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Abstract: Fusarium oxysporum f. sp. lactucae is one of the most aggressive baby-lettuce soilborne path-
ogens. The application of Trichoderma spp. as biocontrol agents can minimize fungicide treatments 
and their effective targeted use can be enhanced by support of digital technologies. In this work, 
two Trichoderma harzianum strains achieved 40–50% inhibition of pathogen radial growth in vitro. 
Their effectiveness in vivo was surveyed by assessing disease incidence and severity and acquiring 
hyperspectral and thermal features of the canopies being treated. Infected plants showed a reduced 
light absorption in the green and near-red regions over time, reflecting the disease progression. In 
contrast, Trichoderma-treated plant reflectance signatures, even in the presence of the pathogen, con-
verged towards the healthy control values. Seventeen vegetation indices were selected to follow 
disease progression. The thermographic data were informative in the middle–late stages of disease 
(15 days post-infection) when symptoms were already visible. A machine-learning model based on 
hyperspectral data enabled the early detection of the wilting starting from 6 days post-infection, 
and three different spectral regions sensitive to baby-lettuce wilting (470–490 nm, 740–750 nm, and 
920–940 nm) were identified. The obtained results pioneer an effective AI-based decision support 
system (DSS) for crop monitoring and biocontrol-based management. 

Keywords: digital agriculture; DSS; Fusarium oxysporum f. sp. lactucae; machine learning; multilayer 
feed forward artificial neural networks; precision biological control; Trichoderma harzianum 
 

1. Introduction 
Baby lettuce (Lactuca sativa L. var acephala) is among the most popular leafy vegetable 

consumed worldwide as ready-to-eat salads since it is low in calories, fat, and sodium and 
a good source of fiber, iron, folate, and vitamin C [1]. It is characterized by a very short 
growing cycle under polytunnels or greenhouses in intensive cropping systems charac-
terized by high sowing densities, intense mechanization, sprinkling fertigation, little or 
no rotation, and a higher accumulated risk of pathogen inoculum. Fusarium oxysporum f. 
sp. lactucae (Fol) is one of the most feared soilborne fungal pathogens of this crop that is 
linked to the soil sickness syndrome [2,3]. This ascomycete was first isolated in Japan and 
described as a causal agent of root rot in lettuce in 1967 [4]; in Italy, it has been reported 
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as a Fusarium wilt agent in baby lettuce since 2001 [5]. Fol severely damages baby lettuce 
plants, causing marked stunting of growth, chlorosis and/or necrosis of the leaves, unmar-
ketability of the harvested product, and even premature senescence and death. In the root 
system, no external symptoms are usually visible, but internally, a reddish-brown discol-
oration can be observed due to the pathogen's endophytic colonization of the vessels and 
their subsequent occlusion [6]. An early detection of Fol is necessary for plant health mon-
itoring to better manage infections in the different stages of plant development, minimiz-
ing the risk of disease spreading and avoiding yield losses. 

Innovative management of Fusarium wilt in baby lettuces aims to minimize the reli-
ance on synthetic fungicides and enhance the application of environmentally friendly and 
agroecological strategies to meet the latest regulatory and commercial guidelines [7]. Bio-
logical control is a bioinspired crop protection method based on the use of beneficial mi-
croorganisms that are able to contain plant diseases through antagonistic mechanisms. 
Several microbial-based formulations, which include the antagonistic fungi Trichoderma 
spp. as an active ingredient, are registered and marketed worldwide as bio-fungicides due 
to their ability to contain important soil and foliar pathogens, such as Fusarium, Sclerotinia, 
Botrytis, and Pythium species [8]. The biocontrol actions of this fungus rely on various an-
tagonistic mechanisms, including competition for space and nutrients, mycoparasitism, 
and the production of antimicrobial compounds [9,10]. In addition, Trichoderma spp. can 
establish positive interactions with plant roots, favoring water and nutrient uptake, in-
creasing plant metabolism, and inducing plant defense responses [11,12]. 

The targeted use of high-performing antagonists combined with the early detection 
of outbreaks is crucial to achieve the effective biocontrol of baby-lettuce Fusarium wilt. 
Optoelectronic sensors, including hyperspectral and thermal cameras, can enable large-
scale, rapid, and non-destructive image-based disease monitoring through remote inter-
pretation models of spatially distributed information, which can be integrated into disease 
management procedures and support decision-making processes [13]. Image-based opto-
electronic sensors work by acquiring data that can be traced back to the reflected portion 
of the electromagnetic spectrum (hyperspectral) or to the returned energy (thermal) from 
the plant surface in a specific wavelength range, whose spatial distribution is returned as 
a 2D image [14]. Fluctuations in band-to-band information are affected by the plant re-
sponse to external stimuli as well as in response to physical–chemical and physiological 
changes [15]. The data produced need to be deeply analyzed, simplified, and modelized 
to extract the most useful information for practical applications [16,17]. In this context, 
machine learning (ML) techniques represent a fundamental step forward in data analytics 
since they allow us to extract synthetic information and use it to model the observed com-
plex phenomena [18] in an efficient and comprehensive way. Recently, high-resolution 
hyperspectral imaging data were used to identify high-performing synthetic vegetational 
indices and to develop ML models that can trace and predict the biocontrol efficacy of a 
large collection of Trichoderma spp. against the soil-borne diseases caused by Sclerotinia 
sclerotiorum and Sclerotium rolfsii on baby lettuce [19]. However, in comparison to artificial 
intelligence studies based on optoelectronic data for disease detection, there are very few 
studies aimed at evaluating and rating biological control effectiveness. The early detection 
of plant diseases using digital pipelines, such as hyperspectral and infrared thermal im-
aging, is a complex task that must accurately address the concepts of diagnosis (catching 
differential characteristics) and monitoring (dynamics of symptom development) even 
under conditions with multiple interactions to which plants are generally exposed, such 
as those involving biological control agents [20]. The availability of datasets as representa-
tive as possible of the diverse conditions under which a disease can develop may be the 
major existing constraint of the digital imaging approach for plant disease detection [21]. 

