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Chapter 1
General Introduction

Alberto Bosio, Daniel Ménard, and Olivier Sentieys

1.1 Introduction

Energy efficiency is definitely one of the major driving forces of current computer
industry, which is moreover relevant from supercomputers and clouds to small
portable personal electronics and sensors. A good picture of the current situation and
trend is illustrated in Fig. 1.1, which shows that by 2040 computers will need more
electricity than the world energy resources can generate [1]. A similar trend exists on
the communications side where energy consumption in mobile broadband networks
and mobile terminals is comparable to datacentres. In addition to the traditional
personal communications, the Internet-of-Things (IoT) will soon connect up to 50
billion devices [2] through wireless networks to the cloud, which will accelerate
these trends.

To better understand such trends, it is interesting to deeper analyse the root causes
of the energy consumption of computing systems. To do that, we can refer to the
example depicted in Fig. 1.2 where the energy consumption of several components
in a processor is we reported (figure adapted from [4]). Interestingly, the energy
depends on the size of the manipulated data (i.e., the higher the bit-width, the higher
the energy required to manipulate it), on the type of operations executed on given
data (i.e., floating-point operations are more expensive than fixed-point or integer
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Fig. 1.1 Energy consumption trends in computing versus the world energy production. Source:
SIA/SRC [3]

Fig. 1.2 Energy cost in a processor. Source: [4]

ones), and on the distance of the component where data are stored. It can be seen
that every memory element has a certain energy cost and that the worst case is
represented by an access to the external main memory (DRAM), for which the cost
can be 3 orders-of-magnitude higher than arithmetic operations. It is also important
to note that memory distance and data width will also impact performance, since the
access and execution time increases with both distance and width.

Energy consumption is not only related to the processor architecture (e.g., ALU,
Register File, Caches). Indeed, they are intrinsically linked to the technology used
to implement computing devices composing systems. Today’s computing devices
are based on the CMOS technology that is subject to the famous Moore’s law
predicting that the number of transistors in an integrated circuit has been almost
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doubled every two years. The main positive consequences for the users have been
the amazing performance increase reached by computing devices, as well as the
dramatic reduction of cost per transistor or the energy per operation. Nevertheless,
even with the advantages of the technology shrinking, we are starting to reach the
physical limits of CMOS technology. Among the multiple challenges arising from
technology nodes lower than 10 nm, we can highlight the high leakage current (i.e.,
high static power consumption), reduced performance gain, complex manufacturing
process leading to low yield, complex testing process, and the extreme cost of
mask fabrication [5]. In other words, computing devices manufactured with the
latest technology nodes are less and less efficient (w.r.t. both performance and
energy consumption) than forecast by Moore’s law. Moreover, the manufactured
devices are less and less reliable, meaning that errors can appear during the normal
lifetime of a device with a higher probability than in previous technology nodes [6].
Fault-tolerant mechanisms are therefore required to ensure the correct behaviour of
such device at the cost of extra area, power and timing overheads. Finally, process
variations force the engineers to add extra guard bands (e.g., higher supply voltage
or lower clock frequency than required under normal circumstances) to guarantee
the correct functioning of manufactured devices.

Approximate Computing (AxC) aims at enabling the production of computing
systems, which can satisfy the rising performance demands and, at the same time,
improve the energy efficiency. Moreover, AxC will address the problem of main-
taining reliability and thus coping with run-time errors, resorting to an acceptable
amount of overheads in terms of area, performance, and energy consumption. AxC
is based on the intuitive observation that, whereas performing exact computation
requires a high amount of resources, allowing selective approximation or occasional
violation of the specification can provide gains in efficiency. In brief, AxC exploits
the gap between the level of accuracy required by the applications/users (i.e., quality
of the output results of some computations) and the precision provided by the
computing system, for achieving diverse optimisations.

The authors of [7] analysed different types of applications showing an intrinsic
resilience to computational errors and/or noisy inputs. Such applications have the
capability to provide “good enough” outputs even in the presence of errors. Let
us resort to the example shown in Fig. 1.3 to explain the idea. The golden image
is the output of the “reference implementation” of an image filter (median). The
example focuses on the eye detail of the overall image to show the impact of
computational errors on the output image. These errors correspond to the “removal”
of a certain amount of instructions. In the figure, “60% instructions” (resp. 20%)
corresponds to the removal of 40% instructions (resp. 80%). In other words, the
image filter implementation has been modified to selectively skip a certain amount
of the computations. The reader may denote the occurrences of some wrong pixels,
but he/she will be able to recognise the image with no issue. For the sake of
comparison, it can be noted that by randomly injecting 10% of wrong pixel into the
golden image, the amount of wrong pixels is much higher than the “approximate
outputs” ones. The benefits of “skipping” instructions are a reduced number of
accesses to the main memory to retrieve instructions and data operands: less energy
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Fig. 1.3 Perceptual limitation and removal of instructions. Source: courtesy of Lukas Sekanina

is thus consumed and higher performance can be achieved. Many other examples
can be found in [7].

The trade-off between accuracy degradation induced by the approximation and
the cost reduction is a non-linear relation. Figure 1.4 provides a qualitative analysis
of trade-off between Accuracy and Cost when the approximation is applied. The
chart origin is the Reference design for which no approximation is applied. The
reference is able to provide outputs with a given accuracy at a given cost. From
the reference design, the implementation costs can be reduced, thanks to the
approximation with a smaller impact on the accuracy. However, from a certain point,
even a small approximation will have a huge impact on the accuracy leading to
saturation. The blue curve represents this Pareto frontier where all points represent
design options among the AxC design space.

Several questions arise at this point that can be summarised by the following
three: (1) Where and when the approximation has to be introduced?, (2) How
to introduce the approximation?, and (3) How to quantify the impact of the
introduced approximation on the system accuracy.

Some books in the field of approximate computing [8, 9] already exist, but they
target only the hardware layer, so they do not cover all three questions. Therefore,
the aim of the book is to answer these three questions by presenting a global
picture of the approximate computing paradigm. To accomplish the task, it covers
an emerging research field shared among different communities (e.g., electrical
engineer, computer engineer, computer science). In the literature, many publications
also exist in this field of approximate computing. However, only a single context is
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Fig. 1.4 AxC design space exploration: accuracy vs. cost

usually targeted, e.g., hardware approximation, software approximation, component
level, etc. This book has the ambition to cover the existing gap by proposing a
comprehensive work presenting the different AxC techniques, their integration, as
well as real applications spanning from Artificial Intelligence, high performance
computing, and approximation for security and safety-critical applications that can
take strong advantage of AxC. It aims at serving as an important reference for
researchers, students, and engineers.

1.2 Book Structure and Contributions

This section describes the book structure and the contributions within. The book
structure reflects the abstraction levels composing the computing stack. A typical
computing system, either a supercomputer or a small object, is composed of several
layers. Figure 1.5 depicts a schematic view of these layers. The main classification
is done by considering two macro-layers: the Software and the Hardware. In more
detail, the hardware is further composed of:

• The Technology layer specifies the technology used to build the hardware
components (e.g., CMOS transistors).

• The Circuit layer specifies the basic components of the hardware in terms of
logic/memory elements (e.g., logic gates, Flip-Flops).

• The Architecture layer specifies the hardware components and their intercon-
nections (e.g., CPUs, cache memory, I/O system).
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Fig. 1.5 Computing system
layers

The Software layer is further divided into:

• The OS and APIs specify the main Operating System components and the set
of the Application Programming Interfaces (e.g., process scheduler, file system
access).

• The Compiler translates a software specification from high-level to low-level
language (e.g., assembly).

• The Application(s) layer is the user application(s) running on the computing
system.

This book aims at proposing a comprehensive analysis of approximate computing
and its application to computing system layers. Moreover, it discusses the usage of
AxC in emerging field of applications such as cyber-security, dependable computing
for safety/mission critical systems and machine learning. It is structured into
three parts: (1) techniques for approximate computing, (2) methods and tools
for approximate computing, and (3) approximate computing applied to real-life
applications. The first part, composed of four chapters (from Chaps. 2 to 4), presents
the main techniques for approximate computing depending on the abstraction
layer: number representation, hardware, software, and application. The second part
discusses the main methodologies and tools available for applying the approximate
computing techniques discussed in the first part. It is composed of four chapters
(from Chaps. 5 to 9), and it overviews the analysis of the approximation impact on
a given application, compilers, and design space exploration frameworks. The third,
and last part, is devoted to newer application field of the approximate computing,
with a special emphasis to real applications. It is composed of six chapters (from
Chaps. 10 to 15) and it encompasses the use of approximate computing in real-time
scheduling, security, digital circuit testing, and safety-critical applications. This part
ends with two chapters devoted to the use of approximate computing in scientific
and deep learning applications.
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Chapter 2
Customizing Number Representation
and Precision

Olivier Sentieys and Daniel Ménard

2.1 Introduction

There is a growing interest in the use of reduced-precision arithmetic, exacerbated
by the recent interest in artificial intelligence, especially with deep learning. CPU,
GPU, and TPU architectures already provide interesting, but limited, reduced-
precision capabilities. 8-bit integer and 16-bit floating-point (e.g., float16,
bfloat16) are typical examples of low-precision computations included in the
architectures. Through the use of hardware acceleration on FPGA architectures,
and thanks to their reconfiguration features, arithmetic customization can be further
extended and almost any number format and word-length can be leveraged in the
accelerator. All these examples illustrate the growing interest in the use of custom
arithmetic.

In computer arithmetic, the representation of real numbers is a major issue.
Indeed, most algorithms are using mathematical functions, and their accuracy and
stability are directly related to the accuracy of the number representation they use.
To represent real numbers, there exist two main formats: fixed-point and floating-
point. Fixed-point (FxP) representation encodes real numbers as an integer value
scaled by a fixed factor, thus leading to a format comprising an integer part and
a fractional part, the point of the real number being at a fixed position. In the
floating-point (FlP) representation, the scaling factor is encoded in the format, which
comprises a mantissa (or significand) and an exponent, the point being floating along
with the computations.
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Fixed-point arithmetic is sometimes favoured due to its high efficiency in terms
of energy consumption, cost, and performance, with a reputed clear advantage
compared to floating-point. This comes at the cost of the pain of the programmer,
who needs to manage all scaling operations to respect the rules imposed by FxP
arithmetic. Floating-point representation can be considered as the main representa-
tion for real numbers, especially in high-performance computing. In contrast to FxP,
FlP provides a high dynamic range, is able to represent with high accuracy both
small and large numbers, and is very easy from a programmer point of view, since
all scaling and rounding operations are totally managed by the hardware. However,
this ease of use comes with relatively important area, delay, and energy penalties
when compared to FxP.

This chapter presents both number representations and tries to draw a fair
comparison between customized fixed-point and floating-point arithmetic. One
conclusion is that the choice between FxP and FlP is not obvious and depends on the
application considered. It is shown that, in some cases, low-precision floating-point
arithmetic can be the most effective and provides some benefits over the classical
fixed-point choice for energy-constrained applications. Indeed, combining the ease
of use of floating-point representation associated with low-energy benefits of small
bit-width makes reduced-precision floating-point arithmetic very promising, but not
always useful.

Section 2.2 presents in detail the fixed-point representation, the rules governing
the propagation of the fixed-point formats through operations, the quantization
error process associated with computations relying on reduced-precision fixed-point
arithmetic, and how overflow should also be considered. Overflow is critical in FxP
since the dynamic range to represent real values is very limited in this format.

As already mentioned, a fixed-point number is composed of an integer and a
fractional part. The aim of the fixed-point conversion process is to determine for
each data the binary-point position and more specifically the number of bits for
the integer part and the fractional part. This process is explained in Sect. 2.3; more
details can also be found in Chap. 9.

Section 2.4 details the floating-point representation, the principle of FlP addi-
tion and multiplication, and provides some fair comparisons of their cost and
performance with regard to FxP. Section 2.4 also presents some opportunities to
reduce the cost of FlP operators as well as some libraries that can be used to
simulate and perform hardware synthesis of customized, low-precision floating-
point computations.

Finally, Sect. 2.5 gives some comparison results in terms of area, delay, and
energy between the two number representations FxP and FlP, first at the operator
level and then in the context of their use in applications, thus considering the errors
due to low-precision computations.
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2.2 Fixed-Point Arithmetic

2.2.1 Fixed-Point Representation

Fixed-point (FxP) representation is a way to encode real numbers with a virtual
binary-point (BP) located between two bit locations as shown in Fig. 2.1. A fixed-
point number is made up of an integer part (left to the BP) and a fractional part
(right to the BP). The term m designates the integer part word-length (IWL) and
corresponds to the number of bits for the integer part when this term is positive. This
IWL includes the sign bit for signed numbers. The term n designates the fractional
part word-length (FWL) and corresponds to the number of bits for the fractional
part when this term is positive. The fixed-point value xf xpt is computed from the
following relation:

xf xpt = −2m−1.S +
m−2∑

i=−n

bi2
i (2.1)

Numbers in the dynamic range [−2m−1, 2m−1 − 2−n] can be represented in this
fixed-point format with a precision of q = 2−n. The term q corresponds to the
quantization step and is equal to the weight of the least significant bit b−n. The
Q-format notation can be used to specify fixed-point numbers. For a fixed-point
number having an IWL and FWL equal to m and n, respectively, the notation Qm.n

is used for signed numbers and uQm.n for unsigned numbers. The total number of
bits w is equal to m+ n. In fixed-point arithmetic, m and n are fixed and lead to an
implicit scaling factor equal to 2−n which does not change during the processing.
The fixed-point value xf xpt of the data x can be computed from the integer value
xint of the data x such as xf xpt = xint .2−n.

Integer part Frac�onal part

20 2−1 2−n−2m−1

bm−2 bm−3S

2−2

b−nb0b1 b−1 b−2

2m−2

m n

21

Fig. 2.1 Fixed-point specification
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2.2.2 Format Propagation

In this section, the rules governing the propagation of the fixed-point formats
through operations are described for the different arithmetic operations. Let us
consider an operation � having x and y as input operands and z as output operand.
Let Qmx.nx , Qmy.ny , and Qmz.nz be the Q-format of the operand x, y, and z,
respectively.

Addition–Subtraction
The addition or the subtraction of two fixed-point numbers x and y can lead to an
overflow if the operation result is not in the dynamic range of x and y. In this case,
one more bit must be used to represent the integer part. Thus, dynamic range of the
output result must be taken into account. A common IWL, mc, must be defined to
represent the input and the output

mc = max(mx,my,mz) (2.2)

where mz is computed from the dynamic range of the variable z. This IWL allows
aligning the binary-point of the two input operands before computing the addition
or the subtraction. The fixed-point format of the operation output is as follows:

{
mz = mc

nz = max(nx, ny)
(2.3)

Multiplication
In contrast to the addition or the subtraction, there is no risk of overflow for the
multiplication if the format of the output respects the following conditions. Thus,
the fixed-point format of the output z = x × y is obtained from the input x and y

fixed-point format with the following expression:

{
mz = mx +my

nz = nx + ny
(2.4)

The multiplication leads to an increase of the number of bits to represent the
operation output. The total number of bits wz is equal to wx + wy = mx + nx +
my + ny .

Division
For the division operation z = x/y, the value 0 must be excluded of the divisor
y interval [y, y] leading to the interval [y,−2−ny ] ∪ [2−ny , y] if we consider the
case that y is strictly negative and y is strictly positive. The IWL of the division
output must be able to represent the largest value of the division result. This one
is obtained by dividing the largest dividend by the smallest divisor. The largest
possible dividend is −2mx−1, while the smallest divisor is 2−ny .
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The FWL of the division output must be able to represent the smallest absolute
value of the division result. This one is obtained by dividing the smallest dividend
by the largest divisor. The smallest dividend is 2−nx , while the largest divisor is
−2my−1.

Thus, the fixed-point format of the output z = x/y is obtained from the input x

and y fixed-point format with the following expression:

{
mz = mx + ny

nz = nx +my
. (2.5)

Like for the multiplication, the total number of bits wz is equal to wx + wy =
mx + nx +my + ny .

2.2.3 Quantization Process and Rounding Modes

In DSP applications, a sequence of arithmetic operations leads to an increase of data
word-length when multiplication and division operations are involved. To maintain
data word-lengths in reasonable range, the number of bits must be reduced. In fixed-
point arithmetic, the least significant bits are discarded. Let x′ be a fixed-point
variable with a word-length of wx′ bits. The quantization process Q() leads to the
variable x, depicted in Fig. 2.1, and having a word-length w = wx′ − d. Let Sx

be the set containing all the values which can be represented in the format after
quantization.

Truncation
In the case of truncation, the data x is always rounded towards the lower value
available in the set Sx :

x = 	x · q−1
 · q = kq ∀x ∈ [k · q; (k + 1)q[ (2.6)

with 	·
, the floor function defined as 	x
 = max (n ∈ Z| n ≤ x) and q = 2−n the
quantization step. The value x after quantization is always lower than or equal to the
value x before quantization. Thus, the truncation adds a bias on the quantized signal
and the output quantization error will have a non-zero mean. Truncation rounding is
widely used because of its cheapest implementation. The d LSBs of x′ are discarded
and no supplementary operation is required.

Conventional Rounding
To improve the precision after the quantization, the rounding quantization mode can
be used. The latter significantly decreases the bias associated with the truncation.
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This quantization mode rounds the value x to the nearest value available in the
set Sx :

x =
⌊(

x + 1

2
q

)

· q−1
⌋

· q =
{

kq ∀x ∈ [k · q; (k + 1
2 )q[

(k + 1)q ∀x ∈ [(k + 1
2 )q; (k + 1)q] (2.7)

The midpoint q1/2 = (k+ 1
2 )q between kq and (k+1)q is always rounded up to the

higher value (k + 1)q. Thus, the distribution of the quantization error is not exactly
symmetrical and a small bias is still present.

The conventional rounding can be directly implemented from (2.7). The value
2−n−1 is added to x′, and then the result is truncated on w bits. In the technique
presented in [1], the conventional rounding is obtained by the addition of x′ and the
value b−n−1.2−n, and then the result is truncated on w bits. This implementation
requires an adder of w bits.

Convergent Rounding
To reduce the small bias associated with the conventional rounding, the convergent
rounding can be used. To obtain a symmetrical quantization error, the specific value
q1/2 must be rounded up to (k + 1)q and rounded down to kq with the same
probability. The probabilities that a particular bit is 0 or 1 are assumed to be identical
and thus the rounding direction can depend on the bit b−n value.

x =

⎧
⎪⎪⎨

⎪⎪⎩

kq ∀ x ∈ [k.q; (k + 1
2 )q[

(k + 1)q ∀ x ∈](k + 1
2 )q; (k + 1)q]

kq ∀ x = q1/2 and b−n = 0
(k + 1)q ∀ x = q1/2 and b−n = 1

(2.8)

The specific value q1/2 has to be detected to modify the computation in this case.
For this specific value, the addition of the data x with the value 2−n−1 has to be
done only if the bit b−n is equal to one.

The alternative to this conditional addition is to add the value b−n−1.2−n in every
case. Then, for the specific value q1/2, the least significant bit b−n of the data x is
forced to 0 to obtain an even value. This last operation does not modify the result
when b−n is equal to 1 and discard the previous addition operation if b−n is equal
to 0. The convergent rounding requires a supplementary addition operation and an
operation (DTC) to detect the value 2−n−1 and then to force bit b−n to zero.

2.2.4 Overflow Modes

In DSP applications, numerous processing kernels involve summations requiring to
accumulate intermediate results. Consequently, the dynamic range of the accumula-
tion variable grows and can exceed the bounds of the values that can be represented
leading to overflows. When an overflow occurs, if no supplementary hardware is
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used, the wrap-around overflow mode is considered. For the wrap-around overflow
mode, the value xwa of variable x coded with m bits for the IWL is equal to

xwa =
(
(x + 2m−1) mod 2m

)
− 2m−1 (2.9)

with mod the modulo operation. To avoid overflow, the fixed-point conversion
process described in the rest of this chapter must be followed conscientiously.
Especially, the dynamic range of the different variables must be carefully evaluated
for sizing the IWL. For variables having a long tail for its probability density
function, the IWL can be large and thus leading to an over-estimation for numerous
values. In this case, saturation arithmetic can be used to reduce the IWL. Let us
consider a variable x coded with m bits for the IWL. In saturation arithmetic, when
the value x is lower than −2m−1, the value x is set to −2m−1. When the value x is
higher than −2m−1, the value x is set to −2m−1 − 2−n.

2.3 Fixed-Point Conversion Process

As described in Sect. 2.2, a fixed-point number is made up of an integer part and
a fractional part. The aim of the fixed-point conversion process is to determine for
each data the binary-point position and more specifically the number of bits for the
integer part and the fractional part.

The total number of bits wi = mi + ni to encode a data influences the
implementation cost C. The implementation cost reduction implies to minimize the
integer and fractional part word-lengths. The reduction of the number of bit leads
to unavoidable error between the finite precision values and the infinite precision
ones and thus degrades the quality of the application output. Consequently, the
implementation cost minimization through word-length optimization is achieved
with the constraint that the output quality degradation Δλ is limited and below a
maximal value λmax. This fixed-point conversion process can be modelled by the
following optimization process:

min
w

(C(w)) subject to Δλ(w) ≤ λmax (2.10)

where w is an N -length vector containing the word-lengths of the N data inside the
application, and C(·) is an implementation cost function that models the cost such
as area or energy consumption according to the data word-lengths. Δλ(·) computes
the quality degradation due to the tested word-length configuration w [2–4], and
λmax represents the maximal quality degradation tolerable by the application.

Reducing the number of bits for the integer part or for the fractional part leads to
different effects. The integer part word-length m defines the range of values that can
be represented. When m is too low, overflows occur, leading to non-linearity in the
processing and a significant amplitude for the error compared to infinite precision.
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As long as m is greater than mmin, the minimum value that guarantees no overflow,
modifying m will have no effect on the quality of the output. When m is lower
than mmin, overflow occurs and quickly the output quality is highly degraded. To
determine the integer word-length, the data dynamic range is evaluated and the
minimal value of m ensuring no overflow or a sufficiently low overflow probability
is selected.

The fractional part word-length n defines the accuracy. The larger n is, the
smaller the error between finite and infinite precisions is and the higher the
accuracy is improved. Unlike for the integer part, reducing the number of bit
the fractional part will progressively reduce the accuracy and increase the output
quality degradation. Thus, the determination of the fractional part word-length
is a trade-off between the implementation cost and the quality degradation. This
trade-off is explored through the solving of the optimization process described in
Eq. (2.10). The word-length of each data is optimized through the minimization
of the implementation cost under quality degradation constraint. This optimization
process requires three elements, an optimization algorithm, a cost function C(·),
and a quality degradation function Δλ(·). The quality degradation function depends
on the fractional part word-length of each data. The cost function C(·) requires the
knowledge of the total word-length of each data. Thus, for this optimization process,
the integer part word-length has to be known.

Consequently, the fixed-point conversion process is split into two parts. Firstly,
the integer part word-length is determined from the results of the data dynamic
range evaluation. Secondly, the fractional part word-length is optimized by solving
the optimization process described in Eq. (2.10).

2.3.1 Integer-Part Word-Length Determination

The first stage of the fixed-point conversion process aims at determining the number
of bits for the integer part of each data in the considered application. The goal is
to minimize the number of bits while protecting against overflows that degrade
significantly the application quality. Firstly, the dynamic range of each signal is
evaluated. The different types of techniques available to estimate the dynamic range
are presented in Sect. 2.3.1.1. Secondly, the IWL is determined from the dynamic
range and the fixed-point format propagation rules. Scaling operations are inserted
to adapt fixed-point formats. This process is described in Sect. 2.3.1.2.

2.3.1.1 Dynamic Range Evaluation

The determination of the number of bits for the integer part requires to evaluate
the signal dynamic range. Existing techniques to evaluate the dynamic range can
be classified according to the targeted applications. Critical systems do not tolerate
high computational errors. Any overflow occurrence may lead to a system failure
or a serious quality degradation. For example, in 1996, the first launch of the
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Ariane 5 rocket ended in explosion due to software failure. This failure was caused
by the overflow of the variable representing the rocket acceleration. Thus, for critical
systems, the integer part word-length has to cover the entire range of possible values.
In this case, the bounds should be determined by techniques that guarantee the
absence of overflow occurrence and allowing to certify the data dynamic range.
Techniques based on interval arithmetic or affine arithmetic satisfy these constraints,
but at the expense of an overestimation of the bounds. Statistical approaches that
determine bounds from a set of simulation results can reduce the overestimation but
cannot ensure the absence of overflow occurrence.

Overflows occur when the number of bits of the integer part is not sufficient.
Overflow occurrence degrades the result quality at the system output. However,
the hardware implementation cost is unnecessarily increased if the number of bits
exceeds the needs. Many systems are tolerant to overflows if the probability of
overflow occurrence is low enough. In this case, determining the number of bits
of the integer part is a trade-off between the implementation cost and the output
system quality degradation. This is translated into an optimization problem where
the integer word-length of each variable of the system is reduced while maintaining
an overflow probability lower than the accepted probability [5]. The challenge is to
estimate the probability density function (PDF) of the data in order to be able to
compute the overflow probability. Stochastic approaches, which model the variable
PDF by propagating data PDF model from the inputs to the system output, can be
considered.

2.3.1.2 IWL Determination and Insertion of Scaling Operations

The IWL is determined by propagating the IWL through the operations from the
inputs to the outputs with the help of the dynamic range evaluation results. This
propagation process uses the format propagation rules provided in Sect. 2.2.2.

To illustrate this stage, let us consider the sequence of operations depicted in
Fig. 2.2. The data d is the output of the operation Oj and the input of operation Ok .
Let ms , md , and mi be, respectively, the IWL for the operation Oj output, the data
d, and the operation Ok input.

The IWL of the signed data d is computed from its dynamic range [x, x] with
the following expression:

mx = max
(	log2(| x |)
 + 2, �log2(| x |)� + 1

)
(2.11)

d
o i OkOj

Fig. 2.2 Example of a sequence of operations: data d is the output of the operation Oj and the
input of operation Ok
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The IWL mo is computed from the propagation of the IWL of the operation Oj

inputs with the help of the rules provided in Sect. 2.2.2. A scaling operation is
inserted at the operation Oj output if so = md − moj

is strictly negative. In this
case, a left shift of so bits is required to modify the IWL. It means that the IWL of
the operation Oj was too important compared to the data dynamic range of d and
the so most significant bits of x are a copy of the sign bit and can be discarded.

For multiplication and division, the IWL mi is equal to md and no scaling
operation is required at the operation Oj input. For addition and subtraction, a
common IWL mc for the input and the output must be determined and mi = mc. A
scaling operation is inserted at the operation Ok input if si = moi

− md is strictly
positive. In this case, a right shift of si bits is required to modify the IWL of the data
d. It means that supplementary bits are required for the addition or subtraction Oj

to avoid overflow.

2.3.2 Fractional Part Word-Length Determination

The fractional part word-length is optimized by solving the optimization process
described in Eq. (2.10). The search space for this combinatorial optimization
problem is huge, and numerous algorithm have been proposed to find an optimized
solution in a reasonable execution time. In Chap. 9 (Word-Length Optimization
of Fixed-Point Algorithms), a survey of the different optimization algorithms is
proposed. These optimization algorithms are iterative process, testing different
combinations of word-length and moving in the search space. Consequently, the cost
function C(·) and the quality degradation function Δλ(·) are evaluated numerous
time. The challenge is to develop techniques able to evaluate efficiently and
accurately the quality degradation. In Chap. 6, a survey of the different existing
techniques to evaluate the quality degradation is proposed.

2.4 Floating-Point Arithmetic

Floating-point (FlP) representation is today the main representation for real numbers
in computing, thanks to a potentially high dynamic range and to its ease of use since
all scaling and rounding operations are totally managed by the hardware, contrary
to fixed-point arithmetic. However, this ease of use comes with relatively important
area, delay, and energy penalties. The floating-point representation is presented in
Sect. 2.4.1. Section 2.4.2 details the principle of FlP addition and multiplication and
provides some fair comparisons of their cost and performance with regard to FxP.
Then, Sect. 2.4.3 presents some opportunities to reduce the cost of FlP operators,
without jeopardizing the accuracy of the computations too much. Finally, Sect. 2.4.4
describes some libraries that can be used to simulate and perform hardware synthesis
of customized, low-precision floating-point computations.
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2.4.1 Floating-Point Representation for Real Numbers

In computer arithmetic, the representation of real numbers is a major issue. Indeed,
most algorithms are using mathematical functions, and their accuracy and stability
are directly related to the accuracy of the number representation they use. The
floating-point (FlP) representation is a way to encode real numbers with a scaling
factor encoded in the data. Given an unsigned M-bit mantissa m, a signed integer
exponent of value e coded on E bits, often represented in biased representation, and
a sign bit s, the radix-2 floating-point value xf lpt is represented as

xf lpt = (−1)s × 1.m× 2e (2.12)

Contrary to fixed-point representation, the point in the FlP representation of
the number is “floating” and scaled by the exponent, similarly to the scientific
representation in decimal arithmetic that we use in our daily life. The mantissa m—
or the significand of the representation—is used to generate a normalized number
with an implicit “1” conforming the integer part belonging to [1, 2[. This “1” being
implicit, it is not represented in the format, freeing space for one more digit. This
number is then scaled by means of the exponent e, and the sign is controlled by the
value of the sign bit s. e being a signed number, the exponent is usually represented
in the number format as biased by a constant value b. With this representation, any
number under this format can be represented using M + E + 1 bits as shown in
Fig. 2.3.

Nevertheless, automatically keeping the floating point at the right position
along computations requires an important hardware overhead, as discussed in
Sect. 2.4.2. Managing subnormal numbers (numbers between 0 and the smallest
positive possible representable value) and the values 0 and infinity also represents an
overhead. Despite this additional cost, FlP representation is today established as the
de facto standard for real number representation. Indeed, besides its high accuracy
and high dynamic range, it has the huge advantage of leaving the whole management
of the representation to the hardware instead of leaving it to the software designer,
significantly diminishing developing and testing time. This domination is sustained
by IEEE 754 standard, lastly revised in 2008 [6], which sets the conventions for
floating-point number possible representation, subnormal numbers management,
and the different cases to be handled, ensuring a high portability of programs.
Table 2.1 gives the representations of the FlP numbers following the IEEE 754-2008

Fig. 2.3 Floating-point representation
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Table 2.1 IEEE 754 normalized floating-point representation

Precision
Mantissa Exponent Minimum exponent Exponent bias (b)

width (M) width (E) value (emin) (also emax )

Half precision (16 bits) 10 5 −14 15

Single precision (32 bits) 23 8 −126 127

Double precision (64 bits) 52 11 −1022 1023

Quadruple precision (128 bits) 112 15 −16382 16383

standard. Mantissa width M is without the implicit 1. The bias b is equivalent to the
maximum exponent value emax . However, such a strict normalization implies:

• An important overhead for throwing flags for the many special cases and even
more for the management of these special cases

• A low flexibility in the widths of the mantissa and exponent, which have to
respect the rules of Table 2.1 for 16-, 32-, 64-, and 128-bit precisions.

2.4.2 Floating-Point Operators

Integer addition (or subtraction) is the simplest arithmetic operator. However, in
floating-point arithmetic, addition suffers from a high control overhead, which
requires several steps to be performed:

• First, the difference of the exponents is computed.
• Depending on the difference of the exponents, one among two computing paths

may be selected [7]: the close path is for situations where a massive cancellation
(more than 1 bit) may occur or effective subtractions of inputs with exponents that
differ by at most 1. The far path is for distant exponents, where their difference
is at least 2 bits. The following computations may slightly vary depending on the
chosen path.

• The addition of the mantissas is performed.
• Then, rounding is performed on the mantissa, depending on the dropped bits and

the rounding mode (to zero, to nearest, etc.) selected.
• Special cases are then handled (zero, infinity, subnormal results) and the output

sign.
• Then, mantissa is shifted, so it represents a value in [1, 2[.
• And the exponent is modified depending on the number of shifts.

More control can be needed, depending on the implementation of the FlP adder and
the specificities of the FlP representation. For instance, management of the implicit
1 implies to add 1s to the mantissas before addition, and an important overhead
can be dedicated to exception handling. For a figure illustrating the FlP addition
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Table 2.2 Cost, delay, and
power of FlP addition vs.
integer addition

Area Total Critical Power delay

(μm2) power (mW) path (ns) Product (fJ)

32-bit
653 4.39E−4 2.42 1.06E−3

float

64-bit
1453 1.12E−3 4.02 4.50E−3

float

32-bit
189 3.66E−5 1.06 3.88E−5

int

64-bit
373 7.14E−5 2.10 1.50E−4

int

principle and more details on its hardware implementation, the reader can refer to
Figure 8.13 of [7] and the related chapter of the book.

For cost, delay, and power comparison, Table 2.2 shows the performance of
32-bit and 64-bit FlP addition compared with 32-bit and 64-bit integer addition,
synthesized using Synopsys Design Compiler targeting 28nm FDSOI with a 200
MHz clock. Power is estimated using 10, 000 uniform input samples. FlP addition
power was estimated activating in an equivalent way the close and far paths 50%
of the time. These results clearly show the overhead of floating-point addition. For
32 bits, the FlP addition is 3.5× larger and 2.3× slower and consumes 27× more
energy than integer addition. For 64 bits, the FlP addition is 3.9× larger and 1.9×
slower and consumes 30× more energy. The overhead seems to be roughly linear
with the size of the operator, and the impact of numbers representation is highly
impacting performance. However, it is showed later in this chapter that this high
difference reduces with the bit-width of the operands.

FlP multiplication is less complicated than addition as only a low control
overhead is necessary to perform the operation. Input mantissas are multiplied
using a classical integer multiplier, while exponents are simply added. At worse,
a final +1 on the exponent can be needed, depending on the result of the mantissas
multiplication and the related rounding and normalization required. For a figure
illustrating the basic architecture of an FlP multiplier, the reader can refer to
Figure 8.14 of [7] and the related chapter of the book.

Obviously, all classical hardware overheads needed by FlP representation are
again necessary (rounding logic, normalization, management of particular cases),
but the overhead for the multiplication is less than for addition. Table 2.3 shows the
difference between 32-bit and 64-bit floating-point multiplication and 32-bit and 64-
bit fixed-width integer multiplication, with the same experimental setup as discussed
before for the addition.

A first observation on the area shows that the integer multiplier is 48% larger
than the FlP version for 32 bits and 37% larger for 64 bits. This difference is
due to the smaller size of the integer multiplier in the FlP multiplier, since it is
limited to the size of the mantissa (24 bits for 32-bit version and 53 bits for 64-bit
version). Despite the management of the exponent, the overhead is not large enough
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Table 2.3 Cost, delay, and
power of floating-point
multiplication vs. integer
multiplication

Area Total Critical Power delay

(μm2) power (mW) path (ns) Product (fJ)

32-bit
1543 8.94E−4 2.09 1.87E−3

float

64-bit
6464 6.56E−3 4.70 3.08E−2

float

32-bit
2289 6.53E−5 2.38 1.55E−4

int

64-bit
8841 1.84E−4 4.52 8.31E−4

int

to produce a larger operator. However, the 32-bit FlP multiplication energy is 11×
higher than for the integer version, while 64-bit version consumes even 37× more
energy. This can be justified by the higher activity of the logic in the FlP operator
due to the management of the exponent and special cases. It is interesting to note that
the difference of energy consumption between addition and multiplication is much
more important for integer operators than for FlP. As an example, for 32-bit, integer
multiplication consumes 4.7× more energy than integer addition, while this factor
is only 1.4× for 32-bit FlP multiplier compared to 32-bit FlP adder. Therefore,
using multiplication in FlP computing is relatively less penalizing than for integer
multiplication, typically used in fixed-point arithmetic.

2.4.3 Low-Precision Floating-Point Arithmetic

There is a growing interest in the use of reduced-precision arithmetic, exacerbated
by the recent interest in artificial intelligence, especially with deep learning. CPU,
GPU, and TPU architectures already provide interesting, but limited, reduced-
precision capabilities. 8-bit integer and 16-bit floating-point (e.g., float16,
bfloat16) are typical examples of low-precision computations included in the
architectures. Through the use of hardware acceleration on FPGA architectures,
and thanks to their reconfiguration features, arithmetic customization can be further
extended and almost any number format and word-length can be leveraged in the
accelerator. All these examples illustrate the interest of customizable floating-point
architectures. Indeed, combining the ease of use of floating-point representation
associated with low-energy benefits of small bit-width makes reduced-precision
floating-point arithmetic very promising.

There are several possible opportunities to relax accuracy in floating-point
arithmetic to increase performance and save power and hardware cost. Of course,
the main technique is to reduce the size of the mantissa and exponent (i.e., smaller
operand bit-width or word-length). With a mantissa normalized in [1, 2[, reducing
the word-length corresponds to pruning the LSBs, which comes with no overhead,
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except if faithful rounding is performed. For the exponent, the transformation can
be more complicated if it is represented with a bias. Indeed, if E is the exponent
width, an implicit bias of 2E − 1 applies to the exponent in classical exponent
representation. Therefore, reducing the exponent to a width E′ means that a new bias
must be applied. The original exponent must be added 2E′−2E (< 0) before pruning
the MSBs, implying hardware overhead at conversion. The original exponent must

represent a value in
[
−2E′−1 + 1, 2E′−1

]
to avoid overflow. In practice, it is better to

keep a constant exponent width to avoid useless overhead and conversion overflows,
which would have a huge impact on the quality of the computations.

A second way to improve computation at reduced precision is to play with
the implicit bias of the exponent. Indeed, increasing the exponent width increases
the dynamic towards infinity, but the accuracy towards zero. Thus, if the absolute
maximum values to be represented are known, the bias can be chosen, so it is just
large enough to represent these values. This way, the exponent gives more accuracy
to very small values, increasing accuracy. However, using a custom bias means that
the arithmetical operators (addition and multiplication) must consider this bias in
the computation of resulting exponent, and the optimal bias along computation
may diverge to −∞. To avoid this, if the original 2E − 1 exponent bias is kept,
exponent bias can be simulated by biasing the exponents of the inputs of each
or some computations using shifting. For the addition, biasing both inputs adding
2Ein to the exponent implies that the output will also be biased by 2Ein . For the
multiplication, the output will be biased by 2Ein+1. Keeping an implicit track of the
bias along computations allows to know any algorithm output bias and to perform a
final rescaling of the outputs.

Finally, accuracy can be relaxed in the integer operators composing the consid-
ered FlP operators, e.g., the integer adder adding the mantissas in FlP addition or
the integer multiplier in the FlP multiplication. Indeed, they can be replaced by
approximate adders and multipliers as described in other chapters of this book, to
improve performance while relaxing accuracy. However, as most of the cost relies
in control hardware, the impact on accuracy would be strong for a very small cost
or performance benefit. The same approximation can be applied on the exponent
management, but the impact of approximate arithmetic would be too high on the
accuracy and this is therefore strongly unadvised.

2.4.4 Reduced-Precision Floating-Point Libraries

The past years have hosted the creation of several customizable floating-point
libraries. As part of the synthesizable C++ libraries AC Datatypes [8], Mentor
Graphics proposes the custom floating-point class AC_FLOAT. Based on the fixed-
point library AC_FIXED, AC_FLOAT allows for light floating-point computation,
thanks to simple operators. The mantissa in the representation is not normalized and
has no implicit 1. This allows for easy management of subnormals but induces a
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potential loss of accuracy in computations. The mantissa is represented in signed
two’s complement, so the sign information is contained in the mantissa instead
of using an extra sign bit. However, there is no benefit to this choice since
two’s complement represents a loss of 1 bit of precision compared to unsigned
representation. The choice of two’s complement representation on the mantissa
also turns comparison operator more complex. Moreover, many cases are not
handled such as zero or infinity. AC_FLOAT also supports custom exponent bias,
but managing the exponent bias comes with an overhead.

FLOPOCO (for Floating-Point Cores, but not only) is a generator of arithmetic
cores [9]. Also based on C++, it has its own synthesis engine and directly returns
VHDL. More than simple arithmetic operators, it is able to generate optimized
floating-point computing cores performing complex arithmetic expressions. In this
section, we will only get interested in FLOPOCO’s custom floating-point addition
and multiplication. The main difference of FLOPOCO’s floating-point representation
is the extra 2-bit exception field transported in data. Like for CT_FLOAT, subnormals
are not handled by FLOPOCO. Unlike AC_FLOAT, both CT_FLOAT and FLOPOCO

do not support custom exponent bias.
Other alternatives such as VFLOAT [10, 11] or OptiFEX [12] do exist but are

not taken into account in the study led in this chapter. VFLOAT proposes IEEE
754-2008 compliant customizable computing cores for existing FPGA. OptiFEX
generates floating-point computing cores targeting FPGA like FLOPOCO.

CT_FLOAT [13]1 offers a balance between computational safety and simplicity.
Inspired by AC_FLOAT, it is provided as C++ template for High-Level Synthesis
(HLS), compatible with Mentor Graphics CatapultHLS and Xilinx Vivado HLS. As
CT_FLOAT will be used for comparison with fixed-point representation in the rest of
this chapter, we provide below more details on the library.

The declaration of an instance of CT_FLOAT requires three template parameters:
the exponent width E, the mantissa width M , and the rounding mode. The mantissa
also includes a sign bit and is represented as sign plus absolute value, as in standard
FlP. The total number of bits in memory is therefore equal to E + M . Currently,
two rounding modes are supported: CT_RN rounding to nearest with halfway-to-
even tie-breaking rule and CT_RZ rounding towards 0 or truncation. CT_FLOAT

representation and arithmetic operators were created to remain simple and energy
efficient, thanks to the combination of several implementation choices. CT_FLOAT

mantissa is represented in [1, 2[ with an implicit 1. However, subnormal numbers
are not handled, which implies that a certain range of numbers are not representable
around 0. The exponent is represented in a biased representation. The bias is set
at the centre of the exponent range, similar to the IEEE 754 representation. Using
biased representation instead of two’s-complement results in simpler exponent value
comparisons, which are omnipresent in arithmetic operators. In variants of the
CT_FLOAT library, the bias can also be customized.

1 https://gitlab.inria.fr/sentieys/ctfloat.

https://gitlab.inria.fr/sentieys/ctfloat
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The library provides a rich set of synthesizable operator overloading: unary
operators (unary −, !, ++, −−), relational operators (<, >, <=, >=, ==, ! =),
binary operators (+, + =, − − =, ∗, ∗=, <<, <<=, >>, >>=), and assignment
operator from/to another instance of CT_FLOAT. It also provides non-synthesizable
operator overloading features, such as conversion from/to C++ native datatypes
(float, double), and output operator << for easy display and writing in files. Other
built-in functions allow easy manipulation of floating-point values, such as functions
to get information about the extreme representable values for a given floating-point
representation, to test if a given value is representable, etc.

An example (not including all statements and declarations) of the use of
CT_FLOAT is given below:

ct_float<7, 9, CT_RN> h = 1.046978e-3;
ct_float<7, 9, CT_RN> x, y;
x = -0.02266398;
y = x * y + 0.55;
cout << y << endl;

This example can be simulated and synthesized to hardware using HLS. In the
example, all variables have the same representation (i.e., E = 7 and M = 9,
rounding mode is CT_RN). It is also possible to deal with various representations.
If the inputs are on (E1,M1) and (E2,M2) representation, the output representation
(Eo,Mo) is given by

Eo = max (E1, E2)

Mo = max (M1,M2) (2.13)

Moreover, as subnormals are not representable by CT_FLOAT, the output is always
saturated to the smallest absolute possible representable value with the same sign.
Towards infinity, the operators do not under/overflow. Saturation to the highest
absolute representable value of the same sign is returned.

Table 2.4 recapitulates the different known properties of AC_FLOAT, CT_FLOAT,
and FLOPOCO floating-point representation. In this table, the number of additional
bits in the representation is taking for reference a representation with implicit 1 in
the mantissa and with one bit of sign in the representation. For an equal general
accuracy, AC_FLOAT needs one more bit on the mantissa than CT_FLOAT and
FLOPOCO. However, with its 2-bit exception field, FLOPOCO has the representation
requiring not only the largest width but also the highest computing reliability.

Then, the hardware performance comparison process for AC_FLOAT, CT_FLOAT,
and FLOPOCO is as follows. All operators are characterized for a 28nm FDSOI @
1.0V, 25C ASIC library. All designs are synthesized and estimated with a clock
of 200 MHz. For power analysis, the random inputs generated for adder/subtracter
characterization are ensuring an activation of the close path for at least 50% of the
computations. However, the benchmark generated by FLOPOCO does not insure
any proportion of activation of the close path, so the dynamic power could be
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Table 2.4 Main properties of
the custom floating-point
libraries AC_FLOAT,
CT_FLOAT, and FLOPOCO

AC_FLOAT CT_FLOAT FLOPOCO

Custom exp.
✓ ✗ (✓) ✗

bias

Mantissa
✗ ✓ ✓

Implicit 1

Zero and inf.
✗ ✗ ✓

exception flags

Zero and inf.
✗ ✓ ✗

internal handling

Subnormal
✗ ✗ ✓

exception flag

Subnormal
✓ ✗ ✗

internal handling

Additional bits +1 +0 +2
in representation

Table 2.5 Comparative results for 16-bit FlP addition/subtraction with Fclk = 200MHz

Area (μm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

AC_FLOAT 312 1.44 1.84 E-1 9.07 E-1

CT_FLOAT 318 1.72 2.13 E-1 1.05

FLOPOCO 361 2.36 1.84 E-1 9.06 E-1

CT_FLOAT /AC_FLOAT +2.15% +19.4% +15.4% +15.7%

CT_FLOAT /FLOPOCO -11.8% -27.0% +15.7% +15.8%

underestimated. Moreover, FLOPOCO’s benchmark does not consider any input
and output data registers, whereas AC_FLOAT and CT_FLOAT, synthesized with
HLS, do. This may represent about 5–10% underestimation in the total power for
FLOPOCO operators, which has to be kept in mind for the analysis of results. All
operators are generated, so they execute in 1 cycle. It may not be the most efficient
implementation because of possible glitches, but it is a good starting point for a fair
comparison.

For this comparative study, half-precision (E = 5, M = 11) and single-precision
(E = 8, M = 24) floating-point representations are considered. Results for 16-bit
addition/subtraction, 16-bit multiplication, 32-bit addition/subtraction, and 32-bit
multiplication are given in Tables 2.5, 2.6, 2.7, and 2.8, respectively. The two last
lines of the tables refer to the relative performance of CT_FLOAT vs. AC_FLOAT

(respectively, FLOPOCO ) (e.g., CT_FLOAT area is 2.15% higher than AC_FLOAT).
The main conclusion is that the three custom floating-point libraries provide

results in the same order of magnitude. For 16-bit addition/subtraction, CT_FLOAT

consumes 15% more energy than both AC_FLOAT and FLOPOCO, despite an area
being equivalent to AC_FLOAT and 12% smaller than FLOPOCO. The fastest 16-
bit adder/subtracter is AC_FLOAT, followed by CT_FLOAT, which is 19% slower
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Table 2.6 Comparative results for 16-bit FlP multiplication with Fclk = 200MHz

Area (μm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

AC_FLOAT 488 1.18 2.15 E-1 1.05

CT_FLOAT 389 1.13 1.76 E-1 8.59 E-1

FLOPOCO 361 1.52 1.34 E-1 6.50 E-1

CT_FLOAT /AC_FLOAT -20.4% -4.24% -18.2% -18.2%

CT_FLOAT /FLOPOCO +7.68% -25.6% +31.7% +32.1%

Table 2.7 Comparative results for 32-bit FlP addition/subtraction with Fclk = 200MHz

Area (μm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

AC_FLOAT 678 2.49 4.46 E-1 2.21

CT_FLOAT 720 2.84 4.86 E-1 2.41

FLOPOCO 772 4.10 5.05 E-1 2.51

CT_FLOAT /AC_FLOAT +6.06% +14.1% +8.92% +9.12%

CT_FLOAT /FLOPOCO -6.85% -30.8% -3.69% -4.15%

Table 2.8 Comparative results for 32-bit FlP multiplication with Fclk = 200MHz

Area (μm2)
Critical Total Energy per

path (ns) power (mW) operation (pJ)

AC_FLOAT 1689 2.19 1.02 5.03

CT_FLOAT 1469 2.30 5.84 E-1 2.70

FLOPOCO 2890 3.20 1.03 5.07

CT_FLOAT /AC_FLOAT -13.0% +5.02% -42.8% -46.3%

CT_FLOAT /FLOPOCO -49.2% -28.2% -43.3% -46.8%

but 27% faster than FLOPOCO. All metrics are slightly in favour of AC_FLOAT

for 16-bit addition/subtraction. For 16-bit multiplication, FLOPOCO’s multiplier is
the smallest and with the lowest energy consumption. However, CT_FLOAT is 25%
faster but consumes 32% more energy.

32-bit addition/subtraction gives similar energy for AC_FLOAT, CT_FLOAT, and
FLOPOCO. FLOPOCO is the slowest operator, CT_FLOAT being 27% faster. The
energy of 32-bit multiplication is strongly in favour of CT_FLOAT, saving more than
45% more energy than both AC_FLOAT and FLOPOCO. CT_FLOAT is 13% smaller
than AC_FLOAT and 49% smaller than FLOPOCO. However, AC_FLOAT is 5% faster.

As a conclusion, AC_FLOAT, CT_FLOAT, and FLOPOCO addition/subtraction
and multiplication provide similar results. Though they all have different features
(implicit 1 or not, particular cases management, etc.), they all are quite close in
terms of performance. In the following section, CT_FLOAT alone is then used as a
reference for the comparison with fixed-point arithmetic.
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2.5 Comparison Between Fixed-Point and Custom
Floating-Point

This section draws a comparison between customized fixed-point and floating-point
arithmetic. Section 2.5.1 compares FxP and FlP in terms of area, delay, and energy
at the operator level. Then, Sect. 2.5.2 compares the two number representations
in the context of their use in applications, thus considering the errors due to
low-precision computations. One conclusion is that the choice between FxP and
FlP is not obvious and depends on the application considered. It is shown that,
in some cases, low-precision floating-point arithmetic can be the most effective,
providing some benefits over the classical fixed-point choice for energy-constrained
applications.

2.5.1 Operator-Level Comparison

This section compares FxP and FlP operators in terms of area, delay, and energy and
does not consider computing errors at the operator level. Indeed, floating-point error
magnitude is related to data values. Low-amplitude data have low error magnitude,
whereas high-amplitude data have much higher error magnitude. Oppositely, fixed-
point has a very homogeneous error magnitude, uniformly distributed between fixed
bounds. Therefore, its relative error depends on the amplitude of the represented
data. It is low for high-amplitude data and high for low-amplitude data. This duality
makes these two paradigms impossible to be atomically compared using the same
error metric. The only interesting error comparison that can be performed is to
compare the error behaviour inside the same application, which is reported in
Sect. 2.5.2 on FFT and K-means clustering.

The study in Sect. 2.5 uses the CT_FLOAT library for custom floating-point and
AC_FIXED datatypes. A 100 MHz clock is set for synthesis and power estimation.
All the other parameters are the same as for the previous section.

In this section, 8-, 10-, 12-, 14-, and 16-bit operators are compared. For each
of these bit-widths, several versions of the floating-point operators are estimated
with different exponent widths and compared with fixed-point. 25.103 uniformly
distributed inputs are used for each operator characterization. For the floating-point
adder, inputs are distributed such that the close path, which has the highest energy
by nature, is activated 25% of the time. Adders and multipliers are all tested in their
fixed-width version, meaning their number of input and output bits is the same. The
output is truncated.

Figure 2.4 (respectively, Fig. 2.5) shows the area, delay, and energy of adders
(respectively, multipliers) for different bit-widths, relative to the corresponding
fixed-point operator. FlPN(E) represents N -bit floating-point with E bits for
exponent. As discussed before in this chapter, the floating-point adder shows an
important overhead compared to fixed-point. For any configuration, area and delay
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Fig. 2.4 Relative area, delay, and energy per operation between fixed-point and floating-point of
adders for different bit-widths

are around 3× higher for floating-point. As a consequence, the higher complexity
of the floating-point adder leads to 5× to 12× more energy per operation.

Results for the multipliers are very different. Floating-point multipliers are 2-
3× smaller than fixed-point. The control part of floating-point multiplier being less
complex than for adder and as multiplication is performed only on the mantissa, the
area gets smaller. Timing is also slightly better for floating-point but still constrained
by operand shifts during computations. These shifts also significantly impact energy
per operation, especially for large mantissas, which results in an overhead of 2× to
10× on the energy per operation for floating-point multiplication.

