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CP decomposition of 4th-order tensors of
compositions
Decomposizione CP di tensori composizionali di ordine 4

Violetta Simonacci, Tullio Menini and Michele Gallo

Abstract Multifold data structures are generally stored in high-dimensional objects
defined as nth-order tensors. Generalization of trilinear decompositions such as the
CANDECOMP/PARAFAC model can be used for modelling 4th order tensors. The
application of these techniques is, however, quite limited due to procedural com-
plexity and interpretational issues. These concerns increase when tensors contain
data with a compositional structure. This work aims at addressing these difficulties
through an application on Italian university staff.
Abstract Strutture di dati complesse sono generalmente memorizzate in oggetti
multidimensionali definiti come tensori di ordine n. Per modellare tensori di or-
dine 4, è possibile utilizzare generalizzazioni delle decomposizioni trilineari come
il modello CANDECOMP/PARAFAC. L’applicazione di queste tecniche è, tuttavia,
piuttosto limitata a causa della loro complessità procedurale e interpretativa. Tali
difficoltà aumentano poi nel caso in cui i tensori contengano dati con una strut-
tura composizionale. Questo lavoro mira ad affrontare tali problemi attraverso
un’applicazione sul personale universitario italiano.

Key words: CoDa, CANDECOMP/PARAFAC, logratio, higher order decomposi-
tion, parameter estimation
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1 Introduction

Complex social phenomena are the results of different layers of information contin-
uously interacting at repeated occasions. As data-storing capabilities become virtu-
ally unbounded, finding effective ways of modeling together multiple entities has
become an ongoing challenge.

Tensors are the preferred algebraic architecture for storing complex data and de-
scribing multilinear relationships between entities in a compact form. A generic
nth-order tensor stores data along n indices and can be described as a generalization
of simple structures such as scalars, vectors and matrices which are special cases of
0-order (no index), 1st-order (1 index) and 2nd-order (2 indices) tensors.

Tensor data structure may presents additional challenges besides a multidimen-
sional variability structure. Let us think of tensor with proportion values (e.g. per-
centages, shares, parts of a total), defined in statistical literature data as Composi-
tional Data (CoDa). Such data are characterized by a biased covariance structure
which can be modeled only in relative terms [1] and requires special tools.

Tensor decompositions techniques can come quite handy when dealing with mul-
tilinear data. These tools allow capturing the multidimensional information in a ten-
sor by breaking it down in sets of simpler objects, generally lower order tensors.
The two most commonly used techniques for the decomposition of nth-order tensors
are the Higher-Order TUCKER and CANDECOMP/PARAFAC (CP) models [9, 5].
The TUCKER model is more suitable for summarizing large information into con-
densed sets of variables, thus, it is the preferred method for tensor compression and
variability structure descriptions. The CP method is more appealing when trying to
retrieve a meaningful underlying structure. This is because this model provides a
unique solution under mild conditions [8].

The higher order CP model can be easily adapted to compositional data by use
of log-ratio transformations which, applied prior to the decomposition, do not alter
its procedural steps but call for an additional interpretability effort.

Multilinear decomposition for tensors of order higher than 3 are occasionally
used in Chemistry related fields, however, their applications in social sciences is
uncommon. This is mainly due to model complexity which makes these tools un-
friendly for non-experts. For tensors of compositions the degree of complexity in-
creases even more, thus, compositional adaptations of n-th order decompositions are
completely absent in social sciences.

Given these considerations the aim of this work is to address two issues which
cause the infrequent use of these tools, namely, parameter estimation ambiguities
and interpretability concerns. The focus will be only on the CP procedure because its
desirable uniqueness makes it more vulnerable to efficiency and algorithmic prob-
lems.

In order to reach this goal, an application on University teaching staff in Italy
recorded by macro-region, disciplinary field, role and year will be presented. Specif-
ically, a 4th-order tensor is considered in which disciplinary field shares are treated
as compositional data. After following CoDa methodology by extending the strat-
egy proposed for tridimensional arrays to a 4-way tensor, the CP model will be
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computed. Results will be analyzed by paying careful attention to the advantages
of using such procedure and to the estimating problems of current algorithms in a
compositional setting.

In Section 2 tensor notation is explained and the dataset is briefly introduced; in
Section 3 the methodology is outlined for the four-way CoDa-CP procedure and in
Section 4 some initial consideration are conveyed.

2 Tensor notation a data

Let us consider a 4th-order tensor T with data arranged over the four indices
[1, . . . , i, . . . , I], [1, . . . , j, . . . ,J], [1, . . . ,k, . . . ,K] and [1, . . . , l, . . . ,L]. Its generic ele-
ment is denoted by ti jkl . The information contained in such tensor can be rearranged
in many ways to focus on index relationships. The simplest way is to consider its
composing vectors, generally referred to fibers. There are four types of fibers, one
for each index so that I-,J-, K- and L-dimensional vectors can be identified as a gen-
eralization of rows and columns of a matrix. It is clear that there are as many fibers
of a type as the product of the remaining indices, e.g. there are IKL fibers or rows
ti:kl with dimension J.

The tensor T can also be rearranged in 3rd-order blocks obtained by combining
two of the four modes together into pseudo-fully stretched arrays TI(I × JK ×L),
TJ(J×KL× I), TK(K ×LI × J) and TL(L× IJ×K) [6].