Our study was aimed at identifying, biologically characterizing, assessing the bio-
control effectiveness against Fol on baby lettuce of two new Trichoderma isolates. The per-
formances of these beneficial fungi were evaluated by both visual monitoring of disease 
progression, assessing disease incidence and severity, and by hyperspectral imaging and 
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infrared thermography, every 72 h for 18 days following pathogen inoculation. In addi-
tion, the hyperspectral data were used to train a ML predictive model to discriminate be-
tween diseased and healthy plants, starting from the early stages of pathogenesis. The 
obtained model allowed the objective evaluation of the selected antagonists' effectiveness 
in controlling plant wilting, confirming the transformative role of ML in redefining plant 
disease detection and management strategies. 

2. Materials and Methods 
2.1. Fungal Strains 

Two different Trichoderma strains were isolated from suppressive soil. The fungi were 
subjected to monosporic culturing by serial ten-fold dilutions on potato dextrose agar 
(PDA) enriched with 0.1% Igepal colony constrictor and stored in the fungal collection of 
the CREA Research Centre for Vegetable and Ornamental Crops (Pontecagnano Faiano, 
Italy). Trichoderma isolates were maintained in potato dextrose broth (PDB, Condalab, Ma-
drid, Spain) on a rotary shaker at 150 rpm for 96 h at 25 °C. Then, fresh mycelia were 
vacuum filtered through No. 4 Whatman filter paper (Whatman Biosystems Ltd., Maid-
stone, UK), frozen in liquid nitrogen, and ground into a fine powder using sterilized mor-
tars and pestles. The samples were stored at −80 °C until DNA extraction. Total genomic 
DNA was extracted from 100 mg of the processed sample using the PureLink Plant Total 
DNA Purification Kit (Invitrogen™, ThermoFisher Scientific, Waltham, MA, USA) accord-
ing to the manufacturer’s protocol. PCR amplification of internal transcribed spacers 
(ITSs) and translation elongation factor 1α (TEF1) was performed in a Biorad C1000 Ther-
mal Cycler (Bio-Rad, Hercules, CA, USA) following a previously reported PCR procedure 
[13]. Amplicons were purified by a PureLink™ PCR Purification Kit (Invitrogen™, Ther-
moFisher Scientific, Waltham, MA, USA), quantified by a NanoDrop™ (NanoDrop Tech-
nologies Inc., Wilmington, DE, USA), and sent for Sanger sequencing. 

The fungal pathogen used in this study was Fusarium oxysporum f. sp. lactucae strain 
18.4.2, which is stored in the fungal collection of the CREA Research Centre for Vegetable 
and Ornamental Crops (Pontecagnano Faiano, Italy). 

2.2. Dual Culture Assay 
The biocontrol activity of the two Trichoderma isolates was investigated in vitro 

against Fol through the dual culture approach following the same procedure reported in 
[19]. The inoculum consisted of a 0.5 cm diameter mycelial plug excised from the edges of 
a 7-day-old actively growing fungal culture of both the pathogen and Trichoderma strains. 
The plugs were placed simultaneously on the opposite borders of a new PDA plate (9 cm 
diameter), about 0.25 mm from the edges. As negative control, plates containing the path-
ogen alone were used. The plates were inoculated in triplicate and incubated at 25 °C; the 
radial growth was monitored each 24 h for 6 days post-inoculation (dpi). The growth in-
hibition percentage was calculated as follows: 

Inhibition (%) = 100 −
Control − DC

Control
  

where Control = Fol radial growth in negative control and DC = Fol radial growth in the 
dual culture. 

2.3. In Vivo Biocontrol Assay 
Fol was stored at −80 °C as a conidial suspension in 30% glycerol, revived on PDA 

amended with 40 ppm streptomycin, and incubated at 25 °C. For root-dip inoculation of 
lettuce seedlings, an aqueous conidial suspension of 106 conidia mL−1 was prepared from 
10-day-old cultures on PDA. One-liter flasks containing 200 g of common millet seeds 
were saturated with a 0.1 × PDB (w/w) solution and autoclaved. To prepare the Trichoderma 
inoculum, flasks were inoculated with 30 plugs (5 mm diameter) obtained from one-week-
old plates of each antagonistic strain on PDA, and incubated for 15 days at 25 °C. At the 
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end of the incubation, the inoculum was ground and added to double sterilized peat soil 
at a final concentration of 2% (w/w). In the uninfected control, non-inoculated common 
millet, prepared as described above, was added. The inoculated and non-inoculated peat 
was wetted with sterile distilled water (250 mL kg−1 of peat) and incubated for 1 week in 
autoclavable plastic bags. 