However, it must be kept in mind that, when using fixed-point numbers in an
application, shifting is often needed at many steps during execution to align the
number formats. The cost of shifting in the case of FxP is not considered in the
results presented here, whereas it is already present in the case of floating-point.
Thus, the advantage of fixed-point highlighted by Figs. 2.4 and 2.5 is expected to
be tempered when full applications are considered. This is the main objective of the
next section.
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Fig. 2.5 Relative area, delay, and energy per operation between fixed-point and floating-point of
multipliers for different bit-widths

2.5.2 Application-Level Comparison

In this section, floating-point and fixed-point operators are compared in the context
of their use in applications. Indeed, as stated below, they have very different error
nature, and thus their error cannot be fairly compared when considering only a
single operation. Both number representations are compared first using the K-means
clustering algorithm (also in [13]) and then on the Fast Fourier Transform (FFT).

2.5.2.1 Results on K-Means Clustering

This section first describes the K-means clustering algorithm before to provide
comparative results between FxP and FlP.

K-Means Clustering Principle, Algorithm, and Experimental Setup

K-means clustering is a well-known method for vector quantization, which is mainly
used in data mining, image classification, or voice identification. It consists in
organizing a multidimensional space into a given number of clusters, each being
totally defined by its centroid. A given vector in the space belongs to the cluster
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in which it is nearest from the centroid. The clustering is optimal when the sum of
the distances of all points to the centroids of the cluster they belong to is minimal,
which corresponds to finding the set of clusters S = {Si}i∈[0,k−1] satisfying

arg min
S

k∑

i=1

∑

x∈Si

‖x − μi‖2 (2.14)

where μi is the centroid of cluster Si . Finding the optimal centroid position of
a vector set is NP-hard. However, some iterative algorithms find good approx-
imations of the optimal centroids by an estimation-maximization process, with
a linear complexity (linear with the number of clusters, the number of data to
process, the number of dimensions, and the number of iterations). Lloyd’s iterative
algorithm [14] is used in our case study. It is applied to bidimensional sets of vectors
to ease display and interpretation of the results. From now, we only refer to Lloyd’s
algorithm in two dimensions. Figure 2.6 shows results of K-means on a random set
of input vectors, obtained using double-precision floating-point computations with a
very restrictive stopping condition; these values are then considered as the reference
golden outputs.

Fig. 2.6 2D K-means clustering golden output example, obtained using double-precision (64-bit)
floating-point
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The algorithm consists of three main steps:

1. Initialization of the centroids.
2. Data labelling.
3. Centroid position update.

Steps 2 and 3 are iterated until a stopping condition is met. In our case, the main
stopping condition is when the difference of the sums of all distances from data
points to their cluster’s centroid between two iterations is less than a given threshold.
A second stopping condition is the maximum number of iterations, required to
avoid the algorithm getting stuck when the computations are too approximated to
converge. The detailed algorithm for one dimension is given by Algorithm 1. Inputs
are represented by the vector data of size Ndata and output centroids by the vector
c of size k. The accuracy target for stopping condition is defined by acc_target

and the maximum allowed number of iterations by max_iter . In our study, we use

Algorithm 1 K-Means Clustering algorithm in one dimension
Require: k ≤ Ndata

err ←+∞
cpt ← 0
c ← init_centroids(data)

do �Main loop
old_err ← err

err ← 0
c_tmp[0 : k − 1] ← 0
min_distance ←+∞
for d ∈ {0 : Ndata − 1} do

min_distance ←+∞
for i ∈ {0 : k − 1} do � Data labelling

distance ← distance_comp(data[d], c[i])
if distance < min_distance then

min_distance ← distance

labels[d] ← i

end if
end for
c_tmp[labels[d]] ← c_tmp[labels[d]] + data[d]
counts[labels[d]] ← counts[labels[d]] + 1
err ← err +min_distance

end for
for i ∈ {0 : k − 1} do � Centroid position update

if counts[i] �= 0 then
c[i] ← c_tmp[i]/counts[i]

else

end
c[i] ← c_tmp[i]

end if
end for
cpt ← cpt + 1

while (|err − old_err| > acc_target) ∨ (cpt < max_iter)
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several values for acc_target , and max_iter is set to 150, which is never reached
in practice.

The impact of fixed-point and floating-point arithmetic on performance and
accuracy is evaluated considering the distance computation function distance_comp,
defined by

d ← (x − y)× (x − y) (2.15)

In the 2D case, the distance computation becomes

d ← (x0 − y0)× (x0 − y0)+ (x1 − y1)× (x1 − y1) (2.16)

which is equivalent to 1 addition, 2 subtractions, and 2 multiplications. However, as
distance computation is cumulative on each dimension, the hardware implementa-
tion relies only on 1 adder (accumulation), 1 subtracter, and 1 multiplier.

The experimental setup is divided into two parts: accuracy evaluation and
cost/performance/energy estimation. Accuracy estimation is performed on 20 data
sets composed of 15.103 bidimensional data samples, all generated in a square
delimited by {±√2,±√2}, using Gaussian distributions with random covariance
matrices around 15 random mean (centroid) points. Several accuracy targets are
used to set the stopping condition: 10−2, 10−3, 10−4. As stated, the reference
for accuracy estimation is IEEE-754 double-precision floating-point (Fig. 2.6). The
error metrics for the accuracy estimation are (i) the Mean Square Error of the
resulting cluster Centroids (CMSE) and (ii) the classification Error Rate (ER), which
is defined as the proportion of points not being tagged by the right cluster identifier.
The lower the CMSE, the better the estimated position of centroids compared to
golden output. Energy estimation is performed using the first of these 20 data sets,
limited to 20.103 iterations of distance computation for time and memory purposes.
As data sets were generated around 15 points, the number of clusters researched
is also set to 15. Area, latency of execution and energy are estimated using the
same library and tools as in the previous section. Iterative distance computation is
specified in C++ and HLS is used to generate the hardware under evaluation.

Experimental Results on K-Means clustering

Section 2.5.1 showed that FxP additions and multiplications consume less energy
than their FlP counterparts for the same bit-width. However, these results do not
yet consider the impact of the number formats on accuracy. This section details the
impact of accuracy on the 2D K-means clustering algorithm.

A first qualitative study on the K-means clustering showed that, to get correct
results (no artefacts), FlP data must have a minimal exponent width of 5 bits
in distance computation (smaller exponents are too inaccurate in low distance
computations) and fixed-point data a minimal number of 3 bits for its integer part.
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Table 2.9 8- and 16-bit area, energy, and accuracy for K-means clustering experiment

ct_float8(5) ct_float16(5) ac_fixed8(3) ac_fixed16(3)

Area (μm2) 392.3 1148 180.7 575.1

Ncycles 3 3 2 2

Edc (nJ ) 1.23E-4 5.99E-4 5.03E-5 3.25E-4

Nit 8.35 59.3 14.9 65.1

EK-means (nJ ) 38.24 1100 23.90 644.34

CMSE 1.75E-3 3.03E-7 1.85E-2 3.28E-7

Error Rate 35.1 % 2.94 % 62.3 % 0.643 %

Thus, all the following results use these two configurations and vary the mantissa
and fractional part for FlP and FxP, respectively. The total energy is defined as

EK-means = Edc ×
(
Nit +Ncycles − 1

)×Ndata (2.17)

where Edc is the energy per distance computation estimated as in the previous
section, Nit the average number of iterations necessary to reach K-means stopping
condition, Ncycles the number of pipeline stages in the distance computation core, as
determined by HLS, and Ndata the number of processed data per iteration.

Results for 8-bit and 16-bit FlP and FxP arithmetic operators are detailed in
Table 2.9, with a stopping condition set to 10−4. For the 8-bit version of the
algorithm, several interesting results can be highlighted. First, the custom FlP
version is 2× larger than FxP version, and FlP distance computation consumes
2.44× more energy than FxP. However, the FlP version of K-means converges
in 8.35 cycles on average, against 14.9 cycles for FxP. This results in making
the floating-point version for the whole K-means algorithm consuming only 1.6×
more energy than fixed-point. Moreover, the FlP version provides a huge advantage
in terms of accuracy of results. Indeed, CMSE is 10× better for FlP and ER is
1.8× better. Figure 2.7a, b shows the output for floating-point and fixed-point
8-bit computations, applied on the same inputs as the golden output of Fig. 2.6.
A very neat stair-effect on data labelling is clearly visible, which is due to the
high quantization levels of the 8-bit representation. However, in the floating-point
version, the positions of clusters’ centroid are very similar to the reference, which
is not the case for fixed-point.

For the 16-bit version, all results are in favour of fixed-point, floating-point being
twice bigger and consuming 1.7× more energy. FxP also provides slightly better
error results (2.9% for ER vs. 0.6%). Figure 2.7c, d shows output results for 16-bit
floating-point and fixed-point. Both are very similar and nearly equivalent to the
reference, which reflects the high success rate of clustering.

The competitiveness of FlP over FxP on small bit-widths and the higher
efficiency of FxP on larger bit-widths are confirmed by Fig. 2.8 depicting energy
vs. classification error rate. Indeed, for different accuracy targets (10−{2,3,4}), only
8-bit FlP provides higher accuracy for a comparable energy cost, whereas 10- to
16-bit FxP versions reach an accuracy equivalent to FlP with much less energy.
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(a) ct_float8(5) (b) ac_fixed8(3)

(c) ct_float16(5) (d) ac_fixed16(3)

Fig. 2.7 K-means clustering outputs for 8- and 16-bit floating-point and fixed-point, with accuracy
target of 10−4. (a) ct_float8(5). (b) ac_fixed8(3). (c) ct_float16(5). (d) ac_fixed16(3)

The stopping condition does not seem to have a major impact on the relative
performance.

2.5.2.2 Results on Fast Fourier Transform

In the previous section, a comparative study between custom FxP and FlP was
performed on K-means, showing that, contrary to what could be expected, floating-
point can be very competitive for small bit-widths. In this section, a similar study is
performed on the Fast Fourier Transform (FFT).
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Fig. 2.8 Energy vs. classification error rate for K-Means clustering with stopping conditions of
10−4 (top), 10−3 (centre) and 10−2 (bottom)

The implementation of the FFT is Radix-2 Decimation-in-Time (DIT), which
is the most common form of the Cooley–Tukey algorithm [15]. For the hardware
estimation, only the kernel computations of the FFT are considered, i.e.,

Xk = Ek + e−
2πi
N

kOk,

X
k+N

2
= Ek − e−

2πi
N

kOk (2.18)

equivalent to 6 additions/subtractions and 4 multiplications. For each version of the
FFT, all constants and variables are represented with the same parameters (same
bit-width, same integer part width for FxP, and same exponent width for FlP). The
absence of over/underflow for the FxP version is ensured. For the FlP version, the
repartition of the exponent and mantissa widths is chosen for giving the smallest
error after an exhaustive search. For hardware performance estimation, only FFT-16
(FFT on N = 16 samples) was characterized. The error metric is the Mean Square
Error (MSE) at the output compared to double-precision floating-point.

Energy per operation (pJ) related to error (MSE in dB) for FFT-16 is depicted in
Fig. 2.9. The error-energy trade-off is better when reaching the bottom-left corner.
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Fig. 2.9 Fixed-point and floating-point energy per operation (pJ) vs MSE for FFT-16 for different
bit-widths

For each curve, each point going from the top left to the bottom right represents an
increase of two digits in the bit-width.

For this application, the advantage is clearly in favour of fixed-point. Indeed,
for any identical bit-width, FxP outperforms FlP in both energy and accuracy. As
already showed in Sect. 2.5.1, FlP operations, and additions in particular, are much
more expensive than FxP. However, FFT output quality is not as dependent on
accuracy on a dynamic as large as for K-means clustering. This makes FlP even
less accurate than FxP at equal bit-width, because of a smaller significant part,
mantissa for floating-point, all bits for fixed-point. Indeed, in the experiment, the
exponent takes 7 bits of the total width, which are not assigned to more accuracy
on the significant part. Another interesting point is the data points presenting an
energy peak, which are occurring for 12-, 18-, and 28-bit floating-point and 22-bit
fixed-point. These peaks are most probably due to differences of implementation in
the HLS process. For example, larger adder or multiplier structures may have been
selected by the tool to meet constraints of delays, leading to energy overhead.

2.6 Conclusion

Computing with low-precision arithmetic is an efficient way to maximize perfor-
mance per Watt [16]. Customization is then ruled by finding a trade-off between
reducing precision to improve energy efficiency and respecting constraints on
application output quality. This chapter mainly focused on floating-point and fixed-
point number representations, presented their principle and some opportunities for
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arithmetic customization on both formats, and provided a comparison between
their cost, performance, and energy, as well as their impact on accuracy during
computations.

Comparing floating-point and fixed-point arithmetic at the operator level gives a
clear advantage in area, delay, and energy efficiency for fixed-point. However, when
considering real applications, e.g., the study on K-means clustering algorithm in
this chapter, custom floating-point arithmetic can provide interesting features and
tends to show a better energy/accuracy trade-off for very small bit-widths (8 bits in
this study). However, the advantage comes back to fixed-point when the considered
application is an FFT (the same is true for digital filters or most classical signal and
image processing algorithms). One explanation is that applications requiring both
large dynamic range and high accuracy are more tolerant to low precision when the
floating-point representation is used. An interesting follow-up of this study would
be to consider larger FFT, which would lead to larger dynamic range, and to see how
the MSE vs. energy per operation would scale for both representations.

Another important aspect of the study is from a hardware design point of view.
Floating-point is very complex compared to fixed-point arithmetic for large bit-
widths, but the overhead is shrinking when lowering precision. Moreover, the cost
of multiplication can be considered at the advantage of floats. Also, the overhead of
scaling instructions required to be added to deal with fixed-point data types is often
not studied. It is an interesting perspective to include this overhead in the choice of
the right representation.

Hence, in the aim of designing general-purpose low-energy processors, low-
precision floating-point arithmetic can provide major advantages compared to
classical integer operators embedded in microcontrollers, with a better compromise
between ease of programming, energy efficiency, and computing accuracy. In the
context of inference and training of deep neural networks, custom float is also a
serious competitor. This is one of the objectives of Chap. 15 presenting opportunities
for approximations in deep learning.
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Chapter 3
Hardware Level Approximations

Ioannis Tsiokanos, George Papadimitriou, Dimitris Gizopoulos,
and Georgios Karakonstantis

3.1 Introduction

Approximate computing has recently emerged as a concept that takes advantage
of the error-resilient properties of applications to tolerate a number of errors or
approximate a number of less critical operations for reducing the power consump-
tion. Existing work has showcased the inherent resilience of various signal/image
processing [1–4], machine learning [1, 5], and scientific computation algorithms [2]
to faults or inaccurate operations. To better understand the involved trade-offs, let
us step back and look at the main components constituting the power dissipation of
digital circuits. On-chip power consumption is characterized by static and dynamic
components. Static, sometimes called leakage power, can be attributed to junction
leakage in the transistor when it is inactive (not in the process of switching).
Static/leakage power (Pstatic) is a function of the supply voltage Vdd and static
current of each transistor (IS) and is determined by the formula:

Pstatic = Vdd × Is ×Ntr × kd (3.1)

where Ntr denotes the number of transistors and kd is a device-specific constant.
While static power consumption due to leakage current is almost continuous,
dynamic power, sometimes called switching power, is only dissipated when there
is switching activity at some nodes/transistors in a circuitry. Dynamic power
consumption is associated with circuit activity (i.e., transistor switches, changes of
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values in registers, etc.) and strongly depends on the executed workload; therefore,
it is formally defined as:

Pdynamic = a × C × V 2
dd × F (3.2)

where a is the switching activity, C is the physical capacitance, and F denotes the
clock frequency. Total power consumption (Ptotal) of a system is the sum of the
dynamic and static power:

Ptotal = Pstatic + Pdynamic (3.3)

In the following, we discuss about possible approaches to provide low-power oper-
ations through exploring hardware-level applications of approximate computing.

As can been seen from Eqs. (3.1) and (3.2), the power dissipated can be reduced
by reducing either the clock frequency F , or the supply voltage Vdd , or the switching
activity parameter a. The above are common techniques that the approximate
computing paradigm exploits to significantly reduce the power consumption of a
system. Existing approximate computing techniques for achieving power/energy
efficiency can be categorized into three groups.

(1) Approximate Circuits Using Less Hardware. First, designers use inexact
hardware using less components/bits in different processing units (e.g., CPU, GPU,
FPGA) and memory technologies for saving power. This decreases the number of
transistors and thus the switching activity, leading to reduction of both static and
dynamic power dissipation.

(2) Heterogeneous Architectures Combining Reliable and Approximate (Inac-
curate) Cores/Memories. Although effective, approximate computing is not a
panacea. Several current studies have indicated that any approximation should be
applied only to error-resilient code or less-significant data regions in applications,
since uniform approximation of all data may result in catastrophic quality degra-
dation [3, 4, 6, 7]. For instance, approximating few Less Significant Bits (LSBs)
in the mantissa part of floating-point operands leads to insignificant quality loss as
opposed to approximation of any bit of the exponent part [8, 9]. Taking this into
account, the second group of low-power, approximation-based techniques focuses
on the principles of trying to distinguish the significant from the so-called less
significant operations [3, 4]. Particularly, memory [4, 10–12] and multicore [13, 14]
heterogeneous frameworks could be explored by allocating data in different cores
and/or memory domains based on their vulnerability to approximations. For exam-
ple, the critical (not amenable to inaccurate results) data/code could be assigned
to the cores/memories that have been implemented to be highly reliable, while the
off-critical data could be assigned to approximate cores/memories that operate at
relaxed parameters/settings [4, 10].

(3) Approximate Techniques Facilitating Voltage Scaling. One of the most
effective methods to reduce the total power consumption is to scale down the supply
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voltage [15] (see Eqs. (3.2) and (3.1)). As we will explain later in this chapter,
voltage scaling reduces energy consumption of circuits at the cost of possible delay
increase [15–18]. Such a delay increase induced by voltage under-scaling may result
in errors. For instance, reducing SRAM supply voltage saves leakage energy but
also increases probability of read upset (flipping of a bit during read operation)
and write failure (writing a wrong bit) [19]. Another study on an 80-core Intel
processor indicates that operations at 0.8 V (i.e., 30% lower than the nominal supply
voltage) can lead to up to 50% delay fluctuations [20], resulting in delay-induced
timing errors [21]. The third group of approximate computing techniques facilitates
voltage scaling while accounting for this delay uncertainty and the resultant errors.
In this scope, one of the most popular and simple, yet effective, approximation
approach truncates the bitwidth of all the input operands in simple data-paths,
reducing the delay of those designs and enabling voltage reduction without delay-
induced errors [9, 22]. Operand truncation is realized by setting a number of LSBs
to a constant value of zero (‘0’). To elucidate the impact of operand truncation on
computational delay, let us consider a simple 4-bit ripple carry adder (RCA), as
shown in Fig. 3.1. The depicted adder consists of four full adders (FAs). FA is a
logic circuit that adds two input operand bits (Ai, Bi) plus a Carry in bit (Ci,i) and
generates a Carry out bit (Co, i) and a Sum bit (S, i). In such a design, the most
timing critical path LLP 1 (emphasized in red dotted line) will be activated when
the carry propagates all the way from Ci,0 to Co, 3. If we define the gate delay
as T , then LLP 1 requires a delay equal to 8T to be completed, since LLP 1 will
have to travel from the AND gate (emphasized in red) in FA0 down to XOR gate
(emphasized in red) in FA3. Note that such a delay will be activated only in case of a
suitable combination of operands. For instance, when A = 1111 and B = 0001, the
carry generated in the first bit position from the right (i.e., LSB) is propagated all
the way to the final bit position, exciting the error-prone LLP 1. Under an assumed
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Fig. 3.1 Data-paths in a 4-bit ripple carry adder, highlighting the longest latency path (LLP1) and
two short latency paths (SLP1 and SLP2)
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delay increase (induced by voltage down-scaling), this path may fail, leading to a
timing error. However, by modifying the inputs and inserting 0s in the last 2 bits,
such as: A = 1100 and B = 0000, there is no carry propagation and thus only
less critical short latency paths SLPs (e.g., SLP 1 and SLP 2 highlighted in green
dashed lines) will be excited. By truncating the last 2 bits of the input operands,
the delay of the critical paths that are excited is reduced to 2T , thus providing
enough timing slack to address any potential delay increase due to supply voltage
reduction. This allows the manufacturer to provide operations beyond the always
correct voltage margins.

This chapter mainly focuses on the last two groups of approximate techniques
and reviews the state-of-the-art for approximating variables/operations at circuit and
microarchitecture layer or at real processors (after manufacturing), facilitating low-
power, error-resilient operations.

3.2 Circuit Level Functional Approximation

In this section, we first discuss the design of inexact/approximate circuits. Then,
approximate-based approaches that allow efficient synthesis are also introduced.

3.2.1 Inexact Units

Several approximation methodologies have been proposed for the implementation
of inaccurate arithmetic units. Arithmetic circuits such as adders, multipliers,
and divisions are key components for several error-tolerant applications (e.g.,
image and video processing and artificial neural networks). Therefore, there exist
many inaccurate circuits that replace the exact calculations to meet the energy
requirements.

D. Celia et al. [23] present the design of an inexact adder that approximates
the lower k bits with a fixed value (i.e., 2k − 1). C. K. Jha et al. [24] develop
an approximate adder that performs either m single n-bit exact addition or two
n-bit approximate additions on the same hardware. The work provides runtime
configuration for dynamically altering approximate or accurate addition operations.
Another set of studies [25–28] has also proposed the implementation of inexact
adders to enhance performance and/or energy efficiency.

Multipliers and divisions are fundamental components of various signal pro-
cessing applications and are among the most power- and energy-hungry blocks
of a core [29, 30]. Therefore, inexact (approximate) multiplication and division
operations have gained a lot of attention in the literature [31–35]. R. Zendegani
et al. [35] introduce RoBA multiplier, an approximate multiplier suitable for DSP
applications. Such an inexact block relies on rounding the input operands to the
nearest exponent of two. By doing so, the multiplication operation is simplified
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(lesser hardware blocks are used) and the computation intensive part is omitted. This
results in delay reduction and power/energy gains at a small output quality loss. D.
Esposito et al. [31] implement a new approximate compressor and an algorithm for
utilizing in the design of inexact multipliers. S. Vahdat et al. [34] present a fast,
approximate divider where the division operation is performed by multiplying the
dividend by the inverse of the divisor. J. Melchert et al. [32] devise an iterative
approximate reciprocal process with scalable accuracy to devise an inexact, energy-
efficient divider. W. Liu et al. [33] combine restoring array and logarithmic dividers
into an approximate, unsigned, hybrid divider.

Floating-point operations emerge as a major contributor to the energy consump-
tion and typically determine the clock frequency. In particular, existing experimental
results [36, 37] indicate that 30% of the energy consumption of a target core is
due to floating-point operations. Moreover, floating-point instructions have higher
energy-per-instruction costs than their integer counterparts [37, 38]. Taking into
account these trends, there are several frameworks that provide efficiency–accuracy
trade-offs in floating-point operations. Design and analysis of inexact floating-point
adders [8, 39], multipliers [40, 41], and dividers [42, 43] have indicated significant
energy and performance gains in the overall system. I. Tsiokanos et al. present
a fully automated, evolutionary computing-based framework [44] that inspects
any application’s binary and identifies approximable floating-point instruction
sequences. It can be very effective in facilitating approximation schemes (e.g.,
dynamic precision scaling, voltage down-scaling) at runtime, without compromising
reliability.

3.2.2 Automated Synthesis of Approximate Circuits

However, the optimizations performed by commercial Electronic Design Automa-
tion (EDA) tools may negatively affect the gains from the dynamic voltage and
accuracy scaling techniques. To help the design of efficient approximate-based
approaches, tools for the automatic synthesis of approximate logic circuits have
been lately investigated [45–50]. Those tools focus on improving the analysis of
approximate circuits, such as evaluating the output error that can be caused due to
circuit simplifications rather than proposing new techniques that enhance the design
of approximate units and limit the impact of approximations on output quality
loss. Particularly, they propose systematic methodologies that can be leveraged
during the synthesis step of the conventional EDA flow [51] in order to synthesize
an approximate version of the circuit to meet the predefined quality bound. The
above tools pave the way to incorporate the approximate circuit design (which
typically requires manual effort) into the design automation by suggesting general
and scalable means towards the automated synthesis of approximate circuits.
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3.3 Voltage Down-Scaling and Hardware Approximations

As discussed in Sect. 3.4, modern platforms allow operations beyond the nominal
voltage values for boosting energy efficiency [52–54]. Reducing the supply voltage
is a common technique that the approximate computing paradigm [1, 55] exploits to
trade off quality of desired output for energy improvements. B. Moons et al. [56]
accommodates voltage and accuracy scaling in multipliers for saving energy by
disabling some of the input bits. H. Afzali-Kusha et al. [57] explore voltage down-
scaling and different approximation settings on a Dadda multiplier to improve
energy consumption as well as the reliability and lifetime of the block under test.
To make the multiplier more area and energy efficient, the truncation of 4 LSBs of
multiplication output is also studied.

3.3.1 Approximate Application-Specific Processing Cores

Uniform approximations may be effective but incur a quality degradation that may
be significant for specific applications. Thus, recent schemes determine the applied
approximation strategies on a per-application basis. In this content, dynamic voltage
and precision scaling are exploited to provide energy-efficient processing cores suit-
able for convolutional neural network [58–60]. The increased computation demands
of neural networks drive several industry efforts towards custom-developed, approx-
imate ASICs that are designed to accelerate machine learning workloads. In this
scope, Google designed a Tensor Processing Unit (TPU) to perform fast, bulky
matrix multiplication, which is considered the most computationally intensive part
of running a trained ML model. To achieve this, Google TPU leverages a novel
number encoding format, namely Brain floating-point format (bfloat16 or BF16)
occupying 16 bits representing a floating-point number, to improve the training and
inference throughput of a wide range of advanced NNs. Goya, a microarchitecture
for inference neural processors designed by Habana Labs, supports mixed-precision
operations including 8-bit, 16-bit, and 32-bit vector operations for both integer
and floating-point. Additionally, NVIDIA Tensor Cores offer a full range of
precisions “TF32, bfloat16, FP16, INT8, and INT4” to accelerate AI training and
inference. Apart from approximate ASICs, application-specific FPGAs that operate
at reduced voltages and/or operations have been also investigated. B. Salami et
al. [59] evaluated an FPGA-based NN accelerator under low-voltage operations.
The variable-precision digital signal processing (DSP) blocks within Intel Stratix
10 FPGA devices support fixed-point arithmetic and single-precision floating-point
arithmetic in order to optimize DSP applications. Finally, prior studies [61, 62]
propose energy-efficient, large-scale neuromorphic system architectures through
approximate computing. This is achieved by selectively approximating artificial
neurons that have been characterized as less critical in estimating the network output
quality.
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3.3.1.1 Significance Driven Design Methodology

There is a design methodology, the so-called significance-driven, that was intro-
duced by Karakonstantis et al. in 2007 [3, 7] and was exploited in the past decade
for the design of various application-specific cores for popular signal processing
kernels used in multimedia, biomedical, and wireless applications [3, 7, 63, 64].
The main principle of such a methodology is the initial classification of operations
into significant and less-significant based on their contribution to the output quality.
Afterward, via algorithm and architecture co-design, the significant operations
are given higher priority and provided adequate timing slack as opposed to the
less-significant operations. By doing so, the significant operations are ensured to
not fail under delay variations and aggressive voltage scaling, thus allowing the
maintenance of high output quality, since only less-significant computations can
dynamically be pruned or skipped if necessary.

3.3.2 Approximations in General-Purpose Processing Cores

Any application involves a large amount of arithmetic calculations, which are
typically performed in full precision on general-purpose processing cores. Since
floating-point operations are one of the most flexible and dynamic numerical
computations, floating-point units that support several formats have been pro-
posed [36, 65–67]. Work in this domain departs from the standard IEEE 754
single (32-bit format) and double (64-bit format) precision formats and extends the
target instruction set architecture (ISA) with new, custom formats (e.g., 16- and
8-bit formats). Lower than the conventional double and single precision allows the
designer to reduce the supply voltage to a wide range, leading to energy/power gains
at insignificant output quality loss.

Device’s variation during fabrication, known as static variation, remains constant
during the chip lifetime. On top of that, transistor ageing and dynamic variation in
supply voltage and temperature, caused by different workload interactions, is also of
primary importance. Both static and dynamic variations lead microprocessor archi-
tects to apply conservative guardbands (operating voltage and frequency settings)
to avoid timing failures and guarantee correct operation, even in the worst-case
conditions excited by unknown workloads or the operating environment [68, 69].
However, these guardbands increase the power consumption. To bridge the gap
between energy efficiency and performance improvements, several hardware and
software techniques have been proposed, such as Dynamic Voltage and Frequency
Scaling (DVFS) [70]. The premise of DVFS is that the microprocessor’s workloads
as well as the cores’ activity vary. Voltage and frequency scaling during epochs
where peak performance is not required enables a DVFS-capable system to achieve
average energy-efficient gains without affecting peak performance adversely. How-
ever, energy-efficient gains are limited by the pessimistic guardbands. Revealing
and harnessing the pessimistic design-time voltage margins offers a significant
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opportunity for energy-efficient computing in multicore CPUs. The full energy
saving potential can be exposed only when accurate core-to-core, chip-to-chip,
and workload-to-workload voltage scaling variation is measured. When all these
levels of variation are identified, system software can effectively allocate hardware
resources to software tasks matching the capabilities of the former (undervolting
potential of the CPU cores) and the requirements of the latter (for energy or
performance).

To this end, Papadimitriou et al. [54] propose a fully automated system-level
framework built around Applied Micro’s (APM) X-Gene 2 micro-server. The
automated infrastructure aims to increase the throughput of massive undervolting
campaigns that require multiple benchmarks execution at several voltage supply
levels of all individual cores. The primary goals of the proposed framework are (1)
to identify the target system’s limits when it operates at scaled voltage and frequency
conditions, and (2) to record/log the effects of a program’s execution under these
conditions. The framework provides the following features:

• It compares the outcome of the program with the correct output of the program
when the system operates in nominal conditions to record Silent Data Corrup-
tions (SDCs).

• It monitors the exposed corrected and uncorrected errors from the hardware
platform’s error reporting mechanisms.

• It recognizes when the system is unresponsive to restore it automatically.
• It monitors system failures (crash reports, kernel hangs, etc.).
• It determines the safe, unsafe, and non-operating voltage regions for each

application for all frequencies.
• It performs massive repeated executions of the same configuration.

This automated characterization process requires minimal human intervention and
records all possible abnormalities due to undervolting: silent data corruptions
(SDCs, e.g., program output mismatches without any hardware error notification),
corrected errors, uncorrected (but detected) errors (provided by Linux EDAC
driver [71]), as well as application and system crashes [72].

Towards the formalization of the behaviour in undervolting conditions, the
authors also present a simple consolidated function, the Severity function. Severity
function aggregates the effects of reduced voltage operation in the cores of a
multicore CPU by assigning values to the different abnormal observations. The
lower the voltage level, the higher the value of the severity function. The severity
function assists an undervolting classification of the cores of a CPU chip for a given
benchmark: different core, benchmark, and voltage values lead to different severity
patterns, some with an abrupt increase to the severity (e.g., the benchmark keeps
executing correctly until a voltage level at which the system crashes), while others
have a “smooth” severity increase while voltage is reduced (the system remains
responsive throughout a range of voltage values but it generates ECC errors or
produces SDCs). The fine-grained analysis of the behaviour of a microprocessor
using the severity function can assist energy efficiency decisions for task-to-core
allocation by the system software.
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Such a comprehensive characterization for ARMv8-based multicore CPUs [54]
confirms that a different microarchitecture, circuit design, or manufacturing tech-
nology exhibits different abnormal behaviour when operating beyond nominal
voltage conditions. Understanding the behaviour in non-nominal conditions is very
important for making software and hardware design decisions, even using the
approximate paradigm, for improved energy efficiency that preserves the correct-
ness of operation, or the acceptable correct rates of the approximate application’s
execution.

3.3.2.1 Abnormal Behaviours Below Safe Voltage (Vmin)

Variation can also cause circuits to malfunction, especially at low voltage. Previous
studies on Intel Itanium CPUs [53, 73] have shown a large region of voltage
values that contains only ECC corrected errors during undervolting. By reducing
the voltage on those chips, the number of corrected errors increases gradually for
quite many voltage steps until it exposes other types of abnormal behaviour (SDCs,
uncorrected errors, crashes). In such systems, ECC corrected errors can serve as
proxies for the effects of undervolting. In contrast to these studies, silent data
corruptions (SDCs) appear at higher voltage levels than corrected errors alone, in
ARMv8-compliant multicore CPUs [54, 72, 74–78]. More specifically, (1) SDCs
occur when the pipeline gets stressed, and (2) the cache bit-cells safely operate at
higher voltages. This observation indicates that the ARMv8-compliant CPUs are
more susceptible to timing-path failures than to SRAM array failures, and thus,
approximation paradigms, which can tolerate potential SDCs during subnominal
voltage conditions, become necessary in these microprocessor models. In [73]
and [53] the reported range of voltage levels with corrected errors alone offers
a significant opportunity for energy savings without jeopardizing the correctness
of operation. Further, ECC corrections appear at a higher voltage on the Itanium
compared to SDCs and system crashes. In [54], the authors attribute the increased
robustness to timing errors/failures on the Itanium to circuit-level dynamic-margin
mitigation techniques such as the capability to perform continuous clock-path
de-skewing during dynamic operation [79]. The X-Gene 2, which is an ARMv8-
compliant microprocessor, does not deploy such circuit-level techniques and,
thereby, generates SDCs due to timing-path failures. High correctable error rate is
helpful to an ECC guided voltage speculation but this is not the case in the X-Gene 2.

For example, Fig. 3.2 shows the Vmin characterization results for one benchmark
and three different X-Gene 2 chips (TTT, TFF, and TSS). There are significant
divergences among cores for the same benchmark due to process variations. Process
variations can affect transistor dimensions (length, width, oxide thickness, etc.),
which have direct impact on the threshold voltage of a MOS device, and thus, on the
guardband of each core. This variation among cores of the same chip can result in
high energy savings. Moreover, there is a large unsafe region for any core and chip
(the grey-coloured bars in the graph), which indicates that by reducing the voltage
on these chips, incorrect program output due to any abnormal behaviour (SDCs,
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Fig. 3.2 X-Gene 2 characterization results for one benchmark on three different chips (TTT, TFF,
and TSS). Blue colour in bars represents the Safe region, grey represents the Unsafe region, and
black represents the Crash region

uncorrected errors) can be introduced in the microprocessor’s execution during low-
voltage operation.

3.3.2.2 Suggestions for Undervolting Effects’ Mitigation

Depending on the actual characterization findings for a CPU core during under-
volting, certain hardware-based or software-based mitigation approaches can be
employed to maximize the energy savings while preserving the correctness of
program execution. The primary aspect that determines the most suitable approach
is the first observed effect as undervolting goes down the voltage levels. A fine-
grained categorization is presented below, which describes the behaviour and
discusses the potential corresponding mitigation approaches:

• Nothing abnormal. The voltage range is absolutely safe (above the Vmin of a
core); no mitigation action is required. System operation in this range is the most
conservative option and no mitigation provision is needed. Energy savings are
the minimum.

• Corrected errors first. This is a voltage range with the behaviour as the one
observed in [53, 73] for Intel’s Itanium. In such a case, ECC hardware serves as a
proxy for abnormal behaviour due to undervolting but program operation is still
correct. Significant energy savings can be obtained without any mitigation other
than the ECC correction but going further down the voltage is risky.

• SDCs alone or with corrected and uncorrected errors. Voltage ranges with
these behaviours can potentially generate incorrect program outputs and require
extra mitigation approaches. In [54], the authors show that the first abnormal
behaviour generated by undervolting belongs in this category for the majority of
benchmarks and corrected errors as observed in [53, 73] do not appear first alone
in the system under characterization. In particular, the cases where SDCs appear
alone are the worst ones since there is no indication about the malfunction of the
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system; these areas should be avoided. When an eventual SDC (output mismatch)
is accompanied by corrected or uncorrected error notifications, recovery actions
can be employed such as rollback to a previously stored check-point or program
re-execution in safe voltage and frequency combinations. There are also many
applications that can tolerate SDCs and benefit from the severity function. These
applications are (1) approximate computing algorithms, (2) video streaming and
other image and video processing, and (3) security-oriented applications such as
jammer attacks detectors, etc. These applications are tolerant to faults, as they
have minor impact on the returned output.

• Application and system crashes (or application timeouts) with or without
corrected and uncorrected errors. Voltage levels with this behaviour (the result
of massive hardware malfunction) are well beyond the limits of cores operation
in undervolted conditions. Application or system unresponsiveness is systematic
in these ranges and unless serious hardware re-design is employed these ranges
are unusable.

3.3.2.3 Design Enhancements

Undervolting characterization studies can be used to provide hardware design
recommendations for enhancements if the system (or its future revisions) is to be
used in scaled voltage conditions for energy efficiency. There are some key hardware
design guidelines, which are presented below:

• Stronger error protection. SECDEC ECC protection at the lower levels of
the memory hierarchy does not provide enough protection at lower voltages.
If (a) stronger ECC codes are employed [80, 81] and (b) more blocks are
protected, SDC behaviour with or without errors will have significant probability
to be transformed to corrected errors’ behaviour similarly to [73] and [53].
Employing stronger ECC protection has been also reported in [82] for scaled
voltage operation.

• Hardware detectors. If stronger ECC protection is too costly, other types of
hardware support can be employed for voltage emergencies’ detection such as
the skitter circuit [83–85] (also cited in [86]) or the monitoring circuits used in
Power7+ designs [87].

• Finer-grained voltage domains. Following the previous discussion, coarse-
grained voltage domain design of X-Gene 2 (a single voltage domain for all
8 cores) reduces the potential of energy savings since the voltage value of the
domain is determined by its weakest core (the one with the higher safe Vmin).
If each core or couple of cores was designed to operate on a separate voltage
domain, more aggressive voltage scaling (and energy savings) would have been
possible.

Of course, all the above hardware design modifications have their own design
complexity, area, and performance implications, which must be jointly considered
with the potential of energy savings through undervolting.
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3.4 Approximation Strategies for Voltage Down-Scaled and
Timing Error-Resilient Designs

Although effective in saving power and energy, voltage down-scaling worsens
performance variations of nanometre circuits and threatens their reliability [20,
89, 90]. Figure 3.3 illustrates that near-threshold computing (NTC) at 400 mV
increases the delay variability by 5× compared to 30% at the nominal voltage [88].
Such a delay variability is typically manifested in terms of timing errors the
rate of which is expected to further increase as we move towards the atomic-
scale fabrication [4, 17, 91]. Timing errors refer to the discrepancy between a
computed, observed, or measured value and the true, specified, or theoretically
correct value and threaten system functionality and output correctness. Such errors
mainly occur within a processor and can cause insidious application failures known
as silent data corruption (SDC). For example, when you perform the following
instruction 2 × 3, the CPU may give a result of 4 instead of 6 silently under
certain microarchitectural conditions, without an indication of the miscomputation
in system event or error logs. As a result, a service utilizing the CPU is potentially
unaware of the computational accuracy and keeps consuming the incorrect values
in the application.

Several approximate computing techniques use voltage scaling while accounting
for the timing errors induced by overscaled voltage and/or process variations. Below,
we discuss approximation strategies employed for different memory technologies,

Fig. 3.3 Impact of voltage
down-scaling on gate delay
variation [88]
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system components, and processing units to facilitate low-power and error-resilient
operations.

3.4.1 Special Storage Modules

A. Rahimi et al. [92] present an approximation technique for saving energy
by reducing supply voltage and tolerating few timing errors suitable for GPU
applications. In particular, each FPU in the GPU uses a special storage module,
which stores frequent redundant GPU computations. Reusing these values removes
the need of FPU re-execution of these computations. When supply voltage is
reduced into a coarse granularity (e.g., from 1.0 to 0.725 V), the error behaviour
of the module remains controllable; an input search pattern is matched with any
of the stored computations within a low quality loss in terms of hamming distance
(Hamming distance between an input item and a pre-stored value in the module is 0,
1 or 2.). Such a technique is very effective in error-resilient GPU applications, such
as image processing and artificial neural networks [1, 2, 5]. Papagiannopoulou et
al. [93] opportunistically ignore timing errors, enabling aggressive voltage scaling
at an error-induced quality loss. To recover from critical errors, i.e., timing errors
that affect significant parts of arithmetic computations, an error management scheme
based on hardware transactional memory is proposed.

3.4.2 Precision Scaling and Operand Truncation

Recently, approximate computing has emerged as an alternative approach for
addressing potential timing errors with less overheads than the ones incurred by
the conventional guardband-based techniques [4, 22]. Several approximation-based
schemes try to reduce timing errors by reducing the precision and thus the time
required to complete computation [9, 94, 95]. A representative approach [94] uses
precision scaling to limit timing errors in the context of transistor ageing and thus
mitigating the estimated delay increase over few years. A post-silicon technique
in [9] truncates the bitwidth of all the input operands to prevent timing errors
in typical DSP hardware modules. I. Tsiokanos et al. [22, 96] jointly consider a
design-centric error mitigation scheme with significance-driven operand truncation
to minimize timing errors and output quality degradation while saving power. The
basis of these schemes is the delay reduction resulted by the applied precision
scaling or operand truncation. While considering arithmetic units such as the adder
in Fig. 3.1, carry propagation is the main bottleneck in the performance/delay of
these systems. As explained in Sect. 1.1, it is possible to break the carry propagation
chain by setting a number of LSBs of the input operands to a constant value of
zero. The truncation of a number of LSBs from input operands provides a slack
(timing margin) and reduces the path excitation as discussed above, but this comes
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at a quality loss. However, such a loss can be controlled by appropriately selecting
the number of truncated LSBs, ensuring that it is not as catastrophic as the loss
incurred by random timing errors when these affect the most significant bits (MSBs).
For instance, let us consider the addition of two floating-point operands A and B,
which results to an output C. These operands follow the IEEE-754 [97] double
precision format in which the first bit from the left represents the sign, the next
11 bits represent the exponent, while the rest 52 bits represent the mantissa. As
illustrated in Table 3.1, a random bit flip in the exponent part, e.g., in the 10th
bit of the output C (highlighted in red), induced by a timing error will lead to a
completely different number than the one expected, resulting in high Relative Error
of ∼0.9375 (Relative Error is defined in Eq. (3.6)). Conversely, in case of 32 LSBs
truncation in the mantissa part of each operand, the resulting output value is very
close to the reference value with very low RE equal to ∼3.6556 · 10−7. Such a low
RE is attributed to the fact that we truncate LSBs in the mantissa part that are not
critical for determining the output value in floating-point operations. On the other
hand, the exponent plays a significant role in determining the range of the output
and any error either due to random bit flip or truncation in that part is likely to result
in catastrophic outcomes [8].

3.4.3 Dynamic Prediction of Error-Prone Instructions

The former approximation strategy that relies on static operand truncation/precision
scaling induces an output quality loss, a degree of which may be tolerated by some
applications [1, 95, 98], but there is room to limit it. Any reduction of the trunca-
tion/precision scaling-induced quality loss may be beneficial for many applications,
especially for those, where few operations play a significant role in determining the
output quality [5, 99]. The unnecessary quality loss is attributed to the fact that the
majority of the existing approximation-based schemes reduce the precision of all
operands statically, neglecting the fact that only few instructions/operands activate
timing-critical paths, which are error-prone [100–102]. Conversely, the majority
of the proceed operands are off-critical (i.e., error free), exciting paths that have
sufficient timing slack to handle any delay increase without obtaining errors. Hence,
there is no need to apply precision scaling or bitwidth truncation to those operands
and inflate the quality loss. The challenge in limiting any unnecessary quality loss
lies in the need to dynamically identify operands that activate error-prone paths and
apply bitwidth truncation or any other approximation only to them.

To achieve this, recent techniques identify critical instructions and operands (i.e.,
instruction that activates error-prone timing paths) at runtime by exploiting the
dynamic data-dependent sensitization of combinational paths. These design-centric
schemes integrate special units/registers to monitor the critical long latency paths
(LLPs) and either change the cycle time [100, 101] or utilize different approximation
mechanisms (e.g., operand truncation) [67] to prevent timing errors under supply
voltage reduction. Existing approaches show that monitoring the carry propagate
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Fig. 3.4 Carry propagation in a 6-bit ripple carry adder (RCA)

signal at the middle of arithmetic units (such as the adder depicted in Fig. 3.1),
we can identify if any LLP is going to be activated. To elucidate the basic
concept, let us provide a simple example of a 6-bit RCA [101, 103], as shown in
Fig. 3.4. In such a design, the most timing critical path (LLP 1) will be activated
when the carry propagates all the way from Ci, 0 to Co, 5. By monitoring the
carry propagate signal at the middle of such a data-path, i.e., at FA2, which is
given by (A0 ⊕ B0) · (A1 ⊕ B1) · (A2 ⊕ B2), we can identify if any LLP is
going to be activated. Upon detection of operands that activate LLPs, a number of
LSBs is deliberately set to 0 [67] or an extra clock cycle is provided [101, 104],
allowing the path to be completed correctly even under potential delay increase
due to voltage scaling. In any other case, only off-critical paths will be excited,
which have sufficient timing slack to address potential delay variations, and thus no
approximations needed. The LLP prediction unit (LLPPU ) is depicted in Fig. 3.5.
It monitors (m− n) bits (with m > n) of the two addition operands (M1,M2) and
detects if carry propagates across the mth bit, implementing the following logic (as
explained in Sect. 3.2):

F(m, n) = (M1m ⊕M2m) · (M1m−1 ⊕M2m−1) · ..(M1n ⊕M2n). (3.4)

Only when F evaluates a value of 1, the carry bit propagates from the nth to the mth
bit into the addition result. The probability of a carry propagation across the mth bit
is essentially equivalent to the possibility that operands of an executed instruction
will activate the error-prone LLPs. In case of F equals to 0, short latency paths
(SLPs) are activated as there is no carry propagation across the mth bit and the
effective computation time is maximum of the two delays: one from the 0 to mth bit
and the other from mth to the MSB.

Note that similar prediction units have been applied to different voltage-scaled
integer adder and multiplier designs [104–106] as well as floating-point instruc-
tions [67, 101, 107].

3.4.4 Path Redistribution for Voltage Down-Scaling

Several hardware-oriented approximate computing strategies may have large imple-
mentation overheads; for instance, reducing voltage while dealing with timing errors



3 Hardware Level Approximations 59

LLPPU

M1[n]
M2[n]

.

.

.

.

.
M1[m]         
M2[m]

F

Fig. 3.5 Block diagram of the long latency paths prediction unit (LLPPU)

may require several error detection and correction mechanisms. Similarly, uniform
precision scaling or operand truncation is likely to lead to significant output quality
degradation. The approximate strategies explained above can be very effective in
simple arithmetic units, but their application to pipelined designs is not so straight-
forward. Here, we provide the main source of overheads in existing hardware
approximation techniques. This is the performance-centric design implementation
of pipelined processing units.

3.4.4.1 Timing Properties of Pipelined Designs

In particular, instruction pipelining is a common technique to improve the exe-
cution throughput of a CPU by allowing the simultaneous execution of several
instructions [108]. Typically, a pipelined, computational core consists of a set of N

unique timing paths P = {P1, P2, . . . , PN }, which are characterized by their delays
D(Pi) for i = 1, 2, . . . , N (D(Pi) also considers the clock-to-output delay and
the setup time of a register [21]). In such a core, each of these paths can be found
within exactly one pipeline stage s, with s = 1, 2, . . . , S, and only few of them
will be excited at every instance depending on the executed instruction. Note that
each pipeline stage processes a specific part of one instruction at a time, allowing
the parallel execution of multiple instructions. By the terms parallel or concurrent
execution of instructions, we mean that up to S instructions share the same hardware
circuitry (i.e., pipeline) in a time-sharing fashion.

At design time, the conventional static timing analysis (STA) evaluates the
longest timing path across all S pipeline stages and determines the timing bound
of the operation (i.e., the clock period), such as:
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CPST A = max
s=1....S

{

max
p∈Ps

{D(p)}
}

= max
p∈P

{D(p)} , (3.5)

where P s is the set of unique path-groups in any of the S pipeline stages for
s = 1, 2 . . . , S such that ∪S

s=1P
s = P and P s∩ P s′ = ∅ for s �= s′. During the

circuit operation, only few of these paths get activated depending on the instruction
type and its operands. Any excited path Pi has a positive timing slack, slacki =
CPST A − D(Pi), until the so-called point of failure (PoF). In case of any delay
increase or clock reduction, which exceeds the available slack slacki , the activated
path Pi will fail since D(Pi) > CPST A, leading to a setup timing error [21, 109].
Figure 3.6 provides an example where S instructions (I_1, I_2, . . . , I_S) are
executed on a pipelined core with S stages.

3.4.4.2 Timing Wall Phenomenon

Figure 3.7 depicts a typical distribution of all the path delays D(P ), which is
obtained by applying conventional design flows and STA [110]. As it can be seen,
such a distribution is characterized by a so-called timing wall, with many LLPs

across all pipeline stages close to CPST A. Such a wall of paths is a consequence of
how modern designs are optimized for power and area, subject to a global frequency
constraint. In particular, current design flows minimize the delay of LLPs by
(area/power hungry) gate up-sizing [111], while the inherently short latency paths
(SLPs) are allowed to become near critical for recovering any area or power costs
[112]. This “timing wall” does not have any negative impact on the adopted CPST A

Stage 1 Stage 2 Stage S-1

D(Pi)

D(Pm)

D(Pn)

Delay

Clock Period

nslack

islack

mslack

. . .
I_1: mul r1, r5, r5
Instruc�on order

I_2: add r4, r4, #5

I_S: add r8, r2, r6

Path m from Stage 2: 

Path i from Stage 1: 

Path n from Stage S:
..
.

I_(S-1): sub r3, r6, r7
..
. I_(S-1)I_S

Stage S

Time I_2
I_1

Clock Perio

Fig. 3.6 Instruction flow and delay requirements across different paths and stages in a pipelined
core
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Fig. 3.7 Conventional path distribution of a pipelined design

of the design; however, it critically affects the probability of timing errors since
under any (even small) delay increase many paths are likely to fail [113].

3.4.4.3 Path Shaping

A recent work [114] on a six-stage pipelined ARMv7 microprocessor indicated
that every stage contributes to the critical paths with 74% of the total delay paths
to be categorized as LLPs (i.e., paths with delay more than 75% of the clock
period). To minimize the registers or pipeline stages where any approximate scheme
would need to be included, current research efforts propose a path redistribution
technique, called “Path Shaping” [22, 94, 96, 112] that isolates the critical LLPs to
as few pipeline stages as possible. This facilitates the adoption of any approximation
strategy within pipelined cores, by applying it only to the specific stage(s) where the
LLPs are isolated.

Path shaping targets to move away from a path distribution with many LLPs

close to the CPST A, which is typical in performance-centric designs (see Fig. 3.8a).
The primary goal of path shaping is to minimize LLPs subject to the target
clock period CPST A and power/area constraints. To achieve this, appropriate timing
constraints for different path-groups are imposed on the design under test. By
introducing such path constraints, it is ensured that the inherently fast paths (i.e.,
SLPs) are not made slower, as opposed to the conventional approach. The end
goal is to obtain a path distribution similar to the one depicted in Fig. 3.8b, where
|PSLP | >> |PLLP |. Note that path shaping does not only reduce the number of the
error-prone paths but also enables the isolation of PLLP to specific stage(s) accessed
by few specific instructions. This allows the developer to apply any approximation
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Fig. 3.8 (a) Conventional path distribution and (b) path distribution after applying path shaping

technique to few stages rather than using it for the whole design, which is far more
complicated and costly. In addition, it facilitates the development of error mitigation
mechanisms tailored for the specific instruction(s) that activate(s) the few remaining
LLPs. It is also important to note that the path redistribution technique does not
change the clock period (iso-performance), since any path shaping is made subject
to maintaining the conventional speed achieved by STA. Path shaping complements
existing approximation techniques and can be jointly considered with any of the
approximation strategies explained above.

3.4.4.4 Comparison Between Strategies

The efficacy of the presented strategies in achieving energy/power efficiency while
limiting timing error-induced quality degradation under different levels of potential
delay increase is presented next. The levels of the assumed delay increase range
from 0% (nominal conditions) to 9%, representing potential degrees of delay
increase caused by supply voltage reduction [17, 20, 115–117]. For the case study of
using the approximate strategies mentioned in this section, we focus on an out-of-
order (OoO), six-stage, IEEE-754 compatible, double precision FPU, following the
representation: −1S ×M × 2E , where S is the sign, E is the exponent, and M is the
mantissa. This section compares the redesigned FPUs (i.e., the FPU after applying
the approximation strategies described below) with the original (reference) FPU. For
a fair comparison, we applied the truncation of 44 LSBs of the error-prone floating-
point operands to the original (Orig), unmodified FPU, and also to the one when
only path shaping is enabled (i.e., Strat1+Strat3). Then, the proposed framework
when path shaping, LLPPU and dynamic operand truncation are jointly considered
(i.e., Strat1 + Strat2 + Strat3), is evaluated. The latter design eliminates timing
errors and further reduces truncation-induced quality loss by dynamically truncating
44 LSBs of operands that actually trigger the isolated LLPs.