Each of these tridimensional blocks can be seen as a set of slices, namely 2nd-
order sections obtained by fixing one the three indices of the pseudo-fully stretched
arrays and varying the remaining two. Specifically, it is possible to identify four sets
of frontal slices T::l(I × JK), T::i(J×KL), T:: j(K ×LI) and T::k(L× IJ).

These alternative notations are only some of the many ways tensor information
can be rearranged presented here to aid methodological explanations.

A 4th-order tensor presents a compositional structure if the elements of at least
one of the fiber types describe the parts of a whole. Following conventions, let us
assume that the J-dimensional fibers or rows are CoDa. Formally we have that the
generic row ti:kl is a compositional vector if it describes a point bounded in a sub-
space of ℜJ

+ known as simplex and defined as:

SJ =
{(

ti1kl(1) , . . . , tiJkl

)
: ti1kl ≥ 0, . . . , tiJkl ≥ 0; ti1kl + . . .+ tiJkl = κ

}
(1)

where κ is a positive constant. To operate within this subspace special operations
and rules known as Aitchison geometry must be followed. Alternatively CoDa vec-
tors can be conveyed in real space coordinates by transforming them into log-ratios.
Several transformations have been proposed in the literature, however, for brevity
purposes only centered log-ratio (clr) coordinates are introduced. This function gen-
erates an isometric mapping between SJ and a hyperplane of ℜJ in this fashion:
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zi:kl = clr(ti:kl) =

[
log

ti1kl

g(ti:kl)
, . . . , log

ti jkl

g(ti:kl)
, . . . , log

tiJkl

g(ti:kl)

]
with g(ti:kl) =

J

√√√√
J

∏
j=1

ti jkl (2)

These coordinates have the limit of yielding a pure multicollinear structure, which
may cause estimating issues. As demonstrated in [2, 3] for 3rd-order tensors, clr-
coordinates can be directly modeled with standard statistical tools. For the 4th-order
tensor T a four-way CP model can be implemented, than results are translated back
into compositional terms.

After clarifying tensor notation, the application of interest can be described in
these terms. The dataset contains information on University teaching staff in Italy
arranged over 4 directions with the following dimensions: 5 macro-region, 14 dis-
ciplinary fields, 3 role and 5 year, yielding a small tensor T with dimensions
(I = 5× J = 14×K = 3×L = 5).

For each macro-region, the partitioning among different disciplinary fields of
the total number employee can be described as a compositional problem. Each row
vector can thus be transformed as shown in eq.2 obtaining a new 4th-order ten-
sor Z ∈ R5×14×3×5. This tensor can be decomposed with the CoDa-CP model as
showed in the following section.

3 Four-way CoDa-CP model

Four-way CoDa-CP is an estimating model based on the polyadic decomposition
which aims at providing the best low rank approximation of the tensor Z = Ẑ +E ,
where E is the tensor of residuals. Here, the tensor is decomposed into the sum of a
finite f = 1, . . . ,F number of 1st-order factors a f , b f , c f and d f :

Ẑ =
F

∑
f=1

a f ◦b f ◦ c f ◦d f (3)

The F terms of this decomposition can be arranged in four factor matrices A =
[a1, . . . ,a f , . . . ,aF ], B = [b1, . . . ,b f , . . . ,bF ], C = [c1, . . . ,c f , . . . ,cF ] and
D = [d1, . . . ,d f , . . . ,dF ].

The model can also be rewritten using the pseudo fully starched array slice nota-
tion as follows:

Z::l = Adiag(d(l))(C⊙B)t +E::l l = 1, · · · ,L (4)

Z::i = Bdiag(a(i))(D⊙C)t +E::i i = 1, · · · , I (5)

Z:: j = Cdiag(b( j))(A⊙D)t +E:: j j = 1, · · · ,J (6)

Z::k = Ddiag(c(k))(B⊙A)t +E::k k = 1, · · · ,K (7)
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Here ⊙ is the Khatri-Rao product and diag(d(l)), diag(a(i)), diag(b( j)) and diag(c(k))
denote the diagonal matrices extracting the lth, ith, jth and kth rows of the factor
matrices respectively.

The four-way CoDa-CP model is unique under mild conditions and is generally
estimated through a least-squares loss function. Estimation problems may, how-
ever, occur, such as solution degeneracies [10] and slow convergence, especially
for collinear data [7].

4 Preliminary considerations

One of the best ways to unveil the latent structure of 4th-order tensor is to carry out a
CP decomposition. The uniqueness of the CP model makes this procedure both ap-
pealing and harder to estimate with respect to other techniques for the decomposion
of 4th-order tensors as the TUCKER model [9]. Many difficulties may arise when
estimating CP parameters connected to both efficiency and accuracy of the solution.
Multicollinearity, typical of clr-coordinates, makes this issues even more pressing.

Several procedure have been proposed over the years to cope with these diffi-
culties, all with different points of strenght and fallacies. The problem, however, is
generally dealt with for the simpler case of 3rd-order tensors.

In this work, by considering the 4th-order tensor of University teaching staff data
we are going to tackle two challenges: 1) show the potential of the four-way CoDa
CP methodology with respect to other, more common, modeling tools; 2) explore
the estimation problem of the CP model in the generalized framework of 4-way
compositional data by extending the work of [4].
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