Baby lettuce seeds of the cultivar Aurora (Maraldi Sementi, Italy), which is suscepti-
ble to the Fol strain, were sown in sterile vermiculite-filled 500 mL trays, germinated in 
the dark at 25 °C, and then maintained in a growth chamber at 25 °C with a 12 h photo-
period. The irrigation was manually performed daily, distributing 100 mL of distillated 
water per tray and a basal NPK fertilizer was applied twice a week. After 15 days, the 
plants were transplanted into 100 mL plastic pots (7 cm Ø) filled with peat and inoculated 
as described above. The seedlings were removed from the vermiculite, rinsed in sterile 
water, and inoculated by root dipping into either sterile water (for uninfected control) or 
a conidial suspension of Fol for 20 min and transferred into a fresh pot containing sterile 
peat inoculated with the Trichoderma strains. The seedlings were incubated at 26 °C in a 
greenhouse for the next 18 days. Each treatment [reference healthy control (H), infected 
control (Fol), T. harzianum T2 strain (T2), T. harzianum Ts strain (Ts), and respective com-
bined applications (T2 + Fol) and (Ts + Fol)] was performed on 10 pots (replicates) with one 
seedling each. The monitoring of disease development was performed every 72 h for the 
next 18 days (6 time points). For each time point, each pot was assessed for hyperspectral 
and thermal images, disease incidence (DI%), and severity index (DSI). For the DI (%) and 
DSI (%) calculations, the plants were randomly separated into 2 sub-groups of 5 seedlings 
each and the incidence was calculated as the percentage of symptomatic plants over the 
total number of plant in the subgroup, while DSI was assessed using a 0–3 severity scale 
adapted from Larkin et al. [22]: 0 = no symptoms, 1 = mild stunting, 2 = severe stunting 
and some leaf yellowing and/or necrosis, and 3 = dead plants (Figure 1). 

The disease indices were calculated as follows: 

Disease incidence (DI%) = 100 × 
symptomatic plants

 total number of plants 
  

Disease severity (DSI%) = 100 ×  
∑(class frequency × class score)

total number of observation × max class score  
 

At the end of the experiment (18 dpi), the plants were collected, and different bio-
metric parameters were measured: leaf area index (LAI) using a leaf area meter (LI-3100C 
Area Meter, LI-COR®, Inc., Lincoln, NE, USA) and root and stem fresh and dry weights. 
The experiment was performed twice. 

 
Figure 1. Representative photographs of the four baby-lettuce Fusarium wilt disease classes (0–3 
severity scale). 

2.4. Hyperspectral and Thermal Image Acquisitions 
Hyperspectral images were acquired by a SPECIM IQ camera (Specim, Spectral Im-

aging Ltd., Oulu, Finland) in the 400–1000 nm range (204 wavelengths) with a 7 nm spec-
tral resolution. The camera was equipped with a CMOS sensor with a spatial sampling 
size of 512 pixels and a 512 × 512-pixel image resolution (pixel size is 17.58 × 17.58 µm) 
and software for the automatic calculation of reflectance values. All the images were cap-
tured under daylight conditions in an irradiance range of 306–384 W m−2. White reference, 
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dark frame, and raw data were acquired during all the measurements. Raw reflectance 
was calculated as reported by Pane et al. [13]. One image, each containing all the treat-
ments (Control; T. harzianum Ts; T. harzianum T2; Ts + Fol; and T2 + Fol) for each replicate 
of the two repeated experiments (for a total of 20 samples per treatment) per time point, 
was acquired. The relative reflectance of the hyperspectral images was simultaneously 
computed by the camera software. Hyperspectral image elaborations were performed us-
ing R software version 4.1.2. Spectral graphics were generated by visualizing and extract-
ing the hypercube dataset using the Raster R package [23]. The images were then classified 
following an unsupervised classification method by the Cluster R package, identifying 2 
separate clusters, background, and plants. The background cluster was removed while a 
plant mask was applied for the extraction of 54 vegetational hyperspectral indices [24], 
averaging the pixel values for each replicate per treatment. 

Thermal images were acquired, following the same experimental protocol conducted 
for hyperspectral acquisition, using a Flir T1030sc infrared camera (Flir System S.r.l.; Lim-
biate, Italy) with the following characteristics: IR sensor: 1024 × 768; detector type, Focal 
Plane Array uncooled microbolometer; field of view, 28° × 21°; image frequency, 120 Hz; 
spectral range, 7.5 to 14 µm; focus, automatic or manual; thermal sensitivity <20 mK at 30 
°C; temperature range −40 +150 °C; thermal sensitivity (NETD) of < 20 mK. The squared 
shaped regions of interest (ROIs) were extracted from each plant image and the mean 
temperature ± standard deviation were calculated for each condition. The infrared camera 
acquired a thermal image along with an RGB spectrum. The two images did not perfectly 
overlap. A procedure based on an unsupervised k-means clustering algorithm was used 
to segmentate the RGB image to extract the plant areas. To make the RGB image overlap 
with the thermal image, a geometric morphometric procedure was applied. The images 
were superimposed using 4 type II landmarks that were easily identifiable in both the 
RGB and thermal images. Type II landmarks [25] are mathematical points whose claimed 
homology from case to case is supported only by geometric, not histological, evidence, for 
instance, the sharpest curvature of a leaf. The software TPSsuper allowed us to unwarp 
the thermal images to the RGB configuration (target shape). 