To acquire floating-point instructions from real-world applications running on
an ARM A7-based system, an open-source profiling tool [118] is utilized. In this
experimental analysis, the K-means, CFD, Heartwall benchmarks from the
Rodinia suite [119] and the Raytrace benchmark from the Parsec suite [120]
are used. This set of benchmarks represents a variety of algorithms that have
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many floating-point operations and covers a wide range of domains, i.e., Data
Mining, Fluid Dynamics, Medical Imaging, and Computer Graphics. Specifically,
10K operands from the most frequently executed floating-point instructions for each
application are extracted and used to evaluate the efficacy of the comparable FPU
designs.

Quality Degradation. As already explained, random timing errors as well as static
and dynamic operand truncation impose an output quality degradation. To evaluate
this, we estimate the average relative error (RE) achieved by the approximate
designs and compare it with the RE of the original design for all considered
applications. The average relative error, a common metric for estimating the output
quality [8, 48], is defined as:

RE =
∑K

i=1

∣
∣
∣
Ogold (i)−Osim(i)

Ogold (i)

∣
∣
∣

K
, (3.6)

where Ogold (i) denotes the exact error-free output value obtained from the reference
FPU design and Osim(i) represents the output obtained by the gate-level simulation
for a specific (i) floating-point instruction and the associated operands. The Osim(i)
value is extracted by the output register of the considered FPU after simulating both
designs (original and proposed) under a specific delay increase and bitwidth trunca-
tion range. For these experiments, 10K floating-point instructions are extracted for
each benchmark and thus i varies from 1 up to K = 10,000.

To visually illustrate the benefits of the target approximation strategies in mini-
mizing quality loss, Fig. 3.9 plots the RE of the original unmodified FPU (referred
to as Orig), Orig with static truncation of 44 LSBs (referred to as Strat1),
Strat1+Strat3 with 44 LSBs truncation, and the FPU design that combines all the
explained approximation strategies (Strat1+Strat2+Strat3). As showcased, the
combination of path shaping and operand truncation (Strat1+ Strat3) minimizes
errors, but, depending on the number of truncated bits, it may result in unnecessary
quality loss. This is because the bitwidth truncation is operand agnostic and is
applied to all the operands of the error-prone instruction types. To further reduce
the quality degradation, Strat1 + Strat2 + Strat3 initially detects the infrequent
operands that actually trigger the isolated LLPs (using the LLPPU explained in
Sect. 3.4.3) and then truncates the bitwidth of these operands.

The original FPU design without any truncation under the nominal conditions
(i.e., 0%) introduces no quality degradation since no errors have been manifested.
In the case of CFD program, Orig leads to unacceptable (>2) RE levels even under a
small worst-case delay increase (i.e., 3%). Static truncation (Strat1) helps to reduce
the RE to approximately 0.001 under 3 and 6%, while for Strat1+ Strat3 the RE
remains constant (RE = 5 · 10−3) for the considered delay increase levels. On the
other hand, Stat1+Stat2+Stat3 limits this quality loss (RE= 4 ·10−6) under the
voltage scaling induced delay increase. Similar results are obtained for the Raytrace
program, where Prop2 introduces a negligible RE (RE = 5 · 10−7) for all the delay
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Fig. 3.9 Average relative error (RE) under different delay increase levels for the original FPU
with (Strat1) and without statically truncating the 44 LSBs (Orig), the FPU when path shaping and
static truncation of 44 LSB are enabled (Strat1+Strat3), and the FPU when path shaping, timing
error prediction, and dynamic truncation of 44 LSBs are jointly considered (Strat1 + Strat2 +
Strat3). (a) Raytrace. (b) CFD. (c) K-means. (d) Heartwall

increase levels. In the case of k-means program, we observe the lowest RE among
all benchmarks (RE = 6 · 10−11) for Strat1+ Strat2+ Strat3, whereas for Orig
and Strat1, the quality degrades significantly after 3% delay increase. Finally, in
the case of Heartwall program, it is shown that Orig incurs a lower RE than the
static or dynamic truncation under 3% delay increase. Nonetheless, under 6 and 9%
delay increase the combination of approximation strategies (Strat1 + Strat3, and
Strat1+Strat2+Strat3) obtains at least 99.9% lower RE when compared to Orig
and Strat1. Overall, Strat1+Strat2+Strat3 exhibits a significantly lower quality
loss than Orig under 3–9% delay increase. Compared to Strat1, Strat1+Strat2+
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Strat3 achieves up to 4.2 · 107× lower RE across the considered benchmarks.
Additionally, when compared to Strat1+Strat3, Strat1+Strat2+Strat3 reduces
quality loss by an averaged 107 in terms of RE.

3.4.4.5 Approximation Strategies and Power Savings

Those approximate-based strategies not only deal with timing errors but are very
effective in voltage-scaled designs (i.e., operations at a lower than the nominal
supply voltage). For instance, Strat1 + Strat3 facilitates operation at 0.95 V,
while the nominal supply voltage is set to 1.1 V. This means that Strat1 + Strat3
operating at 0.95 V enables the designer to save 59.6% of power on average
under the considered benchmarks compared to the original FPU operating at 1.1 V.
Strat1+Strat3 results in significant power gains at reduced voltages, but it comes
with a notable quality loss that may be important for some applications.

Strat1 + Strat2 + Strat3 reduces such loss by reducing the number of times
that the data truncation is applied. When compared to the original FPU (@ 1.1 V),
Strat1+Strat2+Strat3 at 0.95 V leads to 26.8% power savings. Therefore, those
approximation strategies not only prevent timing errors, but they also enable low-
voltage operations. Strat1 + Strat3 is suitable for ultra low-power applications
that allow a deterministic output quality loss, while Strat1+ Strat2+ Strat3 can
be extremely useful for applications requiring ultra low-quality loss and low-power
consumption.

3.5 Approximate Memories

Apart from inexact functional units and processor components, approximate com-
puting techniques are applied to different memory technologies, such as SRAM and
DRAM. Memories play a crucial role in the overall power/energy consumption of
a server [121–123]. One of the reasons for a high energy consumed by the memory
devices is the usage of pessimistic operating parameters, such as voltage, refresh rate
(TREFP ), and temperature, set by the vendors. To improve the energy efficiency of
these memories, approximate techniques by reducing the supply voltage, operating
temperature, and refresh-rate in SRAM and DRAM have been proposed.

3.5.1 Approximate SRAMs

M. Shoushtari et al. [124] explore how partially forgetful memories can be used in
the context of approximate computing. Particularly, they propose an approximate
computing technique that saves cache energy by reducing the supply voltage of
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SRAM caches while still generating acceptable quality results. Another example of
approximations introduced at an SRAM is presented by S. Ganapathy et al. [125]
who minimize the magnitude of an SRAM error (caused due to a faulty cell) instead
of correcting the faults (like ECC). Authors in this study approximate lower-order
bits that have smaller significance than the high-order bits. This is achieved by
placing bits of lower significance into the error-prone cells (i.e., SRAM cells that
operate at reduced supply voltage), leading to a tolerable loss in output quality.
When compared to using ECC, their technique achieves considerable improvement
in latency, power, area, and yield at a cost of insignificant output quality degradation.
In this direction, H. Esmaeilzadeh et al. [126] propose an approximate SRAM,
which relies on a dual voltage supply: a high/nominal Vdd (accurate yet power-
hungry operations) and a low Vdd (inaccurate but lower-power operations). Authors
showcase that many programs have non-critical portions and thus small errors have
a minor impact on estimating the final program output. For instance, it is shown that
in a 3D raytracer application, 91% of data accesses are approximable (can be placed
in the SRAM operating at reduced Vdd ) [126].

During the last years, the goal for improving microprocessors’ energy efficiency
while reducing their power supply voltage is a major concern of many scientific
studies that investigate the chips’ operation limits in nominal and off-nominal
conditions. Whilkerson et al. [80] go through the physical effects of low-voltage
supply on SRAM cells and the types of failures that may occur. After describing
how each cell has a minimum operating voltage, they demonstrate how typical error
protection solutions start failing far earlier than a low-voltage target (set to 500 mV)
and propose two architectural schemes for cache memories that allow operation
below 500 mV. The word-disable and bit-fix schemes sacrifice cache capacity to
tolerate the high failure rates of low-voltage operation. While both schemes use
the entire cache on high voltage, they sacrifice 50 and 25% accordingly in 500 mV.
Compared to existing techniques, the two schemes allow a 40% voltage reduction
with power savings of 85%. Chishti et al. [81] propose an adaptive technique to
increase reliability of cache memories, allowing high tolerance on multi-bit failures
that appear on low-voltage operation. The technique sacrifices memory capacity to
increase the error-correction capabilities, but unlike previously proposed techniques,
it also offers soft and non-persistent error tolerance. Additionally, it does not
require self-testing to identify erratic cells in order to isolate them. The MS-ECC
design can achieve a 30% supply voltage reduction with 71% power savings and
allows configurable ECC capacity by the operating system based on the desired
reliability level. Duwe et al. [82] propose an error-pattern transformation scheme
that re-arranges erratic bit-cells that correspond to uncorrectable error patterns
(e.g., beyond the correctable capacity) to correctable error patterns. The proposed
method is low latency and allows the supply voltage to be scaled further that it
was previously possible. The adaptive rearranging is guided using the fault patterns
detected by self-test. The proposed methodology can reduce the power consumption
up to 25.7%, based on simulated modelling that relies on literature SRAM failure
probabilities.



3 Hardware Level Approximations 67

There are also several studies that explore methods to eliminate the effects of
voltage noise. Gupta et al. [83] and Reddi et al. [86] focus on the prediction of
critical parts of benchmarks, in which large voltage noise glitches are likely to occur,
leading to malfunctions. In the same context, several studies either in the hardware
or in the software level were presented to mitigate the effects of voltage noise [68,
83, 127–129] or to recover from them after their occurrence [130]. Ketkar et al. [131]
and Kim et al. [132, 133] propose methods to maximize voltage droops in single
core and multicore chips in order to investigate their worst-case behaviour due to
the generated voltage noise effects. There are also several characterization studies
of commercial chips in off-nominal voltage conditions [53, 73, 87, 134–136].

3.5.2 Approximate DRAMs

Recent projections forecast that the DRAM subsystem will soon be responsible
for more than 40% of the overall power consumption within most servers [121].
This reality has led researchers to question if the pessimistic DRAM parameters
can be relaxed exploiting the error resilience of some applications. In this scope,
existing studies [137–140] store only few critical data structures in well-protected
arrays operating under the nominal parameters that are consuming increased power
while allowing resilient/non-critical data to be stored on low energy, less reliable
arrays [141, 142]. A scheme [138] that gained a lot of attention in this context splits
the memory space into a region operated under nominal circuit parameters and a
region operated under relaxed parameters, which may be more prone to errors but
consumes less energy. Therefore, the use of heterogeneous reliability memory and
placement of data in each type of memory based on the required reliability has
gained a lot of attention in recent years and can be also used to enable energy-
efficient approximate computing [98, 141–143].

The benefits of HRM have been mainly showcased on simulators [123, 138] but
state-of-the-art studies implemented and evaluated HRM on real systems with a
complete virtualization stack [10, 144]. Those characterization studies on workload-
dependent DRAM error behaviour reveal that efficient DRAM refresh rates vary
per application basis. In this work, authors use a 64-bit ARMv8-based server (see
Fig. 3.10), APM X-Gene2, which is a typical Edge server. The X-Gene2 SoC con-
sists of eight 64-bit ARMv8 cores running at 2.4GHz. The X-Gene2 has four DDR3
Memory Controller Units (MCUs). In the experimental campaign, authors are
experimenting with 4 Micron DDR3 8GB DIMMs at 1866 MHz, with one DIMM
per MCU. In total, 72 chips of 4Gb x8 DDR3 are characterized since each DIMM
includes 16 and 2 DRAM chips for data storage and ECC, respectively. Notably, the
X-Gene2 provides access to a separate light-weight intelligent processor (SLIMpro),
which is a special management core that is used to boot the system and provide
access to the on-board sensors to measure the temperature and the power of the
SoC and DRAM. The SLIMpro also reports all memory errors corrected or detected
by SECDED ECC to the Linux kernel, providing information about the DIMM,
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Fig. 3.10 X-Gene 2 with the custom thermal adapters

bank, rank, row, and column in which the error occurred. Finally, SLIMpro allows
the configuration of the parameters of the MCUs, such as refresh-rate and VDD .
Specifically, refresh-rate may be changed from the nominal 64 ms to 2.283 s, which
is the maximum on the X-Gene2 server. The server runs a fully fledged OS based
on CentOS 7 with the default Linux kernel 4.3.0 for ARMv8 and support for 64KB
pages. Evaluation results with DRAM operating under variable refresh-rate (from
64 ms to 2.283 s) and lowered VDD (1.428 V) at 50 ◦C demonstrate that memory
errors differ significantly across workloads and DRAM refresh-rate. To measure
the rate of memory errors, authors introduce a specific metric, WER, which is
defined as: WER = NCE

MEMSIZE
, where NCE is the number of unique 64-bit word

locations where CEs have manifested and MEMSIZE is the size (in 64-bit words)
of memory allocated by the application. WER shows the probability of a word
being erroneous regardless of the size of memory allocated by the application. In
their study, authors investigate how WER varies across benchmarks when DRAM
operates under different TREFP at 50 ◦C and lowered Vdd . Authors run benchmarks
for DRAM operating under 0.618 s, 1.173 s, 1.727 s, 2.283 s TREFP and lowered
VDD . Figures 3.11 and 3.12 illustrate how WER changes with scaling TREFP at
50 ◦C. These results show that WER varies across benchmarks significantly. Such a
variation of DRAM error behaviour across workloads, including single-threaded and
multi-threaded programs, is attributed to different types of access and data patterns
in the workloads.

Apart from the above circuit parameters, one of the main environmental con-
ditions affecting the reliability of DRAM and used in approximate memories is
temperature [145, 146]. To test DRAM reliability under different temperatures,
previous studies develop specific thermal testbeds [146, 147]. There are two
alternative approaches for designing such testbeds: (1) use a heating chamber, in
which an entire experimental server is placed and (2) use heating elements that
are explicitly connected to DRAM devices. For example, the second approach
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Fig. 3.11 WER for DRAM operating under 0.618 s and 1.173 s at 50 ◦C
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Fig. 3.12 WER for DRAM operating under 1.727 s and 2.283 s at 50 ◦C

is discussed in a recent study [147]. In this study, to perform the experiments
under controlled temperatures, authors implement a unique temperature-controlled
server testbed using heating elements [147]. Figure 3.10 shows the APM X-Gene
2 server with four DIMMs fitted with custom adapters. The temperature of each
element is regulated by a controller board, as shown in Fig. 3.13, which contains
a Raspberry Pi 3, four closed-loop PID controllers, and eight solid-state relays
controlling the resistive elements of each DIMM and rank independently. This
work can be used in determining efficient temperature guardbands in approximate
memories.

Noteworthy, approximate memories actually are realized on a real server with a
full virtualization software stack as shown in [10]. The so-called HaRMony scheme
realized a heterogeneous-reliability memory framework, in conjunction with QoS-
aware energy management policies. HaRMony exposed to the QEMUKVM hyper-
visor two unique policies. The first policy enables the hypervisor to seek the most
power-efficient DRAM circuit parameters based on the server availability requested
by the user. The second policy enables users to exploit the inherent application error
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Fig. 3.13 Temperature controller board [147]

resiliency by allowing them to limit the error protection mechanisms and allocate
data structures on variably-reliable memory domains, thus realizing approximate
storage on real devices. Results show that HaRMony reduces the performance
overhead incurred due to disabling hardware interleaving from 29.3% down to 1.1%
and leads to 17.7% DRAM energy savings and 8.6% total system energy savings on
average in case of native execution of 28 benchmarks on an ARMv8-based server
[10]. It was also shown that the developed QoS-aware scaling governor integrated
with QEMU-KVM can dynamically scale the DRAM parameters while reducing the
system energy by 8.4% and meeting the targeted QoS even under extreme DRAM
temperatures.
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Chapter 4
Inexact Arithmetic Operators

Lukas Sekanina, Zdenek Vasicek, and Vojtech Mrazek

4.1 Introduction

Developing and applying approximate implementations of arithmetic operators is
currently one of the most popular approaches to reduce power consumption in
compute-intensive signal, image, and video processing applications. The aim of
this chapter is to summarize the operation principles of elementary approximate
arithmetic circuits and the methods developed for their design. Our focus will be
on selected methodological issues and practices related to the approximate circuit
design, namely the understanding of the circuit approximation problem as a multi-
objective optimization problem, an error analysis methodology, a correct evaluation
and comparison of approximate implementations, and a fair benchmarking method-
ology.

We will primarily deal with approximate adders and approximate multipliers
because they are the key circuits of many applications relevant for approximate
computing, for example, image, video, and speech processing, deep learning, data
mining, and natural language processing. No attention will be paid to approximate
implementations of subtractors, dividers, and other arithmetic operations because
their need in approximate computing systems is rather limited in comparison
with adders and multipliers. These circuits are discussed, for example, in [1–3].
Moreover, we will not deal with common compositions of adders and multipliers
in circuits such as “multiply and accumulate” (MAC) and scalar product. Their
approximate implementations can be obtained either by (i) utilizing (independent)
approximate adders and approximate multipliers or by (ii) designing a single block
without any decomposition, where (ii) can lead to much better trade-offs than (i).
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Approximate implementations of digital circuits are often obtained by the so-
called functional approximation. This method starts with an original (exact) circuit
and tries to modify its logic behavior (and the subsequent implementation) in such
a way that the best possible trade-off between the quality of output (the error) and
electrical characteristics of the circuit is sought. By electrical characteristics, we
mean one or several circuit parameters commonly used to characterize electrical
circuits, for example, power consumption, area, and delay. We will not deal
with voltage over-scaling and other technology exploiting approximation methods,
although they are sometimes combined with functional approximation. The reason
is that voltage over-scaling is very technology-dependent and hard to control,
making the evaluation and fair comparison of various approximate implementations
difficult.

The rest of the chapter is organized as follows. The methodological aspects
that are relevant for the design of approximate arithmetic circuits are surveyed in
Sect. 4.2. Some of them are then further elaborated in special chapters. In particular,
Sect. 4.3 deals with error analysis methods for approximate circuits, with a special
focus on formal relaxed equivalence checking. Section 4.4 presents the circuit
approximation as a multi-objective optimization problem and emphasizes a correct
approach enabling to compare approximate circuits under several design metrics and
constraints. Problem-specific approximation methods for adders and multipliers are
discussed in Sect. 4.5, while general-purpose automated approximation methods are
briefly introduced in Sect. 4.6. A comprehensive open-source library of approximate
circuits that was automatically generated by one of the automated methods is
presented in Sect. 4.6.2. Section 4.7 includes several case studies that demonstrate
some interesting aspects of the circuit approximation methods; for example, it
compares the circuit simulation utilizing a subset of input vectors with an exact
error analysis. Concluding remarks are given in Sect. 4.8.

4.2 Methodological Aspects

In this section, we discuss various methodological aspects that a designer has to
consider before any approximate (arithmetic) circuit is created. Some of these
aspects are solely connected with arithmetic circuits, while other aspects are relevant
for all approximate circuits. Understanding these aspects is crucial not only for
developing efficient circuit approximate methods and high-quality approximate
circuits but also for performing a fair comparison of these design methods and the
approximate circuits created by these methods.
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4.2.1 Design Abstraction

The original (exact) circuit and its approximate implementation, which we have to
devise, are usually described at the same level of abstraction. The approximation of
arithmetic circuits is typically conducted at the transistor level (e.g., [4]), gate level
(e.g., [3, 5]), register transfer (RT) level (e.g., [6]), behavioral level (e.g., [7]), and
look-up table (LUT) level (e.g., [8]) if the target platform is a field programmable
gate array (FPGA). Most approximate arithmetic circuits are combinational circuits.
We will not deal with iterative or sequential implementations, but this topic is also
covered in the literature, e.g., [9].

4.2.2 Target Technology

While most approximation approaches have been developed for application-specific
integrated circuits (ASICs), there are some papers dealing with approximate
arithmetic circuits for graphic processing units (GPUs) [10, 11] and FPGAs [8]. The
target technology has to be taken into account by the approximation methodology
as an approximate circuit optimized for one technology can show different electrical
properties when implemented using a different technology.

4.2.3 Number Representation

Approximation strategies for arithmetic circuits are tightly coupled with the number
representation utilized in a given system (Chap. 2). For the fixed-point (FX) number
representation, the designers primarily decide about the number of bits used for the
integer and fractional part and whether the circuit will intrinsically process signed
numbers, the sign will separately be handled, or only unsigned numbers will be
considered. A domain-specific quantization scheme is then used to map the input
data range to the code values and vice versa. The quantization scheme should be
linear and allow us to represent some important numbers (such as 0.0) exactly.

With the development of GPU-based deep learning, approximate implemen-
tations of adders and multipliers operating with the floating-point (FP) number
representation have been proposed. The usual scheme for representing FP numbers
(known from, e.g., the IEEE 754 standard) is simplified to reduce power con-
sumption. For example, in the minifloat representation, any exponent and mantissa
bit-width combination is allowed on a given total number of bits; however, to
reduce the implementation overhead, the common exception handling, infinity,
denormalized values, and alternative rounding modes are not supported [12].
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4.2.4 Circuit Approximation Methods

Approximate implementations are usually created by (i) “manual” modifications of
exact circuits, (ii) developing new application-specific approximation schemes, or
(iii) automated design space exploration algorithms.

The first approach requires a skilled designer who introduces appropriate changes
to the original circuit. Very specific approximation techniques were developed for
particular types of arithmetic circuits such as multipliers. For example, Fig. 4.1
shows one of the first approximate multipliers created by a human expert [13]. Its
implementation is based on modifying the truth table of the 2-bit multiplier in such
a way that the correct results are provided for 15 out of 16 input combinations, the
area is reduced to almost 50%, and the delay is also reduced by one logic level. This
approximate multiplier was used as a building block of more complex multipliers.
Unfortunately, the manual approximation represents a time-consuming process that
is feasible for small circuits only.

The second approach does not start with a common (exact) circuit implementa-
tion. It is rather based on a new construction scheme for a given class of problems.
For example, a new approximation technique for FP multipliers lies in fitting
linear functions with two inputs, referred to as linear planes. The linearization
of multiplication allows multiplication operations to be completely replaced with
weighted addition [10].

The last method employs fully automated circuit optimization or resynthesis
algorithms. We will provide a brief overview of these methods in Chap. 4.6. In
addition to the evaluation of resulting approximate implementations, we are faced
with a new problem—the evaluation of circuit approximation algorithms (in terms
of resources and time needed to obtain a solution with desired properties).
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Fig. 4.1 The 2-bit approximate multiplier proposed by Kulkarni et al. in [13] and its specification
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4.2.5 Error Metrics and Error Analysis

Approximate arithmetic circuits are developed with the aim of minimizing one
or several error metrics. We will survey commonly used error metrics and error
analysis methods in Chap. 4.3. Here, we will emphasize some important aspects
of the error analysis methodology. If an approximate circuit is evaluated under one
error metric, then the decision of whether one circuit is better than another circuit
is straightforward. If two or more error metrics are evaluated together, this relation
becomes more complex and a different concept has to be employed. Chap. 4.4 will
discuss the so-called Pareto dominance relation to handle this situation. Suppose
some constraints are imposed on resulting approximate circuits (for example, the
worst-case error must always be less than 1%, while the mean absolute error
is minimized). In that case, all circuits not satisfying these constraints must be
excluded from the comparisons.

Most error analysis methods only estimate the exact error as determining the
exact error is very time-consuming. The error estimate is obtained by circuit
simulation across a reasonably inclusive set of input vectors. The exact error can be
obtained by exhaustive simulation, but this approach is not scalable. More scalable
approaches are based on formal analysis methods. We will compare the performance
of these methods in Sect. 4.7.

Another issue is that many approximate circuits have been developed without
assuming any particular data patterns existing in a given application, i.e., the design
method assumes that all input vectors will occur with the same probability. This
is a common approach if the approximate circuit should be provided as a reusable
component. If the designer knows the input data distribution, the approximate circuit
can be designed to reflect this knowledge and thus to provide better trade-offs
between the error(s) and electrical parameters. This can naturally be accomplished
by automated approximation methods [14].

Finally, for a few particular implementations of approximate adders and mul-
tipliers, detailed probability error analysis methods were published, e.g., [15].
Knowledge of error probabilities becomes very useful if such a circuit is (re)used
in a more complex application, and one needs to perform reasoning about the
application-level error based on probability models available at the component level.
An obvious disadvantage is that a lot of human effort is required to construct reliable
probabilistic models for particular circuits.

4.2.6 Quality Configurable Circuits

Approximate circuits having some configuration parameters such as the segment
size (i.e., the number of sub-adders working in parallel), the number of fractional
bits, or the number of active subcircuits are called quality configurable circuits.
The setting of these configuration parameters is determined either at the design
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Table 4.1 Parameters of 2-bit and 8-bit exact and configurable approximate multipliers according
to [16, 17]. emae and ewce denote the mean absolute error and the worst-case error

Operating Power Delay Area emae ewce

Multiplier mode [μW] [ns] [μm2] [%] [%]

2-bit exact – 3.8 0.15 19 0 0

2-bit QCM Approximate 2.4 0.09 12a 13 13

Exact 4.7 0.21 23 0 0

8-bit exact – 428.3 1.25 727 0 0

8-bit QCM Approximate 483.0 1.51 1197a 1.4 22

Exact 516.4 1.60 1337 0 0
a The value is the area of the approximate subcircuit only

time (before the circuit synthesis is conducted) or online, i.e., during the run time,
depending on the requested quality of service. This strategy can also be interpreted
as an error compensation support or dynamic approximation. For example, these
circuits can be utilized in the signal processing applications that can thus benefit
from an in situ dynamic adaptation of the quality of processing in response to
variable requirements on the quality of result and available resources.

We will demonstrate this idea by extending the 2-bit approximate multiplier
from Fig. 4.1 to support two modes of operation as introduced in [16, 17], see
Fig. 4.2. In the first mode, the quality configurable multiplier (QCM) works exactly
as the approximate multiplier from Fig. 4.1, i.e., it generates an incorrect result (7)
when both the inputs are 3. In the second mode, a correction circuit is activated,
which modifies the output value of the approximate multiplier if it equals 7. Then,
the incorrect value (7) is increased by two. The reconfiguration is implemented
using the power gating technique. The parameters of the 2-bit QCM synthesized
using Synopsys DC with 45 nm FreePDK are given in Table 4.1. Compared to the
common multiplier implemented using Verilog star operator, the 2-bit QCM exhibits
some overhead when we consider area, power, and delay. In the approximate mode,
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however, the electrical parameters (i.e., power and delay) are significantly improved.
The 2-bit QCM in the approximate mode consumes 36% less power compared to
the accurate multiplier. This multiplier can be used as an elementary block to build
larger 8-bit and 16-bit quality configurable multipliers.

An important outcome of this brief analysis is that one has to be very careful
when properties of common approximate circuits and quality configurable circuits
are compared because the quality configurable circuits always exhibit some circuit
overhead needed to ensure the reconfiguration.

4.3 Formal Error Analysis

Determining the error of an approximate circuit or deciding whether an approximate
circuit satisfies a given error constraint represents not only fundamental theoretical
problems but also highly practically relevant problems that must be routinely
solved during the design of approximate circuits. This subchapter is focused on
the exact error analysis of approximate arithmetic circuits by means of formal
methods. But the formal methods can be applied to effectively analyze errors of
other combinational circuits as well as sequential systems [9].

Fast and accurate error analysis is especially important in the case automated
approximation methods because they usually need to generate and evaluate many
candidate designs.

4.3.1 Error Metrics

The functionality of approximate circuits is typically expressed using one or several
error metrics. When an arithmetic circuit is approximated, for example, it is
necessary to base the error quantification on an arithmetic error metric since the
error magnitude could have a significant impact on target application.

Let f : Bn → B
m be an n-input m-output Boolean function that describes correct

functionality (specification) and f̂ : Bn → B
m be an approximation of it, both

implemented by two circuits, namely F and F̂. The following paragraphs summarize
the error metrics that are relevant for arithmetic circuits.

One of the most popular metrics applied in the context of approximate computing
is the worst-case arithmetic error, sometimes denoted as error magnitude or error
significance. This metric corresponds with the maximum error the approximation
may give and is defined as

ewce(f, f̂ ) = max
∀x∈Bn

| nat(f (x))− nat(f̂ (x))|, (4.1)
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where nat(x) represents a function nat : Bm → Z returning a decimal value of
the m-bit binary vector x. Typically, a natural binary representation is considered,
i.e., nat(x) = ∑m−1

i=0 2ixi . The worst-case error represents the fundamental metric
which is typically used as a design constraint and helps to guarantee that the
approximate output can differ from the correct output by at most ε (i.e., the condition
ewce(f, f̂ ) ≤ ε is always satisfied).

The worst-case arithmetic error is closely related to the relative worst-case error
defined as

ewcre(f, f̂ ) = max
∀x∈Bn

| nat(f (x))− nat(f̂ (x))|
nat(f (x))

. (4.2)

This metric can be used to constrain the approximate circuit to differ from
the correct one by at most a certain margin. The maximum error magnitude is
considered in relation to the correct output value.

There are also statistically oriented error metrics such as the average-case
arithmetic error or average-case relative arithmetic error describing the mean
absolute or relative error magnitude. The average-case arithmetic error is defined as
the sum of absolute differences in magnitude between the original and approximate
circuits, averaged over all inputs:

emae(f, f̂ ) = 1

2n

∑

∀x∈Bn

| nat(f (x))− nat(f̂ (x))|. (4.3)

When we replace the expression in the sum by the equation for relative error
distance, we can calculate the mean relative error:

emre(f, f̂ ) = 1

2n

∑

∀x∈Bn

| nat(f (x))− nat(f̂ (x))|
nat(f (x))

. (4.4)

In addition to that, mean-squared error corresponding to the average squared
error magnitude represents an important metric especially for signal processing
applications because it is inversely related to peak signal-to-noise ratio (PSNR).
This metric is defined as

emse(f, f̂ ) = 1

2n

∑

∀x∈Bn

(nat(f (x))− nat(f̂ (x)))2. (4.5)

The error metrics mentioned in the previous paragraphs suppose uniform dis-
tribution of the input probabilities. There are, however, cases, where we need to
consider skewed input distributions. One example is represented by the approximate
multiplications carried out in deep neural networks [14]. To evaluate the error metric
with respect to a given distribution of input probabilities, weighted mean error
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distance can be introduced as an extension of the conventional mean error [14]:

ewmae(f, f̂ ) =
∑

∀x∈Bn

D(x)| nat(f (x))− nat(f̂ (x))|, (4.6)

where X corresponds to a discrete random variable representing data at the inputs
and D is a probability mass function of X defined as D(x) = Pr(X = x).

In addition to the arithmetic errors, error rate referred to as error probability can
be investigated. The error rate corresponds to the percentage of input vectors for
which the output value differs from the original one and is defined as

eprob(f, f̂ ) = 1

2n

∑

∀x∈Bn

�f (x) �= f̂ (x)�, (4.7)

where �f (x) �= f̂ (x)� = 1 iff the proposition P is satisfied and �P � = 0 otherwise.

4.3.2 Relaxed Equivalence Checking

Formal verification techniques that are widely adopted in the conventional circuit
design flow are often based on equivalence checking, i.e., checking whether a
mathematical model of a circuit under design meets a given specification. Two main
approaches have been developed in this direction—techniques based on Reduced
Ordered Binary Decision Diagrams (ROBDDs) and satisfiability (SAT) solvers [18].
In both cases, an auxiliary circuit, the so-called miter, is constructed and then
analyzed. Figure 4.3a shows that the miter instantiates both the candidate circuit F̂

(to be checked) and the golden circuit F and compares their corresponding outputs

Fig. 4.3 Miter for
equivalence checking (a) and
arithmetic error analysis (b).
For the equivalence checking,
the output E corresponds
with E(x) = �f (x) �= f̂ (x)�.
For arithmetic error analysis,
the output E equals the error
magnitude E(x) =
nat(f (x))− nat(f̂ (x))
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Fig. 4.4 Overview of formal error analysis approaches

to detect a difference in their behavior. In the context of approximate computing,
we need to extend this concept to relaxed equivalence checking, by stressing the
fact that the considered circuits will be checked to be equal up to some bound w.r.t.
a suitably chosen distance (error) metric such as the worst-case error or the average
error. The (approximation) miter always contains an additional component enabling
us to determine the error, see Fig. 4.3b.

Figure 4.4 provides a brief overview of formal error analysis methods for
approximate circuits. If the error analysis is performed using ROBDDs, a new
ROBDD representing the miter is constructed by a procedure that reads the miter
(gate by gate) and adds appropriate nodes to ROBDD. ROBDDs can be directly
used for the worst-case as well as the average-case analysis because every library
for ROBDD manipulation is equipped with operations enabling us to address
questions related to the satisfiability of the miter, namely finding one satisfying
assignment and counting the number of satisfying assignments. The first operation
provides a single-input assignment x from the ON-set of a Boolean function. The
second operation computes the size of the ON-set. As ROBDDs are inefficient in
representing classes of circuits for which the number of nodes in BDD is growing
exponentially with the number of input variables (e.g., multipliers and dividers),
their use in relaxed equivalence checking is typically possible for adders and other
less structurally complex functions. Anyway, for example, 128-bit adders can be
quickly analyzed in terms of all relevant error metrics [18].

If the error analysis is based on SAT solving, the miter is represented as a
logic formula in Conjunctive Normal Form (CNF) for which SAT solver decides
whether it is satisfiable or unsatisfiable. The interpretation of this outcome depends
on construction of the miter, see Sect. 4.3.3. Common SAT solvers are, in principle,
applicable to the worst-case analysis only. However, this approach is more scalable
than ROBDDs for the error analysis of multipliers [6]. Specialized SAT solvers
(#SAT) are capable of counting the number of satisfiable assignments, but their
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scalability is very limited, and thus they are currently less practical for the exact
error analysis [18].

Even though ROBDDs offer a more flexible approach than SAT considering the
possibilities of computation of approximate error metrics, their application is also
limited. Not every error metric can directly be calculated using this technique. ROB-
DDs, for example, do not allow incorporating input probabilities [19]. Moreover, it
is not easy to evaluate statistical error metrics involving computation of the relative
error due to the presence of division. To address both issues, a more advanced
approach needs to be introduced. The only approach allowing us to evaluate the error
metrics reflecting the distribution of input probabilities is based on the usage of a
more advanced representation known as Algebraic Decision Diagrams (ADDs) [19].
The usage of ADDs is naturally connected with a higher computational cost.

4.3.3 Worst-Case Error Analysis

The worst-case error analysis is typically based on an iterative approach in which a
variant of binary search is applied.

For computing the worst-case arithmetic error, for example, the miter given in
Fig. 4.3b is used. Algorithm 1 illustrates the principle of determining the worst-case
arithmetic error, i.e., calculating the error magnitude at the m-bit output of the miter
denoted as E. The principle of this procedure is to iteratively check whether the
error is greater than a given threshold (denoted as t in the algorithm). The search
procedure gradually narrows down the interval where the exact error value lies.
After a finite number of steps, a single value is determined. As the binary search runs
in logarithmic time with respect to the range, at most m comparisons are required.
The checking can be ensured by means of the magnitude comparator which is used
to form a Boolean function whose output is equal to 1 if and only if a given worst-
case error T is violated by the circuit under analysis.

Algorithm 1 Worst-case absolute error computation
Input: n-input approximation miter with m-bit signed output E in the two’s complement
Output: maximum absolute arithmetic error (ewce)

1 l ← 0; r ← 2m − 1
2 while l ≤ r do
3 t ← �(l + r)/2�
4 if WCEGT(E, t) then
5 l ← t + 1
6 else
7 r ← t − 1

8 return l
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Algorithm 2 Mean absolute error computation
Input: n-input approximation miter with m-bit signed output e in the two’s complement, i.e., E =

2mem −∑m−1
i=0 2i ei

Output: mean absolute arithmetic error (emae)
1 ε, c ← |ON-set(em)|

for i ∈ {0, 1, . . . , m− 1} do
2 if c > 0 then
3 ε ← ε + 2i |ON-set(ei ⊕ em)|
4 else
5 ε ← ε + 2i |ON-set(ei)|

6 return 2−nε

WCEGT(E,T ) = ∃x∈Bn |E(x)| > T

= ON-set

(

[em ∧ (E > T )] ∨ [em ∧ (E > (T − 1))]
)

�= ∅. (4.8)

Then, the satisfiability of this function can be investigated. An incremental SAT
solver should be employed to mitigate a potential overhead caused by the necessity
of constructing a different comparator in each iteration [18].

4.3.4 Average-Case Error Analysis

Determining the average-case error represents a substantially harder problem
because it requires the counting of the number of satisfiable assignments. For
computing the average-case arithmetic error, for example, the same miter as in the
previous case is used. The mean absolute error can be obtained by determining the
error probability per output bit. The obtained counts are then weighted according to
the significance of the output bits and summed up. This is illustrated in Algorithm 2.

4.4 Circuit Approximation as a Multi-objective Optimization
Problem

The circuit approximation problem can be seen as a multi-objective optimization
problem, i.e., an optimization problem that involves multiple objective functions
g1(x), g2(x), . . . , gk(x), where gi : X → R, k is the number of objectives, and
x, x ∈ X is a candidate circuit from the set of feasible circuits X [20]. In the context
of approximate circuits, multiple objectives are typically defined to minimize one
or several error metric(s), power consumption, area, and delay. The set of feasible
solutions consists of all candidate circuits that satisfy the constraints imposed on the
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Fig. 4.5 Example of
candidate designs in the
objective space (power,
MAE). Four types of designs
are distinguished:
non-dominated solutions
(circles), dominated solutions
(crosses), infeasible solutions
(squares), and original
solution (diamond)

target circuit. For example, the worst-case error (ewce) has to be less than a given
constant, and the power consumption has to be smaller than another constant, as
seen in Fig. 4.5.

In the multi-objective optimization, there does not typically exist one feasible
solution that minimizes all objective functions simultaneously because the design
objectives are conflicting. Hence, rather than one (optimal) solution, the optimiza-
tion results in a set of solutions, i.e., the solutions that cannot be improved in any
of the objectives without degrading at least one of the other objectives. Formally, a
feasible solution x(1) ∈ X is said to (Pareto) dominate another solution x(2) ∈ X,
if

• gi(x
(1)) ≤ gi(x

(2)) for all i ∈ {1, 2, . . . , k} and
• gj (x

(1)) < gj (x
(2)) for at least one index j ∈ {1, 2, . . . , k}

and all gi have to be minimized. A solution x∗ ∈ X is called a non-dominated
solution, if there does not exist another solution that dominates it. The set of non-
dominated solutions is called the Pareto front.

Figure 4.5 shows an example of Pareto front containing six non-dominated
solutions (circles) and many dominated solutions (crosses) for two objectives to
be minimized (emae and power consumption). The original (accurate) circuit is
represented using a black diamond. Figure 4.5 also shows eight infeasible solutions
that satisfy the constraints imposed on neither power consumption nor ewce. We say
that non-dominated solutions are Pareto optimal solutions if all possible candidate
solutions are considered during the optimization, and there are not provably better
non-dominated solutions in the search space. Claiming that some method finds a
Pareto optimal solution without providing a correct proof of it is a clear failure of
the author of the method. In practice, we are almost always faced with a situation in
which a given method produces suboptimal solutions, i.e., the Pareto front contains
the best non-dominated solutions obtained during the experiments conducted with
the method. As it is not known “how far” the obtained solutions are from the truly
Pareto optimal solutions, a common practice is to introduce a quality metric capable
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of measuring the distance between two sets of solutions obtained with two multi-
objective optimization methods (see, for example, [20]) and compare them under
this metric to conclude whether the first method is better than the second method or
vice versa.

Another issue is the proper handling of constraints if two approximation methods
are compared. For example, solution C4 on Fig. 4.5 would be on the Pareto front if
no constraint were imposed on ewce. But in our example, this constraint is specified.
A direct comparison with a hypothetical approximation method, which does not
specify the same constraint on ewce and claims that C4 is a correct solution, is then
meaningless.

In Fig. 4.5, non-dominated solution C1 dominates solutions C2 and C3 (and also
some infeasible solutions). A common misinterpretation of this situation is that if
one is optimizing for selected criterion (e.g., emea = MAEc), then solutions C1,
C2, and C3 are good candidates and one of them can be selected depending on the
available power budget. However, it makes no sense to choose C2 or C3 because C1
is always a strictly better solution under our original assumption that only emae and
power consumption are considered.

4.5 Problem-Specific Approximation Methods

This chapter deals with problem-specific approaches that were developed for
obtaining approximate implementations of arithmetic circuits. They are created by
experienced engineers who usually start with a common exact implementation. The
approximation strategy is dependent on one particular type of circuits (e.g., adders
or multipliers). It is not always possible to directly apply these techniques to other
types of circuits.

A straightforward approximation technique that can be applied to various
arithmetic circuits is truncation. In truncation, h-bit (exact) arithmetic circuit is used
instead of n-bit circuit (h < n) to reduce area, delay, and power consumption. This
h-bit circuit is employed to process the most significant h bits of the n-bit operands
and the remaining n−h bits are truncated, see also Chap. 2. Because of its simplicity
and good results, this technique should be used as a baseline implementation for any
comparisons. Moreover, the error profile obtained by truncation is well understood
and, hence, the error of complex approximate circuits composed of the truncated
circuits can naturally be analyzed.

As stated at the beginning of this chapter, we will primarily deal with approxi-
mate adders and multipliers because these circuits are essential in many applications
and there is a rich body of literature on this topic.
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4.5.1 Approximate Adders

An n-bit (common) adder adds two n-bit operands and produces an n+ 1 bit result.
The most straightforward implementation (the so-called ripple-carry adder) is based
on employing n one-bit full adders (FAs) and propagating the carry from the least
significant FA to the most significant FA. Although it requires a low amount of
logic, its main disadvantage is that the carry chain introduces a long delay increasing
linearly with respect to n. In order to reduce this delay, a carry-lookahead adder
(CLA) is often employed, which is capable of predicting the input carry to any
of the FAs in constant or log time, depending on available additional logic. Other
circuit structures that provide some speedup with respect to the ripple-carry adder
are carry-select adders and carry-skip adders, but, again, additional logic must be
available.

A recent detailed survey of Jiang et al. [3] classified the approximate implemen-
tations of n-bit adders into the following classes:

• Speculative adders, in which k bits (k < n) are used to speculate the carry for
each sum bit [21]. This setup leads to a shorter carry chain and thus faster but
inexact addition.

• Segmented adders, in which the adder is divided into a number of smaller k-
bit sub-adders (segments) operating in parallel. Fast addition is obtained as the
carry propagation chain is truncated into shorter segments [22–24] and no carry
is propagated among the sub-adders.

• Carry-select adders, in which the adder is also divided into segments, but the
carry input for each sub-adder is selected using different strategies [25–32].

• Approximate multi-bit full adders, in which the least significant bits are imple-
mented by approximate FAs that are typically obtained by simplifying the exact
FA at the transistor level [4, 33].

Some of these adders are constructed as accuracy configurable circuits, for
example, [16, 22, 29].

A detailed analysis conducted in [3] for these approximate adders under several
error metrics revealed there is no superior approximation implementation which
always provides the best trade-offs. The user has to carefully choose the most
suitable implementation for a particular application.

4.5.2 Approximate Multipliers

A typical implementation of the exact unsigned combinational n-bit multiplier is
based on generating n n-bit partial products and summing them using n− 1 ripple-
carry adders organized in an array. In order to reduce delay, the ripple-carry adders
are replaced with carry-save adders (the carry and sum signals generated by the
adders in a row are passed on to the adders in the next row of the array) and
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partial results are summed with a structure called Wallace tree, which requires log(n)
rows of adders. In these optimized multipliers, a-input/b-output important summing
subcircuits (called counters and compressors) can be identified as building blocks.
Multiplying of signed binary numbers in the two’s complement notation is usually
performed with Booth’s algorithm, which effectively reduces the number of partial
products and their bit-width.

A recent detailed survey of Jiang et al. [3] classified the approximation methods
for multipliers into the following classes:

• Approximation in generating partial products. Complex multipliers are com-
posed of simplified elementary multipliers (such as the 2-bit approximate
multiplier [13] that we discussed in Sect. 4.2 or other smaller approximate
multipliers [34]), but the accumulation becomes accurate.

• Approximation in the partial product tree, in which some adders or their parts are
omitted, for example, because of truncation. Examples include broken array mul-
tipliers [33], error-tolerant multipliers [35], and static segment multipliers [36].

• Using approximate designs of adders, counters, or compressors to accumulate
the partial products, for example, [37–40].

• Approximate Booth multipliers [41–46].

Another group of approximation methods does not immediately start with a
common multiplier but employs a different approach to obtaining the product.
For example, rounding-based approximate (RoBA) multiplier tries to round the
operands to the nearest exponent of two to omit the most computationally intensive
part of the multiplication [30]. Truncation- and rounding-based scalable approx-
imate multiplier (TOSAM) reduces the number of partial products by truncating
each of the input operands based on their leading one-bit position. Hence, the
multiplication can be replaced with shift, add, and small fixed-width multiplication
operations [47]. In a dynamic range unbiased multiplier (DRUM), an m-bit segment
is selected starting from the leading one bit of the input operands and the least
significant bit of the truncated values is set to one. The truncated values are
multiplied and shifted to the left to generate the final output [48]. Finally, the
approximate multiplier can be based on computing an approximate logarithm for
both the operands, summing the obtained values and computing antilog [10]. Several
schemes for hardware implementation of log and antilog computation exist, but the
linear Mitchell approximation techniques are the most area-efficient [49].

With the development of specialized accelerators for deep learning in which
it is useful to employ FP number representation, approximate implementations
of FP multipliers have been proposed. Some of them are based on converting
multiplication to the addition of approximate logarithms of the operands [10].
Another approach is to introduce a specific easy-to-compute function capable of
approximating the multiplication [50]. Examples of configurable approximate FP
multipliers are [11, 51].

A scalable divide-and-conquer strategy was developed for synthesizing a 2n-
bit approximate multiplier from four n-bit multipliers [52]. The operands are
divided into four n-bit chunks (each operand has a lower and higher part) that are
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independently processed using four multipliers whose outputs are reduced using
two adders with one n-bit and one 2n-bit operand each. The key advantage of this
method is that if accurate adders are employed and some of the n-bit multipliers are
arbitrary chosen approximate multipliers with known ewce, the upper bound of ewce

of the 2n-bit approximate multiplier can be derived. If only one type of approximate
multipliers is used, then ewce can be calculated exactly. Moreover, this construction
provides superior trade-offs between the area and error in comparison with many
state-of-the-art approximate multipliers [52].

4.6 Automated Approximation and EvoApprox Library

4.6.1 Automated Methods

Automated functional approximation methods start with a common (exact) circuit
implementation and define one or several design objectives and constraints. As
discussed in Sect. 4.4, the circuit approximation problem can be seen as a multi-
objective design problem, where the desired output is a set of non-dominated
designs from a Pareto front. As this chapter deals with arithmetic circuits, the
approximation is typically conducted at the gate level. The initial circuit is modified
by an iterative approximation algorithm to produce an approximate implementation
satisfying design objectives and other constraints.

The basic algorithmic approximation techniques are pruning (i.e., removing
some parts of the circuit), component replacement (i.e., complex subcircuits are
replaced with simpler subcircuits), and approximate resynthesis. If, however, the
circuit is provided in a behavioral HDL representation, other more software-oriented
techniques (such as loop perforation and memorization, see Chap. 5 for more details
on these techniques) can be applied. The automated approximation methods select
either randomly or heuristically which parts of the circuit have to be removed,
reconnected, or replaced. Table 4.2 gives examples of automated approximation
methods, benchmark problems used to evaluate them, and the error evaluation
approaches.

One of the automated methods—Cartesian genetic programming (CGP)—is
briefly introduced in Fig. 4.6. Based on an original circuit that is supplied by the
user, CGP instantiates a population of candidate designs. As CGP is an evolutionary
circuit design method, new candidate designs are created by introducing random
mutations (i.e., modifications) to the circuit netlist. Candidate designs generated
by circuit generator can be constrained in various ways; for example, only circuits
having an acceptable number of gates or showing an error below a given threshold
are marked as feasible. Candidate designs are evaluated in terms of error (circuit
simulation is combined with formal error analysis methods), and the key electrical
parameters are quickly estimated. The best-scored circuits then serve as the parents
of the new population. This iterative process is repeated for a predefined number
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Table 4.2 Selected automated approximation methods, benchmark problems used to evaluate
them, and the error evaluation approaches

Method Ref. Benchmarks Error analysis by

ABACUS [7] FIRa, perceptron, block matcher Simulation

ABM [53] 6 ISCAS85 benchmark circuits BDD

ALFANS [54] 8-bit multipliers, 32-bit adders, MCNC
benchmarks

SAT, BDD

ASLAN [55] FIRa, IIRb, MACc, DCTd, Sobel, and 8-input
neuron

Sequential QCCe (SAT)

CGP [34] 2- to 16-bit multipliers, 9-input and 25-input
median

Simulation

CGP-BDD [56] 16 circuits from LGSynth, ITC, and ISCAS BDD

CGP-SAT [57] 8- to 32-bit multipliers, 128-bit adders SAT

SALSA [5] Adders, multipliers, FIRa, IIRb, DCTd, etc. QCCe (SAT)

SASIMI [58] ISCAS85 benchmarks, multipliers, adders, etc. Simulation
a Finite Impulse Response filter
b Infinite Impulse Response filter
c Multiply and Accumulate
d Discrete Cosine Transform
e Quality Constraint Circuit
f Fast Fourier Transform

Fig. 4.6 Employing Cartesian genetic programming for automated design of approximate circuits

of iterations. The resulting approximate circuits are fully characterized using
professional design tools. The details of the method are presented in [6, 34, 57].
CGP was also employed to evolve efficient implementations of quality configurable
circuits [59].
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4.6.2 EvoApprox Library

A comprehensive library of approximate arithmetic circuits called EvoAp-
prox8b [60] was introduced in 2017. The idea was to provide well-characterized
circuits that can immediately be used in target applications. All circuits were
automatically designed by means of CGP. EvoApprox8b contains hundreds of 8-bit
approximate adders and multipliers. All circuits were fully characterized in terms
of several error metrics and synthesized with Synopsys Design Compiler (45 nm
process, Vdd =1V) to obtain their area, delay, and power consumption. By means
of a simple web user interface, the user can choose the most suitable circuit based
on the criteria he/she provides.

In 2019, the library was extended by running additional CGP runs for different
objectives and bit-widths. It now contains thousands of various arithmetic circuits,
as shown in Table 4.3. In order to simplify the selection of the most suitable
circuit for a given application, we identified a subset of circuits and composed
EvoApprox8b-Lite. The selection follows the principles of Pareto optimality with
respect to several objectives in which power consumption is compared with eprob,
emae, ewce, emse, and emre metrics. For each of the five subsets of components, ten
circuits evenly distributed along the power axis were included to EvoApprox8b-Lite.

Power vs. emae trade-offs of thousands of 8-bit approximate multipliers are
shown in Fig. 4.7. The black points (corresponding with the EvoApprox8b-Lite) are
contrasted with the original circuits of EvoApprox8b (red points) and conventional
broken array multipliers (green points), and truncated multipliers (blue points). Note
that EvoApprox8b was compared with state-of-the-art approximate circuits in a
greater detail [60]. Selected approximate circuits and their various parameters can
be downloaded from https://ehw.fit.vutbr.cz/evoapproxlib.

The library provides circuit models in Verilog, Matlab, Python, and C. These
models enable the user to integrate the approximate circuits to hardware as well as
software projects and design tools. All approximate circuits can thus be simulated
in order to obtain their other parameters that are not listed on the website (e.g., the

Table 4.3 The number of
approximate implementations
of arithmetic circuits in
extended EvoApprox library
(December 2019)

Circuit Bit-width # Approx. implementations

Adder 8 6979

9 332

12 4661

16 1437

32 916

64 176

128 196

Multiplier 8 29,911

12 3495

16 35,406

32 349

https://ehw.fit.vutbr.cz/evoapproxlib
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Fig. 4.7 The 8-bit approximate multipliers (black points) that were selected to EvoApprox8b-Lite
from all the evolved approximate multipliers (gray points) and compared to the former version of
EvoApprox8b library (red points), broken array multipliers (green points) and truncated multipliers
(blue points)

errors under different error metrics or power consumption for another fabrication
technology).

