constant ensemble means and variances) and employing stochastic homoge-
nization (Tartakovsky et al. 2003a, b). � The steady-state assumption can be elim-
inated by adopting an exponential pressure (ψ) vs. saturation (θ ) constitutive law,
θ ∼ exp(αsψ). This would allow one to account for transient flow regimes, while
retaining the ability to linearize the Richards equation by deploying the Kirchhoff
transformation (Tartakovsky et al. 2004). � Finally, our model represents a root system
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with a single cylinder. It can serve as a building block in more realistic models (Roose
and Fowler 2004a), which represent root networks as branching systems of cylinders.

These generalizations are the focus of our ongoing studies.
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