Thus, the thermal images were aligned using the RGB landmark locations and were 
superimposed on the RGB image. The mask containing the part of the image with the 
plant, with the background subtracted using the k-means clustering algorithm on two 
clusters, was used to select the pixels for the plant in the thermal image. 

2.5. Machine Learning Model 
The statistical analysis approach chosen was based on ML applied to 240 samples, 

including 2 treatments (healthy control and Fol) for 6 time points (dpi) per 20 replicates 
(pots). Statistical modeling was applied to classify early Fol-infected samples from healthy 
controls starting from 3 dpi based on 204 hyperspectral reflectance values. Specifically, a 
multilayer feed forward artificial neural network (MLFN) was designed using a single 
hidden layer architecture with sigmoid activation functions and SoftMax output neurons. 
MLFN has been proven to be effective in interpreting hyperspectral vegetation signals 
[26]. The network was built with only a single layer with 15 neurons in the hidden layer 
[27] and was applied to the hyperspectral dataset with 204 features. The number of nodes 
was determined by convergence with respect to the accuracy of the training and test sets. 
The MLFN was trained using the gradient descent back propagation algorithm [28,29], 
implemented in the deep learning MATLAB (The MathWorks Inc. MA USA) toolbox. The 
dataset was partitioned using 80% of the samples (192) as the training set and the remain-
ing 20% as the test set (48). This partitioning (equal for each group) was optimally chosen 
using the Euclidean distances calculated by the algorithm reported by Kennard and Stone 
[30] that selects parameters without a priori knowledge of a regression model. The cost 
function was minimized using the root mean squared (RMS) normalized error perfor-
mance function with a 10−10 threshold on the gradient. Cross validation was also per-
formed with 100 runs. To extract the most informative variables in distinguishing Fol-
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infected from health samples, a study of the importance of hyperspectral features was also 
performed [31–33]. The model was developed by using the MATLAB 9.7 R2019b Deep 
Learning Toolbox. The model was then applied, as an external test, on the plant–Tricho-
derma and plant–Trichoderma–Fol combinations, with 20 samples per each treatment at dif-
ferent time points. 

2.6. Statistical Analysis 
Measurements of the pathogen growth inhibition in vitro, disease incidence, and dis-

ease severity were subjected to statistical analysis using GraphPad Prism Software. 
ANOVA was applied to evaluate the effects of the Trichoderma strains on the assessed pa-
rameters; the statistical analysis of variance was corrected for multiple comparisons by the 
Bonferroni hypothesis test, considering a p-value ≤ 0.05. Since an experiment effect was 
not observed, data from the repeated experiments were pooled and analyzed together. 

Infrared thermographic data were analyzed by computing confidence intervals (p 
value ≤ 0.05), followed by a one-way analysis of variance (ANOVA), which was performed 
using the software package “Agricolae” in R version 4.1.2 [34]. Duncan’s multiple-range 
test was used to analyze separated means with a cut-off for statistical significance at p ≤ 
0.05. A principal component analysis was carried out to select the most important vegeta-
tion indices according to the treatments and presence/absence of disease symptoms by 
using the “Factominer” package in the R software version 4.1.2 [35]. 

3. Results 
3.1. Molecular Identification of Fungal Isolates 

The T. harzianum and F. oxysporum f. sp. lactucae (Fol) isolates used in this study were 
identified by amplifying and sequencing molecular markers: internal transcribed spacer 
(ITS) and partial translated elongation factor 1α (TEF1) regions. Polymerase chain reac-
tions produced amplicons of ~600 and 800 bp, respectively; they were sequenced by the 
Sanger method, and then separately compared against the non-redundant nucleotide da-
tabase (nr/nt) in NCBI. The BLAST analyses revealed 99–100% nucleotide similarity to 
previously published Trichoderma harzianum strain sequences and 100% for the F. ox-
ysporum f. sp. lactucae strain EFA 1186 (JQ219941.1). The sequences were deposited in Gen-
Bank under the following accession numbers: Trichoderma harzianum T2, OQ077191 (ITS) 
and OQ108506 (TEF1); Trichoderma harzianum Ts, OQ077192 (ITS) and OQ108507 (TEF1); 
Fusarium oxysporum f. sp. lactucae 18.4.2, OQ121825 (ITS) and OQ134872 (TEF1). 

3.2. Trichoderma In Vitro Biocontrol Activity  
The ability of T. harzianum strains to contain the development of Fol was assessed by 

an in vitro assay. The test was monitored every 24 h for 6 days, measuring the radial 
growth of the two microorganisms. As shown in Figure 2, T. harzianum Ts and T2 achieved 
a 40–50% inhibition of Fol radial growth starting from 48 h post-inoculation. 
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Figure 2. Radial growth inhibition (%) of F. oxysporum f. sp. lactucae challenged in vitro with T. har-
zianum Ts (green) and T2 (blue) strains, assessed daily for 144 h after plate inoculation. Different 
letters indicate significant differences between treatments (p ≤ 0.05) according to ordinary two-way 
ANOVA followed by a Bonferroni’s multiple comparison test. 