4.7 Experiments with Error Analysis Methods

This section includes case studies that demonstrate some interesting aspects of the
circuit approximation methods, particularly the issues related to the exact error
analysis.

4.7.1 Computational Requirements of Error Analysis Methods

A detailed analysis of relaxed equivalence checking algorithms has recently been
presented in [18]. The analysis revealed that the computational complexity of
the SAT-based methods heavily depends on the actual worst-case error. The
computational time increases with a decreasing error, which is noticeable, especially
on multipliers. For example, tens of milliseconds are needed to analyze the 12-bit
multipliers having an error higher than 2.7%. On the other hand, higher tens of
seconds are needed for instances having the error in the range (0.37%, 2.71%], and
no result was obtained for multipliers having the worst-case error below 0.05% [18].

Figure 4.8 shows the computational requirements of the WCEGT procedure (i.e.,
worst-case error checking) for five different thresholds applied to 8-bit multipliers
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Fig. 4.8 The computational requirements of the WCEGT procedure proving that ewce > T of
8-bit approximate multipliers taken from EvoApprox library

taken from the EvoApprox library. The worst-case error checking is extremely fast
(few milliseconds are required), but only if the actual worst-case error (denoted as
wce) is higher than a given threshold T . If this condition is violated, the CPU time
may increase by several orders of magnitude. Surprisingly, the difference between
the worst-case and the best-case CPU time increases with decreasing the threshold
T . Performing WCEGT for thresholds below 1.5% represents the most difficult
case. We have to emphasize that the algorithm always terminates for the 8-bit
multipliers. Up to 100 seconds are required to analyze the circuit instances whose
wce is lower than the chosen threshold.

The same trend was also observed for bigger multipliers. Considering this
fact, the design of multiplier-based approximate circuits with low error will be a
challenging task because the error analysis will represent a bottleneck of the whole
design process.

4.7.2 The Accuracy of Circuit Simulation

For all 8-bit and 16-bit approximate adders and multipliers available in the EvoAp-
prox library, the error was exactly calculated for all relevant error metrics. Knowing
the exact errors, we could perfectly analyze the error of the circuit simulation
method, which is conducted with a subset of all input vectors. The objective is to
determine the minimum number of test vectors that has to be applied to keep the
error of circuit simulation below a given threshold.

Let Eexact and Eest denote the exact error and the error estimated by circuit
simulation. Relative difference (RD) [%] between Eexact and Eest is defined as

RD = 100
Eest − Eexact

Eexact

[%]. (4.9)
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Fig. 4.9 Relative difference between exact and estimated errors for 8-bit approximate multipliers.
The whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is even
higher RD than shown

Fig. 4.10 Relative difference between exact and estimated errors for 16-bit approximate multipli-
ers. The whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is
even higher RD than shown

Fig. 4.11 Relative difference between exact and estimated errors for 16-bit approximate adders.
The whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is even
higher RD than shown

Boxplots in Figs. 4.9, 4.10, and 4.11 show how RD depends on the number of
input vectors for different circuits. To create one boxplot for ewce, we randomly
generated the requested number of input vectors, applied them on 6,275 approxi-
mate circuits taken from EvoApprox library and calculated RD. No accurate circuit
was considered in the evaluation, i.e., Eexact is always greater than zero. The same
was done for emae. A clear consequence of this approach which utilizes randomly
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generated (but not necessarily unique) vectors is that a non-zero RD is obtained
even if the number of generated vectors is identical with the number of all possible
input combinations.

In the case of 8-bit approximate multipliers, it makes no sense to use a subset
of input vectors during simulation because RD can be higher than 5% even if two-
thirds of vectors are used. Moreover, analyzing circuit responses for all 28+8 =
216 = 65, 536 vectors is very fast (few milliseconds on a common CPU [18]).
Hence, performing the simulation for all possible input combinations is the best
choice.

In the case of 16-bit multipliers, RD for ewce can reach over 10% if 144 · 106

vectors are used. Note that 16-bit approximate multipliers are usually analyzed using
only 10 · 106 vectors in some studies [3]. On the other hand, we obtained very
reliable error estimates for emae with less than 5 · 106 vectors. Finally, we analyzed
16-bit adders. A very reliable error characterization in terms of ewce as well as emae

requires a considerably lower number of randomly generated vectors, i.e., less than
5 · 106 vectors as seen in Fig. 4.11.

We can summarize an intuitive fact that estimating emae with circuit simulation
is more reliable than estimating ewce if only a subset of input vectors is used. We
encourage the practitioners to provide more statistically relevant error characteri-
zations (e.g., the mean RD and its standard deviation) if the error of approximate
circuits is estimated.

4.8 Conclusions

In this chapter, we surveyed various methodological aspects that are relevant for
the design of approximate arithmetic circuits. Special attention was given to exact
error analysis methods and understanding the circuit approximation problem as a
multi-objective optimization problem. We briefly presented problem-specific as well
as automated approximation methods developed for adders and multipliers. Unfor-
tunately, misunderstanding of the principles of correct evaluation of approximate
circuits and correct benchmarking of circuit approximation methods is still visible
in the literature. We believe that this chapter can help in establishing a better practice
in this emerging area.
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Chapter 5
Approximate Computing at the
Algorithmic Level

Justine Bonnot, Alexandre Mercat, Erwan Nogues, and Daniel Ménard

5.1 Introduction

Data-oriented processing is pervasive in digital industrial and consumer applications
in the field of numerous domains like signal and image processing, artificial intelli-
gence, telecommunications. For these applications, to provide new services and to
enable innovations, the application complexity continually grows. This complexity
rising increases the implementation cost corresponding to the system cost, the
energy consumption, the execution time and memory footprint for Software (SW)
implementation and the chip area and latency for Hardware (HW) implementation.
The concept of approximate computing at the algorithm level aims at reducing
the processing complexity to reduce the implementation cost. The implementation
cost is reduced by decreasing the number of processing operations and memory
exchanges. But, by modifying the original algorithm, the application output is
modified and the resulting quality is degraded.

In real-time applications, reducing the processing complexity allows increasing
the slack time. As represented in Fig. 5.1, the slack time corresponds to the time
span between the completion of a processing and its deadline. Two approaches can
be considered to reduce the energy consumption by exploiting the slack time for SW
implementation. In the first approach, the slack time is exploited to slow-down the
processor by reducing the clock frequency. At the same time, this allows reducing
the supply voltage. Given that the supply voltage is a squared term in the dynamic
power expression, this allows reducing the power and thus the energy compared
to the initial case. This approach corresponds to Dynamic Voltage and Frequency
Scaling (DVFS) in which the processor clock frequency and supply voltage are
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Fig. 5.1 Exploitation of slack time to reduce the energy consumption for real-time processing. (a)
Initial processing. (b) DPM approach. (c) DVFS approach

adapted according to the processing load. The second approach corresponds to
Dynamic Power Management (DPM) in which the processor enters in a deep sleep
mode during the slack time. By exploiting power-gating and clock gating, the power
consumption is significantly reduced in the deep sleep mode and the global energy
is reduced.

This chapter focus on the approximate computing techniques acting at the
algorithm level. In Sect. 5.2, the different available techniques are presented. In
Sect. 5.3, the High Efficiency Video Coding (HEVC) video codec is considered as a
use-case to illustrate the use of approximate computing techniques at the algorithmic
level.

5.2 Techniques for Algorithm-Level Approximate
Computing

Different approximate computing techniques acting at the algorithm level have
been proposed to reduce the processing complexity of data-oriented applications.
These techniques transform the algorithm to enable effective approximation. In this
section, the different approaches proposed for approximate computing techniques
acting at the algorithm level are presented.

Two directions can be considered to reduce the complexity. The first direction is
to skip part of the computation by removing some processing. These approaches are
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detailed in Sect. 5.2.1. The second direction is based on approximation to replace a
part of the computation by a less complex processing. These approaches are detailed
in Sect. 5.2.2.

5.2.1 Skip-Based Approaches

Computation skipping consists in not executing parts of the computations to
reduce the processing complexity. The limitation of skip-based approaches are
exposed in Sect. 5.2.1.1. The selection of the skipped computations can be done
at two granularity levels. At fine grained, a part of the computation, corresponding
to one up to several expressions, is skipped like in the loop perforation and
early termination techniques. These two techniques are described, respectively, in
Sects. 5.2.1.2 and 5.2.1.3. At coarse grained a complete part of the computation
corresponding to a processing block or a task is skipped as presented in Sect. 5.2.1.4.

5.2.1.1 Scope of Skip-Based Approaches

This approach based on the discarding of a processing block in an application must
be used with caution and cannot be applied to any processing. Let us consider a
processing block f having x as input and y as output. Skipping f is equivalent
to have the relation y = x. Thus, f can be skipped if the input x and the output y

belong to the same domain, i.e. x and y represent the same kind of data. To illustrate
this concept, let us consider the case of a filtering block for which the input and
output represent data in the same domain and the case of a transform block for which
the input and output belong to different domains. The aim of a filtering block f is to
improve the characteristics of the signal x by removing some frequency components
which, for example, are not relevant to exploit this signal. If this filtering block f

is skipped, the quality of the signal exploitation process will be degraded but this
process can be achieved. For the transform block f , like a Fourier transform, the
aim is to convert a signal x from the time domain representation to the frequency
domain representation. In this case, given that x and y do not represent data in the
same domain, eliminating this transform block f will damage the application proper
operation and this is not sustainable.

In [45], the fine-grained patterns which suit well for computation skipping are
analyzed. For example, sum or argmin patterns can be considered. In both cases, if
some elements of the sum or argmin are not computed, a result close to the original
one can be produced. From this analysis, a list of applications for which skip-based
approaches can be used is given and listed below:

1. Search Space Enumeration: The application iterates over a search space of items
in order to select the best candidate solving the problem. In Sect. 5.2.1.5, the
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case of enumerating the search space in the context of discrete optimization is
detailed.

2. Monte-Carlo Simulation: a set of Monte- Carlo simulations are performed and
the skip-based approach aims at reducing the number of performed simulations
to reduce the complexity.

3. Iterative Refinement: an iterative process is used to improve the accuracy of an
algorithm result. The number of iterations is controlled to manage the trade-off
between accuracy and complexity. The concept of early termination for iterative
refinement applications is discussed in Sect. 5.2.1.3.

4. Data Structure Update: a data structure is traversed and updated with computed
values. The skip-based approach discards some updates by keeping previous
values.

5.2.1.2 Loop Perforation

In a program describing data-oriented applications, loops and especially nested
loops represent a significant part of the computation complexity. The loop per-
foration technique aims at reducing the loop complexity by skipping part of the
computation inside the loop. To illustrate the loop perforation concept, a for-
loop having a loop index i is considered as illustrated in Fig. 5.2a. This loop
index is incremented by one at each loop iteration. The loop perforation concept
is characterized by a parameter r representing the loop perforation rate, which
corresponds to the expected ratio of loop iterations to skip.

Fig. 5.2 Illustration of the loop perforation concept. (a) Initial for-loop. (b) Loop perforation with
the execution of one iteration loop after n1. (c) Loop perforation with the skip of one iteration
after n2
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The straightforward approach also named interleaving perforation is to incre-
ment the loop index by n1 instead of one as illustrated in Fig. 5.2b. In this case, the
loop kernel is performed every nth

1 iteration and n1 − 1 iterations are skipped. The
perforation rate is equal to

r = 1− 1

n1
(5.1)

This approach quickly reduces the loop computation complexity. Indeed, half of
the iterations are discarded when n1 = 2, the lowest value that can be taken by
n1. The number of discarded iterations increases for higher values of n1. This high
perforation rate can affect significantly the quality of the loop computation result.
The alternative is to skip one iteration after n2 iterations as illustrated in Fig. 5.2c. A
conditional structure is inserted in the loop kernel to discard the kernel computation
every n2 iterations. In this case, the perforation rate is equal to

r = 1

n2
(5.2)

The challenges for the loop perforation concept are to detect the best candidate
loops and to adjust the perforation rate in order to select the best trade-off between
the loop complexity reduction and the degradation of the output. Sidiroglou et
al. [45] proposed to identify critical and tunable loops in an application, to reduce the
loop complexity. By applying loop perforation on several applications, the authors
managed to reduce the execution time by seven while keeping the difference at the
output lower than 10%. Besides, the authors have identified several computational
kernels that support well perforation, as the computation of a sum, the argmin
operation. This technique has been applied to applications from the PARSEC 1.0
benchmark suite [7] so as to cover a wide range of application domains as finance,
media processing or data mining, for instance.

For the techniques presented above, the decision are taken at design time, but
loop perforation can be done at run-time as illustrated in Fig. 5.3a. The number of
skipped iterations is adjusted dynamically depending on the targeted output quality
or energy requirements. Nevertheless, the selection of the iterations to skip induces
a run-time overhead. Selective dynamic loop perforation is proposed in [25], to skip
a subset of the instructions inside an iteration, but an overhead appears due to the
selection of the iteration. In this case, loops are automatically transformed to be able
to skip instructions in chosen iterations. Selective dynamic loop perforation achieves
an average speedup of 2× compared to classical loop perforation technique while
inducing the same amount of error.
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Fig. 5.3 Illustration of the loop perforation concept at run-time. (a) Dynamic perforation: the
number of skipped iterations is decided at run-time. (b) Selective perforation

5.2.1.3 Early Termination

The concept of Early Termination ends a computation process before reaching its
end. This concept can be widely used in iterative refinement algorithms in which
an iterative method is used to improve the output algorithm accuracy at each
iteration. To reduce complexity, the iterative process is stopped before it reaches
full convergence. Several stopping conditions can be set. In some algorithms, the
number of iterations has a direct link with the accuracy and can be computed
and fixed in advance. For instance, for the COordinate Rotation DIgital Computer
(CORDIC) algorithm [29], the higher the number of iterations, the more accurate
the estimation of the trigonometric function result will be.

The stopping condition can be defined when the improvement between several
successive iterations falls below a fixed threshold. In convergence-based pruning,
the algorithm is stopped when no change or improvement is noticed in the last k

iterations. For examples, in the K-means clustering algorithm, the stopping condi-
tion can be the ratio of unstable points, i.e. points that changed their memberships
in the last iteration.

Nevertheless, to define a stopping criterion directly linked with the output quality,
one need to know the reference output which is generally not the case. To answer
this problem, the framework ApproxIt [54] has been proposed. It targets only
iterative methods and implements a quality estimator to be able to select the best
approximation strategy for the next iteration at run-time.

The difference between loop perforation and iterative refinement is illustrated in
Fig. 5.4. The different iterations of the loop are figured with ik . In the accurate
implementation of the loop, the N iterations from i0 to iN−1 are successively
executed. In the loop perforation version, r×N iterations of the loop are periodically
skipped. For early termination case, from a certain iteration, in the proposed
example, istop, the iterations of the loop do no more need to be executed: the loop
stops. In this case, the iterations from i0 to istop are executed and allow obtaining a
minimal accuracy guaranteed by the early termination stop criterion. On the other
hand, for the loop perforation approach, no guarantee on the accuracy is provided.
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Fig. 5.4 Illustration of the difference between loop perforation and early termination for an
iterative refinement algorithm. (a) Initial iterative refinement algorithm. (b) Loop perforation. (c)
Early termination. The process is stopped when the condition criterion is reached

5.2.1.4 Task Skipping

The concept of task skipping has been used to discard a task (source code block)
when an error or a fault occurs during the task processing [40]. This concept has
been exploited in the approximate computing domain to skip a complete task.
Compared to the techniques presented before, this skipping approach operates at a
higher level of granularity by dropping a block of processing. To explore the trade-
off between the implementation cost and the application output quality, a parameter
called skip ratio defines the frequency of task skipping. In [51], the skipping ratio
is adapted according to the task significance defined by the programmer. In [10]
the concept of best effort computing is introduced, task skipping is considered to
adapt the processing load to the hardware capabilities. The task skipping technique
is used in [16] for MapReduce algorithm. Only a subset of randomly chosen map
tasks are executed. A skipping ratio is defined by the user and allows adapting the
accuracy-complexity trade-off.

Task skipping is considered in the methodology proposed by Nogues et al. in [36]
to apply Approximate Computing (AC) at the level of the whole application. The
application is modeled with a hierarchical block-based description. The first step
selects the signal processing blocks that have the most important potential in terms
of energy reduction by applying algorithmic-level approximate computing. The
classification step, carried-out by the developer, identifies the class of each block,
in order to determine which approximate computing technique can be applied. The
profiling step reveals the complexity of each block with respect to global complexity.
The second step checks for each signal processing block the potential benefits of
approximate computing. Its objective is to explore the trade-offs between energy
reduction and quality degradation. Firstly, the reduction of the implementation
complexity is evaluated. The considered block is left unmodified if the potential
gain appears to be negligible. Then, the quality degradation is evaluated from a set
of simulations on a testbench. The aim of the third stage is to develop the optimized
algorithm version and to evaluate or measure the real energy consumption reduction.
In the proposed approach, task skipping is considered for blocks having inputs and
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outputs belonging to the same domain, i.e. inputs and outputs representing the same
kind of data.

5.2.1.5 Skipping in Discrete Optimization Algorithm

In this section, the focus is put on algorithms that use discrete optimization
techniques. When a close-form solution cannot be obtained for the optimization
problem, the approach consists in exploring the optimization search space, enumer-
ating the different solutions and selecting the optimal one. These algorithms are
referred to as Optimization based on Search Space Exploration (OSSE) algorithms
for which the main purpose is to minimize a cost function by exploring a search
space. To decrease the implementation cost of OSSE algorithms, the challenge is to
reduce the search space by skipping low value-added computation. As illustrated in
Fig. 5.5, the studied OSSE algorithms consist of enumerating and testing different
candidate solutions Si (i ∈ [1, n]) to select the optimal one that minimizes the
cost function. Numerous applications in the image and signal processing domain
integrate OSSE algorithms. In telecommunications, channel decoding and MIMO
decoding such as sphere decoding use OSSE algorithms. For example, in [17],
authors use the properties of an OSSE algorithm to select the best transmission
configuration including the modulation spectral efficiency and ECC code rate that
maximizes the quality of a wireless received scalable video over MIMO channels.
OSSE algorithms are also used in image processing applications for classification
operations such as in the Nearest Neighbor classifier, and in video processing
applications, for instance, in motion estimation [48]. In video coding, as depicted
in the case-study presented in Sect. 5.3.2, OSSE algorithms are notably used for
solving the Rate-Distortion Optimization (RDO) problem for the encoder.

Fig. 5.5 Three techniques to handle OSSE algorithms. (a) Exhaustive search: each branch
represents a full solution computation. (b) Early termination: the exploration of branches which
cannot lead to the best solution is stopped before the end. (c) SSSR technique: coarse estimation is
carried-out and a refinement is applied to the best candidates
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An exhaustive search, presented in Fig. 5.5a, is a straightforward approach to
process OSSE but it may require a lot of computation, depending on the search
space size. A challenge for an OSSE algorithm implementation is to reduce the
search space while minimizing the impact on the approximated optimal solution
S̃opt compared to the optimal solution on the full search space Sopt . Ideally, the
optimal solution must be contained in the reduced search space (S̃opt ⊆opt ). For
OSSE algorithms, the search space reduction techniques can be classified into
two categories: early termination and Smart Search Space Reduction (SSSR). At
the beginning, the entire solution search space is considered. Then, based on
intermediate results, the search space can be pruned by excluding the least likely
solutions. Hence, parts of the search space which cannot lead to the optimal solution
are removed, skipping unavoidable computation. When the discrete optimization
problem can be formulated with a tree representing the different solutions Si , the
branch-and-bound technique can be used to efficiently explore the tree and thus
reduce the search space. The exploration of the branch is stopped if the minimal cost,
which can be obtained for the exploration of this branch, is higher than the best cost
which has already been obtained during the exploration of the previous branches.
The efficiency of this technique is based on the availability of a heuristic that quickly
finds a good solution. This technique can guarantee that the optimal solution Sopt is
found, even though the search space is pruned. However, the drawback of branch-
and-bound techniques is the unpredictability of their execution time [17]. Thus, the
gain in terms of energy cannot be predicted or adjusted with parameters controlling
the approximation.

The SSSR techniques first select a subset of initial solutions in the search space,
based on a coarse estimation of their cost, called prediction. Then a refinement
of selected initial solutions is computed to find the best solution among them,
as depicted in Fig. 5.5c. An efficient coarse solution predictor providing a good
estimation with low computational complexity can improve the quality of such
solutions. With SSSR techniques applied to energy minimization, the gain in terms
of energy can be controlled by adjusting, at run-time, the search space around the
coarse estimation. Nevertheless, optimality cannot be ensured. It depends on the
accuracy of the prediction step. This second category of search space reduction
techniques is investigated in the case-study presented in Sect. 5.3.2.

The SSSR design method proposed in [33] consists of three steps performed at
design time to enable the approximation at run-time. The goal of the first step is to
identify the OSSE in the application. Then, these OSSE are classified according to
their potential cost gain. The third step consists of designing a predictor to manage
the approximation and to reduce the cost of the OSSE according to an acceptable
quality degradation. In the fourth step, a run-time management of the approximation
is set-up.
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5.2.2 Approximation Based Approaches

The alternative to skip a computation block f is to approximate f by replacing it
with a less complex computation. The different approximation-based techniques are
presented in this Section.

5.2.2.1 Algorithm Selection

The approximate computing technique named Algorithm Selection is based on the
availability of several version of the same processing block. Each version has its own
accuracy and implementation cost. The goal is to switch at run-time to the adequate
version. The implementation cost can be decreased when opportunities to reduce the
accuracy arise. This adaptation process can be linked to external parameters like, for
example, the input data accuracy. More simply, the adaptation can be directly driven
by an accuracy or energy target. The techniques presented in the previous sections
such as loop perforation, task or operation skipping can be used to generate multiple
versions of an application code with different trade-offs between accuracy and cost.

The PetaBricks language and compiler [3] is defined for application in which
multiple implementations of multiple algorithms are considered. The programmer
defines the different alternatives and PetaBricks automates algorithm selection and
autotunes them. In [4], the Bin Packing benchmark has been tested with PetaBricks
for different input data sizes and targeted accuracies. To solve the Bin Packing
problem, 13 algorithm versions are considered. The results show that each of the
13 approximation algorithms perform fastest for some areas of the accuracy and
input data size space.

5.2.2.2 Parameter Adjustment

During the design of data-oriented applications, the application parameters are
optimized. For each parameter, the value leading to satisfactory complexity-
accuracy trade-off is selected. These different parameters have a significant impact
on the complexity but also on the quality of the application result. In Ludwig et
al. [27], energy consumption is optimized by adjusting the parameter of digital
filters. The filter order is dynamically adjusted to reduce the energy consumption
which is proportional to the filter order. The filter order is adapted according to the
characteristics of the input signal. A lightweight technique is used to measure at run-
time the strength of the stopband component (the frequency component to remove)
in the input signal. When the stopband component strength is high, the order of the
filter is increased to rise the filter stopband attenuation. The filter is designed such
as the order increase allows reinforcing the attenuation of the stopband.

In the HEVC decoder use-case, presented in Sect. 5.3.1, the original Motion
Compensation (MC) filters are redesigned to provide, for each one, different
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versions having different number of taps lower than the number of taps of the
original filter. The reduction of the number of taps allows reducing the filter
complexity and thus its energy consumption. At run-time, the filter having a number
of taps compatible with the considered target energy is selected. This approach
combines the parameter adjustment and algorithm selection techniques to explore
the trade-off between accuracy and complexity.

For digital filters like Finite Impulse Response (FIR), this technique can be
considered similar as loop perforation. Indeed, the number of iterations of the loop
describing the filter is reduced. But, this reduction comes with a redesign of the
filter and not only the discard of some taps. Thus, new coefficients for the filter are
defined.

5.2.2.3 Memoization

Memoization is the principle of saving the result of a function execution or
computation in a Look-Up Table (LUT) stored in memory, so as to use it for future
executions. This technique has first been proposed to reduce the execution time
for a computation already done. The main motivation to implement memoization
techniques is to remove redundancy due to the repetition of the same input data
for a complex computation. The principle of memoization is particularly useful
for complex processing for which the search in the LUT of an existing result for
the considered input values leads to a significantly lower cost than computing this
complex processing. For example, when a function f having x and y as input
parameter has to be evaluated, the input operands x and y are used to access the
LUT storing the previously executed computation, called the reuse table. If the
computation has already been executed with the considered values of x and y, this is
a hit, and the result is extracted from the LUT. In the case of a miss. The instruction
is executed and its result is stored in the LUT. As Arjun et al. explained in [47],
to apply memoization in a program, two conditions have to be satisfied. Firstly, the
memoized code has to be transparent to the rest of the code, that is to say that it
should not cause any side-effect. Secondly, for the same input, the memoization and
original code must produce identical output.

According to these two conditions, no approximation lies in memoization.
Besides, the gain brought by memoization may be annihilated by the LUT memory
footprint. To further improve the performance in terms of execution time, value
locality can be considered. Fuzzy memoization has been proposed and applied for
floating-point operations by Alvarez et al. [1]. Indeed, floating-point numbers offer
a high dynamic range and imply the need for large LUTs to achieve an accept-
able hit rate when accessing the table. Contrary to classical memoization, when
implementing fuzzy memoization, before accessing the LUT, N Least Significant
Bits (LSBs) of the input operands x and y are dropped. A masking operation is
applied before accessing the LUT, which implies that operands with similar Most
Significant Bits (MSBs), despite being strictly different, will be affected to the
same compartment of the LUT. Fuzzy memoization is particularly well tolerated in
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multimedia applications, where the end-user generally tolerates errors. The number
N of dropped bits can be used to trade-off the output quality and the computation
time or energy consumption of the targeted application.

5.2.2.4 Neural Network Approximation

The aim of this approximate computing technique is to replace a complex processing
P by a neural network. This technique will be efficient if the cost of the neural
network is significantly lower than the cost of P . Neural networks exhibit interesting
properties like a high degree of parallelism or resilience to approximation errors.
Since a decade, a tremendous amount of research work has been achieved on
neural networks, leading to very efficient implementation. Dedicated low power
and low cost HW accelerators have been proposed. A wide range of research focus
on reducing the neural network complexity with different approaches have been
provided. Some come from the approximate computing domains like precision
refinement. Neural network structure and the hyperparameters can be tuned to
explore the cost/accuracy trade-off. Increasing the number of layers will decrease
the approximation error but at the expanse of a cost increase. This research topic is
considered in Chap. 15.

In [14], the algorithmic Parrot transformation that allows replacing a code region
P of a program by a neural networks is presented. The first step is to detect portion
of code that can be approximated by a neural network. Secondly, a training process
is carried-out to mimic the behavior of the code region P with the neural network.
Thirdly, the neural network is implemented in the neural processing unit (NPU).

In [28], EMEURO, a neural network based emulation and acceleration platform
is presented. This approach aims at detecting in an algorithm, portion of code which
can be approximated by neural network. The portion of code is restructured in order
to have the same data flow as a neural network. Compared to the previous approach,
instead of approximating a complex processing with a single neural network, the
portion is smaller and a two-layer linear neural network is used. This latter benefits
from the availability of libraries including highly optimized versions of these neural
networks.

Like in the techniques presented before, the approach proposed in [2] allows
approximating a portion of code with neural network. But, the difference is that a
analog neural network is used in order to further reduce the energy consumption. On
the other hand, the use of analog implementation leads to new challenges like the
low precision, limited dynamic range, conversion between analog and digital and
temporary result storage.

In [13], neural networks are used to approximate transcendental functions. Multi
Layer Perceptron (MLP) neural networks are used to approximate the function on
a limited input range. Then, mathematical identities are exploited to evaluate the
function with any input value.
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5.2.2.5 Mathematical Function Approximation

In this section, the focus is on the approximation of mathematical functions. Data-
oriented applications in numerous domains, like signal and image processing,
telecommunications, robotics use more and more complex mathematical processing.
Especially, these mathematical processing steps integrate complex mathematical
functions. The challenge is to implement these mathematical functions with enough
accuracy without sacrificing the performances of the application, namely memory
usage, execution time and energy consumption. In the context of scientific compu-
tation, mathematical libraries like libm [24] are available and allow evaluating the
different elementary functions. This library provides very accurate approximation
of these mathematical functions for floating-point numbers required by scientific
applications. Even if computer performances increased over the past decades, this
high accuracy is done at the expense of hardware costs, execution time, energy
consumption or memory footprint. Such costs can be unsuitable for real-time
embedded applications and the proposed accuracy is oversized for most embedded
applications. Moreover, this library is generic and the evaluation of a complex
function composed of basic functions requires to call the code for each basic
function. For embedded applications, the efficient evaluation of a complex function
f requires to design a specific source code or HW block dedicated to this function
and the considered input range.

Several solutions can be used to compute an approximate value of a mathematical
function f over a segment I , according to a maximum error value ε. They can
be classified in three categories. The first one groups together iterative approaches
using shift-and-add algorithms, the second one corresponds to table-based methods,
and the third one approximate the function with polynomials.

Iterative Approaches Specific algorithms can be adapted to a particular func-
tion [39]. Iterative methods as the shift-and-add BKM algorithm [5] or the CORDIC
algorithm [29] are generally easy to implement. For instance, the CORDIC algo-
rithm computes approximate values of trigonometric, logarithmic or hyperbolic
functions. To compute the tangency of an angle θ , the principle of the algorithm
is to apply successive rotations to a vector v whose initial coordinates are (1, 0) and
final coordinates (X, Y ). Indeed, to rotate a vector whose coordinates are (xin, yin)

from an angle θ , the operation applied to compute the coordinates of the resulting
vector is:

[
xo

yo

]

= cos θ

[
1 − tan θ

tan θ 1

]

·
[
xin

yin

]

(5.3)

Nevertheless, to obtain an efficient implementation of the CORDIC algorithm on
low cost hardware, the multiplications have to be avoided. To do so, instead of
applying a single rotation of θ , several rotations of small angles θi are applied,
such that θ  ∑n

i=0 θi . Besides, in the efficient hardware implementation of the
CORDIC algorithm, the values of tan θi are taken equal to 2−i to replace the
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multiply operations by shifts. Finally, the obtained values of xo and yo are equal
to cos θ and sin θ , respectively. The accuracy of the CORDIC algorithm is strongly
dependent on the number of iterations.

Table-Based Techniques The simplest approach to approximate a function f on
an input range I is to tabulate the function in a table T [34]. The n Most Significant
Bit (MSB)s of the input x are used to address this table T . This approach is
equivalent to segment the input range I in 2n sub-intervals and to approximate for
each sub-intervals Ii the function f by a constant ci , i.e. a 0-order polynomial. This
constant ci is chosen such as it minimizes the absolute error ε with all the values
of f (x) for x belonging in the interval Ii . The interval I on which the function has
to be evaluated is segmented until the absolute error ε is lower than the maximal
acceptable error value εmax on each sub-interval. This type of segmentation has to
be uniform: if the error criterion is not fulfilled on a single sub-interval Is , all the
sub-interval of I have to be segmented again. The approximation error depends on
the function f characteristics and the table size. Thus, reasonable table size leads to
low accuracy. This table-based method consumes the most memory space but is the
most efficient in terms of computation time.

To reduce the table size, bi-partite methods have been proposed and generalized
for any function in [43] by Schulte. The input value x is decomposed into three
groups of bits representing a value xi . A first-order Taylor decomposition is used
to approximate the function f with a linear function [34]. Two tables are used to
store the coefficients of this first-order polynomial. De Dinechin and Tisserand [12]
detailed improvements of the bi-partite method called multi-partite methods in
which several smaller tables are used. The initial values of each segment as well
as the values of the offsets to add to these initial values to get whichever value
in a segment have to be saved in tables. The size of these tables is then reduced
compared to bi-partite table methods exploiting symmetry on each segment. That
method allows quick computations and reduced tables to store but is limited to low-
precision approximation. This method is efficient for hardware implementation.

Polynomial Approximation Polynomial approximation is a good alternative for
function evaluation, especially when several elementary functions are combined.
Tools like Sollya [11] provide the polynomial coefficients to approximate a function
f on an interval I for a predefined polynomial order. For fixed-point arithmetic,
polynomial approximation can give very accurate results for a low implementation
cost if the interval I is segmented finely enough. That is to say, a polynomial Pi

approximates the function f on each segment Ii of I . The segmentation is required
so as to approximate the function f according to a maximum error of approximation
εmax. The polynomial order is then a trade-off between the approximation error and
the segment size. To obtain a given maximum approximation error, the decrease
in the polynomial order implies the reduction of the segment size. This increases
the number of polynomials to store in memory. For a given data-path word-
length, the increase in polynomial order raises the fixed-point computation errors
and annihilates the benefit of lower approximation error obtained by a too high
polynomial order. Thus, for fixed-point arithmetic, the polynomial order must be
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relatively low. Consequently to obtain a low maximal approximation error, the
segment size is reduced which is at the expanse of the number of polynomials to
store in memory.

Three steps are required to evaluate a function f with this polynomial approx-
imation including a uniform segmentation of the initial interval I . The first steps
aims at finding the index of the polynomial pi associated with the sub-interval Ii in
which the value x belongs to. This index is obtained by analyzing the value of the
MSB of the input x. This approach allows obtaining easily the polynomial index,
but it requires that the interval boundaries values correspond to a power of two. In
the second step, the coefficients of the polynomials pi are loaded from the table
storing the different polynomial coefficients. In the third step, the polynomial pi is
evaluated. Most of the time, the Horner scheme is used for the polynomial evaluation
in order to limit the computation errors.

To limit the number of polynomials pi stored in memory, non-uniform segmen-
tation can be considered to adapt each sub-interval size. Thus, the challenge is to
find the accurate segmentation of the interval I . Lee et al. have proposed different
non-uniform segmentations [23] for hardware function evaluation. On each sub-
interval, the function f is approximated by the Remez algorithm. Afterwards, a
simple logic circuit is used to find the segment corresponding to an input value x.
LUTs are used to store the coefficients of the polynomials. For software function
evaluation, Bonnot et al. [8] proposed a non-uniform segmentation technique. The
first step of this method consists in finding the optimal non-uniform segmentation
for approximating the function f on the interval I . Each sub-interval is divided
in two as long as the approximation error criterion εmax is not satisfied. The non-
uniform segmentation is then stored in a tree structure T . Each node of the tree
structure represents a sub-interval on which the approximation error criterion is not
satisfied, while the leaves are sub-intervals where the approximation error criterion
εmax is fulfilled. Consequently, an approximating polynomial pi is associated with
each leaf. The coefficients of the different polynomials as well as required shifts to
compute the value Pi(x)  f (x) with input x ∈ I are stored in tables.

The challenge of the proposed method, is to efficiently access the approximating
polynomial pi depending on the input value x. To be efficient, the MSBs of the input
x are analyzed sequentially by group of bits to traverse the tree T and to access to the
leaf associated with the considered sub-interval and the approximating polynomial
pi . In this method, the maximum error of approximation is used as an user-defined
parameter, and has an impact on the memory footprint of the system as well as the
computation time.

Multivariate Function Most of the research works consider univariate functions.
For multivariate functions, significantly fewer methods have been proposed. Indeed,
for scientific computation, these functions are decomposed as a sequence of
univariate standard functions. The evaluation of multivariate functions is used in
various domains. As an example, in [30], multivariate function approximation is
used in the Direction Cosine Matrix update algorithm to enable inertial navigation.
In the context of control system, Instrumental Variable approach integrates bivariate
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function evaluation to identify some system parameters [19]. In the context of high
performance wireless communication like 5G, QR-decomposition are required for
channel pre-coding. Bivariate, non-linear functions are used for efficient computa-
tion of the Givens-Rotation [42].

In [41], the authors propose a linear approximation of bivariate functions. The
function f is approximated by a bivariate polynomial of degree 1. The coefficients
of this polynomial are computed through the Minimum Mean Square Error (MMSE)
method. A bivariate non-uniform segmentation similar to the univariate case in [8]
is performed. If the error criterion is not satisfied, the original set is split into four
equal squared subsets. When the recursive process is terminated, a set merging step
is applied. A merging between two sets is performed when they are neighbors, i.e.
they have a complete side in common, and the approximation created by the mean
of their coefficients satisfies the error criterion on the whole set. Similarly in [26]
a piecewise-linear approximation is proposed for multivariate continuous non-
linear functions. Genetic algorithms are used to decompose the initial set. In [38],
polynomial approximation for software implementation of bivariate functions is
proposed. This approach is based on the Mean Square Minimization method
which is appropriate for the majority of approximation problems. A smart non-
uniform segmentation is proposed to better fit irregularities of the approximated
function. Furthermore, to improve the performances, the degree of the bivariate
approximating polynomial is adapted for each subset which avoid data and time
waste. The proposed approach is composed of two elements. The first element
is the technique proposed to determine the polynomials used to approximate the
desired function f and to decompose the initial set into subsets in order to satisfy
the maximal approximation error criterion. The second element is an optimized
C source code which implements this approximation technique targeting real-time
embedded systems.

5.3 Algorithmic-Level Approximate Computing for Video
Codec

In this section, the HEVC video codec is considered as a use-case to illustrate the
use of the approximate computing techniques at the algorithmic level presented
before. In Sect. 5.3.1, task skipping, algorithm selection and parameter adjustment
techniques are exploited to optimize an HEVC decoder. In Sect. 5.3.2, the skipping
technique for discrete optimization algorithm is illustrated in the case of HEVC
encoder.
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5.3.1 HEVC Decoder Use-Case

The standard structure of an HEVC decoder is depicted in Fig. 5.6. The classification
presented in [36] is used to decompose the target application into two types
of blocks: blocks producing control-oriented data and blocks producing signal-
oriented data. A block that generates signal-oriented data can be of two types
depending on whether the input and output data are in the same domain, i.e.
represent the same type of information (for instance, data or frequency information).
If the input and output data are not in the same domain, the signal processing
block carries out a domain transformation. This kind of block can be approximated
but not skipped. In the opposite case, the block is in charge of enhancing specific
characteristics of the signal. This kind of domain conservation block can be skipped,
approximated or both.

When receiving compressed data, the entropy decoder first extracts the different
syntax elements from the video stream using arithmetic coding. The entropy
decoding block is a hard control block, as each decoded value controls the type
of processing executed on the data stream. Any approximation on its result would
potentially break the downstream execution pipeline because wrong headers for a
sequence, picture, or block could be inferred. Then the residual data are dequantized
and transformed using an inverse Discrete Cosine Transform (DCT)-like process,
resulting in the error of the block intra or inter prediction [46]. The inverse transform
block performs a DCT-like transformation and thus is a (signal-oriented) domain
transformation block. The prediction of the pixel blocks is then applied and can
be either of intra- or inter-frame type depending on input bitstream parameters.
Intra-prediction is also a signal-oriented block consisting in replicating pixels in
a given direction so as to predict a new block. Intra/inter mode selection is a simple
switch that is control-oriented and requires very few resources. In the case of inter-
frame prediction, a prediction is computed based on the previously decoded pictures.
Relative translation motion vectors are transmitted in the bitstream and these motion
vectors have a fractional pixel resolution. Finally the Deblocking Filter (DF) and
Sample-Adaptive Offset filter (SAO) filters are applied on the reconstructed data to
reduce potential artifacts and increase subjective image quality. In-loop filters and
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Fig. 5.6 Algorithm classification of an HEVC decoder
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motion compensation blocks are all signal-oriented filter blocks. Picture buffering
corresponds to a queue of images retained for display and future picture predictions.

5.3.1.1 HEVC Decoder Block Selection

Blocks are considered for approximation in decreasing order of computational
complexity. The profiling of the HEVC decoding process is given in Fig. 5.7.

Motion Compensation Filters In video codecs, a motion estimation technique
is used by the video encoder to generate a compressed representation of a video
by exploiting the temporal redundancy between the frames of the transmitted
video sequence. A motion vector is defined for each block in the picture as the
relative position of the predicted block with respect to the reference block in a
previously decoded picture. However, the true movements of the blocks are not
perfect translations and cannot perfectly match the sampling rate of the digitalized
video. Therefore, a fractional precision is used for the motion vectors to reduce
the prediction residual error and improve the compression performance. If a
motion vector has a fractional value, the reference block needs to be interpolated
accordingly to generate the prediction.

In the HEVC standard, the fractional motion vector compensation is performed
by two separable 1-D interpolation filters for the horizontal and vertical direc-
tions [46]. Representing 74% of the decoding effort and being signal-oriented
domain conservation blocks, these filters could be skipped [35, 37] and should be
tackled first in the algorithmic-level approximate computing method.

In-loop Filters The in-loop filters are composed of two entities: the deblocking
filter, already present in the previous JCT-VC H.264/AVC standard [52] and the
SAO filter that has been newly adopted in HEVC. The in-loop filters have the
particularity of processing decoded frames and can therefore be considered as
enhancement functions to improve the decoding quality.

The SAO filter is used to reduce sample distortion by classifying reconstructed
samples into categories, obtaining an offset for each category, and then adding that
offset to the sample value [15].

Fig. 5.7 Average relative
complexity of data processing
blocks in an optimized HEVC
decoder on a general purpose
processor. Input sequences:
Kimono RA 1920x1080 with
Quantization Parameter from
22 to 32 by steps of 2

MC filters

74%

In-loop filters

10%
Inverse transform

9% Entropy decoding
4% other
3%
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The deblocking filter processes decoded frames to reduce the artifacts generated
by inaccurate predictions. A blocking effect may appear between blocks because
of the block transform used for residual coding. This blocking effect may be more
visible near block boundaries. The deblocking filter enhances the decoded frames
global quality by smoothing the transitions between blocks.

In-loop filters represent 10% of the decoding effort and they are signal-oriented
domain conservation blocks, these filters need to be addressed second in the
algorithmic-level approximate computing method.

The next block in terms of computational complexity is the inverse transform
block. It is a domain transformation block, for which approximation can spread
over a large set of output data. As the 2 first candidates already represent 83.3% of
the global decoding complexity, the next blocks, including inverse transform block,
have not been considered for approximation.

5.3.1.2 HEVC Decoder Block Transformations

Block Class Modification of the Motion Compensation Filters The first blocks
to approximate are the MC filters as they represent the highest share of the
processing load. The first proposal is based on a reduction of the filtering complexity
which is a block class modification. The modification is described in Fig. 5.8 where
the legacy filters are replaced by approximate filters. An approximation level control
signal chooses the filter complexity.

The HEVC legacy interpolation filters are analyzed in details in [21]. The HEVC
standard uses FIR filters to perform the luminance and chrominance interpolation.
Tseng et al. [50] have proposed the design methodology adopted by the HEVC
standard. Whereas the actual standard proposes a fixed configuration for the filters,
the proposed solution is based on a wide range of filters from the minimum size to
the legacy size. In HEVC [46], the standard filter size is fixed to Nh = 8 for the lumi-
nance component and Nh = 4 for the chrominance components. Five categories of
approximate computing filters are defined, adapting their computational complexity:
low, middle, intermediate, high and legacy, respectively, with Nh = 1, 3, 5, 7, 8 for
luminance and with Nh = 1, 2, 3, 4, 4 for chrominance.

Samples in

Approximation level control

Samples out
Advanced 

Motion Vector 

Compensation

Approx. 

Interpolation

Chroma

Approx. 

Interpolation

Luma

Motion Compensation

Fig. 5.8 Interpolation filter of the MC block approximation
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Table 5.1 Filter size per configuration

Configuration Chrominance filter size Luminance filter size

Low 1 1

Middle 2 3

Intermediate 3 7

High 4 7

In-loop Filtering

Deblocking 
Filter

SAO 
FilterSamples in Samples out

Skip  control

Fig. 5.9 In-loop filter skip

The overall approximation process is controlled by a parameter called Approxi-
mation level control as described in Fig. 5.8. It sets the number of taps of the MC
interpolation filters. The different filter categories: low, middle, intermediate, and
high and summarized in Table 5.1.

Computation Skipping of the Motion Compensation Filters and In-loop Filters
Another alternative for signal-oriented blocks with domain conservation is to skip
processing. Because the error may be high, the block can be either totally skipped
or skipped only periodically. A balance must be struck between quality and compu-
tational complexity. A parameter called skip control is proposed that dynamically
activates the processing block. All processing blocks that are classified as signal-
oriented blocks with domain conservation can be modified with this approximate
computing approach, namely the in-loop filters and the MC interpolation filters.
Figure 5.9 shows an example of such implementation of the in-loop filters.

The skip control parameter provides tuning of the video distortion at the decoder
side. A decision is taken at the frame level to activate or not the filters, providing
a coarse grain tuning parameter on decoding quality. In an approximate computing
system, this tuning capability is used to stay in the acceptable area of the application
quality for a given use-case. The frequency of block skipping is set as a percentage
of frames where filters are skipped. It leads to a fine quantum of quality distortion.
By setting the skip control parameter to 0%, the decoder is similar to the legacy
HEVC. If the skip control is set to 100%, the in-loop filters and the MC interpolation
filters of chrominance and luminance are skipped permanently.

Four skipcontrol configurations are selected and categorized as shown in
Table 5.2. These configurations are used in the rest of the study.
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Table 5.2 Percentage of
block skipping per
configuration

Configuration Block skipping percentage

Low 89%

Middle 63%

Intermediate 25%

High 8%

5.3.1.3 Experiments and Results

Power measurements are conducted on an octa-core Exynos 5410 SoC based on the
big.LITTLE configuration with four ARM Cortex-A15 cores and four ARM Cortex-
A7 cores. The CPU has a maximum clock frequency of 1600 MHz and its frequency
can be scaled down to 250 MHz. The software HEVC decoder is OpenHEVC [49].
It runs real-time on top of a standard Linux kernel which uses automatic CPU
cluster switching in the kernel. The input HEVC bitstreams are taken from the
standardization reference one [6, 9].

For the quality metric, the Structural Similarity Index Measure (SSIM) is
considered. This metric is more appropriate as its outputs are closer to the human
perception than the classical Peak Signal to Noise Ration (PSNR) metric [18]. The
aim is to obtain a SSIM as close as possible to the value 1, indicating that the
degradation between the decoded frame and the original one is very low.

5.3.1.4 Quality: Energy Consumption Trade-Off

In Figs. 5.10 and 5.11, the energy scalability of QP tuning is compared to the
proposed computation skip and computation approximation methods. The results
show that increasing the QP reduces power consumption. The proposed approxi-
mate computing methods offer an alternative to reduce power consumption while
degrading the quality. In the scenarios where the device can choose the QP, the
proposed methods are shown to perform better than modifying the QP. For example,
and assuming a reference video at QP = 27, changing to QP = 32 can offer a
reduction of 1 W with a SSIM degraded from 0.84 to 0.8 (Fig. 5.10). The decoder
using computation skip can also achieve 1 W of power reduction but with an SSIM
reduced to only 0.82. With the decoder based on computation approximation, the
SSIM can be only degraded to 0.83.

The maximum energy gains that are obtained on the test sequences is close to
40%.

Besides, in broadcast scenarios where only one bitrate and QP configuration is
usually available, the proposed methods are the only ones that can be envisioned to
save power in energy-limited devices. For finer grain tuning, the two techniques can
be combined together.
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5.3.2 HEVC Encoder Use-Case

In this section, the skipping technique for discrete optimization algorithm is
illustrated in the case of HEVC encoder. An HEVC encoder is classically based
on a hybrid video encoder structure that combines Inter and Intra-predictions. The
solution described in this section focuses only on Intra encoding, Fig. 5.12 illustrates
the block diagram of an HEVC intra encoder. While encoding in HEVC, each frame
is split into equally sized blocks named Coding Tree Units (CTUs) (Fig. 5.13). Each
Coding Tree Unit (CTU) is then divided into Coding Unit (CU), themselves nodes in
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Fig. 5.12 Block diagram of HEVC intra encoder composed by several blocks: Intra Picture Pro-
cess (IPP), Intra Picture Estimation (IPE), Transform (T), Quantization (Q), Inverse Quantization
(Q−1), Inverse Transform (T−1), Current Picture Buffer (CPB), Deblocking Filter (DF), Sample-
Adaptive Offset (SAO) and Entropy Coding (EC)

a quad-tree. In HEVC, the size of CU is equal to 2N × 2N with N ∈ {32, 16, 8, 4}.
The HEVC encoder starts by predicting the blocks from their environment (in time
and space). To perform the predictions, CU may be split into Prediction Block (PB)
of smaller size.

In intra-prediction mode, PB are square and may take the size of 2N×2N (or N×
N only when N = 4). The HEVC intra-frame prediction is complex and supports
a total of 35 modes (illustrated on Fig. 5.14) performed at the level of PB including
planar (surface fitting) mode, DC (flat) mode and 33 angular modes [46]. Figure 5.14
shows an example of an intra-prediction with N × N PB size of 8 × 8 and the
intra-prediction modes. After computing this prediction, the encoder calculates the
residuals (prediction error) by subtracting the prediction from the original samples.
The residual is then transformed by a linear spatial transform, quantized, and finally
entropy coded.

The HEVC encoder also contains a decoder processing loop since the decoded
picture is required by the encoder to perform Intra and Inter predictions. This
decoder loop is composed of inverse quantization and inverse transform steps that
reconstruct the residual information (i.e. the error of the prediction). The residuals
are added to the predicted samples to generate a decoded picture (also called
reconstructed samples). In the case of Intra encoding, reconstructed samples are
stored in the current picture buffer and used for predicting future blocks. Finally,
reconstructed samples are post-processed by a deblocking filter and a SAO filter
(used for Inter prediction) that generates the parameters of the decoding filter
and appends them to the bitstream. To achieve the best Rate-Distortion (RD)
performance, the encoder performs an exhaustive search process, named RDO,
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Fig. 5.13 Quad-tree structure of a Coding Tree Block (CTB) divided into Coding Block (CB)

testing every possible combination of partitioning structures combined with the 35
Intra-prediction modes. This exhaustive search constitutes an OSSE algorithm.

In order to decrease the computational complexity of HEVC Intra encoding, a
fast intra-mode decision called Rough Mode Decision (RMD) [53, 55] was added
in the reference software HEVC test Model (HM) [20]. This technique splits the
Intra-prediction process into two successive steps: RMD and RDO as illustrated
in Fig. 5.15. RMD consists in constructing a candidate mode list which is then
tested in the full RDO process. RMD method computes for each mode m a cost
JRMD(m). The Nm modes with the lowest costs JRMD(m) are then evaluated by
the full RDO process to select the best among them. Nm depends on the CU size
N . The RDO step is much more complex than the RMD step. As the RMD step
orders the modes according to their costs, the RDO step can be skipped to limit the
encoding complexity. In this work, only the RMD step is applied and the mode mŝ

with the smallest cost JRMD(m) is selected.
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5.3.2.1 Experimental Set-up

All experimentations are performed on one core of the embedded EmETXe-i87M0
platform from Arbor Technologies based on an Intel Core i5-4402E processor at
1.6 GHz. The energy consumption is used as the optimized cost. To measure the
energy consumed by the platform, Intel Running Average Power Limit (RAPL)
interfaces are used to get the energy of the CPU package, which includes cores,
IOs, DRAM, and integrated graphic chipset. Bjøntegaard Delta Bit Rate (BD-
BR) [52] is commonly used in video compression to measure the compression
efficiency difference between two encodings. The BD-BR reports the average bit
rate difference in percent for two encoding at the same quality: PSNR. The aim is
to obtain the lowest BD-BR.
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5.3.2.2 OSSE Algorithm Identification and Classification

In HEVC Intra encoding, the selections of RD-wise best PB size and Intra-
prediction mode are determined by the RDO process. The RDO process is composed
of two nested OSSE: Coding-tree partitioning (CT) and Intra-mode prediction (IM).
CT aims at finding the best quad-tree decomposition of a CTU of 64x64 pixels into
CU as illustrated in Fig. 5.13. Then, for all Coding Units (CUs), IM aims at finding
the best mode to predict blocks from its neighbors.

An energy metric is used to classify and evaluate the OSSE. Theoretical lower
bound of the energy consumption are defined and named MCP(CT) and MCP(IM)
for the two OSSE of the RDO process: respectively, CT and IM. The MCP is the
energy obtained when the encoder is able to perfectly predict the best partitioning
solution and thus only the optimal solution is processed to encode the CTU [32].
Therefore, the energy consumption of the search process is reduced to the energy
consumption of the solution and the MCP is the minimal energy consumption point
that can be achieved for the highest encoding quality.