No significant differences were observed among the different Trichoderma strains in 
inhibiting the phytopathogenic fungus over time. Trichoderma touched the pathogen 
within 5 days and mycelium overgrowth was observed after 7 days. 

3.3. Trichoderma Biocontrol Activity In Vivo 
The biological control ability of the two T. harzianum strains was further investigated 

by in vivo tests against Fol on green baby lettuce. Infected plants treated with the two 
beneficial fungi were checked every 72 h for 18 days, and the disease incidence and sever-
ity index percentages were assessed. The first symptoms were detected on 9 dpi as a slight 
leaf chlorosis. As time went on, the infected plants became stunted and progressively de-
teriorated, with leaf yellowing, necrosis, and severe growth and physiological alterations. 
The application of T2 significantly reduced the disease incidence starting from the appear-
ance of symptoms (9 dpi) in comparison with the infected control (Figure 3A). In the last 
assessment, 70% of the T2-treated plants were symptomatic while for Ts-treated plants, 
the disease incidence was around 85%, which is comparable to the Fol-infected ones. In-
terestingly, both T. harzianum strains were able to slow the disease progression, with a 
40% decrease in severity (Figure 3B). Overall, a significant Trichoderma treatment effect 
was found (p-value ≤ 0.0001). In general, the biotreated plants displayed lower levels of 
disease injuries or, in some cases, appeared asymptomatic (Figure 3A,B). 
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Figure 3. Effect of T. harzianum T2 (blue) and Ts (green) strains on incidence (A) and severity (B) of 
baby lettuce wilting caused by F. oxysporum f. sp. lactucae compared to the infected untreated control 
(red); monitored every three days for 18 days post-pathogen inoculation. Different letters indicate 
significant differences between treatments (p ≤ 0.05) according to ordinary one-way ANOVA fol-
lowed by a Bonferroni’s multiple comparison test. 

3.4. Effect of Trichoderma on the Growth of Infected and Healthy Plants 
At the end of the experiment (18 dpi), the plants were collected and the leaf area index 

(LAI) and root and stem fresh and dry weights were assessed. The Fol-infected plants 
showed a 66% decrease in LAI compared to the untreated control, confirming that the 
pathogen strongly affected plant growth. On the other hand, the infected plants treated 
with Trichoderma had values comparable to that of healthy control (Figure 4A). 
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Figure 4. Biometric parameters, including leaf area (A), and plant fresh weight (B), root fresh and 
dry weights (C–E), and stem fresh and dry weights (D–F), assessed at the end of the in vivo experi-
ment for untreated healthy (H) and infected (Fol) controls, plants treated with T. harzianum T2 and 
Ts strains, and their combinations with Fol. Different letters indicate significant differences between 
treatments (p ≤ 0.05) according to ordinary one-way ANOVA followed by a Bonferroni’s multiple 
comparison test. 

Interestingly, no significant differences were observed when comparing infected and 
Ts-biotreated plants with uninfected biotreated plants (Ts + Fol vs. Ts) for all the analyzed 
biometric parameters. The application of T2 to infected plants resulted in a significant in-
crease of all the assayed indicators (excluding leaf area) compared to biotreated and un-
infected plants (T2 + Fol vs. T2). In terms of the whole plant fresh weight, T2 was the best 
performing treatment, with an increase of 35% and 70% compared to healthy and infected 
controls, respectively (Figure 4B). The fresh weight increase was associated with a more 
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than 100% increase both in the root and stem weights (T2 + Fol vs. Fol) (Figure 4C,D). 
Moreover, the fresh weight of plants treated with T2 and infected with Fol was signifi-
cantly higher than those treated with T2. These differences were supported by the dry 
weight assessments, where significant differences were observed between infected and 
biotreated plants compared to both healthy and Fol-infected controls (Figure 4E,F). In this 
case, no significant differences were found between the T2 and Ts effects on Fol-infected 
plants. 

3.5. Plant Reflectance and Thermographic Data 
Infrared thermographic profiles were used for disease progression monitoring. The 