Table 5.3 summarizes the energy reduction opportunities between optimal (best
complexity case) and full search (worst case) solutions at different video resolutions.
The results are extracted from [32]. They are obtained by applying the two-
pass approach as defined in the OSSE Classification Step presented in [33]. The
results show that the search space is similar across all resolutions and the largest
energy reduction search space occurs when optimizing the Coding-tree partitioning,
with up to 76.3% of potential energy reduction while working on the Intra-
mode prediction offers 27.9% at best. The results lead to the conclusion that the
energy problematic can be more efficiently addressed by reducing complexity at the
Coding-tree partitioning.

Table 5.3 Energy reduction opportunities (in J) [32]

Energy for
Minimal
Cost Point
(MCP) Reduction (in %)

Res. Energy for exhaustive search IM CT IM CT

2k 9710 7438 3398 2272 6311 23.4 65.0

1080p 4813 3663 1560 1150 3253 23.9 67.6

720p 2204 1722 911 483 1294 21.9 58.7

480p 1120 833 317 287 803 25.6 71.7

240p 291 209 69 81 222 27.9 76.3

Average 24.5 67.9



5 Approximate Computing at the Algorithmic Level 135

5.3.2.3 Coding-Tree Partitioning OSSE Approximation

Coarse Solution Predictor Design The coarse solution predictor aims at predict-
ing the coding-tree partitioning from video frame content. Authors of [22, 44] show
the relationship between CU size and the corresponding block variance of the image.
Based on this observation, they propose a variance-aware coding-tree prediction.
The energy reduction technique used in this paper follows a similar algorithm. A
video sequence is split into equal Groups of Frames (GOF) of size F . The first frame
of a Group of Frames (GOF) is encoded with a full RDO process (unconstrained in
terms of energy). Then the variance of the selected CU according to their sizes are
used to compute variance thresholds on-the-fly. For following frames of the GOF,
the variance of each CU of each size is recursively compared to the thresholds to
choose if the CU has to be split. The coding-tree partitioning is built by this process.

Approximation Management The first parameter that impacts the encoding
quality and energy consumption is the number of frames F in the GOF. The second
parameter Nd defines the number of depth values tested around the prediction for
each constrained CTU [31]. Since applying the RDO process on the predicted depth
map is the result of a coarse estimation, it is possible, without compromising too
much the complexity, to improve the process by exploring more depths around the
predicted optimum.

Since video encoding is time consuming, a fast quality evaluation approach with
a restricted parameter set is used to extract the configurations close to the Pareto
front.

Quality & Cost Evaluation The Rate-Energy space of all the combinations of
parameters for F and Nd has been explored. Results lead to a significant gap in
term of BD-BR for Nd = 1 and Nd = 2. This observation requires to refine Nd

and to use non-integer values. To explore non-integer numbers of depths, CTU in a
constrained frame are split into two categories [31]: (Nd − 	Nd
)× 100 per cent of
CTU are encoded with �Nd� depths and the rest with 	Nd
 depths.

Figure 5.16 shows the Rate-Energy space for all the combinations of parameters.
This figure shows that for normalized energy reduction of up to 60% (below 40% in
Fig. 5.16), the points of the Pareto front are generated with a high value of F and a
low value of Nd . On the other hand, for normalized energy reductions of less than
40% (higher than 60% in Fig. 5.16) the configurations are obtained with F = 2
and a high value of Nd . The encoder has to play on both F and Nd parameters,
respectively, the size of the GOF and the number of explored depths to control the
energy consumption of the HEVC encoder.

5.3.2.4 Intra-Mode Prediction OSSE Approximation

Coarse Solution Predictor Design The Kvazaar encoder includes a feature that
reduces the computational complexity of RMD. This feature reduces the number of
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Fig. 5.16 Pareto in Rate-Energy space from the set of parameters F and Nd

angular prediction modes candidates and is divided in two successive steps. In the
first step, for each Prediction Unit (PU) N ×N , the number of angular modes tested
in RMD is reduced by increasing the angular step-size (θN ). Let Θ be the set of
(θ32, θ16, θ8, θ4). In Kvazaar: Θ is fixed to (8, 8, 4, 2). This coarse step always tests
DC, Planar and Most Probable Mode (MPM) modes. The goal of the second step is
to refine the dominant prediction direction mŝ obtained from the previous step. The

angular step-size is reduced by half θ ′N = θN

2
and the RMD process computes the

cost JRMD(mŝ ± θ ′N) of the direction around the prediction mode obtained from
the previous step. This step is repeated with the new dominant direction until the
angular step-size becomes 1. In the reference configuration, this feature is disabled
and all modes are tested in RMD process.

Approximation Management The minimal and maximal number of modes tested
by RMD according to θN are given, respectively, by Eqs. 5.4 and 5.5. The number
of modes tested by RMD depends on whether the MPM is already included in the
set of modes. The first and second terms of Eqs. 5.4 and 5.5 correspond to the first
and second steps of the RMD algorithm while the third term adds the number of no
angular modes plus the MPM.

min
mode

(θN) =
⌈

33

θN

⌉

+ ⌊log2(θN)
⌋+ 2 (5.4)

max
mode

(θN) =
⌈

33

θN

⌉

+ ⌊log2(θN)
⌋+ 5 (5.5)

To explore the OSSE linked to the Intra-mode prediction, a set of θN ∈
{2, 4, 8, 12} (corresponding to testing, respectively, 20, 13, 10, and 8 modes) is
defined.
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Quality & Cost Evaluation For N ∈ {32, 16, 8, 4}, 4096 encodings are needed to
try all combinations of Θ with θN ∈ {2, 4, 8, 12}. The number of experimentations
is reduced to study the impact of θN for each size N of CU independently. The video
sequences are encoded with θN ∈ {2, 4, 8, 12} for a fixed value of N ∈ {32, 16, 8, 4}
one at a time. The other angular step-sizes are fixed to the default values of Kvazaar:
Θ = (8, 8, 4, 2).

The impact of θN for each value of N has been analyzed independently. Results
show that the relation between energy consumption and BD-BR according to θN is
not linear, and this for all CUs sizes. The configurations with bad trade-off between
energy reduction and BD-BR increase has been removed to build a new set of
θN parameters summarized in Fig. 5.17. Figure 5.17 shows the results of the 36
configurations defined by the table depicted in Fig. 5.17. The difference between
the energy reduction opportunities CMCP(I M) and CCP of the Intra-Mode Prediction
OSSE is around 5% of energy. Figure 5.17 shows that for the set (θ32, θ16, θ8, θ4),
a better configuration than the Kvazaar default one (8, 8, 4, 2) (cfgkva in green in
Fig. 5.17) can be used for the same energy reduction.

5.3.2.5 Combination of OSSE

The goal of this section is to study the combination of the two OSSE: CT and IM.
The OSSE linked to the CT can be explored with two parameters F and Nd . From
results of Fig. 5.16, the configuration of the parameters F and Nd of the Pareto
Front are extracted. The OSSE linked to the IM depends on a set of θN which is
viewed as one parameter to combine the OSSE. In addition to the Kvazaar default
configuration (cfgkva), 3 other configurations (cfg1, cfg2, cfg3) are extracted from
results of Fig. 5.17 which correspond to significant gap in the Pareto front.

Figure 5.18 shows the results when the configurations described in the associated
table are applied on the configurations extracted from the front of the Rate-Energy
space of Fig. 5.16. From 100% to 45% of normalized energy consumed, the results



138 J. Bonnot et al.

Normalized Energy (%)
20 30 40 50 60 70 80 90 100

BD
-B

R 
(%

)

0

2

4

6

8

10
cfgkva
cfg1
cfg2
cfg3

Configuration
cfgkva (8, 8, 4, 2)

cfg1 (8, 4, 2, 2)

cfg2 (8, 4, 2, 4)

cfg3 (8, 4, 4, 4)

Fig. 5.18 Pareto in Rate-Energy space from the set of Θ defined in the table

Normalized Energy (%)
20 30 40 50 60 70 80 90 100

BD
-B

R 
(%

)

0

2

4

6

8

10

A

B

CT SSSR
IM SSSR
(CT & IM) SSSR
Global front

Fig. 5.19 Pareto in Rate-Energy space from the CT OSSE, the IM OSSE and the combination of
the two OSSE: CT & IM

of the 4 configurations are intertwined. In the other hand, for an energy consumed
less than 45%, the cfg3 have better results for a major part of the Rate-Energy
space. As for the CT OSSE, Fig. 5.18 shows that it is possible to control the energy
consumed from 100% to 23%. The results of Fig. 5.17 are finally added in the Rate-
Energy space as shown in Fig. 5.19.

Figure 5.19 summarizes the best results (extracted from the Pareto front) of the
CT OSSE study of the Sect. 5.3.2.3, the IM OSSE study of the Sect. 5.3.2.4 and the
combination of these two OSSE CT & IM, i.e. when the three parameters F , Nd and
Θ are used.

Figure 5.19 shows that for all normalized energy target, the combination of the
two OSSE (CT & IM) obtains better results than the exploration of the CT OSSE
alone. For example, for 32.5% of normalized energy consumed, the combination
of the two SSSR compared to the case of CT alone reduces the BD-BR by 4%:
from 7.3% to 3.3%. Figure 5.19 shows that the Pareto front has an inflection point
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(illustrated by the black line in Fig. 5.19). This inflection point splits the Pareto front
into two parts (A and B). In part A, a normalized energy reduction of up to 23% of
energy consumed has a strong impact on the quality. In the other hand, in part B, the
quality degradation is less impacted when the consumed energy is reduced.

To conclude on these results, playing with the two OSSE of the HEVC use-
case has been demonstrated to yield better energy efficiency than just using one
OSSE, and the SSSR methodology has been shown to give precise answers on
the opportunities of gain brought by each OSSE. These results motivate for the
SSSR methodology that provides a systematic mechanism to explore and evaluate
the approximation opportunities of OSSE-based applications.

On the considered use-case, inflexion points on the Pareto curves guide the
designer when choosing the right configuration that does not suffer significantly
of quality degradation. This is the case, for instance, in Fig. 5.19 where a designer
is advised to target the left-hand side of region B where energy gains are relatively
high and BD-BR losses are low.

5.4 Conclusion

In this chapter, the concept of approximate computing techniques at the algorithmic
level has been investigated. The aim is to transform the algorithmic description of
the application in order to decrease the processing complexity and thus to reduce
the implementation cost. Different approximate computing techniques acting at the
algorithm level have been proposed and can be classified in two categories. The first
category corresponds to approaches skipping parts of the computation by removing
some processing. The second category is based on techniques using approximation
to replace a part of the computation by a less complex processing. Acting at the
algorithm level allows to significantly reduce the implementation cost as illustrated
in this chapter with the HEVC video codec use-case. Task skipping, algorithm
selection and parameter adjustment techniques are exploited to optimize an HEVC
decoder. This technique proposes a Pareto front exploring an energy reduction up
to 40% for a reasonable quality degradation of 4 dB for the PSNR. The skipping
technique for discrete optimization algorithm has been illustrated in the case of
the HEVC encoder. This technique proposes a Pareto front exploring an energy
reduction up to a factor 3 for a reasonable quality degradation of 3.3 % for the BD-
BR. The use of these techniques is restricted by the lack of tools automating the
algorithm transformations. Most of the transformations are carried-out manually by
the application designer.
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Chapter 6
Analysis of the Impact of Approximate
Computing on the Application Quality

Justine Bonnot, Daniel Ménard, and Karol Desnos

6.1 Introduction

Approximate Computing (AC) is one of the main approaches for post-Moore’s Law
computing. It exploits the error resilience of numerous applications in order to save
energy or accelerate processing. The numerical accuracy of an application is now
taken as a new tunable parameter to design more efficient systems. Nevertheless,
the numerical accuracy of an application has to stay within an acceptable limit to be
usable. For this reason, the impact of the induced errors on the application has to be
studied.

Before analyzing the effects of the errors induced by the chosen approximations
on the application quality metric, the errors induced by the AC techniques them-
selves have to be characterized. A thorough characterization of the approximation
error allows, during the Design Space Exploration (DSE) phase, choosing the
most suitable AC technique with respect to the implementation constraints and
quantifying the impact of the approximation on the application quality metric.
The impact of the approximation on the application quality metric is generally
evaluated numerous times because the DSE requires testing many configurations.
Consequently, this evaluation of the approximation error has to be fast so as to limit
the DSE time.

AC techniques generate various error profiles. When implementing AC in an
application, the objective of error analysis is to derive the impact of the induced
approximations on the application quality metric. The evaluation of the impact of
the approximation on the application quality metric can be done in three steps as
presented in Fig. 6.1. To illustrate the different concepts associated with this figure,
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Fig. 6.1 Different steps to analyze the impact of approximation on quality

an example is considered. The application is a digital communication receiver and
the AC technique is finite precision with fixed-point arithmetic.

The errors induced by the approximations are first characterized so as to provide
an AC source error model according to several error metrics for further error
propagation. Several error metrics are used for error characterization. The error
metrics can be the mean error amplitude μ, the standard deviation of the error
σ , the probability mass function (PMF) of the error, or an interval that contains
the error bounds. The error characterization is presented in Sect. 6.4 and can be
done with two different techniques: analytical and simulation-based techniques.
Analytical techniques are presented in Sect. 6.4.1. They provide a mathematical
model of the error. In the case of the considered example, the Widrow model [1] can
be used to analyze the AC error due to fixed-point arithmetic. The error resulting
of the quantization of a data is modeled by a random variable and the mathematical
expressions of the PMF and the error mean and variance are provided. Simulation-
based techniques are presented in Sect. 6.4.2 and are more generic but require the
emulation of the implemented approximation. The different methods to emulate AC
techniques are presented in Sect. 6.3. In the case of the considered example, C++
classes can be used to emulate fixed-point data-types and collect by simulation a set
of values to analyze this error.

Then, the errors are propagated through the application. This step described
in Sect. 6.6 allows deriving an intermediate accuracy metric. As for the error
characterization step, analytical techniques presented in Sect. 6.6.1 can be used.
Simulation-based techniques presented in Sect. 6.6.2 can also be used along with
emulation or error injection techniques. In the case of the considered example, the
power (second-order moment) of the error can be considered as an accuracy metric.
For analytical approaches, perturbation theory can be used to propagate the error
inside the digital communication receiver and obtained the mathematical expression
of the power at the output of the receiver.

Finally, the approximation errors may have to be linked to the output quality as
presented in Sect. 6.5. In this case, a few analytical approaches have been proposed
and are described in Sect. 6.5.1. Analytical approaches are depicted as shaded in
Fig. 6.1 since no general analytical approach has been proposed. They have to be
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derived specifically for the considered quality metric. Simulation-based techniques
are generally preferred and are described in Sect. 6.5.2. They can be implemented
along with error injection. In the case of the considered example, the Bit Error
Rate (BER) metric can be used to evaluate the quality. This metric evaluates the
ratio between the number of corrupted bits and the total number of received bits.
Simulation of the digital receiver with fixed-point data-types can be used to evaluate
the quality metric (BER) or the accuracy metric (error power). The link between the
BER and the error power can be obtained by simulation with error injection or by
an analytical approach in this specific case.

6.2 Metrics to Analyze the Impact of AC

Introducing approximations in an application leads to an unavoidable error êi

between the exact value z and the erroneous value ẑ due to approximation. The
error of approximation êi is defined as follows:

êi = ẑ− z (6.1)

As defined by Chippa et al. in [2], errors due to AC can be classified into two
separate categories denominated fail small and fail rare. In order to guarantee a
functional system, the impact of approximation errors on application quality must be
limited. In the fail small category, an error is either always present or very frequent,
and thus its amplitude must be limited. In the fail rare category, an error can have a
high amplitude, and thus its probability of occurrence must be low to limit its impact
on quality.

The maximum admissible error is plotted in Fig. 6.2 versus its probability
of occurrence. The techniques used for AC must lead to errors located in the
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Fig. 6.2 Evolution of maximal error amplitude according to its occurrence probability
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gray area. The shape of this gray area defines the quality requirements of the
application. A third AC error category named fail moderate can be introduced. This
category corresponds to errors having both moderate probability of occurrence and
moderate amplitude. This characterization of the AC error shows that the rate and
the amplitude of the error have to be considered to analyze the effect of AC on
application quality.

6.2.1 AC Error and Accuracy Metrics

The introduced errors êi are characterized and modeled with error metrics to ease
the process of linking the induced errors to the quality evaluation function of the
application. Numerous error metrics have been proposed, and the choice of the
considered error metrics depends on the implemented AC technique as well as on the
nature of the output of the application, as presented by Akturk et al. [3]. To quantify
the errors induced by an approximation, the deviation between the approximate
output and the accurate output has to be measured. Nevertheless, as explained by
Akturk et al. [3], the considered error metric has to be robust to several side effects.
For instance, when taking a relative error metric, the reference should not introduce
any bias on the measured deviation. Besides, averaging the error metric over a
certain number of points may hide large deviations on particular points, hence the
need for a metric to measure the extreme errors. Another important point in deriving
error metrics is to define how to aggregate errors.

When these restrictions have been taken into account, different metrics to
compute the deviation exist: statistical, bitwise, and interval-based metrics.

6.2.1.1 Statistical Metrics

According to Chippa et al. [4], the induced errors by an AC technique can be
characterized with statistics according to three parameters. The three parameters
are all derived from the deviation expressed as the error distance ei :

ei = |̂z− z| (6.2)

The first parameter to characterize the error is the mean error amplitude, μe,
which corresponds to the average value of the different error distances ei

μe = 1

N

∑

i ∈I
ei (6.3)
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with I, the set containing all the values taken by the error ei . The second parameter
f is the Error Rate (ER), which represents the frequency of error occurrence

f = 1

N

∑

i ∈I
fei

, with fei
=
{

0 if ei = 0

1 else
(6.4)

The third parameter is the standard deviation of the error erms , which represents
the dispersion around the average error value and is considered as the error
predictability by Chippa et al. [4].

erms =
√

1

N

∑

i ∈I
ei

2 (6.5)

For a continuous statistical distribution of the error, the different parameters are
represented with a distribution. This continuous distribution is called a probability
density function (PDF). The ER is represented by the area under the curve
representing the distribution, the mean error amplitude is the mean value of the
distribution, and the error predictability is the standard deviation of the distribution.

When the distribution of the error is discrete, as for instance with inexact
arithmetic operators, the statistical distribution of the error is the probability mass
function (PMF). The PMF of the approximation error is the function indicating the
probability that the error distance is equal to a particular value. It represents the
ER depending on the Error Distance (ED) of the induced errors. The PMF can be
represented as a bar chart, and the higher a bar is, the more frequent the considered
error occurs. PMFs can be highly asymmetric as presented in Fig. 6.3 for the two
inexact operators Almost Correct Adder (ACA) on 16 bits with a carry chain length
of 4 and the Approximate Array Multiplier (AAM) on 16 bits, respectively. These
PMFs have been obtained with 10,000 uniformly drawn inputs in the input space
[0; 216]. The more inputs are drawn, the more accurate the PMF is. To build the PMF
of an approximate operator error or statistics on the error, Monte Carlo simulations
are generally used [5].

The error can also be characterized in terms of Maximum Error Distance
(maximum ED) Me defined as

Me = max
i ∈I

ei (6.6)

6.2.1.2 Bitwise Metric

In inexact operators, some bits of the operation output can be erroneous. To evaluate
the ratio of erroneous bits in a data, the Bitwise Error Rate (BWER) metric can be
considered. In digital systems, a data is encoded with a set of bits. The BWER
represents the Bit Error Rate of each bit position in a binary word. This metric is the
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Fig. 6.3 Probability mass function of almost correct adder, N = 16, C = 4, and approximate
array multiplier, N = 16

ratio between the number of erroneous bits on the total number of bits. For instance,
if x is an n-bit binary data, the BWER is a vector b depending on x expressed as
b = {pi} with i ∈ �0 ; n − 1�, where pi is the probability of bit i in x to be
erroneous. Numerous methods have been proposed to propagate the BWER error
metric through an inexact operator and are presented in Sect. 6.6.1.

6.2.1.3 Interval-Based Metric

Error metrics can be represented by intervals and propagated by Interval Arithmetic
(IA). IA has first been proposed by Ramon Moore [6] and consists in propagating
intervals instead of real numbers in the application. For instance, if variable x lies
in [x; x], the interval will be propagated through the different computations of
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the application. IA is for instance used to bound the effects of round-off errors in
computations and allows guaranteeing the output accuracy. For instance, intervals
are used to produce conservative error bounds for the computations in a digital
computing machine where the computations are a succession of rounded arithmetic
operations whether it be in floating-point or in fixed-point arithmetic. In this case,
the produced interval is guaranteed to contain the accurate output of the computation
and the radius of the interval is the error bound.

Nevertheless, in the case of errors induced by inexact operators, the error may
be unsmooth and the resulting PMF highly asymmetrical. To better render the error
induced, Huang et al. [7] proposed an adaptation of IA to inexact circuits called
Modified Interval Arithmetic (MIA). In the proposed method, each bar of the PMF
of an operator is modeled by an interval.

6.2.2 Application Quality Metrics

The characterization of the error induced by AC allows knowing the impact of the
approximation on the application output quality. This impact can be measured with
the application quality of service (QoS) or with an intermediate quality metric.
The application quality metric, whose nature and measurement depend on the
application, quantifies the output quality of the application. For instance, for a signal
processing application, the application quality metric can be the signal-to-noise
ratio (SNR), whereas for an image processing application, the application quality
metric can be the Structural Similarity Index Measure (SSIM). The application
quality metric is used to compare the output generated by the approximate version
of the algorithm with the output generated by the reference version of the algorithm.
Nevertheless, in some cases, an intermediate metric can be easier to compute. An
intermediate metric is a generic error metric independent from the QoS metric and
that may be linked to the application QoS.

Application quality metrics are generally user-defined quality evaluation func-
tions and have to be provided along with the error tolerance of the application
output. For an application, several quality evaluation functions can be used and
the impact of the approximation on the different functions may strongly vary.
Different quality evaluation functions have been reported in Table 6.1 for various
data processing applications.

6.3 Emulation of AC Techniques

Numerous techniques use simulations to evaluate the impact of AC on the appli-
cation quality metric or on an intermediate accuracy metric. In this case, the
approximation mechanism must be emulated so as to reproduce its internal behavior.
Emulation techniques have mainly been proposed for inexact arithmetic operators
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Table 6.1 Various application quality metrics depending on the nature of the application

Data processing domain Quality evaluation function

Digital signal processing Signal to noise ratio

Mean squared error

Relative difference

Image processing Peak signal to noise ratio

SSIM

Mean squared error

Pixel difference

Image segmentation Ratio of misclustered points

& recognition Mean centroid distance

Top-1–top-5 classification

Video coding Bjøntegaard delta peak signal to noise ratio

Bjøntegaard delta bit rate

Digital communications Bit error rate

Web search Number of correct results in top 25 results

as well as for finite precision arithmetic. In both cases, emulation can be done
with functional simulation techniques used to reproduce the behavior of the
approximation instead of simulating the approximation behavior on the hardware.
Functional simulation techniques for inexact operators and finite precision aim at
reproducing the behavior of the approximation at the logic level and at the bit level,
respectively.

6.3.1 Inexact Arithmetic Operators

The functional simulation of the behavior of inexact arithmetic operators is used
in [8–10] to characterize the induced errors or to analyze the QoS at the output of
an application implementing inexact arithmetic operators. In this case, emulation by
functional simulation allows studying the behavior of the inexact operator before the
hardware implementation. Nevertheless, the emulation of inexact arithmetic opera-
tors is complex. To mimic the behavior of inexact arithmetic operators, emulation
is done with bit-accurate simulations at the logic level (BALL simulations) that are
required to reproduce the internal structure modifications of the operator at the logic
level. The complexity of reproducing the internal behavior of the operator leads to
long simulation times. For instance, as presented in Fig. 6.4, the BALL simulation
time of a 16-bit inexact adder, the ACA, is around 300 times longer than the one of
a native accurate processor instruction as floating-point simulation. In the case of an
inexact multiplier, the AAM is 4000 times longer.



6 Analysis of the Impact of Approximate Computing on the Application Quality 153

ACA Inexact operatorSimulation times (ns)

Operand bit-width

AAM Inexact operatorSimulation times (ns)

Operand bit-width

Fig. 6.4 Comparison of the simulation time for the BALL and floating-point simulation of two
inexact arithmetic operators

The ratio r between the BALL simulation time and the simulation time for the
corresponding accurate floating-point operation of several 32-bit inexact operators
is indicated in Table 6.2. The ratio r is evolving in between 31,940 and 73,864,820.

For the emulation of 32-bit inexact arithmetic operators, the required time is
very long. Consequently, the simulation of a whole application so as to analyze
the impact of 32-bit inexact operators on the QoS at the output of the application
becomes prohibitive, if not impossible.
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Table 6.2 Ratio r between
BALL simulation and
simulation of accurate
floating-point operation times
for 32-bit operators

Op. name r

ADD ETAIV [11] 31,940

ACA [12] 859,406

ISA [5] 1,799,519

MPY AAM [13] 13,375,154

ABM [14] 73,864,820

6.3.2 Finite Precision Arithmetic

To mimic the finite precision effects, the processing associated with each arithmetic
operation can be emulated. Several commercial high-level tools to design digital
signal processing applications integrate data-types emulating fixed-point arith-
metic, as Signal Processing Worksystem (Cadence), DSP Station (Frontier Design),
CoCentric (Synopsis) [15], or C++ classes that have been proposed in SystemC [16–
18]. Matlab/Simulink has proposed a fixed-point designer toolbox [19] to emulate
the behavior of an application in finite precision. Given the target architecture, the
fixed-point simulation of the application can be bit-accurate.

C++-based fixed-point data-types are particularly slow to simulate since they
can be two to three orders of magnitude slower than the execution of floating-
point data-types. The emulation of fixed-point arithmetic is done on floating-point
architectures. The integer word-length, the total word-length, and the quantization
and overflow modes can be specified. The quantization mode specifies how to
manage a value whose accuracy is greater than the one of the fixed-point variable
embedding it, while the overflow mode specifies how to manage a value whose
amplitude is larger than the largest that can be encoded on the fixed-point variable.
Two different types of fixed-point simulation have been proposed: (1) Constrained
data-types also called static fixed-point data-type like sc_fixed in SystemC
library, with data-type arguments known at compile time. (2) Unconstrained data-
types also called dynamic fixed-point data-type like sc_fixn SystemC library,
with data-type arguments that can be variables and then modified. The static fixed-
point data-type simulation is faster than the dynamic one, but the application
has to be recompiled each time the data word-lengths are modified. To improve
the simulation speed of SystemC fixed-point data-types, a type _fast has been
proposed for both constrained and unconstrained SystemC data-types, limiting the
precision to 53 bits. Other static fixed-point data-type like ac_fixed [20] and
ap_fixed [21] has been proposed. For custom floating-point data-types, C++
classes like ct_float [22], ac_float [20], flexfloat [23], and floatX
[24] have been proposed.
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6.3.3 Operator Overloading and Approximate Data-Types for
Simulation

For an efficient simulation of an application implementing AC techniques, Sampson
et al. proposed EnerJ [25], a Java extension with type qualifiers to indicate which
data are approximated and which data have to be accurate. The programmer anno-
tates the code implementing its application and indicates the approximable parts and
error-sensitive parts. Approximate storage, for instance, unreliable memory modules
as unreliable registers, data caches, or main memory, and computations are emulated
to allow quality analysis at the output of the simulation. The inexact arithmetic
operators are implemented by overloading the existing accurate operators. Several
AC techniques may be emulated through EnerJ, as Dynamic Voltage and Frequency
Scaling (DVFS), reduced width in floating-point operations or reduction of the
Dynamic Random Access Memory (DRAM) refresh rate.

6.3.4 Conclusion

Emulation is an important part of error modeling for AC since it allows avoiding
testing the implemented technique within the real system. However, the proposed
methods to emulate the impact of inexact operators or finite precision arithmetic
for instance lead to long simulation times which impedes the use of exhaustive
simulations for characterizing the approximation error and limits the possibilities for
the design space exploration. The different abstraction levels for emulation and their
associated times are represented in Fig. 6.5. For AC techniques at the computation
level, the whole application has to be simulated for emulation with native data-types

Fig. 6.5 The different abstraction levels and times for emulation
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which leads to low emulation time. Finite precision arithmetic has to be emulated at
the architecture level and inexact circuits at circuit levels, which leads to moderate
emulation time. The longest to emulate is voltage overscaling which has to be
emulated at the technological level, that is to say at the transistors level.

6.4 Approximate Computing Error Characterization

AC error characterization aims at developing a model defining the error due to a
specific AC technique. Two types of state-of-the-art techniques exist to characterize
the error metrics intrinsic to the implemented approximations: analytical and
simulation-based techniques. From the different emulation techniques presented
in Sect. 6.3, the errors induced by the AC technique are reproduced and can be
characterized by simulation. For analytical approach, the aim is to define the
mathematical expression of the error metrics.

6.4.1 Analytical Techniques

Analytical techniques have been proposed to provide a mathematical model to
evaluate the considered error metric.

6.4.1.1 Finite Precision Arithmetic

Using a statistical representation of the induced error, an error model can be created
for various AC techniques. In finite precision arithmetic, signal quantization leads to
an unavoidable error. A commonly used model for the continuous-amplitude signal
quantization has been proposed in [1] and refined in [26]. The quantization of signal
x is modeled by the sum of this signal and a random variable ex corresponding to
the approximation error (quantization noise). This additive noise ex is a uniformly
distributed white noise that is uncorrelated with signal x and any other quantization
noise present in the system (due to the quantization of other signals). In Fig. 6.6,
x(n) represents the input signal at time n, xQ(n) the input signal after conversion in
fixed-point (Q for quantization), and ex(n) the statistical error model characterized
by its first- and second-order moments. Using the statistical error model, the
quantization process in fixed-point arithmetic can be replaced by an additive white
noise, as presented in Fig. 6.6 with the following properties:

• Stationary and ergodic random variable
• Non-correlated with the input signal x

• Independent from the other noise sources
• Uniform distribution
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Fig. 6.6 Widrow model for
fixed-point quantization noise Q

+

ex(n)

x(n) xQ(n)

x(n) xQ(n)

The validity conditions of the quantization noise properties have been defined in
[26]. These conditions are based on characteristic function of the signal x, which is
the Fourier transform of the probability density function (PDF). This model is valid
when the dynamic range of signal x is sufficiently greater than the quantum step
size and the signal bandwidth is large enough.

This model based on a continuous-amplitude random variable has been extended
to include the computation noise in a system resulting from some bit elimination
during a fixed-point format conversion. In [27], a model based on a discrete dis-
tribution is suggested, and the first- and second-order moments of the quantization
noise are given. In this study, the probability value of each eliminated bit to be equal
to 0 or 1 is assumed to be 1/2. The quantization error by truncation is characterized
with statistical parameters as the mean error amplitude μe and the standard deviation
erms expressed as

μe = q

2

(
1− 2−k

)
(6.7)

e2
rms =

q2

12

(
1− 2−2k

)
(6.8)

where k represents the number of eliminated bits and q = 2−n, where n is the
number of bits to encode the fractional part after quantization. This model has been
refined for the different quantization law in [28].

6.4.1.2 Inexact Operators

Probabilistic Analysis To characterize the error metrics of inexact operators,
several analytical techniques have been proposed. Liu et al. [29] analytically derive
estimated values for the ER and the Mean Error Distance (mean ED) of several
block-based inexact adders, namely the ACA, the Error-Tolerant Adder Type II
(ETAII), the Equally Segmented Adder (ESA), and the Speculative Carry Selection
Adder (SCSA). After having established how to compute the signal propagate pi ,
which indicates whether a carry signal is propagated to the ith sum bit, they handle
the derivation of error metrics for the different adders separately. The assumption
that inputs are uniformly distributed is taken.
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To derive the error metrics of the ACA, the authors form the universal error set
composed by all the possible error patterns in the inexact operator. With an n-bit
ACA, it is possible to derive n disjoint subsets whose union forms the universal error
set. Each subset, denoted �i , is composed of the error patterns in which the ith bit
is erroneous, the upper bits are accurate, and the lower bits are either accurate or
not. The total mean ED of the operator is then defined by the sum of the mean ED in
each subset. The mean ED in each subset �i is approximately equal to 2i ·qi , where
qi is the probability to be in the considered subset �i . Indeed, the error induced by
the ith bit is dominant, while the possible errors on the Least Significant Bits (LSBs)
may cancelled each other.

The ER can be derived as
∑

i qi . Through the probabilistic analysis of the inexact
operator, the values of qi are analytically derived.

When it comes to an n-bit ESA divided into r = �n
k
� − 1 sub-adders, since

all the sub-adders have an equal size except the first sub-adder which is exact, the
ER is approximately equal to 1 − ( 1

2 )r . An approximation is then used to compute
the mean ED, since the errors in the lower sub-adders can be neglected compared
to the one of the higher sub-adders. A similar method is applied for the ETAII
giving approximate values of the ER and mean ED. The proposed method relies
on a probabilistic analysis of the structures of each considered inexact adder, hence
the impossibility to generalize this method to other structure of inexact operators or
other AC techniques.

As an improvement of the method proposed in [29], Wu et al. [30] derived a
method to compute the exact error profile of block-based inexact adders. Another
improvement brought by Wu et al. is to provide a generic method to compute the
error statistics of block-based adders. Making the assumption that the inputs are
uniformly distributed in [0; 2N − 1], where N is the size of the adder, the authors
compute the probabilities of the signals propagate, generate, and kill the carry, p, g,
and k, respectively. Given these probabilities, the computation of the ER is possible.
Finally, a result of the inexact arithmetic adder is correct if and only if all the
speculated inputs of carries are correct. The authors compute in a recursive way the
probability of this event. To derive the error distribution, the binary representation
of the ED, named the “error pattern,” is analyzed. All the possible error patterns are
enumerated and their probability of occurrence is computed, giving the exact PMF
of the error induced by the inexact adder.

Mazahir et al. [31, 32] proposed a complete study on a probabilistic evaluation of
the exact PMF of inexact adders and inexact recursive multipliers. The targeted class
of inexact adders is adders implementing carry chain truncation and carry prediction
between successive accurate sub-adders. An error occurs in these adders when the
number of bits to predict the carry is not sufficient to predict the accurate carry
signal. In this case, an error in a sub-adder can propagate to the upper sub-adders and
leads to an output of the adder lower than the accurate adder output. In the end, the
method analyzes the probabilities that an error occurs in each sub-adder to derive the
accurate PMF. The method is more complex due to its genericity. The method not
considers only block-based adders. Nevertheless, this method is particularly long to
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analyze large bit-width adders. The conditions on the inputs that led to an error are
identified and treated as independent events using probabilities.

Matrix-Based Determination of the mean ED
Roy and Dhar [33] extend the method proposed in [31], deriving the accurate value
of the mean ED of inexact Least Significant Bits (LSB) adders. This method is based
on the structure of these n-bit adders decomposed into an n−m-bit-accurate adder
on the Most Significant Bits (MSBs) and several inexact sub-adders on the LSBs.
The analysis of the mean ED is done by building a 2D memory database of size
(M, 2), where M = 2m+1 if m LSBs are approximated. To build this database, 4
matrices are used, which consider 4 different carry-out conditions on the mth bit.

Given the truth tables of accurate and inexact adders, the 4 matrices storing the
different error amplitudes for each sub-adder are built to finally compute the mean
ED. The asymptotic runtime of the proposed matrix-based method for mean ED
computation is linear with the number of approximated LSBs, O(m), if the size of
the inexact sub-adders is negligible compared to m. The proposed method targets
only the estimation of the mean ED.

Empirical Model and Gate-Level Error Characterization Sengupta et al. [34]
proposed a gate-level error characterization method to determine the error variance
erms of an adder whose approximation relies on the LSBs. The error variance is
characterized as a function of the number of approximated LSBs y. The induced
error e can be modeled as a random variable x that lies in [−(2y − 1); (2y − 1)]
since y LSBs are approximated, and whose probability to be equal to e is pe. The
error variance is then computed as

e2
rms(y) =

2y−1∑

x=−(2y−1)

x2px (6.9)

Assuming that x is uniformly distributed in [−(2y − 1); (2y − 1)], the error
variance can be written as

e2
rms(y) = (2y+1 − 1)2

12
(6.10)

Finally, since the error variance when no LSBs are approximated is 0, an
empirical formulation of the error variance is derived as e2

rms(y) = a · (2by − 1).
The values (a, b) are constants derived from fitting experimentally obtained error
variance values with Monte Carlo simulations to the empirical model.

Hierarchical Analysis Sengupta et al [35] proposed to derive the error PMF at the
output of inexact adders or multipliers by first focusing on the characterization of
smaller units, for instance, Full Adder (FA). For a signed approximate FA, the error
can affect the output of the sum, as well as the sign bit.

The derivation of the error PMF is done in a general case where the input
distribution is not uniform. The obtained expressions for the PMF depend on the
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probabilities of the input signals to be 1, which are known only when the input
distribution is known.

6.4.1.3 Voltage-Overscaled Circuits

Liu et al. [36] proposed an analytical analysis of the impact of supply voltage
overscaling on arithmetic units, as adders or multipliers. The proposed method
estimates the mean ED at the output of an exact operator subject to voltage
overscaling. The objective was to generalize a method to derive the mean ED under
voltage overscaling since the behavior of three different 16-bit-accurate adders,
the Ripple-Carry-Adder (RCA), Carry-Look-Ahead Adder (CLA), and Carry-Select
Adder with similar critical supply voltage, was very different under similar voltage
overscaling operation.

To compute the mean ED at the output of an arithmetic operator subject to voltage
overscaling, for each internal signal of the application, the error significance We

k ,
which depends on the maximum error amplitude as well as on the switching activity,
is determined for each internal signal k. If the considered internal signal k impacts
the computation of a single output bit, We

k is equal to the weight of the output bit
(if the output bit is the ith bit, the weight is equal to 2i). If the considered signal k

impacts several output bits, then We
k is the minimum of the weights of the output

bits. Then, the switching activity is estimated in each node of the circuit and at
all discrete time points. The switching activity corresponds to the probability of a
transition from a bit a to b, with (a, b) ∈ {0; 1}. For a transition 0 → 1 of signal k

at time t = TCLK , the switching activity is denoted P 01
k and for a transition 1 → 0

P 10
k . Given this information, the hypothesis that the different signals independently

and additively contribute to the computation of the mean ED gives the following
equation for the mean ED computation:

μe =
∑

k∈S

(
We

k ×
(
P 01

k + P 10
k

))
(6.11)

Indeed, with overscaled supply voltage, the critical path delay may be larger
than the clock period TCLK . Consequently, at time t = TCLK , switching may
induce errors. The proposed method has been demonstrated on the error analysis
of circuits implementing digital signal processing applications subject to supply
voltage overscaling. Giving an accurate analysis of the mean ED at the output of the
circuit, it reduces the characterization time by several orders of magnitude compared
to classical Monte Carlo simulation techniques. The complexity of the proposed
characterization is in [O(N);O(Nm)] for the characterization of N -bit operations
with m inputs.
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6.4.1.4 Conclusion

Numerous methods have been proposed to characterize the errors induced by inexact
operators as in [29–31, 33] or to quantify the error induced by finite precision. A
few work has been done to analytically evaluate the error induced by DVFS on an
arithmetic circuit. Analytical methods proposed for inexact operators are dedicated
to specific structures. If the application designer is willing to test inexact operators
belonging to different types, the analytical method to compute the error statistics
requires a new mathematical derivation.

6.4.2 Simulation-Based Techniques

To characterize the errors induced by AC techniques, simulation-based techniques
are massively used. Simulation-based techniques are more and more employed due
to their ease of use. Functional simulation techniques run the approximate system
on a representative input data set and compute the required statistics for computing
the error metrics. To mimic the behavior of the approximation, emulation techniques
can be used.

The principle of functional simulation-based techniques for error metric charac-
terization is presented in Fig. 6.7. Functional simulation techniques can be used to
link the approximation with an error metric. In this case, the approximate application
and its accurate version are run on NSamples points extracted from real input data.
The accurate and approximate output values, z and ẑ, respectively, are used to
measure the obtained error according to a chosen metric, for instance, the mean
ED μ, the standard deviation of the error σ or the error PMF.

6.4.2.1 Exhaustive Simulations

Exhaustive functional simulations can be used to compute exact statistics of the
error induced by an AC technique. In this case, the AC technique is simulated for
its whole input data set, and statistics on the induced error are computed.

For instance, an inexact operator can be simulated exhaustively which means
simulated for all possible inputs. If the considered inexact operator has two unsigned

Fig. 6.7 Illustration of the
simulation-based technique to
determine the error metric
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inputs x and y coded on Nx bits and Ny bits, respectively, the exhaustive input
set I = Ix × Iy is composed of 2Nx+Ny values. Consequently, exhaustive
functional simulations for high bit-widths inexact operators, and more generally
if the input design space of an AC technique is large, are not feasible because of
the required simulation time. Besides, as presented in Sect. 6.3.1, the emulation
of the approximation mechanisms at the hardware level is complex and long
to simulate. To mimic the inexact operator behavior, bit-accurate simulations at
the logic-level are required to model the internal structure modifications of the
operator. Nevertheless, BALL simulations are two to three orders of magnitude
more complex than classical simulations with native data-types for 16-bit operators.
This simulation time overhead can reach 7 orders of magnitude for complex 32-
bit inexact operators. Thus, exhaustively testing the operator for all the input value
combinations is not feasible for high bit-widths because of the required simulation
time.

Mazahir et al. [31] have exhaustively simulated the inexact adder proposed
in [37] on an Intel Core i7 processor working at 2.4 GHz for various input
operands word-length. The evolution of the simulation time depending on the
input operands’ word-length is exponential. Given this important simulation time
overhead, exhaustive simulation is impossible in most cases.

6.4.2.2 Monte Carlo Simulations

Functional simulation is commonly applied on a given number of random inputs,
as presented for inexact operators in [8–10] or for DVFS in [36]. Inexact operators
are generally simulated with five million random inputs as proposed in [10], which
is the typical inexact circuit characterization method. The quality of the statistical
characterization obtained from a random sampling is highly dependent on the
number of samples taken and on the chosen input distribution. Besides, classical
simulation-based analysis does not provide any confidence information on the
obtained statistical estimation. Using a great number of samples can be ineffective
in terms of simulation time. In this context, a generic simulation-based framework
to statistically characterize the error induced by inexact operators has been proposed
in [38, 39]. This method is based on inferential statistics and extreme value theory
to derive a subset to simulate according to user-defined confidence requirements.

6.4.2.3 Pre-characterization for Analytical Techniques

Noteworthy, a large part of the analytical techniques to characterize error
metrics presented in Sect. 6.4.1 relies on a pre-characterization phase. The pre-
characterization phase generally relies on simulations to get error information
required for the analytical derivation of the error. For instance, before using
analytical techniques as the MIA or Modified Affine Arithmetic (MAA) to
propagate the errors through an application, Huang et al. [7, 40] launch a
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characterization phase based on simulations. This characterization phase is required
to derive the PMF of the error-free input data, the PMF of the error generated by
the inexact operator, and the PMF of the error on the input data if the input is noisy.
Once the different PMFs have been derived, they are stored in Look-Up Tables
(LUTs).

Similarly, Chan et al. [41] need to characterize the behavior of different error
metrics as the ER, mean ED, or maximum ED depending on various input
distributions and various hardware configurations. They first simulate the considered
inexact operator for various hardware configurations, for instance, different carry-
chain length for the ACA. They then record the evolution of different error metrics
depending on the standard deviation of the input distribution. The obtained results
are saved in LUTs and further used for error composition.

Sengupta et al [34] used a pre-characterization phase with gate-level charac-
terization of inexact adders depending on the number of approximated LSBs. As
presented in Sect. 6.4.1.2, the error pre-characterization step for inexact adders
consists in fitting the parameters (a, b) in equation e2

rms(y) = a · (2by − 1) giving
the standard deviation of the error depending on the number of approximated LSBs
y. To do so, the standard deviation of the error is computed for different values of y

with exhaustive simulations, and (a, b) are derived by regression.

6.4.2.4 Conclusion

To analyze the errors induced by AC techniques, simulation-based techniques
are hardly scalable for large applications, large input data sets, or numerous and
different perturbation types. Since exhaustive simulations are not scalable, Monte
Carlo simulations are generally used. The number of samples used for the simulation
has to be defined carefully to ensure the quality of the obtained statistics.

6.5 Quality Metric Determination

6.5.1 Analytical Techniques

Analytical techniques derive a mathematical expression of the application quality
metric. For instance, Liu et al. [29] proposed to analyze the impact of inexact
adders on an image processing application and particularly to analytically derive
the Peak Signal to Noise Ration (PSNR) metric at the output of an image processing
application implementing specific types of inexact arithmetic adders.

The drawback of analytical techniques is their specificity with respect to the
considered application as well as to the application quality metric, which makes
them difficult to automate. Being more generic and easier to automate, simulation-
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based techniques are often preferred to analytical techniques to evaluate the quality
metric.

6.5.2 Simulation-Based Techniques

6.5.2.1 Direct Quality Metric Determination

Application quality metric can be directly evaluated at the output of the application
through simulations. In this case, the application has to be simulated on a represen-
tative input data set and the quality metric is measured at the output. Nevertheless,
some quality functions are very difficult to evaluate directly. For instance, the
BER in digital communication systems is long to directly evaluate because of the
required evaluation time. When a BER at receiver output of 10−k is targeted, 102+k

simulations are required for a good quality evaluation of the application. This metric
is really long to evaluate when introducing approximation in an application, which
leads to the need to separate the quality metric determination process in two steps.
First, the impact of the approximation on an intermediate quality metric is evaluated,
and then the link between the intermediate accuracy metric and the application
quality metric is established.

6.5.2.2 Error Injection

To analyze the impact of an AC technique on the quality metric, the errors have
to be emulated within the application. Error emulation can be done at the bit level
for finite precision or at the logic level for inexact operators. When error emulation
is not directly possible, perturbation-based methods can be implemented. In this
case, errors are directly injected in the application, as for instance proposed in the
framework REACT [42] with dynamic error injection that extends the ACCEPT
framework [43]. To use the REACT framework for error injection, the code has
to be annotated with the approximable parts and the injected errors are extracted
from a pre-built library of several AC techniques, provided by the user. Errors can
be injected at two granularity levels. At the fine grain level, errors are injected in
the instructions, while at the coarse grain level, errors are injected at the output of
functions.

The error injection technique is widely used to derive the relationship between
the intermediate accuracy metric and the application quality metric. Chippa et al. [4]
propose the ARC framework to analyze the sensitivity of the different parts of an
application in order to identify the error-resilient parts. In this case, the intermediate
accuracy metrics are the error amplitude and the error rate. In the context of fixed-
point refinement, Parashar et al. [44] proposed to deal with the finite precision
conversion of a multi-kernels system by modeling the behavior of each kernel
converted in fixed-point by a single noise source located at the output of the kernel.
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In this case, the intermediate accuracy metric is the noise power. This technique
based on error-injection allows finding the different noise power values at the output
of each kernel subject to a quality constraint at the output of the application. An
optimization problem is formulated to budget the noise power on each kernel such
that the quality constraint at the output of the application is satisfied. A steepest
descent greedy algorithm is used to solve this problem. The single source statistical
model proposed to mimic the quantization noise at the output of a processing block
integrating smooth operations is proposed in [45] and refined in [46].

6.5.3 Conclusion

Analytical techniques have been proposed to determine the quality metric at the
output of an application but are often giving approximate values of the quality
metric at the output of an application. Simulation-based techniques can lead to
very accurate estimation of the quality metric at the output of an application, but
the accuracy depends on the number of input samples simulated for the quality
metric measurement. Besides, simulation-based techniques are more generic for
the determination of the quality metric without relying on the type of implemented
approximation.

6.6 Accuracy Metric Determination

As presented for the characterization of error metrics, two types of state-of-the-art
approaches can be used to evaluate the accuracy metric: analytical and simulation-
based approaches. These techniques allow propagating errors within an application.

6.6.1 Analytical Techniques

Analytical methods mathematically express the error characteristics at the output of
the application.

6.6.1.1 Interval-Based Arithmetic

Interval Arithmetic (IA) and Affine Arithmetic (AA) In IA, an interval is
assigned to each internal variable of the application. The interval is then propagated
within the different computations according to arithmetic rules. Let us define
[x; x] = {x|x ≤ x ≤ x}}, with x and x the minimum and maximum values
of a variable x, respectively. IA is particularly suited to simple operations, and
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the intervals can be propagated from inputs to outputs through basic arithmetic
operations as additions, subtractions, multiplications, and divisions represented by
the � operator in Eq. 6.12, and if the system is non-recursive. In this case, the non-
recursivity means that a variable in the system does not depend on its previous values
as it is the case in Infinite Impulse Response (IIR) filters. The general propagation
rule is

[x; x]�[y; y] = [min(x�y, x�y, x�y, x�y);max(x�y, x�y, x�y, x�y)] (6.12)

IA allows keeping track of measurement errors, errors caused by the inputs,
and errors caused by inexact computations. The asset of using IA is its ease to
compute, but the produced error bounds are not tight and generally conservative
and pessimistic. Indeed, IA does not take into account any correlation between the
variables to be composed and is particularly pessimistic when variables are corre-
lated. Numerous libraries have been proposed to directly compute with intervals, as
the C++ library Boost [47].

To improve the estimation of error bounds, AA has been proposed by Stolfi et
al. [48] in the 1990s. The variables are no longer modeled with intervals but with
affine forms as follows:

x̂ = x0 +
n∑

i=1

xi × ei (6.13)

AA improves the tightness of the error bounds by taking into account the first-
order correlations between the variables to be composed. In Eq. 6.13, x0 is the
central value of variable x, xi the partial deviations, and ei the error terms in
[−1; 1]. Rules have been proposed to compose different affine forms together and
are presented in Eqs. 6.14–6.17, where x̂ and ŷ are affine forms and c is a constant.
As shown for the composition of two affine forms by a multiplication, which is not
an affine operation, a residual error symbol is produced as rad(x̂)rad(ŷ), where
rad corresponds to the radius of the affine form. As proposed for IA, numerous
libraries have been proposed to compute with affine forms, as the C++ library
LibAffa [49].

c × x̂ = c × x0 + c
∑n

i=1 xi × ei (6.14)

c ± x̂ = (c ± x0)+∑n
i=1 xi × ei (6.15)

x̂ ± ŷ = (x0 ± y0)±∑n
i=1(xi ± yi)× ei (6.16)

x̂ × ŷ = x0y0 +∑n
i=1(xiy0 + yix0)× ei + rad(x̂)rad(ŷ) (6.17)

AA improves the tightness of the error bounds by considering the first-order
correlations of error signals through the sharing of the error terms ei , but to the
detriment of more complex computations. It should be noted though that both types
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Table 6.3 Comparison between IA and AA

Advantages Drawbacks

IA Numerically stable Inefficient for interval products

Linear convergence

AA More accurate for interval products
keep track of correlation

Less stable higher computational cost

of arithmetic ensure guaranteed error bounds. To sum up, a comparison of both types
of arithmetic is proposed in Table 6.3.

Both techniques are well adapted to represent symmetric distributions, for
instance, the errors induced by fixed-point arithmetic [50]. Caffarena et al. [51]
proposed a method based on AA to estimate the Signal-to-Quantization-Noise Ratio
(SQNR) at the output of a digital signal processing application converted in fixed-
point and to target nonlinear algorithms.

Highly asymmetric distributions such as the errors produced by inexact arith-
metic operators are not well represented by either IA or AA. To better render their
asymmetric error distributions, modified interval and affine arithmetics have been
proposed.

Modified Interval/Affine Arithmetic Based on the error propagation method pro-
posed with IA or AA, Huang et al. [7, 40] proposed an adaptation of these methods
to inexact circuits, more adapted to the highly asymmetric PMFs representing the
errors induced by inexact operators. Indeed, IA and AA need to be centered and
consequently fail to represent errors of inexact operators. When implementing MIA
or MAA, the approximation error metric is the PMF of the inexact operator.

In [7], MIA and MAA are proposed to represent asymmetric distributions. The
proposed method allows statically estimating the impact of errors induced by inexact
operators on the application quality metric. In MIA or MAA, the whole distribution
is decomposed into multiple intervals/affine forms. In the case of MIA, each bar of
the PMF of an inexact operator is modeled by an interval as in Eqs. 6.18 and 6.19.
In Eq. 6.19, the variable n represents the error magnitude.

MIA(x) = P(a ≤ x ≤ b), if a ≤ x ≤ b (6.18)

fX(n) =

⎧
⎪⎪⎨

⎪⎪⎩

P(2ε+n−1 ≤ X ≤ 2ε+n) if n > 0
P(−2ε+n+3 ≤ X ≤ −2ε+n+2) if n < −1
P(0 ≤ X ≤ 2ε) if n = 0
P(−2ε ≤ X ≤ 0) if n = −1

(6.19)

To compute the total error probability, the function MIA(x) has to be integrated.
The rules to compose different intervals are similar to IA, but in MIA, each bar of
the first PMF has to be composed with each bar of the second. MIA can be used
to propagate the error induced by inexact circuits through simple blocks. To do so,
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rules are proposed by Huang et al. [40]. Nevertheless, MIA is still very pessimistic
on the error bounds and suffers from range explosion.