temperature variation (ΔT) was calculated by subtracting the values obtained from 
healthy control plants to those from bio-treated and infected plants. Early in the incuba-
tion period (3, 6, and 9 dpi), no significant differences were detected between bio-treated 
healthy plants and infected ones. At the following time point (12 dpi), a consistent ΔT 
increase was detected for T2-treated plants; at 15 dpi, the disease progression in Fol-in-
fected plants produced a prominent ΔT increase, resulting in statistically significant dif-
ferences compared to all the other treatments. In the last assessed time point (18 dpi), only 
T2-treated plants showed a ΔT that was considerably lower than the controls (Figure 
5A,B). The reflectance profiles were calculated as the average of all pixel-wise spectral data 
from healthy, biotreated, infected, and infected/biotreated plants in the spectral range of 
400–1000 nm, and are reported for each time point from 3 (no visible symptomatology) to 
18 dpi (Figure 5C). Early in the incubation period (3 dpi), T2- and Fol + T2-treated plants 
showed reflectance values higher than healthy control and all the other treatments in the 
range between 500–600 nm (green region) and 750–1000 nm (NIR region). These differ-
ences appeared more consolidated in the following time points. At 9, 12, and 15 dpi, strong 
differences in reflectance values were recorded between T2, Fol + T2, Fol-infected, and un-
infected plants. The spectral signatures of the diseased plants showed considerably lower 
reflectance levels in the NIR spectral region while T2- and Fol + T2-treated plants had re-
flectance values that were much higher than the uninfected control and all the other treat-
ments in the green and NIR spectral regions. At 18 dpi, the spectral data of diseased plants 
and infected plants treated with Ts showed a pronounced decrease in the NIR region while 
the spectral signature of all the other treatment were flattened, similar to the uninfected 
control. 
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Figure 5. Thermal images (A) and trend over time of the thermographic parameter ΔT (B) during 
the in vivo experiment in untreated healthy (H) and infected (Fol) controls (CTRL), and treatments 
with T. harzianum T2 and Ts strains, and their combinations with Fol. Different letters indicate sig-
nificant differences between treatments (p ≤ 0.05) according to ordinary one-way ANOVA followed 
by a Bonferroni’s multiple comparison test. Hyperspectral (400–1000 nm) reflectance signatures (C) 
acquired during the in vivo experiment for untreated healthy (H) and infected (Fol) controls, and 
treatments with T. harzianum T2 and Ts strains, and their combinations with Fol at each time point 
(3 to 18 dpi). 

3.6. Hyperspectral VIs 
The spectral signatures of the healthy, infected, and infected biotreated plants during 

the infection evolution were characterized using 54 hyperspectral VIs, known to be able 
to describe specific biochemical and/or physiological features of plants [36]. The selection 
of the most informative VIs was carried out by choosing them based on their correlation 
with principal component dimensions, in agreement with the observed disease severity 
index and ΔT°, as previously reported by Pane et al. [24]. 
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Figure 6.  Principal component analysis biplot for visualizing distribution of healthy (H) and in-
fected (Fol) controls, treatments with T. harzianum T2 and Ts strains, and their combinations with 
Fol at each assessment (3 to 18 dpi – I to VI), for the 16 selected vegetation indices (variables). X and 
Y axis show principal component 1 and principal component 2, explaining 70.7% and 16.9% of the 
total vari-ance, respectively. Color grouping was performed by considering the disease severity clas-
ses in the range 0 = healthy to 4 = highly infected. 

As shown in Figure 6, the first two principal components (PCs) explained 87.6% of 
the total observed variance, 70.7% for PC1 and 16.9% for PC2, with eigenvalues higher 
than 1. PC1 was positively correlated with DVI (Difference Vegetation Index), SIPI (Struc-
ture Intensive Pigment Index 1), SRI (Simple Ratio Index), PSSRa (Pigment-Specific Sim-
ple Ratio a), G (Simple Ratio 550/670 Greenness Index), mSR705 (Modified Simple Ratio 
705), OSAVI (Optimized Soil Adjusted Vegetation Index), RVSI (Red-Edge Stress Vegeta-
tion Index), SAVI (Soil-Adjusted Vegetation Index), NDVI (Normalized Difference Vege-
tation Index), and HVI (Hyperspectral Vegetation Index); it was negatively correlated with 
MSAVI (Modified Soil-Adjusted Vegetation Index) and PRI515 (Photochemical Reflec-
tance Index) (corr. > 0.96). PC2 was positively correlated with MCARI (Modified Chloro-
phyll Absorption in Reflectance Index), WI (Water Index), FWBI1 (Floating-Position Water 
Band Index 1), and FWBI2 (Floating-Position Water Band Index 2) (corr. ≥ 0.7) and nega-
tively correlated with WBI (Water band index) and the - vegetation indices for water stress. 
The symptomatic plants were separated along PC2, and the samples with the highest dis-
ease severity index (DSI 3 and 4) were organized in the negative side of PC1 and distrib-
uted along the positive flank of the second component. 

3.7. Machine Learning Models 
The results of the ML model for the early detection of Fol-infected samples (starting 

on 3 dpi) are shown in Table 1. The model reported a remarkably high accuracy in training 
(0% bad prediction) and in testing (6.3% bad prediction). Only three samples were mis-
classified: two Fol-treated samples at 6 dpi and one healthy one at 9 dpi. The standard 
deviation on the test accuracy obtained via cross validation was 0.06. 

Table 1. Characteristics and principal results of the machine learning multi-layer feed forward arti-
ficial neural network (MLFN) model (training and internal tests) in predicting the classification of 
diseased vs. healthy samples from hyperspectral reflectance data at 6 days post inoculum (dpi). 

Model Features 
Number of cases (training: 80%) 192 

Number of hidden layers 1 
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Number of nodes 15 
Number of epochs 30.000 

% incorrect prediction (training: 80%) 0 
Number of cases (internal test: 20%) 48 

% incorrect prediction (internal test: 20%) 6.3% 

Then, the trained model was applied as external test to the dataset including all plants 
under Trichoderma-based treatments both infected and not, for all the assessed time points 
(dpi). The classification results are reported in Table 2. Generally, the model highlighted 
higher number of plants classified as diseased in infected treatments than in non-infected 
ones. Interestingly, the model confirmed that T. harzianum T2 was the best performing 
strain, showing the lowest number of plants classified as diseased over time. Furthermore, 
in the first stages of pathogenesis (9 dpi, when mild symptoms were visible), samples 
classified as diseased resulted coherent with the disease incidence measured by visual 
assessment. 

Table 2. Number of samples out of 20 for each Trichoderma-based treatment (T2, Ts, and combina-
tions with Fol) that were classified as diseased by machine learning model at each time point (dpi). 

Treatment 
Number of Samples Classified as Diseased 

(dpi) 3 6 9 12 15 18 
T2 + Fol  4 9 10 3 2 12 
Ts + Fol  2 11 16 8 7 16 

T2  2 1 0 0 0 0 
Ts  1 4 4 1 0 2 

The feature importance, plotted as a function of the wavelength, is shown in Figure 
7. This values, extracted directly from the model trained parameters, returns the feature's 
largest contribution to the ML model and is higher the more sensitive a given wavelength 
is in determining whether the spectrum belongs to the Fol category or not. Considering a 
feature importance threshold of 0.7, three ranges of greater importance were found and 
are located at 470–490 nm, 740–750 nm, and 920–940 nm. 

 
Figure 7. VIS–NIR spectral reflectance mean values of healthy (blue) and Fol-infected (orange) plant 
samples. Normalized feature importance values (grey) of the machine learning model are reported 
on the right axis. 

4. Discussion 
Biological control is an eco-friendly disease management alternative or it can supple-

ment the use of conventional means based on synthetic pesticides [37]; however, it needs 
to be designed for each specific pathosystem. Baby lettuce tracheofusariosis is a very in-
sidious fungal condition that is difficult to control, especially in the post-infection stages 
due to the endophytic progression of the pathogen. The hyperparasite Trichoderma can be 
explored as an effective containment strategy based on the wide range of antagonistic/fit-
ness capabilities that these fungi could deploy, including rhizosphere competence, rapid 
site/niche colonization, multitrophic interactions, and activation of plant defenses [38–40]. 
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The T. harzianum T2 and Ts strains significantly inhibited the in vitro mycelial radial 
growth of F. oxysporum f. sp. lactucae, and a consistent overgrowth was observed after 7 
days of incubation in the dual culture assay. Trichoderma hyperparasitism is related to the 
production of lytic enzymes and/or other bioactive metabolites, the envelopment of host 
hyphae, and the development of appressorium-like structures propaedeutic to the pene-
tration of the host cell wall [10,41–43]. The in vivo assay showed a significant ability of 
both antagonists to control baby lettuce wilt with an up to 40% reduction in disease sever-
ity compared to the unprotected control. T. harzianum T2 proved to be the best performing 
strain in reducing the stunted growth and yellowing symptoms which was supported by 
significant increases in biometric measurements, such as the leaf area and fresh and dry 
weights. However, both Trichoderma strains showed a specialized antagonistic attitude 
since in absence of the pathogen, they did not show any growth promotion effect com-
pared to the uninfected control. 

Optoelectronic sensing technologies, such as hyperspectral and thermal imaging, 
were successfully used in many studies aimed at plant phenotyping, contactless disease 
detection, and high-throughput monitoring, as they can capture (through canopy reflec-
tance or thermography) plant physiological changes in response to external biotic or abi-
otic stimuli and/or stresses [24,44–46]. 

Here, the reflectance profiles of healthy and Fol-infected baby lettuces subjected to 
Trichoderma treatments, coupled to thermal signal acquired in passive mode, were used to 
follow the plants' responses during disease course. 

During the infection, Fol-inoculated plants tended towards a slight reduction in light 
absorption in the green region and near the red-edge region, which are linked to changes 
in pigmentation and photosynthetic functions [47,48]. The consistently higher absorption 
in the NIR indicates the occurrence of anomalies in cell structure and water balance 
[47,48]. On the contrary, the reflectance signatures of Trichoderma-treated plants, even in 
the presence of the pathogen, tended to converge to signatures similar to the healthy con-
trols over time. Generally, F. oxysporum only induces physiological changes and host-spe-
cific responses in the first stages of infection [49]; however, here, markedly visible symp-
toms occurred after approximately 9 dpi. Accordingly, noteworthy shifts in NIR reflec-
tance were already detected at 6 dpi under T2 and Fol treatments, suggesting that infection 
by the pathogen and colonization by the Trichoderma strain are correlated with reflectance 
shifting in the NIR region during early stages of the interaction [50], probably due to the 
activation of plant–microorganism recognition mechanisms [51]. 