In the case of MAA, each bar of the PMF of an inexact operator is modeled by
an affine form as in Eq. 6.20.

fX =
⎧
⎨

⎩

P1 : x1,0 + x1,1α0 + x1,2β0 + . . .

P2 : x2,0 + x2,1α1 + x2,2β1 + . . .

P3 : x3,0 + x3,1α2 + x3,2β2 + . . .

(6.20)

The problem of range explosion is tackled since MAA takes into account the
first-order correlation between variables. However, when dealing with operations
such as multiplications or divisions, the output form is approximated to an affine
form. Consequently, the output of multiplications or divisions is not guaranteed to
be more optimistic than the result obtained with MIA. In addition to this problem
of range explosion, MAA can suffer from storage explosion due to the operation of
several affine forms which can result in the storage of numerous additional terms.
The solution to this problem is to group some terms of the PMF but then reducing
the output accuracy.

6.6.1.2 Perturbation Theory for Finite Precision Systems

Existing approaches to compute the analytical expression of the quantization noise
power in fixed-point systems are based on perturbation theory, which models finite
precision values as the addition of the infinite precision values and a small pertur-
bation. These analyses are based on the Widrow model presented in Sect. 6.4.1.1.
At node i, a quantization error signal ei is generated when some bits are eliminated
during a fixed-point format conversion (quantization). This error is assimilated to an
additive noise which propagates inside the system. This noise source contributes to
the output quantization noise ey through the gain αi , as shown in Fig. 6.8.

Fig. 6.8 Model for the
computation of output
quantization error power
based on noise sources ei and
gains ...

...

...
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The aim of this approach is to define the output noise ey power expression
according to the noise source ei parameters and the gains αi between the output
and a noise source. This analysis is made up of three phases: (1) noise generation,
(2) noise propagation, and (3) noise aggregation. The first phase is presented in
Sect. 6.4.1.1 and the two phases are presented in the rest of this section.

Noise Propagation Each noise source ei propagates to the system output and
contributes to the noise by at the output. The propagation noise model is based
on the assumption that the quantization noise is sufficiently small compared to
the signal to consider that the finite precision values can be modeled by using the
addition of the infinite precision values and a small perturbation. A first-order Taylor
approximation [52, 53] is used to linearize the operation behavior around the infinite
precision values. This approach allows obtaining a time-varying linear expression
of the output noise according to the input noise [54]. In [55], a second-order
Taylor approximation is used directly on the expression of the output quantization
noise. In [56] and [57], affine arithmetic is used to model the propagation of the
quantization noise inside the system. Affine expression allows obtaining directly
a linear expression of the output noise according to the input noises. For non-
affine operations, a first-order Taylor approximation is used to obtain a linear
behavior. These models, based on the perturbation theory, are only valid for smooth
operations. An operation is considered to be smooth if the output is a continuous
and differentiable function of its inputs.

Noise Aggregation Finally, the output noise by is the sum of all the noise source
contributions. The second-order moment of by can be expressed as a weighted sum
of the statistical parameters of the noise source:

E
(
e2
y

) =
Ne∑

i=1

Kiσ
2
ei
+

Ne∑

i=1

Ne∑

j=1

Lijμei
μbj (6.21)

where μei
and σ 2

ei
are, respectively, the mean and the variance of noise source

ei , and Ne is the total number of error sources. These terms depend on the fixed-
point formats and are determined during the evaluation of the accuracy analytical
expression. The terms Ki and Lij are constant and depend on the computation
graph between ei and the output. Thus, these terms are computed only once for
the evaluation of the accuracy analytical expression. These constant terms can be
considered as the gain between the noise source and the output.

For the case of linear time-invariant systems, the expressions of Ki and Lij are
given in [58]. The coefficient Lij can now be computed by the multiplication of
terms Li and Lj , which can be calculated independently. The coefficients Ki and
Lij are determined from the transfer function Hi(z) or the impulse response hi(n) of
the system having ei as input and by as output. In [59, 60], a technique is proposed
to compute these coefficients from the SFG (Signal Flow Graph) of the application.
The recurrent equation of the output contribution of ei is computed by traversing the
SFG representing the application at the noise level. To support recursive systems,
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for which the SFG contains cycles, this SFG is transformed into several Directed
Acyclic Graphs (DAGs). The recurrent equations associated with each DAG are
computed and then merge together after a set of variable substitutions. The different
transfer functions are determined from the recurrent equations by applying a Z

transform.
In [57], AA is used to keep track of the propagation of every single noise

contribution along the datapath, and from this information, the coefficients Ki and
Li are extracted. The method has been proposed for LTI in [56] and for non-LTI
systems in [57]. An affine form, defined by a central value and an uncertainty
term (error term in this context), is assigned to each noise source. These terms
depend on the mean and variance of the noise source. Then, the central value and
the uncertainty terms associated with each noise source are propagated inside the
system through an affine arithmetic-based simulation. The values of the coefficients
Ki and Lii are extracted from the affine form of the output noise. In the case of
recursive systems, it is necessary to use a large number of iterations to ensure that
the results converge to stable values. In some cases, this may lead to large AA error
terms and therefore to long computation time.

In the method proposed in [61], an analytical expression of the coefficients
Ki and Lij is determined. For each noise source ei , the recurrent equation of the
output contribution of ei is determined automatically from the application SFG with
the technique presented in [60]. A time-varying impulse response hi is computed
from each recurrent equation. The output quantization noise by is the sum of the
noise source ei convolved with its associated time-varying impulse response. The
second-order moment of by is determined. The expression of the coefficients is
proposed in [61]. These coefficients can be computed directly from their expression
by approximating an infinite sum, or a linear prediction approach can be used to
obtain more quickly the value of these coefficients. The statistical parameters of
the signal terms involved in the expression of the coefficients are computed from a
single floating-point simulation, leading to reduced computation times. The analysis
to compute coefficients Ki and Lij is done on an SFG representing the application
and where the control flow has been removed. To avoid loop unrolling which can
lead to huge graph, a method based on polyhedral analysis has been proposed in
[62].

Different hybrid techniques [52, 55, 63] that combine simulations and analytical
expressions have been proposed to compute the coefficients Ki and Lij from a set
of simulations. In [55], these Ne(Ne + 1) coefficients are obtained by solving a
linear system in which Ki and Lij are the variables. The way to proceed is to
carry out several fixed-point simulations where a range of values for σei

and μei

is covered for each noise source. The fixed-point parameters of the system are
set carefully to control each quantizer and to analyze its influence on the output.
For each simulation, the statistical parameters of each noise source ei are known
from the fixed-point parameter and the output noise power is measured. At least
Ne(Ne + 1) fixed-point simulations are required to be able to solve the system
of linear equations. A similar approach is used in [63] to obtain the coefficients
by simulation. Each quantizer is perturbed to analyze its influence at the output to
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determine Ki and Lii . To obtain the coefficients Lij with i �= j , the quantizers are
perturbed in pairs. This approach requires again Ne(Ne+1) simulations to compute
the coefficients, which requires long computation times.

During the last fifteen years, numerous works on analytical approaches for
quantization error power estimation have been conducted and interesting progresses
have been made for the automation of this process. These approaches allow
the evaluation of the quantization error power and are very fast compared to
simulation-based approaches. Theoretical concepts have been established enabling
the development of automatic tools to generate the expression of the quantization
error power. The limit of the proposed methods has been identified. Analytical
approaches based on perturbation theory are valid for systems made up of only
smooth operations.

6.6.2 Simulation-Based Techniques

When using simulation-based techniques, an intermediate accuracy metric is gen-
erally evaluated. Indeed, the direct evaluation of the quality metric at the output of
an application may require numerous samples to be simulated. For instance, Huang
et al. [40] illustrated the example of functional simulation technique on a length-10
dot product with data formatted on 32-bit. To simulate the approximate application
covering the whole input space, 3220 ≤ 1.3× 1030 different input vectors would be
simulated.

For the evaluation of an intermediate accuracy metric as the noise power, the
metric is generally computed by simulating an arbitrary, and large, number of
random inputs NS [64]. For fixed-point arithmetic, in the literature, the number of
samples ranges from 105 [64] to 1012 [65]. For determining the noise power P

induced by finite precision, two different versions of the application are simulated
as presented in Fig. 6.7. The distance between the output of the application with
infinite precision and the output of the application with finite precision is measured
and squared for each simulated sample. The expected value of these distances is then
computed to obtain the value of the noise power P at the output of the application.
The slow software simulation of fixed-point data-types as well as the high number
of samples to simulate makes generally fixed-point conversion a long and tedious
task. Sedano et al. [66] proposed to improve the speed of fixed-point conversion, to
use inferential statistics to infer the number of inputs to simulate.

The number of significant bits for finite precision arithmetic can be considered
as an intermediate accuracy metric. In this context, discrete stochastic arithmetic
has been proposed by Jezequel and Chesneaux [67] for floating-point and fixed-
point arithmetic. In this method, for each data, the last significant bit is randomly
perturbed and the application is run N times using the same input data for each
run. The average over these N runs is used as an estimate of the exact value. A
t-distribution is used to provide a confidence interval for the estimated value. The
number of significant bits is deduced from the number of common bits between the
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obtained values and the estimation. The main advantage of this approach is the low
number of runs N required to obtain a good estimation. In practice, N = 3 is used.

Finally, simulation-based techniques are widely employed since they are not
limited by the applicability of analytical techniques. However, due to the long
emulation time of the approximation techniques, functional simulation techniques
do not scale well with large applications.

6.6.3 Conclusion

Analytical techniques have majorly been proposed to characterize errors induced by
approximations. These techniques are specific to the considered error metric and the
considered approximation technique. Simulation-based techniques have the asset of
being generic but do not scale with large systems. Statistical models allow studying
the number of simulations to lead so as to get an estimation of the error properties
according to user-defined confidence requirements.

6.7 Conclusion

By exploiting the error resilience of numerous applications, AC allows saving
energy or reducing the execution time but at the expense of introducing errors in
the processing. Error analysis is one of the crucial steps in the integration of AC in
the design and implementation process.

The error analysis process can be decomposed in three main steps. The first step
corresponds to the AC error characterization which aims at developing a model
defining the error due to a specific AC technique. Two types of techniques can
be considered to characterize the AC error metrics. Analytical approaches aim at
defining a mathematical model of the error metrics. These approaches have been
widely used to model the error induced by finite precision like in fixed-point and
floating-point arithmetic. For AC techniques for which a mathematical model cannot
be obtained, simulation-based techniques can be considered to characterize the error.
Emulation techniques are incorporated in the application source code to mimic the
AC error behavior.

The second and third steps aim at propagating the error inside the application
to determine, respectively, an accuracy metric or directly the quality metric. Deter-
mining an intermediate accuracy metric is a good option when determining directly
the quality metric is not feasible. Two types of techniques can be considered to
determine the accuracy or quality metric. Analytical approaches have the advantage
to lead to low evaluation times. Nevertheless, these approaches are limited in
terms of supported applications, and they are more adapted for the evaluation of
an accuracy metric than an application-specific quality metric. Simulation-based
techniques have the advantage to support any kind of systems and can be used
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to evaluate an accuracy metric or directly the quality metric. The AC technique
is emulated or the error model is injected during the simulation. Nevertheless, these
techniques lead to high evaluation times especially when this process is included in
the AC design space exploration.
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Chapter 7
Accuracy-Aware Compilers

Sasa Misailovic

7.1 Introduction

Users expect their programs to run fast, consume minimum energy, and be resilient
to faults. These expectations put major pressure on developers and the tools they
use. Approximate computing offers an exciting opportunity to provide a better
performance, energy-efficiency, and resilience at the cost of a small amount of
an application’s quality. Many application domains, e.g., data analytics, machine
learning, multimedia processing, robotics, and scientific simulations, are inherently
approximate and can gracefully tolerate small amounts of error. Besides algorithmic
approximations (which have been the responsibility of algorithm designers), the
past two decades have brought up many ways in which systems expose new
approximations at different levels of the computing stack. However, unlocking the
potential of system-level approximations requires us to rethink the entire system
stack—and programming systems in particular—to include accuracy as a first-class
concern.

Compilers are programming systems that translate programs from the developer-
readable source code to the binary code that executes on hardware. A fundamental
property of traditional optimizing compilers is that they generate efficient binary
programs that preserve the semantics of the original source programs. It means
that the binary program should produce the same result as the source code that the
programmer wrote. Consequently, each traditional program optimization has aimed
to improve performance while ensuring that these transformations are correct—
they preserve the program semantics (proved using static program analysis [1]).
The compile-time static analysis uses concepts from discrete mathematics as its

S. Misailovic (�)
University of Illinois Urbana-Champaign, Champaign, IL, USA
e-mail: misailo@illinois.edu

© Springer Nature Switzerland AG 2022
A. Bosio et al. (eds.), Approximate Computing Techniques,
https://doi.org/10.1007/978-3-030-94705-7_7

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94705-7_7&domain=pdf
mailto:misailo@illinois.edu
https://doi.org/10.1007/978-3-030-94705-7_7


178 S. Misailovic

foundations: the relevant program properties have often been represented as sets or
logical formulas over program elements, and the program analysis operates on these
mathematical objects.

Despite the prominent role of approximation in applications, architectures, and
systems, standard program analysis and compilation systems do not take advantage
of approximation opportunities. Traditional optimizations are too rigid to exploit the
full optimization potential of the applications. Some compilers have exposed several
approximate optimizations as unsafe flags (e.g., relaxing the semantics of floating-
point operations). The compilers left a software developer solely responsible
for managing all aspects of approximation, which can often result in inflexible
approximation choices hard-coded in the program implementations.

Accuracy-aware compilers embrace approximation as a first-class concept in the
optimization process. They allow program transformations to automatically apply
approximations that intentionally change the semantics of programs and expose a
tradeoff between the performance of the compiled programs and the accuracy of
the programs’ results. This means that the binary program can produce different
acceptable results that may satisfy the user’s end-to-end accuracy or latency
requirements. Unlike their traditional counterparts, accuracy-aware transformations
need to reason about the changes they introduce in the program semantics and
whether they influence the program safety (e.g., that the approximation does not
cause a crash during execution).

Reasoning about accuracy-aware program transformations requires a more flex-
ible framework than the rigid correctness-based analysis framework offered by
traditional compilers. First, we need to define analyses for reasoning about two
key properties: (1) accuracy analysis reasons about the change in the result caused
by the transformation and is often based on numerical or probabilistic techniques,
and (2) safety analysis ensures that applying the transformation does not cause the
program to crash or experience other unacceptable errors and is often based on
logical reasoning (in an absolute or relative sense [2]). Furthermore, accuracy-aware
compilers need to include a search for profitable tradeoffs in their core framework.
This search leverages the information that the analyses provide about accuracy and
safety to navigate the more promising parts of the tradeoff space.

This chapter will focus on the foundation of accuracy-aware compilers and
different techniques that help us to characterize the accuracy–performance tradeoffs
and improve confidence about the safety of the approximated programs. We will
present the main concepts for the optimization of sequential programs. Through two
case studies, we will describe two main directions in developing accuracy-aware
compilers: (1) sensitivity profiling-based techniques use concrete executions of
candidate transformed programs and dynamic program analysis to reason about their
accuracy and safety, while (2) static analysis-based techniques use probabilistic
or relational static analysis to derive formulas that characterize acceptable results
and use mathematical optimization to find the best performing program versions,
without necessarily running them.
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7.2 Accuracy-Aware Compilation

An accuracy-aware compiler searches the space of possible optimizations to find the
composition of optimizations that jointly give an acceptably accurate result. We can
intuitively formulate the task as

Maximize : PERFORMANCE(Configuration)

Constraints : ACCURACYLOSS(Configuration) ≤ AccuracyBound

SAFETY(Configuration) = True

V ariables : Configuration ∈ SearchSpace

This optimization formulation maximizes an expression for performance subject
to the constraints on accuracy loss and safety. The available accuracy-aware
transformations determine the search space, and the configuration of an approximate
program represents the approximation type and its level at each applicable program
location. The compiler determines the configuration representation (e.g., a vector or
a mapping) and computes the expressions for performance and accuracy. However,
the compiler needs the developer’s help to identify the accuracy requirement.

The accuracy specification is the main departure of accuracy-aware compilers
from classical compilers. It consists of three components, which are specific to the
context of the use of the application, need to be provided by the developer, and help
construct the accuracy constraint:

• Output Abstraction. The output abstraction is a function that works with the
program’s output (and optionally its input) to compute a value or a list of values
that represent relevant properties of the output. We denote a result of output
abstraction as o = (o1, . . . , om). Typically, an output abstraction function
selects relevant numbers from an output file or files or computes an application-
specific measure of the quality of the output. Many approximate computations
come with such abstractions already defined and available, for instance, as a part
of the program testing effort.

• Accuracy Metric. The accuracy metric function computes the distance between
the results of the original and transformed programs.1 The function Q(o, ô)
takes as input the two numerical vectors computed by the output abstraction
function. The abstracted output o = (o1, . . . , om) comes from the execution of

1 Despite the name “accuracy metric” being traditionally used, these functions commonly compute
the accuracy loss compared to some reference result. When these functions evaluate to a value
close to 0, that means that the result of the approximate program is more accurate. They also do not
always satisfy all the properties of mathematical metrics. For instance, distortion is not symmetric.
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the original program. The abstracted output ô = (ô1, . . . , ôm) comes from the
execution of the transformed program. Q(·, ·) is also specified by the developer:
some common choices include the absolute or square distance between the
output abstraction components o from the original program and the output
abstraction components ô. Another common example is called distortion [3],
based on relative difference. It is a weighted mean scaled difference between the
program outputs (weights capture the relative importance of the components):

Qdist(o, ô) = 1
m

∑m
i=1 wi

∣
∣
∣
oi−ôi

oi

∣
∣
∣ . The most common comparison output is

the result of the original program (before transformation), but it can also be a
reference output obtained some other way.

• Accuracy Goal. A developer can specify the accuracy bound b that indicates the
maximum acceptable (tolerable) accuracy loss. Specifically, the bound represents
the extreme value of the accuracy metric.

The accuracy-aware compiler produces the optimized program that can operate
at different points in the accuracy–performance tradeoff space. Most existing
compilers cover one of the three workflows:

• Compile with a fixed approximation. A compiler of this sort applies the
transformations to satisfy an explicit accuracy bound. The approximation is fixed
and optimizing for a different bound requires recompilation. Common examples
are the techniques that optimize the precision of floating-point numbers.

• Compile with an approximate knob. A compiler of this sort applies transforma-
tions with a parameter that can change the aggressiveness of the approximation.
This parameter is known as an approximation knob and can be set at the begin-
ning of the execution or during runtime. To characterize the best configurations
of the approximation knobs, the compiler produces a tradeoff curve—each point
on this curve represents a configuration of the program’s approximation knobs
with the best accuracy/performance tradeoffs.

• Compile with runtime adaptation. In addition to the exposed knob and the
tradeoff curve, the compiler inserts a runtime system that dynamically chooses
to change the approximation level. A runtime system can monitor performance
and adjust accuracy to meet the performance target, or it can monitor accuracy
and adjust performance to meet the accuracy target. In some special cases, the
runtime system can operate without the compile-time tradeoff curve but instead
discovers the optimal tradeoffs solely at runtime.

7.2.1 Accuracy-Aware Transformations

Accuracy-aware transformations automate the optimization of approximate appli-
cations. These transformations intentionally change the semantics of programs to
trade accuracy for improved performance, energy consumption, or resilience by
exploiting the properties of the program’s inputs, structure, and execution environ-
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InputType[] x; OutType[] y;
for (i = 0; i < n; i++) {

y[i] = f(x[i]);
}

InputType prev;
for (i = 0; i < n; i++) {

if (i%2 == 1) y[i] = prev;
else {

y[i] = f(x[i]);
prev = y[i];

} }

for (i = 0; i < n; i++) {
y = f( x[i] ); 
s = s + y;

}

for (i = 0, z = 0; i < n; i++) {
if (rand(0.75)) {z++; continue;}
y = f( x[i] ); 
s = s + y;

}
s = s * n/(n-z);

y = f(x);

y = f'(x); Version TimeSpec ErrorSpec
f(x) T1   Err1
f'(x) T2 Err2

For instance, polynomial approximation 
of transcendental functions: 

sin ≈ −
3

3!
+

5

5!
− . . . for near 0

+1

Each approximate version has its time and 
error specifications:

Another example:
replace the function with 
a neural network

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

task 1 { 
x = recv()
send(f(x))
}

Master task: send inputs and receive outputs from 1…4

Master task: send inputs and receive outputs from 1…4
before timeout. Otherwise kill delayed or non-responsive tasks

task 2 { 
x = recv()
send(f(x))
}

task 3 { 
x = recv()
send(f(x))

}

task 4 { 
x = recv()
send(f(x))
}

task { 
x = recv()
send(f(x))
}

task {
x = recv()
send(f(x))
}

task { 
x = recv()
send(f(x))
}

task { 
x = recv()
y = send(f(x))

}

double[] x, y; 
double z = f(x,y)

float[] x, y; 
float z = f(x,y)

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

for (i = 0; i < n; i++) { … }

for (i = 0; i < n/2; i++) { … }

Data races are possible 
after the transformation

(a) (b) (c) (d)

(e) (f) (g)

Fig. 7.1 Examples of accuracy-aware optimizations (the approximation code is marked in red).
(a) Data structure optimization. (b) Loop perforation. (c) Reduction sampling. (d) Approximate
tiling. (e) Function substitution. (f) Dropping tasks. (g) Remove locks

ment. Researchers have developed many accuracy-aware software (compiler-level)
transformations and approximate hardware components (which can be targeted by
a compiler). To achieve their goals, the transformations reduce computation, data
representation, and communication. It is common for all of them to create new knobs
that expose and control the tradeoff between accuracy and performance/energy.
Figure 7.1 presents examples of some popular approximations.

Transformations that reduce computation find instructions in the execution that
can be fully skipped or simplified. Examples include task skipping [3–5] (which
executes only a subset of tasks), loop perforation [6–8] (which executes only
a subset of loop iterations), reduction sampling [9, 10] (which selects only a
random subset of inputs for programs that implement reductions like summation
or maximization), approximate function substitution [9–12] (which replaces the
exact implementation of a function with a less accurate alternative), and dynamic
knobs [13] (which select at runtime one of the several approximate versions of the
computation based on the application’s performance goal).

Transformations that reduce data representation try to reduce the size of data
that the application processes. Examples include the selection of floating-point
representation (double/float/half-float) [14, 15], quantization [16], or algorithmic
data-sketching techniques [17]. Transformations that reduce communication and
synchronization are applicable on parallel programs. Examples include early ter-
mination of barriers at parallel loops [18] (which results in skipping contributions
from interrupted threads) and approximate parallelization with the possibility of
data races [19–21].

Finally, for approximate hardware components, we can create abstractions that
represent them as computation reductions (e.g., approximate ALU [22] or acceler-
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ators [23]), data reductions (e.g., approximate memories [24]), or communication
reductions (e.g., approximate communication channels or networks on chip [25]).

7.2.2 Strategies for Exploring the Optimization Search Space

Automatically optimizing approximate programs using accuracy-aware transfor-
mations provides new opportunities to reduce engineering effort and resource
consumption and increase program resilience. This opportunity, however, comes at
a price—the transformations introduce uncertainty into the program’s execution,
which reflects on the quality of the results it produces. This uncertainty raises
many new research questions: (1) how to identify parts of a program that are good
candidates for accuracy-aware transformations, (2) how to characterize the effects
of a transformation on the program’s execution, especially the result’s accuracy,
and (3) how to automatically discover transformations that provide maximum
performance gains for acceptable accuracy losses.

The accuracy-aware optimization techniques fall broadly into two groups—
predominantly dynamic approaches doing sensitivity profiling and predominantly
static approaches doing program analysis.

Sensitivity profiling-based compilation requires a developer to provide a set of
representative inputs and an application-level accuracy metric that quantifies the
accuracy of the produced result (e.g., peak signal to noise for video encoders).
Then, a sensitivity profiler speculatively applies the accuracy-aware transformations
at various points in the program and validates the transformations by testing whether
the transformed programs, when executed on the provided inputs, produce results
with acceptable accuracy (as calculated by the accuracy metric). These techniques
are effective in finding transformed programs with attractive tradeoffs, even in
complex programs. However, since this approach relies on representative inputs,
its results do not provide guarantees for other inputs.

Analysis-based compilation combines static program analysis (which extracts a
set of formulas characterizing the program accuracy) with mathematical optimiza-
tion techniques to provide a foundation for rigorous program optimization using
accuracy-aware transformations. They do not execute the program but leverage
accuracy and performance models (which serve as ranking functions to prioritize
different optimizations). These techniques operate on time- or energy-consuming
subcomputations that we call approximate kernels. For each approximate kernel,
a developer provides a formal description of the kernel’s inputs and the expected
output accuracy. Program analysis can ensure that the approximate version of the
kernel satisfies the probabilistic output specification for all inputs that adhere to
the input specification. The program optimization algorithm can use this analysis to
reduce the kernel approximation to a standard mathematical optimization problem.
This approach does not require representative inputs, but a developer can optionally
use sensitivity profiling to (1) help identify approximate kernel computations and
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Typical Inputs

Sensitivity Metric

Program

Typical Inputs

Sensitivity Metric

Program

Profiling-Based
Optimization

Analysis-Based
Optimization

Typical Inputs

Sensitivity Metric

Program
InpSpec

OutSpec

Kernel
InpSpec

OutSpec

Kernel

Typical Inputs

Sensitivity Metric

Program
InpSpec

OutSpec

Kernel
InpSpec

OutSpec

Kernel

Fig. 7.2 The approaches for accuracy-aware optimization. We start with the original program
and produce the approximate program. The analysis-based compiler takes into consideration the
annotations on the kernels, while the profiling-based compiler treats the whole program as one
entity

(2) derive the kernel-level accuracy specifications that likely satisfy the application-
level accuracy metric.

Figure 7.2 illustrates the conceptual difference between the two approaches.
The profile-based optimization transforms program subcomputations driven by the
inputs and subject to the application-level accuracy metric. While it can often find
attractive tradeoffs, it does not provide an intuition for why the transformations work
and how we can quantify the effect of the changes (illustrated by a shaded area
of the program). In contrast, the analysis-based optimization operates on explic-
itly exposed approximate kernels with their specifications, which the developer
wrote to meet the application-level accuracy requirement (optionally derived using
sensitivity profiling). Then, the rigorous analysis and optimization techniques can
automatically approximate the kernel functions, while satisfying the developer’s
specifications. This approach can, therefore, improve a developer’s understanding
of why accuracy-aware transformations work.

7.2.3 Approximate Kernels

Many approximate computations have a specific structure, which can be useful for
accuracy-aware optimization. A large portion of a program’s work is performed
in one or several approximate kernel computations. Each execution of a kernel
typically processes a part of the application’s input and either directly produces a
part of the application’s output or guides the execution of the application to produce
the final output. Kernels are important for understanding the success of program
approximations. If approximated kernels have a small accuracy loss, then the full
program will likely have a small accuracy loss too.
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As an example of an approximate kernel, we show a loop that iterates over a list
of elements and aggregates the elements to produce a final sum:

float sum = 0;

for (int i = 0; i < n; i++)

sum = sum + a[i];

This loop computes the value of sum by aggregating the elements of an array a

with n elements. These approximate kernels have similar structure and functionality
and represent instances of computational patterns amenable to approximation. Our
previous work divides patterns by their structural properties (e.g., a kernel loop
calculates a sum) or functional properties (e.g., a kernel loop’s result is used as a
distance metric within the application) [7].

We can apply multiple transformations to the summation loop. To run the
loop faster, loop perforation can change the induction variable increment from
i++ to i+=2. To save energy when executing the loop body on approximate
hardware, a compiler can (1) transform the addition operator in the expression
sum = sum + a[i] to its approximate version sum = sum +. a[i], where +.

is the approximate sum operator or (2) specify that the array a should be stored
in unreliable memory using a declaration float[] a in urel. Each of these
transformations can cause the loop to produce a result sum that differs from the
result of the original loop.

The success of many approximations rests on the empirical observations that the
results of many transformed approximate kernels exhibit small deviations from the
results of the original kernels most of the time [8, 26]. Figure 7.3 illustrates the
impact of small and large deviations caused by approximating pixel computation
in an image processing application (image scaling). The kernel code is conceptually
averaging array elements. To show the impact of errors, on the left, we inject a black
pixel with the probability specified under each picture. On the right, we change the
absolute value of each pixel’s color by the amount specified under each picture. The
acceptable results have either many errors small in magnitude or there are infrequent
arbitrary deviations. Both optimization approaches leverage these properties of
approximate computations—profiling-based approaches do it implicitly, through

Fig. 7.3 The impact of errors on end-to-end acceptability: the kernel computation calculates the
correct pixel value with only specified frequency (left) or computes it with the specified absolute
error in each pixel component (right)
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performance profiles, and analysis-based approaches do it explicitly, driven by the
specifications.

These experiments show the usefulness of probabilistic accuracy specifications
of kernels and programs:

• Kernel Input Specification. The input specification contains intervals or distri-
butions of the computation’s inputs. This specification characterizes the devel-
oper’s level of knowledge about the inputs. For instance, a developer can specify
that the elements of the array a in the example sum kernel belong to the interval
[0, 10]. Specifications can also be relational—for instance, the elements of the
array a in the approximate execution have the same value as the elements in the
exact execution with probability at least 0.99.

• Output Accuracy Specification. The output specification is a probabilistic
assertion about the output of the computation. The assertions are relational in
that they compare the outputs of the original and approximate executions of
the kernel. Their general form is “Assuming that the inputs have the specified
properties, the absolute difference between the results of the original and
transformed program is less than or equal to � with probability at least p.” The
developer provides the numerical quantities � and p. Two common special cases
of these assertions consider only the magnitude of numerical error (when p = 1)
and the frequency of producing an incorrect result (when � = 0).

The way we defined the specifications for each kernel (i.e., the ranges in the input
specifications and thresholds in the output specifications) connects the local error on
the kernel level with the global error at the program level. Sensitivity profiling can
help derive the specifications. For the example from the data presented in Fig. 7.3,
a sensitivity profiler can infer the empirical relationship between the failure rate of
the kernel computation and the program’s accuracy metric (e.g., PSNR for images).
Then, the acceptable reliability of the kernel is chosen to satisfy the end-to-end
metric. We discussed how to use sensitivity profiling to derive specifications in [27,
Section 2] and [28].

In the rest of this chapter, we present the main components of the two flavors of
accuracy-aware optimization. We will show how to do an end-to-end profiling-based
compilation that treats programs as a single black box. We will then show how to
analyze kernel computations with analytical accuracy and performance models.

7.3 Case Study 1: Profile-Based Optimization

This case study presents a profiling-driven optimization framework SpeedPress [6,
7, 29] that optimizes programs using loop perforation (an accuracy-aware transfor-
mation that skips loop iterations). Sensitivity profiling is a dynamic program analysis
that identifies program locations (in this case loops) where an approximation
can be applied. A developer provides to SpeedPress the original application, a
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set of representative inputs, and an accuracy specification. SpeedPress automates
optimizations in three steps:

1. It performs standard performance profiling to find loops in which the program
spends the most time. Those loops, if perforated, are most likely to make the
program faster.

2. It finds the set of time-consuming loops that can be successfully perforated (i.e.,
they are faster, have small accuracy loss, and do not exhibit critical errors).
Specifically, it generates candidate approximate programs and checks if they
satisfy the developer’s accuracy specification. SpeedPress uses loop perforation
as its transformation—for each loop it can control the fraction of loop iterations
that can be skipped.

3. It perforates multiple loops at the same time and constructs a Pareto-optimal
tradeoff curve, which contains the approximate programs that exhibit the most
profitable tradeoffs between performance and accuracy.

The first two steps identify potentially profitable approximation knobs—parameters
of perforated loops that we can vary to get different accuracy/performance tradeoffs.
The last step performs algorithmic autotuning to identify the best configurations of
approximation knobs.

7.3.1 Loop Perforation Transformation

SpeedPress implements the loop perforation transformation within the LLVM
compiler framework [30]. The perforation pass works with any loop that the existing
LLVM loop canonicalization pass, loop-simplify, can convert into the following
form:

for (i = 0; i < M; i++) { ... }

In this form, the loop has a unique induction variable (in the code above, i)
initialized to 0 and incremented by 1 on every iteration, with the loop terminating
when the induction variable i exceeds the bound (in the code above, M). The class
of loops that LLVM can convert into this form includes, for example, for loops that
initialize an induction variable to an arbitrary initial value, increment the induction
variable by an arbitrary constant value on each iteration, and terminate when the
induction variable exceeds an arbitrary bound.

The loop perforation transformation takes as a parameter a loop perforation rate
r . It is the approximation knob that represents the expected percentage of loop
iterations to skip. Interleaving perforation transforms the loop to perform every nth
iteration (here the perforation rate is r = 1− 1/n). Conceptually, the perforated
computation looks like

for (i = 0; i < M; i += n) { ... }
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In addition to interleaving perforation, SpeedPress can also apply other types
of perforation. Truncation perforation skips a contiguous sequence of iterations
at either the beginning or the end of the loop. For example, it can replace the
loop condition i < M with i < M/n. Random perforation randomly skips loop
iterations. Perforated computations can also skip only one out of n iterations. Our
previous work [29] presents a detailed treatment of how to implement various loop
perforation strategies.

7.3.2 Sensitivity Profiling Algorithm

The loop perforation space exploration algorithm takes as input an application, an
accuracy specification for that application, and a set of training inputs. It can also
take the set of allowable perforation rates to bound the search space (e.g., skipping
a half, a quarter, or three quarters of iterations). The algorithm produces a set S of
loops to perforate. Each element of S contains the speedup, accuracy loss, and the
configuration of perforated loops.

7.3.2.1 Sensitivity Profiling for Individual Loops

The exploration algorithm (presented initially in [29] and [7]) starts with a set of
candidate loops. The algorithm can be configured to consider only loops that execute
for more than a certain percentage of the execution time. In general, perforating
a candidate loop may cause the program to crash, generate unacceptable output,
produce an infinite loop, or decrease its performance. Algorithm in Fig. 7.4 finds
and removes such critical loops from the set of candidate loops. The algorithm
perforates each loop in turn, using each of the specified perforation rates, and then
runs the perforated program on the training inputs.

The sensitivity profiling algorithm filters out a loop if its perforation (1) fails to
improve the performance as measured by the speedup s, which is the execution
time of the perforated application divided by the execution time of the original
unperforated program running on the same input, (2) causes the application to
exceed the sensitivity bound b, or (3) introduces memory errors (such as out-of-
bounds reads or writes, reads to uninitialized memory, memory leaks, double frees,
etc.). If a memory error causes the execution to crash on some input t , its sensitivity
at is∞. Since testing for some errors is expensive (and various other checks can be
added to the one we used here), therefore, to reduce profiling time, they should be
checked only if the loop is determined to be a promising candidate for perforation.
The result of sensitivity profiling is the set of perforatable loops S with different
tradeoff points. Each loop (with its body) specifies one approximate kernel.

A tradeoff point is a triple (spd, acc, config), which specifies the performance
and accuracy of the configuration on specified inputs. For sensitivity profiling of
individual loops, the configuration config = 〈l, r〉 specifies the perforation of
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Fig. 7.4 Sensitivity profiling finds the set of perforatable loops S in application A given
representative inputs I , accuracy metric Q, and accuracy goal b

the loop l at rate r . The accuracy and performance can be numerical values (if
the optimization does an empirical evaluation) or symbolic expressions (if the
optimization does static analysis, as in the next section).

7.3.2.2 Perforation Space Exploration

To navigate the space of approximate programs, we can use various search
algorithms. The optimization problem at hand—maximizing performance subject
to an accuracy constraint on a finite set of approximation configurations and
representative inputs—is a combinatorial optimization problem reminiscent of the
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well-known Knapsack problem. The configuration of the full program config ∈
L → R is a mapping from loop identifiers (l ∈ L) to their perforation rates (r ∈ R),
e.g., config = {〈l1, r1〉, . . . , 〈ln, rn〉}. The search space is a set of all such mappings,
L → R. If a loop identifier is not in the domain, it will not be perforated. The
original program’s configuration (∅) is the one assumed to have no accuracy loss
and no execution errors. For the representative inputs i1, . . . , in, we can describe the
optimization problem as follows:

Minimize : 1
n

∑n
k=1 TIME(A, ik, config)

Constraints : 1
n

∑n
k=1 Q

(
OUTABSTR(A, ik,∅), OUTABSTR(A, ik, config)

) ≤ b

⋃n
k=1 ERRORS(A, ik, config) = ∅

V ariables : config ∈ L→ R

The first constraint is accuracy constraint. The second constraint is
safety constraint. If we want a stricter accuracy test, which ensures the
maximum error is below the bound b, we can use the constraint of the form∧

k Q(OUTABSTR(A, ik, config), OUTABSTR(A, ik, config)) ≤ b. The set of
possible errors in the safety constraint can be obtained from either static or dynamic
program analysis. The safety constraint can be relaxed to be relative if the original
program has non-critical errors unrelated to approximation, by making the set of
the approximate program’s observed errors be a subset of the set of errors observed
in the original program.

We can implement the solver for this optimization problem by following the pat-
tern of Algorithm in Fig. 7.4. Given a search/autotuning algorithm (which finds the
next candidate in the search space), developing the optimizer is straightforward. For
each candidate perforation, our optimizer (1) transforms the program—perforates
the loops suggested by the search algorithm, (2) runs the sensitivity profiling on
the perforated program for all inputs, and (3) if the quality loss is below the
threshold, but the performance is improved, and there are no runtime errors, adds
the configuration to the set of profitable approximate programs. To save time, like
in Algorithm in Fig. 7.4, the safety checks can be split into inexpensive ones, which
can be done before or together with running the program (e.g., program’s execution
status check or a type analysis), expensive ones (e.g., finding latent memory errors)
that should run only for otherwise acceptable candidate programs.

Some choices of search algorithm include greedy (explored in [6]), exhaustive
(explored in [7]), exhaustive with pruning (which does not explore loops/rates if
perforating a subset is already causing unacceptable result), or a composite genetic
algorithm supported by a generic autotuner [31] (explored in [32]). Exhaustive
approach is feasible for applications that spend the majority of their time in
relatively few loops. If the application has enough loops to make exhaustive
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exploration infeasible, then greedy or hybrid heuristic approaches are possible. In all
cases, these algorithms will execute the candidate program on representative inputs.

We use the results of exploration to compute the set of Pareto-optimal perfo-
rations in the induced performance vs. accuracy tradeoff space. A perforation is
Pareto-optimal if there is no other perforation that provides both better performance
and better accuracy. A user can then select a sensitivity bound b∗ to obtain the
Pareto-optimal perforated program whose sensitivity is the closest below b∗ and
gives the maximum speedup.

7.3.2.3 Construction of Pareto Sets

We will now formalize the construction of Pareto sets (also known as Pareto
frontiers or Pareto curves in a two-dimensional tradeoff space). All possible tradeoff
points for a program comprise the tradeoff space. To compare tradeoff points, we
define a dominance relation (�): a point s1 = (spd1, acc1, c1) is dominated by a
point s2 = (spd2, acc2, c2) if and only if it has both lower accuracy and worse
performance. Formally, s1 � s2 iff spd1 ≤ spd2 and acc1 ≤ acc2. We define strict
dominance analogously: s1 ≺ s2 iff spd1 < spd2 and acc1 ≤ acc2, or spd1 ≤ spd2
and acc1 < acc2, and denote its negation as ⊀. We can describe the optimal points
in a tradeoff space via Pareto sets. A Pareto set is a subset of a set S that contains
only non-dominated points:

PS (S) = { s | s ∈ S ∧ ∀s′ ∈ S . s ⊀ s′ } (7.1)

One can easily turn this definition into an algorithm (e.g., as the one given in Geilen
et al. [33]).

7.3.3 Perforating a Video Encoder

The x264 program uses H.264 encoding algorithm to compress raw videos from
cameras. Its output is a compressed video. We can define an output abstraction
(o) that characterizes output quality with two components: (1) the peak signal-to-
noise ratio (PSNR), which measures the quality of the encoded video relative to the
original, unencoded video, as o1 and (2) the bitrate, which measures the compression
achieved by the encoder as o2. We defined the accuracy metric to quantify the
quality loss as a distortion function Qdist(o, ô) (Sect. 7.2) that weighs equally the
relative difference in PSNR and bitrate of the original and perforated programs. If
the reference decoder fails to parse the encoded video during exploration, we record
the quality loss of 100% and reject the candidate perforation.

We selected representative inputs as follows: since the original benchmark suite
from which we obtained the program (PARSEC [34]) contains only a single video,
we augmented the input set with standard test videos that are used by developers of



7 Accuracy-Aware Compilers 191

software that manipulates video from xiph.org [35]. We selected 16 videos in total:
we used four for tuning and the remaining 12 to test the approximation.

To start sensitivity profiling, we considered the loops that contribute at least 1%
of the executed instructions (identified by performance profiling). We specified a
sensitivity bound b of 0.1 (representing 10%). We instructed SpeedPress to perforate
loops with interleaving perforation, which skips every other iteration. We applied
four different perforation rates—0.25 (skip a quarter of iterations), 0.5 (skip a half of
iterations), 0.75 (skip three quarters of iterations), and execute a single loop iteration
(skip all iterations after the first). We performed all of our runs on eight Intel Xeon
X5460 3.1 GHz with 8 GB of RAM running Linux.

Figure 7.5 presents the sensitivity profiling results for x264. Out of top 25 loops,
SpeedPress identified six that (when individually perforated) improve program per-
formance, while producing acceptably accurate result. The successfully perforated
loops are part of motion estimation. Motion estimation performs a heuristic search
to find similar regions in neighboring frames, so that they can be better compressed.
Perforating these loops reduces the quality of the heuristic search, but that reflects
only slightly on the final output (the reduced quality was more due to an increased
file size than reduced PSNR).

The top two perforated loops in the x264 execution both occur in the
pixel_satd_wxh(), which computes a similarity metric between two blocks
of pixels. Specifically, it takes the difference of two regions of pixels, performs
several Hadamard transforms on 4 × 4 subregions, and then computes the sum of
the absolute values of the transform coefficients. Perforation reduces the number of
pixels that are being compared.

Figure 7.6 presents the results of exhaustive exploration for x264. The graphs
plot a single point for each explored perforation configuration. The Y coordinate
of the point is the mean speedup of the perforation over all profiling inputs (higher
is better). The X coordinate is the corresponding accuracy metric—the percentage
quality loss of the perforation (lower is better). The Pareto set comprises the
points connected by the solid green line— these are the best accuracy/performance
tradeoffs that one can obtain with applied perforations. We can see that the speedup
of the program is above 3x for the bound of 10% quality loss. Running the perforated
programs on the held-out inputs shows similar performance improvements, which
indicates that the perforation benefits are not overfitting to the profiled inputs.

Fig. 7.5 Results of
sensitivity profiling of x264
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Fig. 7.6 x264 Tradeoff space
and Pareto set
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7.3.4 Discussion

We attribute the success of loop perforation to transform various programs without
a major accuracy loss to three main factors. The first reason is that it targets com-
putational patterns that perform already approximate and heuristic computations—
enumerating the search space, computing search metrics (which select desirable
elements, filter out undesirable, or direct a search algorithm to stop), running Monte
Carlo simulations, and running iterative improvement loops (e.g., searching for a
fixed-point solution). We discuss these patterns in greater detail in [7].

The second reason is that most of the errors produced by approximating kernels
are small. For instance, in the video encoder, most pixels of the frames produced
by the original and perforated codes will be different, but only a small fraction will
have a difference greater than 5%. Inspecting the perforatable computations reveals
that many compute reductions (sums, averages, or minimums/maximums)—these
computations are resilient to small changes to its elements. Chippa et al. [26] present
another discussion of general resilience patterns.

The third reason is that some kernel errors can be compensated by the following
computation—either by reducing the error of approximation, e.g., by using a
negative-feedback control system, or by computational patterns that select only a
subset of close approximate values. For instance, when returning the most desirable
element, the approximate desirability score for non-top element is irrelevant, and
often when the top element is not selected, other selected elements will still have
high desirability.

Safety The criticality test we presented here is a dynamic program analysis. It can
guarantee the absence of critical errors such as crashes only on tested inputs. To
prove the absence of errors caused by approximation, one needs to resort to static
analysis, e.g., approximate types [22, 36] or relational reasoning [37]. Some of these
(e.g., types) can be applied before transformations to reduce the search space a
priori. More time-consuming analyses should be applied only if the perforation is
deemed profitable, to save the search time.
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Accuracy The worst-case analysis of approximations is often too conservative and
fails to identify any perforation opportunity. Instead, a more productive way to think
about reasoning about the accuracy of approximation is by complementing worst-
case with average-case (probabilistic) reasoning. The accuracy estimation provided
by the criticality analysis is valid only if the inputs in the program deployment are
sampled from the same distribution as in the profiling. Static probabilistic analysis
of approximations is an interesting alternative (e.g. see [8] for the analysis of loop
perforation).

Extensions Over the years, the researchers proposed various refinements of loop
perforation for different domains. For instance, it has been used in computer
graphics [38], neural networks [39], GPU kernels [40], and adaptive approxima-
tion [41, 42]. For instance, ApproxTuner shows how to extend approximation tuning
for heterogeneous systems to three phases—development-time, install-time, and
run-time [32].

7.4 Case Study 2: Chisel

Approximate hardware devices provide operations that may produce less accurate
or incorrect results to reduce energy consumption (e.g., [43–45]). This hardware is
particularly suitable to execute applications whose algorithms are inherently tolerant
to inaccuracies in their data and the majority of the computation is performed in
several approximate kernels.

This section presents Chisel, an optimization framework that automatically
selects approximate instructions and data that may be stored in approximate
memory, given the exact kernel computation and the associated reliability and/or
accuracy specification [27]. Chisel reduces the effort required to develop efficient
approximate computations and enhance their portability. Figure 7.7 presents an
overview of Chisel. We next describe the inputs that the developer and hardware
designer provide.

Exact Program A Chisel program consists of a kernel function written in the
Rely base language [46] (which is a simple imperative language with control-flow
constructs and arrays) and code written in an implementation language (such as
C) that calls the kernel. The kernel function can compute the return value but
may also write computed values into array parameters passed by reference into the
kernel from the outer C code. Chisel transforms the kernel function according to the
developer’s specification.

Kernel’s Reliability and Accuracy Specifications Reliability specifications of the
form <r*R(x1, ..., xn)> are integrated into the type signature of the kernel.
Here r specifies the probability that the kernel (in spite of unreliable hardware
operations) computes the value correctly. The term R(x1, ..., xn) is a joint
reliability factor that specifies the probability that x1,...,xn all have correct
values at the start of the kernel. In the following specification, for example,
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Fig. 7.7 Chisel overview

int <0.99 * R(x)> f(int[] <0.98*R(x)> x);

the return value has reliability at least .99 times the reliability of the input x; when
f returns, the probability that all elements in the array x (passed by reference into
f) have the correct value is at least .98 times the reliability of x at the start of f.

Chisel also supports combined reliability and accuracy specifications of the
following form (these specifications are relational in that they specify the combined
accuracy and reliability with respect to the fully accurate exact computation):

<d >= �f, r*R(d1 >= �x1, ..., dn >= �xn)> f( ... )

Here d is a maximum acceptable absolute difference between the approximate and
exact result values, r is the probability that the kernel computes a value (�f) within
d of the exact value, and the term R(d1 >= �x1, ..., dn >= �xn) is a
joint reliability factor that specifies the probability that each xi is within distance
di of the exact value at the start of the computation. If r=1, then the specification
is a pure accuracy specification; if d=0 and all the di=0, then it is a pure reliability
specification. We discussed accuracy analysis in [27]. The values for all d and r
bounds can be selected to connect with end-to-end accuracy metric by mathematical
derivation [27] or sensitivity profiling [27, 28].
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Typical Program Inputs A developer provides a set of typical inputs that Chisel
uses to estimate the energy savings of approximate computations. In addition,
they can help developers derive the accuracy and reliability specification through
sensitivity profiling.

Approximate Hardware Specifications Figure 7.8 presents the model of approx-
imate hardware, which consists of approximate ALU, main memory, and cache
memory. Chisel works with a hardware specification provided by the designers of
the approximate hardware platform [22, 24]. To automatically optimize the imple-
mentation of the computation, the optimization algorithm requires a specification of
approximate components.

The approximate hardware specification consists of:

• Operation and Memory Accuracy/Reliability. The hardware specification
identifies (1) approximate arithmetic operations and (2) the approximate regions
of the main and cache memories. The specification contains the reliability, ρop,
and the accuracy loss, δop, of each arithmetic operation. It also contains the
probability that read and write operations to approximate main memory and
cache complete successfully.

• Energy Model Parameters. To compute the savings associated with selecting
approximate arithmetic operation, the energy model specifies the expected
energy savings of executing an approximate version, αop (as a percentage
of the energy of the exact version). To compute the savings associated with
allocating data in approximate memory, the energy model specifies the expected
energy savings for memory cells, αmem, and cache, αcache. To compute system
energy savings, the energy model also provides (1) the specification of the
relative portion of the system energy consumed by the CPU versus memory,
(2) the relative portion of the CPU energy consumed by the ALU, cache, and
other on-chip resources, and (3) the ratio of the average energy consumption
of floating-point instructions and other non-arithmetic instructions relative to
integer instructions.

MemoryCPU

ALU

Registers Cache

ApproximateExact

Fig. 7.8 Model of approximate hardware, with exact (blue) and approximate (orange) components
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7.4.1 Chisel’s Optimization Algorithm

Chisel’s optimization algorithm selects approximate instructions and variables
allocated in approximate memories. Chisel’s optimization algorithm uses program
analysis to reduce the problem of selecting approximate operations and variables to
an integer linear programming (ILP) problem. Importantly, it does not need to run
the approximated programs, which is especially important for fine-grained approxi-
mations, that may cause a large tradeoff space. Chisel performs the following main
steps:

• Specify Decision Variables. Chisel represents the choice whether to approxi-
mate each arithmetic operation or a variable in a kernel as one decision variable.
Recall that the instructions in Chisel’s language have a label (which specifies that
an instruction can be either exact or approximate).

• Compute Reliability and Accuracy Constraints. Chisel generates reliability
and accuracy constraints via a static precondition generator analysis. In general,
a precondition generator Cψ operates backward and is often used in program
verification. It takes as input a predicate Qpost and the program statements
〈S1, . . . , Sn〉. It produces a predicate Qpre = Cψ(〈S1, . . . , Sn〉,Qpost), such that
if Qpre is valid before the execution of the kernel, then Qpost will be valid at the
end of the execution.

The predicates Qpost for the kernel come from the function specifications,
which can state that, e.g., the reliability of the kernel’s result should be greater
than 0.99*R(x). The analysis starts by constructing the corresponding predicate
Qpost := 0.99*R(x) ≤ R(result). The analysis transforms each such
predicate, operating backward by analyzing the statements from Sn to S1 recur-
sively, i.e., Qpre := Cψ(〈S1, . . . , Sn−1〉,Cψ(〈Sn〉,Qpost)). Chisel’s reliability
and accuracy analyses produce predicates Qpre, which are parameterized by the
instruction and variable labels. For any particular set of labels, the predicates
Qpre are valid for all inputs specified in the kernel’s input specification.

• Compute Energy Savings Objective. Chisel generates the energy savings
objective using a dynamic program analysis. Sect. 7.4.6 presents how Chisel
constructs an estimate of the savings (as the function of the decision variables)
from the traces of the kernel when executed on representative inputs.

Chisel dispatches the generated ILP problem to an off-the-shelf solver, which
returns the labels of instructions and variables that maximize savings. Chisel uses
these labels to generate the approximate kernel.

7.4.2 Intermediate Language

We will consider a simple intermediate language that operates on numerical data.
To enable optimization with approximate instructions and data, we augment our
program representation to create an intermediate representation that includes labels,
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i I :: r init n r op r r r1 load r2 store r1 r2

rval loada rarr ridx storea rarr ridx rval return rret

r op r r

s S :: i s;s if rcond sthen selse

Fig. 7.9 Chisel’s intermediate language

where each label � ∈ L is uniquely associated with an instruction or a program
variable. Labels enable Chisel to separately mark each instruction and variable as
either exact or approximate.

Syntax Figure 7.9 presents the syntax of the intermediate language. Each instruc-
tion i ∈ I is either an ALU/FPU arithmetic operation (such as add, multiply, and
compare), an initialization that loads a constant, or a load/store from memory for
scalars (load and store) and for arrays (loada and storea). A statement in
this language can be a labeled assembly instruction, a sequence of statements, or
an intermediate conditional statement, which, based on the result of the register
rcond, continues the execution of the statements in the then or else branches.
The intermediate language has only a structured control-flow and no stray jmp

instructions.
We augment each arithmetic instruction to have a label � ∈ L to denote

whether an instruction is exact or approximate. The label allows us to specify the
configuration. The finite map χ ∈ V → L maps each variable name in the program
to a unique label.

Configurations We define a configuration θ ∈ � = L → K as a finite map
from labels to exact or precise kind of each of the program’s instructions and
variables. The set of configurations denotes all possible optimized programs that
Chisel can generate. Any element of this set represents one approximate version of
the program. An instruction or a variable is of exact kind if θ(�) = 0 or approximate
kind if θ(�) = 1.

7.4.3 Reliability Predicates

Chisel’s generated preconditions are reliability predicates that characterize the
reliability of an approximate program. We adapt the reliability definitions from [46]
for Chisel’s configurable assembly language kernels. A reliability predicate P has
the following form:

P := Rf ≤ Rf | P ∧ P | True | False

Rf := ρ | ρ� | R(O) | Rf · Rf
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Specifically, a predicate is either a conjunction of predicates or a comparison
between reliability factors, Rf . A reliability factor has multiple forms:

• Constant. A real number, ρ ∈ [0, 1], represents the probability that an
approximate instruction produces a correct result. The analyses will calculate
the constants ρ using the elements of the approximate hardware specification ψ .

• Labeled reliability. A term ρ� represents the reliability of a labeled instruction
that can be either exact or approximate. The label � helps encode the choice
between the exact and approximate versions of an instruction: if θ(�) = 0
(exact), this term will have the value 1 (instructions always produce a correct
result); if θ(�) = 1 (approximate), the term will have the value ρ. We remark the
intentional notational similarity of ρ� with numerical exponentiation. When we
write a reliability of the (syntactic) form ρ�, we will interpret it as ρθ(�).

• Joint Reliability Factor. A term R(O) represents probability that all registers
and variables in the set O ⊆ R ∪ V have the same value in the exact and the
approximate executions. This term abstracts the probability that the approximate
execution’s environment has exact values of the operands from which the
remaining execution can produce the exact result.

• Product of Reliability Factors. This term combines the probability that the
instructions produce correct results and the initial program environments have
the exact value of the operands.

This definition of reliability predicates is sufficient for expressing properties
about error frequency. Before we define the analysis, let us illustrate the intuition
behind how we intend to use these predicates:

Example 7.1 (Reliability Factor) Consider the predicate 0.9 ≤ 0.99� with relia-
bility factor. Given a configuration θ , we can represent this predicate as 0.9 ≤ 1
(if θ(�) = 0) or 0.9 ≤ 0.99 (if θ(�) = 1). We can succinctly rewrite these two
predicates over reals as 0.9 ≤ 0.99θ(�).

Example 7.2 (Joint Reliability Factor) A predicate 0.9 ≤ R({x}) bounds the
probability that the variable x in the approximate execution has the same value as in
the exact execution (at the same program point). Chisel calculates a lower bound on
this probability, which is much easier to compute than the exact probability R({x}).

7.4.4 Reliability Constraint Construction

Chisel’s reliability constraint generator operates as a precondition generator. Given
a postcondition predicate, Chisel’s reliability precondition generator produces a
precondition that, when true before the execution of the program, ensures that
the postcondition is true after. In other words, the precondition, program, and
postcondition satisfy the reliability transformer relation we defined in the previous
section. The reliability precondition generator is a function C ∈ S × P → P that
takes as inputs an instruction and a postcondition and produces a precondition as
output.
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7.4.4.1 Initial Postcondition

The analysis starts from the return instruction (the last instruction in Chisel’s
kernel). Recall that the specification of reliability of the function’s output has
the form int <rspec*R(v1,...,vn)> f(int v1, ..., int vn), where rspec

is the numerical constant and v1,...,vn are the function’s parameters. The
analysis represents this specification as the reliability factor ρspec · R(Vspec), where
Vspec ⊆ {v1, . . . , vn} is the set that contains the function inputs in the specification’s
reliability factor.

The analysis of the return instruction starts from the default initial postcondition
Q0 = True and constructs the following precondition:

Cψ(return rret, Q0) = ρspec · R(Vspec) ≤ R({rret}) ∧ Q0

This predicate states that the probability that the return register rret contains the
correct output at the end of the kernel function is greater than the probability that the
inputs of the function had correct values at the beginning of the kernel execution,
multiplied by the constant reliability degradation ρspec.

Example 7.3 (Analysis of a Function Returning Constant) We will analyze the
function returning a constant written in the Rely language: int<0.99> three()

{ return 3; } The compiler generates the two assembly instructions r0 = init

3; return r0;.
The analysis constructs the following precondition for the return instruction:
0.99 · R(∅) ≤ R({r0}). The left side of the inequality comes from the function
specification (and ∅ indicates an empty set, i.e., no variables in the specifications).
The right-hand side of the inequality is the result of the rule Cψ (return r0, True).

7.4.4.2 Precondition Generator for Statements

Initialization and Sequence The following equations present the rules for initial-
izing a register with a constant and a sequence of instructions:

Cψ(r = init n, Q) = Q [R(X)/R({r} ∪X) ]
Cψ(s1;s2, Q) = Cψ(s1, Cψ(s2, Q) )

The initialization rule removes the occurrence of the register r in the joint
reliability factor because its previous value is not relevant for the reliability of
the kernel’s outputs. Specifically, the substitution Q [R(X)/R({r} ∪ X) ] matches
all occurrences of the destination register r in a reliability term that occur in the
predicate Q and removes them (by leaving only the remainder set X).

The sequence rule first computes the precondition for the second instruction (s2)
and passes it as the postcondition to the analysis of the first instruction (s1).
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Example 7.4 (Analysis of a Function Returning Constant) We return to the function
from Example 7.3 and analyze the instruction r1 = init 3; and the postcondition
0.99 · R(∅) ≤ R({r1}) (that the analysis of the return instruction produced). Then,
the precondition generator uses the rules for sequence and initialization to generate
the function precondition 0.99 · R(∅) ≤ R(∅).

ALU/FPU The next equation presents the generator rule for ALU/FPU operations
(op ∈ {add, sub,mul, div}):

Cψ(r = op� r1 r2, Q) = Q [ ρ�
op · R({r1, r2} ∪X))/R({r} ∪X) ]

The rule works by substituting the reliability of the destination register r with the
reliability of its operands and the reliability of the operation itself. The substitution
Q[R({r1, r2} ∪ X)/R({r} ∪ X)] matches all occurrences of the destination register
r in a reliability factor inside the predicate Q and replaces them with the input
registers, r1 and r2. The substitution also multiplies in the factor ρ�

op, which is the
reliability of the operation ρop from ψ as a function of its label’s configuration.

Example 7.5 (Analysis of Addition) We analyze the statement r = add�r1, r2, with
the postcondition Q := 0.99 ≤ R({r, z}) and the hardware configuration ψ .
First, the analysis obtains the reliability of the addition operator ρadd =
πop(ψ)(add). Second, the analysis uses the instruction’s label � to represent
reliability choice, ρ�

add. Third, the analysis generates the new reliability factor
R({r1, r2, z}) by substituting r with {r1, r2}. Finally, the analysis substitutes
R({r, z}) with ρ�

add · R({r1, r2, z}) in Q to produce the new precondition
0.99 ≤ ρ�

add · R({r1, r2, z}).
Scalar Load/Store The rules for loads and stores from potentially approximate
memory are:

Cψ(r1 = load r2, Q) = Q [ ρχ(η(r2))
ld · R({η(r2)} ∪X)/R({r1} ∪X) ]

Cψ(store r1 r2, Q) = Q [ ρχ(η(r1))
st · R({r2} ∪X)/R({η(r1)} ∪X) ]

These rules define the semantics of strong updates for scalar program variables.
They use the auxiliary register mapping generated by the compiler (η ∈ R → V )
that maps the address operand register to the program variable that is read or written.
The minimum reliability of a load from a potentially approximate variable, ρld, is
equal to the probability that the read from memory, the write to a cache location,
and the read from that cache location all execute correctly. The reliability of a store
to a potentially approximate variable, ρst, assuming a write-through cache, is equal
to the reliability of a memory store.

Example 7.6 (Analysis of Scalar Store) We analyze the statement store r1, r2
with the postcondition Q := 0.99 ≤ R({x}) and the hardware configuration ψ . The
statement stores the value of the register r2 to the location in memory referred by
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the register r1. We consider the case when r1 holds the location of the variable x,
i.e., η(r1) = x.
First, the analysis computes the constant ρ from ψ . Second, the analysis identifies
that the register r1 holds the address of x (using the map η) and finds the label � that
corresponds to the variable x (using the map χ ). Third, the analysis generates the
new reliability factor R({r2}) by substituting x with r2. Finally, it substitutes R({x})
with ρ� · R({r2}) in Q to produce the precondition 0.99 ≤ ρ� · R({r2}).
Array Load/Store The reliability constraint generation rule for stores to scalar
variables provides a semantics for strong updates to memory. Updates to arrays,
however, are weak in that a variable refers to multiple memory locations. The
following reliability constraint generation rule defines the analysis for arrays:

Cψ(rval = loada rarr ridx, Q) = Q [ ρχ(η(rarr))
ld · R({η(rarr), ridx} ∪X)/R({rval} ∪X) ]

Cψ(storea rarr ridx rval, Q) = Q [ ρχ(η(rarr))
st · R({ridx, rval} ∪ {η(rarr)} ∪X) /

R({η(rarr))} ∪X) ]

The primary difference between this rule and that for strong updates is that the
reliability of the array variable is included in the resulting reliability term (after
substitution). Since the function η(r1) points to the same variable name for all
elements of the array, this rule effectively treats updates to the potentially different
array elements as an update to the single (scalar) variable.

We can further expand these rules with the additional array safety constraints—
we can enforce that the index variable computations are correct and the array
pointer is stored in reliable memory. We do it simply by conjuncting the constraint
R({rarr, ridx}) = 1 with the previous constraints.

Conditionals The analysis of conditionals relies on the fact that the Rely base
language has structured control flow and therefore the intermediate language
keeps the conditional structure. The following reliability constraint generation rule
implements the analysis for conditionals:

Cψ(if rc s′ s′′,Q) =
let {o1, . . . , ok} = modified(s′) ∪modified(s′′)

and Q∗ = Q [R({rc, o1} ∪X)/R({o1} ∪X) ] . . . [R({rc, ok} ∪X)/R({ok} ∪X)] in
Cψ( s′,Q∗ ) ∧ Cψ( s′′,Q∗ )

This rule uses the helper function modified ∈ Instr → O, which denotes the
set of operands (variables and registers) that are modified within a loop branch.
To encode the probability that an incorrectly computed conditional may cause
an incorrect value in each such operand, it adds the reliability of the conditional
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expression (rc) to the joint reliability term containing the operand in the predicate
Q. The final predicate is the conjunction of the predicates computed for each of the
branches.

Example 7.7 (Analysis of Conditionals) Consider if rc {r2 = add�1 r1 1} {r3 =
sub�2 r1 1} and the postcondition Q := 0.9 ≤ R({r2, r3}). The analysis first
finds that r2 and r3 are the operands modified in the loop. The predicate for the
then branch is Qthen := 0.9 ≤ ρ

�1+ · R({rc, r1, r3}) and for the else branch is

Qelse := 0.9 ≤ ρ
�2− · R({rc, r1, r2}). The final predicate is therefore Qthen ∧Qelse.

Bounded Loops Bounded loops are translated to the intermediate language as a
sequence of conditional statements. Then, the analysis uses the rule for conditionals
that we previously presented to compute the reliability. Chisel does not handle Rely
programs with unbounded loops. We do not support unbounded loops. In principle,
one can support these loops in the similar way to Rely, i.e., assign a zero reliability
to any variable that is written to within the loop [46].

7.4.4.3 Final Precondition

For a given kernel, our analysis computes a precondition that is a conjunction of
predicates of the form

ρspec · R(Vspec) ≤ r(�1, . . . , �n) · R(V ),

where ρspec · R(Vspec) is a reliability factor for a developer-provided specification
of an output and r(�1, . . . , �n) · R(V ) is a lower bound on the output’s reliability
computed by the analysis, parameterized by the labels �1, . . . , �n of the candidate
approximate operations.

Each ρspec is a real-valued constant and each r is, syntactically, a product of a
real-valued constant and labeled reliabilities, i.e.,

r(�1, . . . , �n) = ρ ·�k ρ
�k

k . (7.2)

The product operator iterates over the sequences of instructions that the analysis
traversed. If this precondition is valid for a given kind configuration θ(·), then that
configuration satisfies the developer-provided reliability specification.

Example 7.8 (Analysis of a Function) We consider a simple function, int<0.99

*R(x)> f(int x) { return x+3; }, for which the compiler generates these
assembly instructions:

r0 = init 〈x〉�x; r1 = load r0; r2 = init 3;
r3 = add�+ r1 r2; r4 = mul�∗ r3 r2 ; return r4;

(the operator 〈x〉 denotes the stack offset of the variable x). The configuration θ has
three elements: �+ and �∗ for the arithmetic operators and �x for the parameter x
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(which can be stored in exact or approximate memory). The analysis constructs the
following preconditions for the instructions:

Q1 = Cψ(init r4, True) := 0.99 · R({x}) ≤ R({r3})
Q2 = Cψ(r4 = mul r3 r2, Q1) := 0.99 · R({x}) ≤ ρ

�∗
mul · R({r1, r2})

Q3 = Cψ(r3 = add r1 r2, Q2) := 0.99 · R({x}) ≤ ρ
�+
add · ρ�∗

mul · R({r1, r2})
Q4 = Cψ(r2 = init 3, Q3) := 0.99 · R({x}) ≤ ρ

�+
add · ρ�∗

mul · ρ�x

ld · R({r1})
Q5 = Cψ(r1 = load r0, Q4) := 0.99 · R({x}) ≤ ρ

�+
add · ρ�∗

mul · ρ�x

ld · R({x})
Q6 = Cψ(r0 = init 〈x〉, Q5) := 0.99 · R({x}) ≤ ρ

�+
add · ρ�∗

mul · ρ�x

ld · R({x})

Q6 is the final precondition for the function. This derivation combines the rules for
the instructions we previously described. We note that the analysis of load statement
immediately inserts the variable x in the joint reliability factor (because of the
mapping η(r0) = x), and therefore the subsequent analysis of the instruction r0=
init 〈x〉 does not modify the predicate.

7.4.4.4 Constraint Simplification

The number of constraints that the generator produces can, in principle, grow
exponentially in the number of conditional statements in the program. However,
in practice, the number of constraints can be significantly decreased by using
a simplification of the constraints after each step of the algorithm [46]. Chisel
extends Rely’s simplification procedure, which uses the ordering property of the
joint reliability factors and the subsumption property of the reliability predicates.

Ordering of Joint Reliability Factors Ordering enables comparing two joint
reliability factors by comparing their sets of variables [46, Proposition 1]. This
proposition states that for the two sets of variables V and Vspec,

V ⊆ Vspec ⇒ R(Vspec) ≤ R(V ). (7.3)

Therefore, the reliability of any subset of a set of variables is greater than or equal to
the reliability of the set as a whole. It immediately extends from the sets of variables
to the sets of operands (registers and variables).

Ordering of Labeled Reliabilities Chisel operates on products of labeled reliabil-
ities, which can also be ordered. Specifically, ρ̂

�1
1 · . . . · ρ̂�n

n ≤ ρ
�1
1 · . . . · ρ�m

m if
{�1, . . . , �m} ⊆ {�1, . . . , �n}, and for each �i ∈ {�1, . . . , �n}, either ρ̂i ≤ ρi or ρi

does not show up in the product on the right-hand side (in which case the reliability
is by default equal to one).
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Subsumption The subsumption property (i.e., sound replacement) defines the
condition under which a predicate is trivially satisfied, given another more general
predicate [46, Proposition 2]. Specifically, this proposition states that a predicate
ρ1 · R(V1) ≤ ρ2 · R(V2) subsumes a predicate r ′1 · R(X′1) ≤ ρ′2 · R(V ′2) iff ρ′1 ·
R(V ′1) ≤ ρ1 · R(V1) and ρ2 · R(V2) ≤ ρ′2 · R(V ′2). This proposition follows
immediately from the ordering of joint reliability factors and the ordering of labeled
reliabilities.

7.4.5 Optimization Constraint Construction

When the configuration θ(·) is unknown, the final precondition that Chisel’s
generator produces represents a constraint that lists all approximation choices
represented by θ . Then, each θ(�) is a variable that can be either 0 (reliable)
or 1 (unreliable). The precondition parameterized by θ(·) therefore represents
all approximate versions of the program that satisfy the developer’s reliability
specification. To generate the constraint for the optimization problem, Chisel
analyzes separately the reliability degradation and joint reliability factors in each
conjunct: (1) ρspec ≤ r(�1, . . . , �n) and (2) R(Vspec) ≤ R(V ).

Validity Checking To check the validity of this precondition, we use the ordering
property, from Eq. 7.3. Therefore, Chisel can soundly ensure the validity of each
inequality in the precondition by verifying that (1) ρspec ≤ r(�1, . . . , �n) and
(2) V ⊆ Vspec. Since V and Vspec are not parameterized by the labels �, Chisel
can immediately check if these set inclusion constraints are satisfied.

Constraint Construction After checking the validity of the reliability factors,
Chisel is left with the inequality

ρspec ≤ r(�1, . . . , �n). (7.4)

The denotation of the reliability expression r is ρ · �k ρ
θ(�k)
k . The factor ρ is the

product of all the constant terms. Recall that the denotation of each ρ� from Eq. 7.2
under the configuration θ is ρθ(�), i.e., 1 if θ(�) = 0 or ρ if θ(�) = 1.

Chisel produces a final optimization constraint by taking the logarithm of both
sides of Inequality 7.4:

log(ρspec)− log(ρ) ≤
∑

k

θ(�k) · log(ρk). (7.5)
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The expression on the right side is linear with respect to all labels’ kinds θ(�k).
The reliabilities ρ are constants and their logarithms can be immediately computed.
Each label’s kind can take a value 0 or 1.

7.4.6 Energy Objective Construction

The objective of the optimization is to minimize the energy consumption of the
unreliable computation, as a function of the configuration θ . To approximate this
optimization objective, we consider a set of traces of the original program. We now
define a set of functions that operate on these traces and give an estimate of the
energy consumption of the unreliable program executions. The approximate hard-
ware model presents relative savings of operations and memories (e.g., approximate
instruction saves 20% of the energy of the exact operation), instead of unknown
absolute savings (e.g., approximate instruction consumes 8 pJ instead of 10 pJ).
We next show how the analysis computes the expression for the relative energy
consumption.

We denote the relative energy savings from hardware specification for each
approximate arithmetic operation: αint for integer, αfp for floating-point instruc-
tions), αmem for approximate memory, and αcache for cache regions; the specifi-
cation also contains the relative energy consumption of the system’s components,
denoted as (μCPU , μALU , and μcache), and relative instruction class energy rates
(wfp and woi).

7.4.6.1 Absolute Energy Model

Energy of System We model the energy consumed by the system when executing
a program under configuration θ with the combined energy used by the CPU and
memory: Esys(θ) = ECPU(θ)+ Emem(θ).

Energy of CPU We model the energy consumption of the CPU as the com-
bined energy consumed by the ALU, cache, and the other on-chip components:
ECPU(θ) = EALU(θ)+ Ecache(θ)+ Eother.

Energy of ALU Each instruction in the hardware specification may have a different
energy consumption associated with it. However, for the purposes of our model,
we let Eint, Efp, and Eoi be the average energy consumption (over a set of traces)
of an ALU instruction, an FPU instruction, and other non-arithmetic instructions,
respectively: EALU(θ) = Eint(θ)+ Efp(θ)+ noi · Eoi .

Using the instructions from the traces that represent kernel execution on repre-
sentative inputs, we derive the following sets: IntInst is the set of labels of integer
arithmetic instructions and FPInst is the set of labels of floating-point arithmetic
instructions. For each instruction with a label �, we also let n� denote the number
of times the instruction executes for the set of inputs. Finally, let αint and αfp be the
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average savings (i.e., percentage reduction in energy consumption) from executing
integer and floating-point instructions, respectively. Then, the energy consumption
of integer and floating-point instructions is Eint(θ) = ∑

�∈IntInst
n� ·(1−θ(�)·αint)·Eint

and Efp(θ) = ∑

�∈FPInst
n� ·(1−θ(�)·αfp)·Efp. This model assumes that the instruction

count in the approximate execution is approximately equal to the instruction count
in the exact execution.

Memory Energy We model the energy consumption of the system memory (i.e.,
DRAM) using an estimate of the average energy per second per byte of memory,
Emem. Given the execution time of all kernel invocations, t , the savings associated
with allocating data in approximate memory, αmem, the size of allocated arrays, S�,
and the configurations of array variables in the exact and approximate memories,
θ(�), we model the energy consumption of the memory as Emem(θ) = t · Emem ·∑

�∈ArrParams
S� · (1− θ(�) · αmem).

Cache Memory Energy We model the energy consumption of cache cell, Ecache,
similarly. Let Sc be the size of the cache and αcache the savings of approximate
caches. In addition, we need to specify the strategy for determining the size of
approximate caches. We analyze the strategy that scales the size of approximate
caches proportional to the percentage of the size of the arrays allocated in the
approximate main memory. If cu is the maximum fraction of the approximate cache
lines, the energy consumption of the cache is Ecache(θ) = t · Ecache · Sc · (1 − cu ·∑

� S�θ(�)∑
� S�

· αcache).

7.4.6.2 Relative Energy Model

However, we can use these equations to derive a numerical optimization problem
that instead uses cross-design parameters (such as the relative energy between
instruction classes and the average savings for each instruction) to optimize the
energy consumption of the program relative to an exact configuration of the
program. For each energy consumption modeling function in the previous section,
we introduce a corresponding function that implicitly takes the exact configuration
as its parameter (e.g., Esys, ECPU , Emem).

System Relative Energy The energy model contains a parameter that specifies the
relative portion of energy consumed by the CPU versus memory, μCPU . Using this
parameter, we derive the relative system energy consumption as follows:

μCPU · ECPU(θ)

ECPU
+ (1− μCPU) · Emem(θ)

Emem
.
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CPU Relative Energy The energy model contains a parameter that specifies the
relative portion of energy consumed by the ALU, μALU , cache, μcache, and other
components μother = 1−μALU−μcache. We can then derive the relative CPU energy
consumption similarly to that for the whole system: ECPU (θ)

ECPU
= μALU · EALU(θ)

EALU
+

μcache · Ecache(θ)
Ecache

+ μother.

ALU Relative Energy We apply similar reasoning to derive the relative energy

consumption of the ALU: EALU(θ)
EALU

= μint · Eint(θ)
Eint

+μfp · Efp(θ)

Efp
+μoi. The coefficients

μint, μfp, and μoi are computed from the execution counts of each instruction class
(nint, nfp, and noi) and the relative energy consumption rates of each class with
respect to that of integer instructions (wfp and woi). For example, if we let wfp

be the ratio of energy consumption between floating-point instructions and integer

instructions (i.e., wfp = Efp
Eint ), then μfp = wfp·nfp

nint+wfp·nfp+woi·noi
.

Memory and Cache Relative Energy Applying similar reasoning to the memory
subsystem yields Emem(θ)

Emem
= 1

H
· t ′

t
· ∑

�∈ArrParams
S� · (1− θ(�) · αmem) and Ecache(θ)

Ecache
=

1
H
· t ′

t
· ∑

�∈ArrParams
S� · (1− cu · θ(�) · αcache) , where H =∑

� S� is the total size of

heap data. The execution time ratio t ′/t denotes possibly different execution time of
the approximate program. One can use the results of reliability profiling to estimate
this ratio.

Relative Energy for Multiple Inputs The relative energy consumption for multi-
ple inputs is the average of the relative energy consumption Esys(θ)/Esys for each
input. Since this quantity is a sum of relative energy consumption of the components
(CPU, ALU operations, and memories), the analysis computes and assigns these
average relative energy consumption to each operation and variable label.

7.4.7 Final Optimization Problem Statement

We now state the optimization problem for a kernel computation:

Minimize : μCPU · ECPU(θ)
ECPU

+ (1− μCPU) · Emem(θ)
Emem

Constraints : log(ρspec,i)− log(ρi) ≤∑
k

θ(�ki
) · log(ρki

) ∀i ∈ {1, . . . , c}
∑

k

θ(�ki
) · log(ρki

) = 0 ∀i ∈ {1, . . . , c′}

V ariables : θ(�1), . . . , θ(�n) ∈ {0, 1}
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The decision variables θ(�1), . . . , θ(�n) are the configuration kinds of arithmetic
instructions and array variables. Since they are integers, the optimization problem
belongs to the class of integer linear programs. The index i iterates over all
constraints generated by the reliability and accuracy analyses. The index k iterates
over the sequences of the candidate approximate instructions in the constraints.
There is a possibility to have multiple accuracy and safety constraints, which we
denote with enumerations of i between 1 and c (respectively, c′).

Example 7.9 (Analysis of a Function) Let us return to Example 7.8 and repeat the
instructions:

r0 = init〈x〉; r1 = load r0; r2 = init 3;

r3 = add�+r1 r2; r4 = add�∗r3 r2; return r4;

We have three decision variables, θ(�+), θ(�∗), and θ(�x). The relative energy
savings expression in this case is simple, since only the add and mul instruction
can be approximated (because x is on stack, we can immediately set θ(�x) = 0).
The expression for the relative energy consumption for these two expressions is
c · (1 − αint

2 · (θ(�+) + θ(�∗))). Here, α is the saving of the individual instruction,
obtained from the hardware specification and c = μcpuμalu

nint
ntotal

(the instruction
counts nint = 2 and ntotal = 6 are obtained from the trace). We elided the remaining
terms for heap and cache memory, as they remain constant—although they would
be necessary for estimating the total system energy consumption.

The reliability constraint computed in the previous step is 0.99·R({x}) ≤ ρ
θ(�+)

add ·
ρ

θ(�∗)
mul ·ρθ(�x)

ld ·R({x}). We first ensure that the reliability factors on the left and right
sides match (here, they are both equal R({x})). We then construct the constraint for
the optimization problem by taking the logarithm of both sides of the inequality.
The final optimization problem is

Minimize : c · (1− αint
2 · (θ(�+)+ θ(�∗)))

Constraint : log(0.99) ≤ θ(�+) · ρadd + θ(�∗) · ρmul.
V ariables : θ(�+), θ(�∗)

We can pass this problem to an off-the-shelf ILP solver to get the assignments of
the variables θ(�+) and θ(�∗).

7.4.8 Discussion

Soundness The reliability analysis is sound with respect to the paired execution
semantics of the approximate computation. The soundness argument for the relia-
bility predicates follows from the soundness of Rely [46]. When the configuration
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θ(·) for the instructions is known, the analysis can substitute each θ(�) and check
whether the final precondition is correct, using the same approach as in Rely.

Safety Constraints Some safety constraints can be easily added to the optimiza-
tion problem. For instance, if we want to ensure that array indices are always
correct, then during the analysis of statement x[idx], we may add the constraint
R({idx}) = 1, which would ensure that all the labels of instructions/variables used
to compute idx are marked as reliable. While we could use ILP solvers for linear
constraints, it is an interesting open question how to specify more expressive safety
properties. One possible direction is to consider solving the optimization problems
using an SMT solver [47] to support general first-order logic constraints.

Extending the Languages and/or Error Models We presented a simple language
with a simple error model and a fine instruction-level approximation granularity. The
constraint generator can be straightforwardly extended to a granularity of functions,
where each function has its output specification r ·R({x1, . . . , xn})—the rule for the
reliability of function call will be analogous to the one for binary operators (which
are just functions with two inputs). The original paper discusses the optimization
with functions and some other constructs [27, Section 8].

To reason about more complicated (even arbitrary) error models, one needs
a more expressive verification system. Leto [48] shows how to define richer
error models and automate the computation of the accuracy/safety constraints.
Another interesting direction is support for parallel and distributed applications.
Parallelly shows how to lift the predictive analyses for sequential programs to
support concurrent message-passing ones [49], but performance models in this case
remain an open question. ApproxHPVM [28] shows how to use the kernel-level
specifications and multi-step optimization to optimize deep learning applications on
heterogeneous systems.

Related Approaches Several techniques used mathematical optimization to opti-
mize approximate computations. As a precursor to Chisel, we presented a frame-
work for coarser-grained optimization of functional map-reduce programs using
a combination of linear programming and discretization to get guaranteed near-
optimal solutions [9]. Capri [50] solves an optimization problem with deterministic
or probabilistic constraints, while modeling errors using Bayesian networks. Exist-
ing works also use the constraints to express the error and possible savings of
floating-point computations, e.g., [51, 52].

7.5 A Brief Survey of Approximate Program Analysis and
Optimization Techniques

Approximate computing has flourished in the past decade. Existing surveys,
e.g., [53–55], systematize a large amount of work across the system stack. In
this section, we will only mention a subset of techniques historically relevant for
software-centric compilation and some recent directions.
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Sensitivity Analysis A critical region of program code, when transformed, causes
unacceptable program errors (such as crashing, becoming unresponsive, or pro-
ducing inadequate output). An approximable region of program code, when trans-
formed, only affects the accuracy of the computation.

Testing-based sensitivity analyses can identify critical regions of the program. In
general, dynamic sensitivity analyses transform a program’s code [6], change pro-
gram’s inputs [56], intermediate data [57–59], or change its execution environment.
The analyses reason about the effect of these changes on the program’s output and
classify the code regions accordingly.

The researchers have also proposed techniques for analyzing the worst-case
behavior of numerical computations. The researchers in embedded systems have tra-
ditionally used rounding error analyses of numerical programs to derive the worst-
case error bounds for reduced bit-width floating- or fixed-point computations [60].
Chaudhuri et al. [61] presented a technique for verifying Lipschitz continuity of
approximate computations and bounding the error propagation. Techniques such as
Rosa [62] verify the precision of approximate numerical computation and compute
the bounds on error propagation through nonlinear computation.

Safety Analysis While dynamic sensitivity profiling techniques can help identify
critical parts of the program by finding a single failing execution, they are insuffi-
cient to prove the absence of errors or incorrect outputs. Therefore, researchers have
developed various techniques that let a developer specify important safety property
(such as non-interference of approximate and exact code, pointer safety, or range of
values that the computation produces) and verify that the transformations preserve
these properties.

EnerJ [22] presents an information flow type system that allows the developer
to separate code and data in distinct approximate and exact regions of code.
FlexJava [36] automates a part of approximate operation annotation through type
inference. Carbin et al. [2] present a general framework for reasoning about arbitrary
safety properties (and also worst-case error) of approximate programs. A part of this
analysis has been automated within Simdiff [63] using SMT solvers.

Search for Accuracy–Performance Tradeoffs The researchers have presented
various techniques for exploring accuracy/performance tradeoff space. These tech-
niques typically discretize the input space, by asking a developer to provide repre-
sentative inputs, and discretize the configuration space, by trying the approximation
with a fixed number of values for each knob. The search algorithms execute the
transformed programs for various combinations of the knobs. These combinations
are selected using various heuristic search strategies, such as exhaustive search (with
optional pruning) [3, 7, 13], greedy search [6, 11, 14], genetic search [12, 31, 64, 65],
or stochastic search [15, 66], and leveraging information from sensitivity analy-
sis [67] or static type safety [68]. Alternatively, to improve the accuracy of the
results, some techniques perform on-line recalibration, by occasionally running both
the exact and approximate versions of the subcomputations [11, 69, 70], machine
learning-based models [71–73], or runtime approximation tuning by creating
smaller (canary) inputs [42, 74]. Advanced search approaches will be especially
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important in the context of optimizing multiple software–hardware components in
modern heterogeneous systems [23, 32, 64, 68, 73].
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Chapter 8
Design Space Exploration Tools

Mario Barbareschi, Salvatore Barone, Nicola Mazzocca,
and Alberto Moriconi

8.1 Introduction

Nowadays, the amount of information needed to be processed by computer systems
is quickly becoming unsustainable, since the latter are experimenting an unprece-
dented growth of data to be processed. Indeed, while, on the one hand, these systems
increasingly interact with the physical world and, on the other hand, they process
the large amount of data samples coming from all the various sensing sources. This
is the root cause of the tremendous growth of power consumption of computing
systems. Growth that is increasing year by year so that it is estimated that energy
consumption will exceed the energy production capabilities before 2040 [1].

Therefore, power and energy reduction are critical requirements in the design
of computing systems, especially in pervasive embedded and mobile electronic
devices, where the battery capacity is a limiting factor. Additionally, computation-
ally intensive tasks, such as machine learning applications, have found their way
into these power-limited devices, increasing the need for efficient electronics. In
this perspective, current technologies and design approaches are bound to become
quite soon inadequate to offer suitable solutions to these application requirements;
hence, novel design approaches have to be considered.

One of the most promising solutions is the Approximate Computing (AxC)
design paradigm. It is based on the observation that while performing exact
computations, or maintaining peak-level service performance, may require too many
resources, reduction in energy consumption and performance enhancements can be
achieved by selectively relaxing correctness requirements, hence exposing a certain
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degree of approximation [2]. The scientific literature demonstrated the effectiveness
of imprecise computation for error-resilient applications, for both software and
hardware components implementing inexact algorithms [3, 4].

The AxC leverages the presence of error-tolerant data and algorithms, and the
perceptual limitations of the end-user, to carefully trade accuracy for performance
gains or energy savings. In other words, it exploits the existing gap between the
accuracy level provided by computer systems and the accuracy level effectively
needed by the considered application, or by the end-users, with the latter being
usually far lower than the former.

8.1.1 Fields of Application

A large variety of applications could potentially benefit from AxC: its use is
unavoidable in many scenarios, while the opportunity of using it arises inherently
in many others. Notable examples are floating-point applications, which involve a
certain degree of approximation due to representation errors. Indeed, to produce
acceptable results, computations rarely need to be performed at the maximum
available precision.

The perceptual limitations of humans can be exploited to reduce the storage
requirements [5] or to improve performances in multimedia and signal processing
applications [6, 7]. Furthermore, for several iterative refinement algorithms, running
iterations with reduced precision at intermediate computation can improve perfor-
mances with little or even no effects on the quality of results [8–10]. Moreover, early
loop termination [8, 11], memory accesses skipping [12], or tasks skipping [13] can
alleviate performance bottlenecks.

8.1.2 A Brief Overview of Approximate Computing Techniques

Since a naive approximation approach, such as uniform approximation, is unlikely
to be efficient, different Approximate Computing Techniques (AxCTs) have been
proposed in the scientific literature. Some examples are bit-width optimization, also
known as precision-scaling, Loop Perforation (LP), memoization, and Load Value
Approximation (LVA).

Precision-scaling for input data and intermediate operands has been proposed to
improve efficiency for floating-point, fixed-point, and even integer computations in
many scientific applications [14–18].

The effectiveness of the LP technique, which works by skipping some iterations
of a loop to reduce computational overhead, has been shown by Sidiroglou et al. [11]
for iterative refinement algorithms, search space enumeration, and Monte Carlo
simulations.
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The memoization technique works by storing the results of functions for later
reuse. Keramidas et al. [19] proposed the combined use of AxC and memoization,
to increase the amount of successfully reused values.

The LVA technique has been proposed to mitigate the latency induced by
cache-misses, leveraging the inner nature of applications to estimate values to be
loaded, allowing CPUs and Graphic Processing Units (GPUs) to progress without
stalling [12, 20].

8.1.3 Issues and Open Challenges

Exploiting AxC requires coping with

1. The designation of parts of the considered software or hardware component
which are suitable to be approximate

2. The approach to introduce actual approximation
3. The selection of appropriate error metrics, which generally depend on the

particular application
4. The actual error assessment procedure, to guarantee output quality constraints

are met [3], and finally
5. The Design-Space Exploration (DSE), to select the best approximate configura-

tions among those generated by a certain approximation technique.

As for the first two of the aforementioned issues, pinpointing approximable code
or data portions may require the designer to have deep insights into the application.
Moreover, since a naive approximation approach—such as the uniform one—is
unlikely to be efficient, and since no approach can be universally applied to all
approximable applications, the approximation approach needs to be determined on
a per-application basis by the designer.

As for error assessment, it typically requires the simulation of both exact and
approximate applications, nevertheless Bayesian inference [21, 22] or machine
learning-based approaches [23] have been proposed in the scientific literature.

Finally, concerning DSE, initial approaches either combine multiple design
objectives in a single-objective optimization problem or optimize a single parameter
while keeping the others fixed. Recently published works address the circuit
design problem by using MOP to search for Pareto-optimal approximate circuit
implementations [24]. Unfortunately, such approaches did not focus on complex
systems, rather on arithmetic components, such as adders and multipliers, since they
are building blocks for more complex designs.

In the remainder of this chapter, we discuss the state of the art for AxC automatic
tools. In particular, Sect. 8.2.1 details automatic tools targeting the approximation of
digital circuits, while Sect. 8.2.2 focuses on tools for the approximation of software
applications. Note that we do not aim at a complete survey of the literature, but
at highlighting thought-provoking knowledge in the field. Finally, Sect. 8.3 details
the IDEA, a unified framework that allows automatically exploring the impact of
different approximation techniques on either hardware or software applications,
while facing with the DSE problem as a MOP.
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8.2 Automatic Tools for Approximate Computing

8.2.1 Approximation Tools Targeting Digital Circuits

In this section, AxC automation tools targeting digital circuits, both combinational
and sequential, are discussed, highlighting their main features and the innovative
contributions brought to the scientific literature. Table 8.1 summarizes the discus-
sion, reporting for each different tool, its main characteristics, such as the type of
circuit to which the tool refers, the model with which the circuit is represented, how
the error introduced by the approximation is kept under control, the design space
exploration technique used to find the best configurations, and the target technology
are reported.

8.2.1.1 Power-Aware and Branch-Aware Word-Length Optimization

One of the first attempts to define an automatic methodology for digital circuits
approximation is PowerCutter [17], which focuses on minimizing power consump-
tion by making use of word-length optimization.

The tool needs three inputs: a C/C++ model of the design to be approximated, a
set of error constraints defined on the value of output variables, and a set of ranges
for input variables. Alternatively, an input dataset can be provided by the user so
that input ranges are computed by the tool.

The first stage of the proposed design flow is a static analysis of the given
model, which, in turn, consists of three steps. First, a range analysis is performed:
arithmetic operations are performed on ranges, instead of single values, in order to
gather information about the variability range of intermediate and output variables.
Range information is passed to a precision analyzer, which determines the optimal
number of fractional bits required by each variable. Leveraging range and precision
information, a floating-point to fixed-point conversion is performed. The third step
is cost analysis: operations are ranked based on the amount of time they require and
the number of times they are performed.

Since results provided by static analysis may be too conservative, an offline
dynamic analysis is also performed, in order to further optimize the design. Dynamic
analysis consists of three steps: dynamic range analysis, automatic differentiation,
and branch analysis. The dynamic range analysis is performed in order to determine
whether the floating-point representation may be more effective than the fixed-
point one when dealing with very small values. By making use of user-provided
input ranges or input dataset, the variability range of all variables is tracked to
decide whether to keep the fixed-point representation—adopting a shift to reduce
the required bits—or whether to restore the original floating-point representation.
Dynamic range analysis is also able to detect input patterns, which can be used for
variable-to-constant conversion. Several designs make use of complex functions,
such as trigonometric functions. In order to implement such functions in hardware,
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specific IP-cores are typically used. This may make error analysis cumbersome
because the actual implementation of such IP-cores may be not known. In order to
tackle with this issue, the automatic differentiation technique [33] is used to compute
the sensitivity of inputs and determine their optimal word-length. To further reduce
area requirements, branch analysis is performed: the whole design is split into basic
blocks, each of which with a single entry point and a single exit point. Blocks are
ranked based on their execution frequency, since blocks executed more frequently
may have greater contribution to the error, and precision of variables along less
frequently executed blocks is reduced in order to save area.

The tool produces two outputs: the first is a C/C++ source code in which
each variable is annotated with range and optimal precision, while the second is
a database of statistics that could be used to adapt word-length at runtime using,
for example, FPGA re-configuration features or the clock gating for the ASIC
technology.

In order to evaluate the proposed approach, different designs, such as Discrete
Cosine Transform (DCT) computation blocks, ray tracing applications, and Finite
Impulse Response (FIR) filters, have been considered. The authors claimed power
savings up to 32%.

8.2.1.2 Systematic Methodology for Automatic Logic Synthesis
of Approximate circuits (SALSA)

In [25], a Systematic methodology for the Automatic Logic Synthesis of function-
ally Approximate circuits (SALSA) is proposed. In order to obtain an approximate
version of a given circuit, the proposed methodology starts from its functional
Register-Transfer Level (RTL) description. The type and the amount of error
allowed by the considered application are encoded in one or mode Boolean logic
functions.

Figure 8.1 depicts the QCC used by SALSA to formulate and solve the synthesis
problem. It consists of three blocks: the exact logic circuit, the approximate circuit,

Exact Circuit

Approximate Circuit

QInputs

Original
POs

Approximate
POs

Fig. 8.1 Quality constraint circuit [25]
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and the quality function (Q-function) circuit. The first is a structural description of
the circuit to be approximate, while the Q-function defines error constraints to be
satisfied. During the synthesis process, the approximate circuit is iteratively evolved
leveraging the Observability Don’t Care (ODC) concept, while preserving the Q =
1 invariant.

The ODC set of a node in a logic circuit is the set of input values for which
the Primary Outputs (POs) of the circuit are insensitive to the output of the
considered node [34]. Since the ODCs of the approximate circuit’s POs w.r.t. the
output Q do not affect the value of the Q-function, these input combinations can
be used to simplify the nodes. These ODCs are called ADCs and they are used to
simplify the circuit using standard don’t care-based synthesis techniques.

In order to find the ADCs set, the tool first co-factorizes the Q-function, using
Boole’s theorem; considering the ith PO,

Q = f (PO0, · · · , POi, · · · , PON)

= POi · f (PO0, · · · , 1, · · · , PON)+ POi · f (PO0, · · · , 0, · · · , PON)

(8.1)

Then, the set of inputs for which both negative and positive co-factors have the
same value is searched. In the first step, the sensitivity of the Q-function to POs is
computed; then, in the second step, the ADCs of Q are expressed in terms of Primary
Inputs (PIs) of the circuit, and the approximation takes place. The synthesis process
is iterated until quality constraints are met.

SALSA has been tested on a number of logic and arithmetic circuits, from simple
ripple-carry adders to DCT computation blocks. Results show a 40–60% reduction
for area requirements and a 20–40% reduction of power consumption.

8.2.1.3 Substitute-And-SIMplIfy (SASIMI)

In many applications, the degree of resiliency to error may depend on the dataset
being processed, on the working conditions or on the specific context. In these
scenarios, quality configurable circuits, which are capable of reconfiguring themself
at run-time in order to adapt their accuracy, are needed.

In the work by Venkataramani et al. [26], Substitute-And-SIMplIfy (SASIMI),
a new automatic approach targeting the generation of quality configurable circuits,
is proposed. The idea is to identify near-identical pairs of signals—signals showing
the same value with very high probability—and substitute one in place of another,
introducing functional approximation. The signal being replaced is called Target
Signal (TS), while its substitution is called Substitute Signal (SS).

Signal substitution has both direct and indirect effects. Well-chosen substitutions
can lead to circuit simplification, due to the elimination of the logic computing TSs.
Moreover, the logic in the transitive fan-out of TSs can be downsized, since
substitutions introduce timing slack, and the logic computing the fan-in of TSs can
be sized regardless of TSs themself.
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The approximate circuit is obtained using an iterative algorithm. In each iteration,
the best candidate signal pair is identified, substitution is performed, the circuit
is simplified, and the error is estimated. The algorithm proceeds to the next
iteration only if error constraints are met; otherwise, the last suitable version of the
approximate circuit is returned. The selection of candidate signal pairs is performed
by taking both the size of the logic being deleted and the size of the transitive
fan-out into account. The latter is combined with the arrival time of the SS, i.e.,
the maximum slack that can be introduced, to assess the maximum potential logic
downsizing. The score of a signal pair is, then, computed as the normalized sum
of logic being deleted and downsized, weighted against the introduced error, which
ensures that possible approximations are not exhausted in a few iterations.

In order to generate quality configurable circuits, the tool actually performs
signal substitution, but the logic is retained and the difference between TSs and SSs
is constantly monitored. Since additional area and power are consumed by the
substitution, selection and clock-extension circuits, and since no logic is deleted,
logic downsizing becomes crucial. Generated circuits can operate in approximate or
accurate mode: additional logic is introduced in order to selectively choose which
output has to be used. In approximate mode, any difference between TSs and SSs
is simply ignored, as the output meets the error constraints by design. In accurate
mode, on the other hand, the difference is monitored; if a TS and the relative SS take
the same value, the circuit operates in a single clock cycle; otherwise, the result is
recomputed from the substitution point with a single clock cycle penalty.

The proposed methodology has been evaluated using a wide range of circuits,
including arithmetic circuits, and complex data paths, such as adders, multipliers,
FIR filters, DCT computation blocks, and the ISCAS85 benchmark. By making
use of two different quality metrics, error rate and average error, and targeting the
45nm CMOS technology, the authors claimed significant gains in terms of area
requirements and power consumption.

8.2.1.4 Automatic Methodology for Sequential Logic ApproximatioN
(ASLAN)

In [27], the authors focused on the approximation of sequential circuits. With
sequential circuits, two key challenges have to be addressed. The first is the estima-
tion of the impact of approximation on the output quality, observed after multiple
cycle of operations. In this kind of circuit, in fact, error due to approximation
is propagated at each computation cycle, and different cycles may have different
significance in error propagation. The selection of an approximation, given certain
quality constraints, is the second challenge to be addressed.

In order to formulate the problem of sequential logic approximation, the authors
of [27] make use of an SQCC, which is used to characterize the impact of
approximation on the POs of a given sequential circuit. Figure 8.2 depicts the
SQCC, which consists of three components: the original sequential circuit, the
approximate circuit, and the Quality Evaluation Circuit (QEC). The QEC encodes
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Fig. 8.2 Sequential quality constraint circuit [27]

quality constraints to be met as a multi-output logic function: it monitors POs and
status registers in order to indicate whether quality constraints are met through the
quality Q bit and the valid V bit. The latter indicates that the operation performed
by the approximate circuit has been completed, and therefore its POs are ready to be
evaluated for quality, while the former is set only if quality constraints are satisfied.

Starting from an RTL description of the sequential circuit to be approximated, in
order to maximize energy savings, the tool first identifies combinational blocks—
such as adders, multipliers, etc. A gradient-descent heuristic is then used to search
for the optimal quality-energy operating point for each of these blocks; the ranking
is based on a figure of merit computed by taking into account the proportion of
energy required by the block w.r.t. the whole circuit, the energy saving obtained
by approximating the block, and the error introduced due to the approximation.
The best configuration is then selected, and the quality constraints are checked. The
process is repeated until no block can be further approximated without violating
constraints.

In order to guarantee output quality, the tool performs formal verification by
making use of the following properties:

• Safety: in all possible states of the SQCC, if V is true, then Q should be true.
• Liveness: V eventually becomes true along all possible paths through the space

state of the SQCC.

The first property ensures that whenever both the original sequential circuit and
the approximate one have produced their outputs, i.e., V is high, the latter should
satisfy quality constraints, i.e., Q is high. The second property states that both the
original and the approximate circuits should eventually produce their respective
outputs.
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Formal verification is performed by making use of the time expansion technique:
the SQCC is iteratively unrolled until the V signal is high, and then quality
constraints are checked.

ASLAN has been tested on a number of different circuits, such as FIR filters,
vector product blocks, DCT computation blocks, MPEG encoders, and k-means
clustering algorithm. Experimental results showed a decrease of up to 70% in
required area and a reduction in energy consumption of up to 34%.

8.2.1.5 Automated Behavioral Synthesis of Approximate Computing
Systems (ABACUS)

The approach proposed in Nepal et al. [28] operates on the behavioral description
of a circuit, in order to generate an approximate version that meets specific quality
requirements. The approach is implemented in the Automated Behavioral Synthesis
of Approximate Computing Systems (ABACUS) tool.

Given a behavioral or RTL description of a certain circuit, coded in the
Verilog Hardware Description Language (HDL), the tool operates on the AST of
the whole design in order to generate an RTL description of the approximate circuit,
also coded in Verilog. One of the advantages is that it does not need the designer to
have in-depth knowledge of semantic and functionality of the considered design.

Five different kinds of AST transformation are available: whenever any of these
is invoked, the tool traverses the AST and searches for nodes where changes can
be applied. Data-type transformations consist in intermediate signal truncation,
setting the last significant bits to zero in binary arithmetic operations, for instance.
Operation transformations substitute standard arithmetic operators, such as adders
and multipliers, using approximate operators, which require less silicon area
and power. Expression and variable-to-constant transformations are very clever:
they simplify computations by sharing common, or similar, operands and replace
variables having small variance—at most 10%—with their constant mean value.
The tool is also able to skip some iterations during loop unrolling of behavioral
descriptions, replacing the outcomes of skipped iterations using prior ones.

Since the AST obtained applying a certain transformation can be used as input
for a different transformation, and since each transformation can be applied several
times, the size of the design space grows quickly. To overcome this issue, ABACUS
makes use of an iterative stochastic greedy algorithm to identify transformed ASTs
on the Pareto front, i.e., transformed ASTs that provide optimal trade-off between
accuracy and gains. ABACUS, in fact, embeds a simulation and synthesis engine
in order to evaluate accuracy and design metrics, such as area requirements, power
consumption, and timing information.

The greedy algorithm goes through several iterations, each of which applies
multiple randomly picked transformations on the original design. The accuracy is
then evaluated using a user-provided input dataset; if error constraints are met, the
design is considered valid and passed to the synthesis engine, in order to assess its
requirements. The set of Pareto-optimal variants is then sorted in terms of accuracy,
area, and power savings.
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The tool has been tested using FIR filters, machine learning classifiers, and image
compression blocks. Results show area and power savings in the 15–38% and 10–
33% range, respectively, with only 2–8% accuracy loss.

8.2.1.6 Statistically Certified Approximate Logic Synthesis (SCALS)

Liu et al. [29] pointed out that existing approaches for approximate logic synthesis
usually simplify a logic network in a technology independent manner. According
to the authors, this means that the impact on the quality of results of logic
simplification due to technology mapping is not taken into account during the
approximation process. In addition, using a uniform distribution to generate test
vectors can lead to incorrect conclusions on error, since realistic datasets are
unlikely to follow such distribution.

In order to overcome this issues, a new statistically based approximate logic
synthesis framework, called Statistically Certified Approximate Logic Synthesis
(SCALS), is proposed. SCALS is an extension of the PIMap tool [35], which is
a logic synthesis and technology mapping tool targeting Look-Up Table (LUT)-
based FPGA. The core of the tool is an iterative improvement algorithm consisting
in three steps. First, a transformation move, such as balancing and AIG rewriting, is
proposed. Then, the quality of the move is evaluated through technology mapping
and area requirement estimation. Information gathered during the mapping step is
used to determine whether to accept or reject the proposed move.

Given a combinational logic network composed by technology independent
gates, SCALS aims at area and/or delay minimization, taking into account the target
technology. Both LUT-based FPGAs and ASIC standard cell libraries are supported.
The tool makes use of the input distribution for error estimation, using the error rate
or the mean relative error magnitude as the error metric. The input distribution can
be either user-provided or computed from an input dataset. The user is also required
to provide a confidence level to be used during hypothesis testing.

As briefly introduced before, SCALS extends the PIMap flow to approximate
logic synthesis. Starting from a gate-level representation of the logic network to be
approximated, the tool performs a mapping to the target technology, and then it splits
the netlist into a number of sub-netlists, each containing a predefined number of
standard cells or LUTs. Each sub-netlist is optimized in isolation by making use of
a collection of transformation moves consisting of three exact transformations—i.e.,
transformations that do not introduce any error—such as depth balancing and gate
count reduction, and three approximate transformations. The reduce approximate
transformation move randomly selects a logic gate and removes a randomly selected
fan-in at that gate. If the selected logic gate has only one fan-in, the gate itself is
removed from the netlist and its fan-in is directly connected with its fan-out. The
flip approximate transformation move randomly selects a logic gate and randomly
inverts one of its fan-ins. The add approximate transformation move adds a two-
input logic gate, with randomly selected logic function and randomly selected fan-
ins and a fan-out, to the network. After applying the selected transformation moves,
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the tool performs technology mapping again, in order to measure area requirements.
The introduced error is then simulated by performing logic simulations. In order to
speed up the simulation process, the tool first simulates the whole exact circuit,
obtaining a set of test vectors for each one of the sub-netlists. These test vectors
are used to stimulate only the transformed sub-netlist, so that the global error can
be inferred from sub-netlists without the need of simulating the whole circuit every
time. The Markov Chain Monte Carlo method [36] is used to determine whether
to accept or reject the move. In particular, the Metropolis–Hastings [37] method is
used to compute the acceptance probability.