It was notable that the canopy reflectance of both healthy and infected plants treated 
with T. harzianum T2 suddenly increased in the green region and NIRin the early stages. 
Thermography also showed positive ΔT values for both T. harzianum T2-treated and Fol-
infected plants, albeit in a more advanced symptomatic phase, at 12 and 15 dpi, respec-
tively. As a matter of fact, Sun et al. [52] observed a similar delay in increasing leaf ther-
mographic temperature changes 8 days after the start of an infection of Cucumis sativus 
with F. oxysporum f. sp. cucumerinum, when the leaves were lightly wilted. The authors 
discussed that the plant symptoms are related, in the early stages of pathogenesis, to chlo-
roplast malformations and a loss of functionality, and later to the lack of water content in 
the leaves, which is detectable in IR (infra-red) images. The photosynthetic rate reduction 
observed in Fusarium-infected plants was attributed to stomatal closure and a reduction 
in both mesophyll conductance and Rubisco activity [53–55]. Recently, Navarro et al. [34] 
found substantial differences in the early spectra response of wild rocket affected by tra-
cheofusariosis in comparison to other biotic and abiotic stressors, which was characterized 
by significant lowering of the chlorophyll a and b and carotenoid content. Pane et al. [25] 
interpreted, using hyperspectral data, the sequence of events occurring during wild rocket 
tracheofusariosis infection. At the start of pathogenesis, shifts in the absorption regions of 
chlorophyll (blue and red light) occur, while during the pathogen's endophytic coloniza-
tion, wavelengths in the near-infrared range become sensitive to changes in biochemistry 
and cell structure and in water content. As F. oxysporum advances via the xylem, there is a 
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concurrent callose barrier formation (a plant reaction to the pathogen invasion), upward 
water flow is reduced, and tissues become dehydrated [56]. Only at 9 dpi, when wilting 
symptoms were already visible, Fol-infected plants showed a higher thermographic tem-
perature than healthy plants but it was still lower than that of T. harzianum T2-treated 
ones; at 15 dpi, a significant increase in temperature was recorded for Fol-infected plants 
compared to all the other treatments. At the end of the experiment (18 dpi), all plants had 
a thermographic temperature comparable to the untreated control, except for T. harzianum 
T2-treated plants, which showed the lowest temperature. 

T. harzianum T2 strongly affected the plant responses during the pathological assay. 
This effect should not be surprising since it is known that the direct interaction between 
pathogenic or beneficial microorganisms with plants can be similar and  for example, 
may induce the production of several molecules able to prime defense mechanisms and 
trigger an innate immune response [57]. Trichoderma–plant interactions follow their own 
zigzag model [38,58]. In the early stages of contact, the plant activates several responses 
after Trichoderma recognition by pattern recognition receptors (PRRs) that are able to dis-
tinguish microbe-associated molecular patterns (MAMPs). In this phase, an oxidative 
burst, callose deposition, reactive oxygen species (ROS) signaling, and systemically trans-
mitted stomatal closure are induced since the host is not able to distinguish Trichoderma 
as a friendly colonizer [59]. All these mechanisms could explain the spectral shifts and ΔT° 
increase observed in T. harzianum T2-biotreated plants, suggesting an effect on priming 
activation. 

A pattern of baby lettuce–Fusarium–Trichoderma interactions also emerged from the 
PCA plot of spectral features of plants under the different treatments over time. It was 
largely due to disease severity (70.7% of variability) that proved to be associated with hy-
perspectral VIs that are closely linked to plant vitality and chlorophyll alterations, such as 
PRI515, MCARI, and SAVI. On the other hand, the residual variability (16.9%) can be ex-
plained by VIs closely linked to water status, such as FWBI1, FWBI2, WBI, and WI. Inter-
estingly, T. harzianum T2-treated plants tended to have a higher correlation at each time 
point. ML performed by submitting the hyperspectral data cube to a multilayer feed for-
ward artificial neural network managed to detect diseased plants at an early stage, achiev-
ing a 93.7% success rate through a two-class model. According to the literature, the most 
useful spectral regions for a simple healthy/diseased plant discrimination are those linked 
to the chlorophyll content (460–500 nm), leaf cell integrity (730–760 nm), and biochemistry 
(900–940 nm) [24]. The simple model applied to the dataset from the Trichoderma-based 
treatments for T. harzianum Ts had a higher number of samples classified as positive than 
for the strain T2, confirming the best biocontrol performance for this antagonist. 

5. Conclusions 
In this study, two new strains of T. harzianum were identified and biologically char-

acterized in relation to their ability to control Fol pathogenesis on baby lettuce. Both strains 
were effective in containing Fusarium wilt on the crop, with a 40–50% reductio in disease 
severity in comparison to the infected controls, at a laboratory scale. Changes in the leaf 
optical properties of biotreated baby lettuces in response to the pathogen and/or beneficial 
fungi revealed the high discriminatory potential for several VIs to distinguish between 
infected and non-infected plants and the poor timeliness of passive thermal imaging. 
Healthy conditions were linked to VIs related to chlorophyll pigments, vegetation, and 
plant vitality (DVI, SIPI, SRI, PSSRa, G, mSR705, OSAVI, RVSI, SAVI, NDVI, HVI, MSAVI, 
PRI515). On the other hand, diseased plants were clustered by VIs associated with water 
stress (WI, FWBI1, FWBI2). The spectral changes observed in plant–Fol and plant–Tricho-
derma interactions may be associated with physiological and biochemical leaf changes trig-
gered by microbe recognition processes. The ML algorithm trained with the hyperspectral 
data enabled the early detection of Fusarium wilt on baby lettuce and allowed us to iden-
tify three different spectral regions that are sensitive to the disease progression (460–500, 
730–760, and 900–940 nm). A few selected wavelengths/indices, based on these results, 
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could be implemented using simple and cheap sensors for in situ monitoring through 
spectral image acquisition of Fusarium wilted areas in intensive baby lettuce cultivation. 
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