SCALS is implemented as an extension of the Berkeley ABC tool [38]. In order
to demonstrate their proposal, the author used the tool on the EPFL and the MCNC
benchmarks, targeting 4-LUT and 6-LUT technologies. Circuits are split into 16
sub-netlists and error evaluation is performed by making use of 10K randomly
generated test vectors. For arithmetic circuits, experimental results showed area
savings ranging between 10% and 70%, with an error rate being less than 1%. By
using the same error threshold, control circuits showed area savings ranging between
10% and 40%. However, with high error-tolerant circuits, the authors claimed area
savings up to 90%.

8.2.1.7 Approximating Complex Arithmetic Circuits with Formal Error
Guarantees

In [30], the authors proposed a new method targeting approximate arithmetic
circuits.

The proposed method is based on a verifiability-driven search strategy: given
a circuit to be approximated, an error metric, and an error threshold, the search
strategy searches for an approximate version of the given circuit having minimum
area while satisfying error constraints. The search space is explored by making use
of GA, and, instead of using simulations to estimate error due to approximation,
formal guarantees for error bounds are provided by making use of a SAT solver.

The circuit is represented by making use of a two-dimensional array of nodes,
where each node is encoded using three integer numbers: the first two denote
input signals, while the third is the logic function performed at the considered
node. Bearing in mind the GA terminology, each node is a chromosome and the
integer numbers used for its encoding are its genes. New approximate candidates
are generated by performing mutations in chromosomes; fitness functions are, then,
evaluated, and the best candidate is selected for further evolution. Two fitness
functions are computed: the error w.r.t. the original circuit and the area requirements.
In order to reduce the amount of time spent during the space exploration, a resource
budget is used: candidate circuits that require more resources than a user-defined
threshold are thrown away, and new candidates are generated. There are two main
disadvantages in this approach: no solution may exist for a given budget, and good
solutions are possibly thrown away even if they require a negligible amount of
additional resources.
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Since formal verification is still not possible for some error metrics, such as
average error, the proposed method makes use of the absolute worst-case error. A
miter, consisting of the original circuit, the approximate circuit, a subtractor, and a
comparator, is used to evaluate it. Outputs of the original and approximate circuit
are subtracted, and the result is fed to the comparator, which checks that the error
is smaller than a given threshold. Typically, this is done by computing the absolute
value of the subtractor output, but, unfortunately, the circuit performing such task
consists in long chains of XOR gates, which are known to cause poor performance in
SAT solvers [39]. For this reason, the miter makes use of two different comparators:
one for the positive and one for the negative threshold. Moreover, since the threshold
is fixed, the standard comparator can be replaced with a specialized Boolean logic
network, reducing the size of the circuit and the time required to complete the task.

For evaluation purposes, the proposed method has been implemented as part of
the Berkeley ABC tool [38], expressing chromosomes as AIG-nodes and leveraging
the iprove engine for equivalence checking. In order to allow resource management,
the engine provides several tunable knobs, such as the number of simulations
performed to prove non-equivalence. In order to define a limit for the amount of time
needed by the equivalence checking procedure, the number of conflicts in which a
single AIG-node is involved during the backtracking process is used.

In order to demonstrate the proposal, complex arithmetic circuits, such as
multipliers with inputs up to 32 bits and adders with inputs up to 128 bits, are
considered. For purposes of fitness functions evaluation, the size of the circuits
computed by the ABC tool, targeting a 45nm standard cell technology library, is
used. The power-delay product is also computed, by making use of the Synopsis
Design Compiler tool, but it is not involved in the fitness functions computation.

In one of the experiments, the approximation of a 16 bits multiplier is performed,
with error ranging between 0.1% and 20%. Three different resource limits have
been considered: unlimited resources, 160K and 20K conflicts. Despite the fact
that some potentially good candidates are quickly rejected, the aggressive resource
limit allowed to generate and evaluate a significantly higher number of candidates,
obtaining up to 75% reduction in area requirements. The scalability of the proposed
approach has been demonstrated using complex multipliers, with inputs up to 32
bits in length, and various adders with inputs up to 128 bits in length.

8.2.1.8 Approximate Logic Synthesis Using Boolean Matrix Factorization

Hashemi et al. [31] proposed BLASYS, a novel approach for combinational circuits
approximation based on BMF. In the proposed approach, a multi-output logic
function having k inputs and m outputs is firstly analyzed in terms of its truth-table:
being nothing more than a matrix, the truth-table is passed to a BMF algorithm,
along with the factorization factor f , in order to produce two sub-matrices, namely
B and C, which correspond to the truth-table of a compressor and a decompressor
circuit. Using this technique, any arbitrary circuit can be forced to compress as much
information as possible in f intermediate signals, using an AND network. Such
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information can be decompressed using the decompression circuit, which can be
implemented as an XOR network. Approximation is introduced by not preserving
the equality between the starting truth-table M and the product of the matrices B

and C.
Being BMF an NP-hard problem, the authors of [31] selected the ASSO

heuristic [40, 41] to estimate the B and C matrices. In order to measure factorization
error, the chosen heuristic makes use of the Euclidean distance L2, which translates
to the Hamming distance in case of Boolean matrices. However, if a signal has to
be interpreted as a binary coded number, the Hamming distance is not really an
accurate representation of inaccuracy, as mismatches in different bits contribute
differently on the actual error. Therefore, the authors of BLASYS selected the
weighted Hamming distance d = |(M − B · C) · w|, where w is a weight vector.

Since the complexity of BMF grows exponentially with the size of the matrix
to be factorized, i.e., the size of the truth-table, the latter is split into a number
of smaller sub-circuits, and, for each one of these, BMF is performed in isolation.
The decomposition process is very similar to FPGA technology mapping, but the
fundamental difference is the aim: circuit decomposition is performed only to
address computational complexity. Typical technology mapping algorithms make
use of k-feasible cuts enumeration algorithms. Conversely, BLASYS makes use of
the KL-cuts algorithm presented in [42] to identify sub-circuits having at most k

inputs and m outputs, with k and m being design choices mostly determined by
computational budgets.

Decomposing a circuit in smaller sub-circuits does not mean sub-circuits can
be tested for error in isolation, because even small error in sub-circuit outputs can
propagate and cause larger error. Thus, BLASYS performs error evaluation taking
the whole circuit into account. Since an exhaustive simulation is infeasible, a Monte
Carlo simulation using one million randomly generated test cases is performed to
evaluate circuit accuracy. The approximation process is completed only if the error
is greater than a user-defined threshold.

In order to demonstrate the proposal, the authors implemented the BLASYS
methodology as part of the Yosys synthesis tool [43], and, by making use of the
Synopsys Design Compiler, they evaluated area and power requirements targeting
a 65nm standard cell library. The tool has been used on six different kinds
of circuits—an adder and several multipliers and FIR filters—claiming an area
reduction ranging between 8% and 47% with an error of only 5%. The authors also
compared results, in terms of area requirements, obtained by using the weighted
and the unweighted error metric. Experimental results prove that, for the same area,
using a weighted metric allows for greater accuracy. They also compared their work
with the SALSA tool, which has been discussed in Sect. 8.2.1.2, claiming their
methodology allows to achieve further area savings up to 20%.
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8.2.1.9 CIRCA: Toward a Modular and Extensible Framework for
Approximate Computing

In the work by Witschen et al. [32], CIRCA, a framework for approximate
computing, is proposed. The framework is developed on the basis of several already
existing approximate framework and tools, trying to fill their gaps. It focuses on the
design space exploration, which is, according to the authors, the most demanding
part of the whole design flow. The authors of CIRCA developed it to be as generic
as possible, modular, and extensible: the framework is not restricted to a particular
type of circuit, to a particular error metric, to a specific AxCT, to a specific space
exploration algorithm, or to a specific technology. It is extensible and its input
and output are compatible with all the well-known existing tools, such as Berkeley
ABC [38] or the Yosys [43] tool.

The framework consists of three stages: the input stage, the QUAES (QUality
assurance, Approximation, Estimation, and search space exploration) stage, and the
output stage.

The input stage manages two main tasks: it preprocesses the input design
and ensures compatibility with external tools. The preprocessing task aims at the
identification of a set of sub-circuits within the original design which are amenable
to approximation. This set is denoted as candidates-set, and its elements can be
identified by automatic methods or by manual annotation performed by the user. The
input stage also reads user-provided test vectors for testing-based quality assurance.

In the QUAES stage, candidates are subjected to approximation: different
variants of a candidate and different configurations of a certain variant are gen-
erated. The approximation flow is split into four blocks: the quality assurance, the
approximation, the estimation, and the exploration block. The exploration block
acts as central control block and implements three procedures: select, expand, and
evaluate. The evaluate procedure takes a set of circuit configurations and provides
an estimation for error, area requirements, delay, and power consumption. The
select procedure takes a set of circuit configurations and selects a configuration
to be further considered, based on the previous evaluations. It sends the selected
configuration, called CUT (Circuit Under Test), to a quality assurance procedure,
which checks if quality constraints are met, using either formal verification or test-
based techniques. If the CUT does not meet such constraints, the search algorithm
can abort the search procedure or pick up the next configuration, depending on the
specific search algorithm. In the latter case, the search procedure terminates if there
is no more configuration to be evaluated. If the CUT meets the quality constraints,
it is passed to the expand procedure, which further approximates the circuit.

The output stage performs post-processing on valid configurations, in order to
select the best ones and to provide a set of Pareto-optimal configurations. The output
stage also connects the QUAES stage with external synthesis tools, for actual circuit
implementation.
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The first implementation of the CIRCA framework is provided with two AxCTs,
precision-scaling and AIG-rewriting, and three different design space exploration
algorithms, which are hill-climbing, simulated-annealing, and Monte Carlo tree
search. In order to perform the quality assurance procedure, as previously antici-
pated, the framework can employ testing-based or formal verification techniques.
For the test-based technique, a set of input vectors must be provided by the user
via the input stage. Formal verification is performed using an approximation miter
similar to the one used by the ASLAN tool [27]: the outputs coming from the
original and approximate circuits are compared using the absolute worst-case error
as error metrics.

In order to prove the effectiveness of their proposal, the authors of the framework
selected a benchmark of seven circuits—the butterfly data path of the Fast Fourier
Transform (FFT), some FIR filters, adder-trees, and an RGB to YCbCr converter—
and manually annotated adder and multiplier components. They obtained 55% area
savings by making use of the precision-scaling AxCT and up to 33% of area savings
by making use of the AIG-rewriting technique.

8.2.2 Approximation Tools Targeting Software Applications

In this section, AxC automation tools targeting software component are discussed.
For each of them, the main features and the innovative contributions brought to the
scientific literature are highlighted. Table 8.2 summarizes the discussion: for each
different tool, its main characteristics are reported.

8.2.2.1 EnerJ

At the software level, a key challenge in AxC is the isolation of parts of the program
that have to be precise from those that can be approximated. To this end, Sampson
et al. introduce EnerJ [44], an extension to the Java language with type qualifiers
that distinguish between approximate and precise data types.

Values of precise types have the typical correctness guarantees of conventional
computing, while values of approximate types have none; moreover, overloaded
operators and methods, with approximate versions of algorithms, can be applied to
them. Assignment of approximate values to precise variables is illegal; an explicit
endorsement operation is needed to treat approximate data as precise, allowing
assignments. An example of the annotation usage is shown in Listing 8.1.
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1 @Approx int a = ...;
2 int p; // precise by default
3

4 p = a; // illegal
5 p = endorse(a); // legal

Listing 8.1 Example of EnerJ annotations usage

Fig. 8.3 Hardware model used for simulation in [44]

The EnerJ extensions provide the means to implement type-based information-
flow tracking [50], but they do not define the specific approximation techniques to
be used: approximate algorithms have to be provided by the programmer, while
approximate storage and operations require some form of architectural support, in
the form of ISA extensions and memory devices.

In order to evaluate the potential savings of this approach, a number of
existing Java applications have been manually annotated with type qualifiers. The
approximate versions of the programs are executed on a simulator that implements
approximate integer and floating-point operations and approximate storage at the
register, cache, and memory level; an example of such an architecture is shown in
Fig. 8.3. Energy consumption is evaluated with a simplified model that considers
three components: instruction execution, SRAM storage (for CPU registers and
cache), and DRAM storage. Potential energy savings are shown to be in the 10–
50% range, depending on the considered application.

8.2.2.2 Language and Compiler Support for Variable-Accuracy
Algorithms

The PetaBricks framework [45] is one of the first attempts to embed the accuracy
concept into programming languages and compilers. As the authors pointed out,
traditional programming languages work under the assumption that programs
always require a fixed and strongly defined behavior. However, for certain classes
of algorithms, such as NP-hard problems or programs with tight computational
timing constraints, an accurate solution might be unfeasible to compute. Conversely,
in many other cases, the programmers could trade accuracy off to achieve better
performances.
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A key challenge when writing variable-accuracy software arises from maintain-
ing the abstraction boundary between the designer and the user of such software.
The former understands the algorithm and all its tunable parameters affecting the
accuracy but does not know anything about the requirements of a certain application.
On the other hand, the user actually knows the requirements of a specific application
but may not know how exposed tunable parameters affect accuracy level. Yet
another challenge arises when software is built by composing multiple variable-
accuracy modules: manually determining the accuracy level to be used can be
extremely cumbersome because of the interdependencies between accuracy-related
choices.

The framework proposed by Ansel et al. [45] provides a way to describe
multiple manners to solve a problem. The programmer is required to specify all
the “transformations” to compute outputs from inputs—i.e., different algorithms to
solve a given problem—, the parameters that affect the accuracy, and which error
metric has to be used. Accuracy-related parameters are automatically set by the tool
in order to explore the solution space. Then, an autotuner automatically determines
the configuration that offers the best trade-off between accuracy and performance
gains. The autotuner follows a GA approach to search through the solution space,
collecting a population of candidate algorithms which is expanded by using
mutators. The PetaBricks compiler and autotuner represent different candidate
algorithms by making use of configuration files in which a value is assigned to
each accuracy-related variable. Mutator functions are automatically generated by
the framework, starting from a static analysis of each different algorithm that could
be used to solve a given problem, in order to generate new algorithm configurations
taking training inputs into account. There are three different mutator categories:

• Decision-tree manipulators, which act on the specific algorithm to be used to
solve a given problem

• Log-normal scaling mutators, which scale a configuration parameter by taking a
random number from a log-normal distribution of scale 1

• Uniform random mutators, which replace a configuration parameter with a new
value taken from a discrete uniform distribution containing all legal values for
the considered parameter

The framework supports three different types of accuracy guarantees:

• Statistical guarantees, computed by performing offline testing on a set of training
inputs, in order to determine statistical bounds within a user-defined confidence
level

• Runtime checking, which assesses accuracy at runtime and provides stronger
accuracy guarantees

• Domain-specific guarantees, which require the programmer to provide a lower
bound on accuracy

In order to prove the effectiveness of the proposed framework, the authors
of [45] tested it by making use of a number of different benchmarks, such as
image compression, bin-packing problems, k-means clustering, and Helmholtz and
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Poisson equations. For k-means clustering, the authors claim speed-ups ranging
from 1.1 to 9.6. For algorithms showing even more error resiliency, such as
image compression or Helmholtz and Poisson equation solvers, speed-ups ranging
from 1.3 to 34.6 are achieved. Performances dramatically increase, as the authors
claim, for the bin-packing problem: speed-ups ranging from 1832 to 13789 are
achieved because of the algorithmic changes made by the autotuner, which lower the
complexity to O(n2) or even O(n) when a significant loss of accuracy is allowed.

8.2.2.3 Precimonious

Floating-point computations involve by nature a certain degree of approximation;
ideally, the precision of floating-point data should be carefully tailored to the nature
of the application, but this can be a difficult task for programmers without specific
background or even impossible for bigger programs.

PRECIMONIOUS, introduced in [18], is a tuning assistant for floating-point
precision; it aims at finding, if possible, a set of program variables that can have their
precision lowered without violating a user-specified error constraint and providing
a performance improvement, measured in execution time, relative to the original
program.

The tool receives three inputs:

• A C program
• A test suite, in the form of a representative set of inputs
• An accuracy requirement

It then operates in four phases: first, a search file that describes the search space is
created; the search file contains an entry for each variable whose precision can be
tuned, and the candidate types to be explored.

The tool then produces candidate configurations using a modified version of
the delta-debugging [51] algorithm; each iteration considers, for each variable, the
highest and the second-highest available precision and determines the subset that has
to be allocated at the highest precision. The algorithm first divides the search space
into two disjoint subsets and checks if the accuracy requirement can be satisfied
by only using the highest precision for one subset. If such a configuration exists,
it further partition the subsets, in order to minimize their size. If at any step the
algorithm cannot find a valid configuration, the number of subsets in the partition
is doubled. The algorithm halts when the partition granularity can no longer be
increased. An example of the algorithm operation is shown in Fig. 8.4.

The set of program transformations that corresponds to the identified variable
type assignment is applied to an LLVM intermediate representation of the original
program, which is then compiled and checked for correctness and performance. The
result of this phase serves as feedback to the delta-debugging algorithm. A high-
level view of the tool flow is shown in Fig. 8.5.
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Higher Precision

Lower Precision

Fig. 8.4 The delta-debugging algorithm used in [18]

Fig. 8.5 The PRECIMONIOUS flow [18]

The tools have been tested on selected functions from the GNU Scientific
Library, two NAS Parallel Benchmarks, and three other numerical programs,
showing improvements up to 41% in execution time at 10−10 error threshold.

8.2.2.4 Self-tuning Approximation for Graphic Engines

As the authors of [7] claim, several common bottlenecks in GPUs could be alleviated
by means of AxC. Some examples are serialization of data accesses and memory
bandwidth limitations. In the context of GPU programming, AxCTs have two main
limitations: first, the programmer must implement and tune most aspects of the
approximation; moreover, he/she is often unaware of the hardware upon which it
runs.

Samadi et al. [7] proposed SAGE, a framework for performing runtime approx-
imation on GPUs. It enables the programmer to write the program only once; thus,
it trades accuracy off for performance gains, taking user-defined error metrics and
thresholds into account.

SAGE consists in two main phases: an offline compilation and a runtime
kernel management. The former investigates the input source code, in order
to automatically recognize approximable code portions. Then, it automatically
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generates multiple approximate versions of the original kernel. The runtime kernel
management, on the other hand, dynamically selects the best approximate kernel by
taking error metrics and quality constraint into account.

During the offline compilation phase, SAGE automatically detects all those
operations known as expensive to perform on a GPU, and, then, three different
optimizations are performed. Contentions caused by atomic operations have a
significant impact on performance, so SAGE improves performances by skipping
atomic instructions showing high contention rate. Considering the large amount
of cores available on GPUs and bearing in mind that, in order to achieve high
throughputs, cores must access data very quickly, input data is packed sacrificing
precision, reducing the amount of bits for its representation and traffic on Network
On Chips (NOCs). The third optimization performed by SAGE is thread fusion: it
computes the output for one of the threads of the original kernel and broadcasts it to
its adjacent threads.

During the runtime kernel management phase, in order to reduce timing over-
head, SAGE makes use of an online greedy tree algorithm to find reasonable
approximation parameters. All the different approximate versions of the original
kernel are arranged in a binary tree in which each child node has always a lower
output quality and higher performances than its parent. Starting from the root of the
tree, which is the original kernel with no approximation, the best version is searched
using the steepest-ascent hill-climbing heuristic.

In addition, since the behavior of a program can change at runtime, accuracy and
performances are constantly monitored: after a number of invocations of the kernel,
a calibration step is performed. If quality constraints are not met, SAGE switches to
a less aggressive approximate version of the original kernel. At the beginning of the
execution, when there is low confidence on accuracy, the calibration is performed
more frequently, in order to converge to a stable solution quickly. As confidence
grows, the interval between two calibrations is gradually increased, so the overhead
is reduced.

In order to evaluate the impact of optimizations performed by the proposed
framework, the authors considered ten different applications from the machine
learning and image processing domains, including k-means clustering and several
classifiers. The authors claim an average speed-up of 2.5 with less than 10%
accuracy loss.

8.2.2.5 Accept

The ACCEPT framework is introduced in [46] as a trade-off between fully manual
and fully automated program modification techniques.

It is composed of:

• C type qualifiers for annotating approximate data
• A compile-time analyzer to identify approximable code
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Fig. 8.6 The ACCEPT compiler flow [46]

• A feedback system that guides the programmer in order to improve code
annotation

• An autotuning system that chooses the best approximations to be applied to the
code

The compiler workflow is shown in Fig. 8.6.
The extension to the C type system is directly derived by the one proposed in

EnerJ and introduced in Sect. 8.2.2.1: all types are qualified as approximate or
precise, and noninterference guarantees apply between approximate and precise
data; an explicit endorsement expression acts as a cast from approximate type to
its precise equivalent.

1 APPROX int a = ...;
2 int p; // precise by default
3

4 p = a; // illegal
5 p = ENDORSE(a); // legal

Listing 8.2 Example of ACCEPT annotations usage

The analysis of the annotated program determines a set of transformations, called
relaxations, that can be applied to the code in a way that affects only data qualified
as approximate; coarse-grained code regions, such as loop and function bodies, are
checked, and a relaxation can be applied to a region iff it is precise-pure, i.e., iff
it:

• Contains no store to precise variables that may be read outside of the region
• Does not call any functions that are not precise-pure
• Does not include an unbalanced synchronization statement

The framework also identifies candidate regions for approximate hardware
acceleration, which need to be precise-pure, with single entry and single exit and
with identifiable live-ins and live-outs.

The analyzer produces a log that provides feedback to the programmer w.r.t. the
relaxations that have been applied and the ones that are not safe, identifying the
statements that prevent them, called blockers.

An autotuner heuristically finds Pareto-optimal sets of relaxations, solving a
binary knapsack problem under the simplifying assumption that error and perfor-
mance improvement compose linearly.
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The framework has been implemented as an extension to the LLVM compiler
infrastructure; in order to test its effectiveness, three approximation strategies have
been implemented:

• Loop perforation: some loop iterations are skipped
• Synchronization elision: reduction or removal of synchronization in the program
• Neural acceleration: selected code regions are off-loaded to a hardware acceler-

ator that approximates them using a previously trained neural network

A number of benchmark applications, targeting an x86 server, a mobile SoC, and
a low-power embedded device, have been manually annotated; the average speed-
up on the three platforms is of 2.3×, 4.8×, and 1.5×, respectively, while the error
varies widely from practically zero to 26.7%.

8.2.2.6 REACT

The REACT modeling framework is introduced in [47] to enable the exploration of
the efficiency-accuracy trade-off of AxC techniques.

It consists of:

• An application profiler
• An energy model
• A quality model

The profiler is implemented using Intel’s Pin, a dynamic binary instrumentation
framework; it groups ×86 instructions into the compute and memory categories
that are then used by the energy model. Dynamic and static architectural costs are
captured in REACT with a simplified linear energy model; a precise baseline cost
of an application execution is evaluated as the sum of the energy required for its
phases:

Energyphase

= Staticcompute +Dynamiccompute + Staticmemory +Dynamicmemory

(8.2)

Static = Power × CPI × Instructions (8.3)

Dynamic = Energyevent × Countevent (8.4)

The Power , Energy, CPI , and Instructions terms are architectural parameters
that define the cost of operations and structures.

This baseline can then be compared with a number of approximate energy totals
relative to a variety of AxC techniques. Fine-grained techniques operate at the
event level, modifying one or more architectural parameters, while coarse-grained
techniques operate at the phase level, modifying one or more of the terms in
Eq. (8.2).
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Quality modeling is performed extending the ACCEPT framework, presented in
Sect. 8.2.2.5, to inject errors at the instruction and function granularities.

8.2.2.7 ASAC

ASAC, introduced in [48], is an automatic tool for sensitivity analysis in AxC; it
aims to automatically generate code annotations for distinguishing variables that
can be approximated from the ones that have to be precise, by extracting information
about the sensitivity of the output to the program data.

The tool operates in three phases, named discovery, probe, and testing. In the
discovery stage, the program variables are extracted and a dataflow analysis, using
techniques introduced in [52], is performed to determine the range of the variables.
The Cartesian product of the range intervals for each variable produces a hypercube,
where each point is a variable assignment for the program data.

In the probe phase, the edges of the hypercube, which represent the variable
ranges, are discretized, thus yielding a number of smaller hypercubes; the Latin
Hypercube Sampling [53] technique is used to select a bias-free sample with a good
coverage of the sample space, as shown in Fig. 8.7a. A number of uniformly random
points are then selected from each of the sampled hypercubes; these constitute
perturbation vectors, which are used to alter the values of the variables at selected
points in the program execution, dynamically injecting them with an instrumentation
tool.

The results of each probe run are compared to a Quality of Service (QoS)
threshold for the program and are classified accordingly as good or bad. From
the classified samples, a cumulative distribution function for the two classes is
constructed for each hypercube dimension, i.e., for each program variable, as shown
in Fig. 8.7b.

In the test phase, the sensitivity score for each variable is evaluated as the
maximum distance between the two curves, obtained applying the Kolmogorov–
Smirnov hypothesis test; intuitively, the more the two curves are “near,” the less the

Fig. 8.7 Example of hypercubes (a) and CDFs (b) in the ASAC tool [48]
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program is sensitive to the variable. The sensitivity scores are then used to rank the
variables according to the program sensitivity.

The resulting program annotations are then compared with those manually
applied to benchmarks from SciMark2, MiBench, and SPEC2006, achieving an
average accuracy of 86%. The automatically annotated benchmarks are also eval-
uated for error according to selected relevant metrics, by randomly bit-flipping
variables marked as approximable, obtaining a maximum error of 6%.

8.2.2.8 iACT

Mishra et al. developed the Intel’s Approximate Computing Toolkit (iACT) [49] as
a mean to analyze the impact of approximation techniques in software applications.
The toolkit provides a compiler extension based on the LLVM pragma annotation
framework that allows the programmer to specify the approximation techniques to
apply; it also provides runtime support for approximate memoization and a hardware
simulator based on the Intel Pin dynamic binary instrumentation framework, which
handles the required architectural support to the chosen techniques.

Three approximation techniques have been implemented, targeting C programs:
automated precision reduction, noisy ALU computations, and approximate mem-
oization. Techniques are applied at a function level or at a loop level. The axc
pragma specifies that the annotated C function runs on hardware that implements
noisy arithmetic and floating-point operations and noisy loads and stores, simulated
with different parametrized noise models. The axc_precision_reduce pragma down-
converts all floating-point values in the function to a 16-bit data type. The
axc_memoize pragma, applied at function call site, invokes the approximate mem-
oization runtime support; as shown in Listing 8.3, error tolerance percentages are
specified for the function arguments, and a global table of the function mapping is
populated during program execution; if error tolerances are satisfied on a subsequent
call, the memoized value is returned without executing the function.

1 void foo(float x, float y, float &z) {
2 z = x + y;
3 }
4

5 [...]
6

7 #pragma axc_memoize [(0:5), (1:10)]{2}
8 foo(x, y, &ret);

Listing 8.3 Example of iACT memoization pragma

The iACT toolkit has been tested on three different applications. A bodytracking
algorithm has been annotated for precision reduction, obtaining 22% dynamic
energy reduction with quality degradation less than 4% compared to precise
execution. The memoization technique has been applied to Sobel filtering, with
dynamic energy reduction up to 22% with less than 10% of pixels deviating
from their expected values. A random bit failure error model, representative of
timing failure characteristic of low-voltage memory operation, has been applied to
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a classification algorithm; even at moderately high bit failure probability, around
50%, output mismatches remain under the 5% threshold.

8.3 The IDEA Tool Suite

As stated in Sect. 8.1, one of the challenges that prevent the spread of AxC is
the lack of generic automation tools. Existing tools, which have been discussed in
previous sections, are not fully automatic or they simply provide a guided approach
for approximation. Furthermore, most of such tools are too tied to a specific AxCT
or tightly coupled with a certain application. Furthermore, approximate variants
have to be found with quicker evaluations, in order to define a systematic and fully
automatic methodology for designers.

To accomplish these goals, the authors of [54] presented the IDEA (IDEA is
a Design space Exploration tool for Approximate Algorithms) tool suite, which
consists in two different tools: the first is Clang-Chimera, an automatic source-to-
source mutation engine, while the second tool is Bellerophon, an automatic design
space exploration tool. Although developed as completely independent projects,
these two tools can be used together to generate different approximate versions of
a given algorithm and to find an estimate of the Pareto front. They need a C/C++
implementation of the algorithm to be approximated and alter the original source
code using user-defined approximation methods. Each approximate configuration is
then compiled and executed in order to evaluate the quality of results.

Figure 8.8 sketches the overall flow of IDEA. A set of C/C++ source files
containing the algorithm to be approximated are placed in input to the Clang-
Chimera tool, in order to perform the source code mutation and to generate a set
of mutated source files, called mutants. Then, Bellerophon evaluates each different
mutant, and, when the space exploration phase is completed, the set of dominant
configurations can be used to reimplement the algorithm in its approximated
version, in hardware or in software.

Both tools are described in Sects. 8.3.1 and 8.3.3, respectively, while Sect. 8.3.5
is a full walk-through.

8.3.1 Clang-Chimera

Named after the Chimera, the famous mythological monstrous animal, Clang-
Chimera is a source-to-source mutation engine for the C/C++ programming lan-
guage: given a C/C++ source code, the tool analyzes the AST in order to apply
user-defined modifications.
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Fig. 8.8 The IDEA flow, which includes Clang-Chimera and Bellerophon tools

1 int main (void) {
2 for (int i = 0; i < N; i++) {
3 for (int j = 0; j < M; j++) {
4 body;
5 }
6 }
7 }

Listing 8.4 Precise code

The AST is a tree representation of a source code written in a certain program-
ming language. Each node of the AST is an abstract representation of a language
construct that appears in the source code. Figure 8.9 depicts the AST representation
of the code from Listing 8.4. Each for loop is represented using a node having
four children nodes: the initialization node, the loop-termination condition node,
the loop-modifier node, and loop-body node.

An AST pattern is a set of nodes that follow certain rules, which are specified
in terms of properties of nodes and relations between nodes. Properties of a node
include its type and its value, while relations express how nodes are connected
together.

Clang-Chimera introduces the concepts of mutator and mutation operator,
borrowing terms from the mutation testing field. A mutator is an entity that matches
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Fig. 8.9 AST representation of a for loop

and modifies an AST pattern. It is composed of matching rules and mutation
rules. Matching rules define the AST pattern on which the mutator operates, while
mutation rules specify how the matched pattern has to be modified. When a mutator
has a set of mutation rules that are slightly different from each other, the mutation
type properties of the mutator can be exploited to apply a specific mutation. For
instance, let us consider a sum operator; it can be modified in three different ways:
instead of defining three different mutators, a single mutator having three different
mutation types can be defined.

Mutators can be First Order Mutator (FOM) or High Order Mutator (HOM).
FOM is the default type and applies a single mutation at a time; if it has multiple
mutation types, it generates a different mutated version of the source code, i.e.,
a mutant, for each different mutation type. Sometimes, multiple mutations have
to be applied at the same time; a HOM having multiple types generates a single
mutated version of the given source code, containing all the mutations specified by
the mutation rules.

A mutation operator, or simply operator, is an entity that groups several mutators.
It can be used to narrow down the scope of mutators, defining which part of the
source code has to be modified. Mutation operator can also be of FOM or HOM type.
A FOM operator can be seen as a simple mutator container: mutators it contains
can be FOM or HOM. A HOM operator is used when global mutations have to be
applied and it must contain only HOM mutators. HOM mutators of a FOM operator
act on a per-function basis, so at most a mutant can have mutations accumulated on
single functions, while a HOM operator accumulates the transformations on all the
functions.
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The Clang-Chimera tool makes use of the Clang-LLVM compiler suite. Given a
syntactically correct C/C++ source code, a set of user-defined mutation operators,
and a configuration file that states the list of available operators for a given function
or a given language construct, the tool allows generating mutated versions of
the algorithm, called mutants. The tool also generates a report file containing
information such as the location and the type of each performed mutation. Every
action performed by the tool is checked in order to ensure that the modified source
code is syntactically correct and ready for the compilation step.

Clang-LLVM allows an easy gathering of all syntactic and semantic informa-
tion from a C/C++ source code. In particular, Clang-Chimera makes use of the
LibTooling interface, which gives access to all the capabilities provided by the Clang
front-end, such as AST manipulation.

As briefly introduced before, the AST is the internal representation of a C/C++
source code that Clang-LLVM produces to manage the compilation step. The AST
resembles the structure of the source code: its root node is the root of the whole
translation unit, which represents the whole source file, while other elements of
the tree are the Clang internal type definitions, function declarations, parameter
declarations, function body elements, variable declarations, binary operators, return
statements, etc. The Clang AST nodes are not instances of the same class, and
they have not a common base class: there are multiple classes, such as Decl for
declarations and Stmt for statements. Therefore, AST traversing and manipulation
are not trivial tasks.

Clang-LLVM provides different utilities for AST traversal and manipulation. The
ASTConsumer and RecursiveASTVisitor utilities are tightly coupled and are used to
traverse an AST. While the former manages high-level nodes, such as translation
units, the latter copes with lower level constructs, such as function declarations and
statements. They traverse the AST and call a handler when a particular node is
traversed. Since using these entities can be cumbersome, Clang-LLVM provides
also the ASTMatcher utility, which allows defining AST pattern matching rules
in an easier way. The utility provides three matchers, which can be combined:
the NodeMatcher, which matches a specific node, the NarrowingMatcher, which
matches attributes of a node, and the TraversalMatcher, which allows to express
structural relations between nodes. A matcher can match multiple times: when
a match occurs, a callback is called to apply user-defined actions. Clang-LLVM
provides the Rewriter utility in order to allow AST modifications.

8.3.2 Code Mutation: An Example

In order to allow the reader to better understand how Clang-Chimera works and how
it can be used in AxC, we provide the following example.

Let us consider a function implementing an approximate version of the sum
operator and suppose it works by setting the N least significant bits of the sum to
zero, with N being configurable by the user. The body of such a function is reported
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in Listing 8.5, where add1 and add2 are the addends and nab is the number of bits
of the sum to be set to zero. Please note that the exact nature of the approximation
being made by this function is hidden in the function itself, and, from the Clang-
Chimera point of view, it does not matter.

1 int ax_sum(int add1, int add2, int nab)
2 {
3 return (add1 + add2) & (!((1<<nab)-1));
4 }

Listing 8.5 Interface of the approximate sum

Let us consider the code in Listing 8.6, which has to be mutated replacing every
exact sum with the approximate sum described above. The user has to configure a
mutator (i.e., the AxC Operator in Fig. 8.8) that defines the matching and mutation
rules. The Clang-Chimera tool mutates the code in Listing 8.6, and it generates the
code in Listing 8.7. The amount of error introduced by the approximation depends
on the value assigned to the nab parameters. Indeed, the main problem is to find an
appropriate value for these parameters, in order to achieve the best trade-off between
performance gains and accuracy losses.

1 ...
2 y = x + 2;
3 z = 2 * x + 3 * y + 2;
4 ...

Listing 8.6 Code to be mutated

1 int nab_0 = 0;
2 int nab_1 = 0;
3 int nab_2 = 0;
4 ...
5 y = ax_sum(x, 2, nab_0);
6 z = ax_sum(ax_sum(2 * x, 3 * y, nab_1), 2, nab_2);

Listing 8.7 Mutated code

8.3.3 Bellerophon

Named after the famous mythological hero who killed the Chimera, Bellerophon is
a design space exploration tool designed to solve MOPs, computing different fitness
functions.

Bellerophon makes use of the Non-dominated Sorted Genetic Algoritm (NSGA)-
II algorithm and evaluates solutions in terms of three different fitness functions: an
error fitness function, a reward fitness function, and a penalty fitness function. The
first expresses the amount of error measured with respect to a reference solution, the
reward fitness function rewards certain characteristics of one solution with respect
to the others, while the penalty fitness function penalizes infeasible solutions by
reducing their fitness values in proportion to the degree of constraint violation. Error
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and penalty functions have to be minimized, while reward has to be maximized. The
definition of such fitness functions is up to the user, but only the error fitness function
is mandatory to implement.

Bellerophon leverages the Clang/LLVM Just-In-Time compiler (LLVM-JIT) in
order to speed up the space exploration phase. The tool consists of two main
components: the evaluation context, which manages all the information needed
to perform NSGA-II and makes use of the LLVM-JIT, and the evaluator, which
manages all the information needed to compute and evaluate fitness functions.

The LLVM-JIT makes possible to access the code in execution and allows to
read and modify any code or data portion of it. This means that every time a mutant
needs to be altered and the fitness functions evaluated, Bellerophon can skip the
whole code compilation, linking, and loading. Just the code portion that needs to
be altered will be recompiled and linked to the already loaded program image in
memory, reducing the amount of time required to solve the MOP.

Using a configuration file, Bellerophon is able to generate a random population
and then to evolve it in candidate solutions. At the end of the process, a report
file containing the set of non-dominated solutions, their genes, and fitness function
values is provided to the user.

Since the implementation of a GA is not a trivial task, Bellerophon is based on
the ParadisEO framework [55], which is a template-based evolutionary computation
library written in C/C++. ParadisEO is an extended version of the Evolving
Objects (EOs) framework and it includes various improvements such as local search
methods, multi-threading, and grid-computing support.

Although designed and developed as a standalone project, Bellerophon can be
used to evaluate different configurations of a certain mutant generated by making
use of the Clang-Chimera tool, in order to state which configuration is better.
Configurations differ from one another by the value assigned to each different
configuration parameter, i.e., the value of each gene.

8.3.4 Space Exploration Example

Bearing in mind the code mutation example given in Sect. 8.3.2, an example of the
Bellerophon workflow is provided in this section.

In order to perform the space exploration, the tool needs to be configured. The
Clang-Chimera tool produces a configuration file meant to be used for Bellerophon
once the code mutation phase is done. This file contains the total amount of
configurable parameters, their name, and the range in which they can vary. Each
parameter becomes a gene in the Bellerophon context.

In the approximated sum function from Listing 8.5, the addends are 32-bit long
integer numbers, and therefore each nab parameter can vary in the [0, 32] range.
Setting the value to zero means no approximation has to be made, while setting it to
32 means that the approximation has to be made on every bit of the sum.
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Using information from the configuration file, Bellerophon is able to generate an
initial population of chromosomes. In this case, chromosomes have three genes,
one for each nab parameter. The value of each genes governs the amount of
approximation introduced in each sum. For the sake of clarity, consider the {1, 3, 2}
chromosome: the nab_0 parameter will assume the value of 1, while the nab_1
parameter will assume the value of 3. This means that the approximation will affect
only the last significant bit of the first sum and the three last significant bits of the
second sum.

Regarding the definition of fitness functions, the difference between the exact
sum and the approximate one is a good example of error function. In order to define
a meaningful reward function, the target application must be taken into account.
Suppose you want to implement an approximate circuit in hardware that realizes the
code reported in Listing 8.7, and suppose that silicon area can be saved by increasing
the number of approximate bits in the sums, or, in other words, the value assumed
by each nab parameter. The sum of the values assumed by each of these parameters
represents a good example of reward function because the higher this value, the
higher the area savings will be. A C/C++ code example of such functions is reported
in Listings 8.8 and 8.9. Starting from the initial population of candidate solutions,
the tool will search for a solution having low error and high reward value.

1 double BELLERO_getError(){
2 $\cdots$
3 y = x + 2
4 z = 2 * x + 3 * y + 2;
5 y_a = ax_sum(x, 2, nab_0);
6 z_a = ax_sum(ax_sum(2 * x, 3 * y_a, nab_1), 2, nab_2);
7 return abs(z - z_a);
8 }

Listing 8.8 Example of error fitness function

1 double BELLERO_getReward(){
2 $\cdots$
3 return nab_0 + nab_1 + nab_2;
4 }

Listing 8.9 Example of reward fitness function

8.3.5 A Walk-Through with the IDEA Tool Suite

This section provides a full walk-through of the IDEA tool-suite. A Docker image
with the IDEA tools preinstalled is available from [56].

Since the code mutation example given in Sect. 8.3.2 is too simple, because it
is only meant to allow the reader to better understand what code mutation is, this
walk-through tackles the approximation of a DCT computation algorithm. The DCT
is used in many applications, including JPEG and MPEG compression and digital
signal analysis.
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In the literature, a significant amount of research papers is focused on apply-
ing approximate computing to DCT algorithms, avoiding complex functions and
multiplications [57]. They all leverage the DCT coefficients, which can be scaled
and approximated by integers so that floating-point multiplications can be replaced
by integer multiplications. The resulting algorithms are significantly faster than the
original versions and they are extensively used in practical applications. However,
integer multiplication is still a complex operation, and therefore many multiplier-
less algorithms have been proposed for fast DCT computation, such as BAS08 [58],
BAS09 [59], BAS11 [60], BC12 [61], CB11 [62], PEA12 [63], and PEA14 [64].
All algorithms work in the same way: instead of calculating the DCT according
to its definition, they operate using the matrix calculation. In addition, by making
several transformations on the matrices involved, they express the DCT as a set of
linear equations. The example in Eq. (8.5) refers to the set of equations used by the
BAS12 [61] algorithm.

f0 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7

f1 = x0 − x7

f2 = x0 − x3 − x4 + x7

f3 = x5 − x2

f4 = x0 − x1 − x2 + x3 + x4 − x5 − x6 + x7

f5 = x6 − x1

f6 = x2 − x1 + x5 − x6

f7 = x4 − x3

(8.5)

In order to further reduce the resource requirements of multiplier-less algorithms,
Almurib et al. [6] noted that inexact adders can be used to compute the less
significant bits of each sum.

Consider an inexact adder that works exactly like the inexact sum defined in
Listing 8.5, i.e., it sets the value of the least significant N bits to zero, and assume
that the goal is to find which algorithm configuration offers the best trade-off
between error and performance gains, using Clang-Chimera and Bellerophon.

The walk-through follows a bottom-up approach: Sect. 8.3.5.1 shows how to
define a Clang-Chimera mutator, Sect. 8.3.5.2 shows how to create a mutation
operator and how to register it, and Sect. 8.3.5.3 explains how to configure the tool
in order to generate mutants.

8.3.5.1 Defining a Clang-Chimera Mutator

As introduced in the previous sections, the AST pattern matching logic and the
mutation logic are both embedded into the Clang-Chimera mutators. New mutators
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can be defined by sub-classing the chimera::mutator::Mutator class,
which is an abstract class defined in the include/Core/Mutator.h header
file. This class defines a set of pure virtual and non-pure virtual functions that
must be implemented or overridden. In particular, the AST pattern matching rules
must be defined using one of the getXXXMatcher functions, which define coarse-
grained matching rules, while fine-grained matching rules are defined by the match
function. Mutation rules can be defined implementing the mutate function.

In Fig. 8.10, a Unified Modeling Language (UML) class diagram showing
detailed description of the Mutator class is shown. Bearing in mind the code
mutation example given in Sect. 8.3.2, Fig. 8.10 also shows the AdderMutator

-isHom : boolean
-identifier : string
-description : string
+Mutator(matcherType : MatcherType, identifier : string, description : string, type : MutatorType, isHom : boolean)
+getIdentifier() : string
+setIdentifier(identifier : string) : void
+getDescription() : string
+setDescription(description : string) : void
+getTypes() : MutatorType
+setTypes(type : MutatorType)
+getMatcherType() : MatcherType
+isHom() : boolean
+getStatementMatcher() : clang::ast_matcher::StatementMatcher
+getDeclarationMatcher() : clang::ast_matcher::DeclarationMatcher
+getTypeMatcher() : clang::ast_matcher::TypeMatcher
+getTypeLocMatcher() : clang::ast_matcher::TypeLocMatcher
+getNestedNameSpecifierMatcher() : clang::ast_matcher::NestedNameSpecifierMatcher
+getNestedNameSpecifierLocMatcher() : clang::ast_matcher::NestedNameSpecifierLocMatcher
+match(node : NodeType) : boolean
+mutate(node : NodeType, type : MutatorType, rw:clang: : Rewriter)
+clean(node : NodeType, type : MutatorType)
+getMatchedNode(node : NodeType, type:clang::ast_type_traits: : DynTypedNode) : boolean
+onCreatedMutant(mutantPath : string)
+onEndOfTranslationUnit(dirPath : string)

Mutator

DeclarationMatcherType
StatementMatcherType
TypeMatcherType
TypeLocMatcherType
NestedNameSpecifierMatcherType
NestedNameSpecifierLocMatcherType

<<enumeration>>
MatcherType

<<Typedef>>
MutatorType

+AdderMutator(matcherType : MatcherType, identifier : string, description : string, type : MutatorType, isHom : boolean)
+getStatementMatcher() : clang::ast_matcher::StatementMatcher
+match(node : NodeType) : boolean
+mutate(node : NodeType, type : MutatorType, rw:clang: : Rewriter)
+getMatchedNode(node : NodeType, type:clang::ast_type_traits: : DynTypedNode) : boolean
+onCreatedMutant(mutantPath : string)

AdderMutator

type
matcherType

Fig. 8.10 Definition of a new mutator class
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class, which is inherited from the Mutator class and is used to define matching and
mutation rules to replace each sum operation with a function call, e.g., to mutate the
code in Listing 8.6 and to generate the code in Listing 8.7.

In order to perform such mutation, a statement matcher searching for all the
additions involving integer variables needs to be defined. An example of such
matcher is reported in Listing 8.10: it matches all the sum and subtraction operations
(lines 3 and 4) performed between two integer numbers (lines 5 and 6). Moreover,
the matcher binds the matched nodes with an identifier (line 7), in order to make
the gathering of such nodes easier for the fine-grained matching rules and mutation
rules methods.

1 StatementMatcher chimera::adder::MutatorAdder::getStatementMatcher() {
2 return stmt(
3 binaryOperator(
4 anyOf(hasOperatorName("+"), hasOperatorName("-")),
5 hasRHS(XHS_MATCHER("int", "rhs")),
6 hasLHS(XHS_MATCHER("int", "lhs"))
7 ).bind("adder_op"));
8 }

Listing 8.10 Example of getStatementMatcher function

The matcher in Listing 8.10 returns all AST nodes corresponding to sums
and subtractions between integers, including those involving constant values or
those performed in order to access array elements. The particular application we
are considering needs only sums and subtractions between integer variables to
be replaced; in addition, sums and subtractions performed while accessing array
elements and those involving constants and those performed on other kind of
expressions must be left unmodified. Expressing these constraints in a statement
matcher is cumbersome, so a fine-grained matcher has to be used. An example of
fine-grained matcher is reported in Listing 8.11. This matcher checks that the node
refers to a binary operator matched by the statement matcher in Listing 8.10 (lines 2
to 4). Then, the matcher extracts left and right operands (lines 5 and 6) and verifies
that they are not binary operators (lines 9 to 16).

1 bool chimera::adder::MutatorAdder::match(const NodeType &node){
2 const BinaryOperator *bop = node.Nodes.getNodeAs<BinaryOperator>("adder_op"

);
3 if (!bop)
4 return false;
5 const Expr *lhs = bop->getLHS()->IgnoreCasts()->IgnoreParens();
6 const Expr *rhs = bop->getRHS()->IgnoreCasts()->IgnoreParens();
7 bool isLhsBinaryOp = ::llvm::isa<BinaryOperator>(lhs);
8 bool isRhsBinaryOp = ::llvm::isa<BinaryOperator>(rhs);
9 if (isLhsBinaryOp){

10 if( (((BinaryOperator*)lhs)->getOpcodeStr() == "+") ||
11 ((BinaryOperator*)lhs)->getOpcodeStr() == "-") return false;
12 }
13 if (isRhsBinaryOp){
14 if( (((BinaryOperator*)rhs)->getOpcodeStr() == "+") ||
15 ((BinaryOperator*)lhs)->getOpcodeStr() == "-") return false;
16 }
17 return true;
18 }

Listing 8.11 Example of fine-grained matcher function
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The match function returns a subset of the nodes selected by the
getStatementMatcher function: the mutation will take place on all
these nodes, and therefore the selection has to be as accurate as possible.
Listing 8.12 shows a partial example of mutate function, which defines and
implements mutation rules. Source code mutation is performed making use of a
::clang::Rewriter object, which allows source code modifications in C/C++
language. In FOMs, a different
::clang::Rewriter object is passed to each call to the mutate function, and
therefore the modifications are isolated. In HOMs, the ::clang::Rewriter
object passed to each call to the mutate function is always the same. First, a
reference to the AST node corresponding to the sum operation to be replaced is
obtained (line 4), identifying its operands (lines 13 to 15). Then, this operation is
replaced with the call to the function ax_sum (lines from 26 to 34), defined in
Sect. 8.5. Note that the declaration of the variable nab is also inserted, to allow the
user to choose the degree of approximation to be introduced in the sum (line 24).

1 Rewriter & chimera::adder::MutatorAdder::mutate(const NodeType &node,
MutatorType type, Rewriter &rw) {

2

3 // Retrieve a pointer to function declaration to insert global variables
before it

4 const FunctionDecl *funDecl = node.Nodes.getNodeAs<FunctionDecl>("
functionDecl");

5

6 // Set the operation number
7 unsigned int bopNum = this->nabCounter++;
8

9 // Local rewriter to hold the original code
10 Rewriter oriRw(*(node.SourceManager), node.Context->getLangOpts());
11

12 // Retrieve binary operation, left and right hand side
13 BinaryOperator *bop = (BinaryOperator*) node.Nodes.getNodeAs<

BinaryOperator>("adder_op");
14 Expr *internalLhs = (Expr*) node.Nodes.getNodeAs<Expr>("lhs")

;
15 Expr *internalRhs = (Expr*) node.Nodes.getNodeAs<Expr>("rhs")

;
16

17 Expr *lhs = (Expr*) bop->getLHS()->IgnoreCasts();
18 Expr *rhs = (Expr*) bop->getRHS()->IgnoreCasts();
19 bool isLhsBinaryOp = ::llvm::isa<BinaryOperator>(lhs);
20 bool isRhsBinaryOp = ::llvm::isa<BinaryOperator>(rhs);
21

22 // Create a global var before the function
23 ::std::string nabId = "nab_" + ::std::to_string(bopNum);
24 rw.InsertTextBefore(funDecl->getSourceRange().getBegin(), "int " + nabId +

" = 0;\n");
25

26 // Retrieve the name of the operands
27 ::std::string lhsString = rw.getRewrittenText(lhs->getSourceRange());
28 ::std::string rhsString = rw.getRewrittenText(rhs->getSourceRange());
29

30 // Form the replacing string
31 ::std::string bopReplacement = "ax_sum((" + lhsString + ", " + rhsString +

", " + nabId + ")";
32

33 // Replace all the text of the binary operator with a function call
34 rw.ReplaceText(bop->getSourceRange(), bopReplacement);
35

36 ...
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37

38 return rw;
39 }

Listing 8.12 Example of mutate function

Testing a mutator means to test its matching and mutation rules. Testing of the
matching rules is straightforward due to the following assumption: given a source
code, the beginning of any syntax construct has a unique location, which can be
identified with a line and column number. On the other hand, testing mutation rules
can be cumbersome because there is no simple way to provide an oracle, i.e., an
expected mutated code to compare with. So, while it is possible to create an oracle
to automatically check matching rules, the mutation rules have to be manually
checked.

8.3.5.2 Defining and Registering a Clang-Chimera Mutation Operator

A mutation operator can be seen as a collection of mutators; therefore, from a C/C++
language point of view, it is an object that is built, and, then, mutators are added to
it. A simple way to define an operator is to inherit from the MutationOperator
class, defined in include/Core/MutationOperator.hpp. Figure 8.11
shows the AdderOperator class, which inherits from the MutationOperator
class and makes use of the MutatorAdder class. In order to make Clang-
Chimera aware of new operators, they have to be registered using the
registerMutationOperator function, provided by the ClangTool class.
The AdderOperator class provides the getAdderOperator function, which

Mutator

<<enumeration>>
MatcherType

<<Typedef>>
MutatorType

MutatorAdder

-isHom : boolean
-identifier : string
-description : string
+getIdentifier() : string
+setIdentifier(identifier : string) : void
+getDescription() : string
+setDescription(description : string) : void
+addMutator(mutator : Mutator*)

MutationOperator

+registerMutationOperator(mutationOperator : MutationOperator*)
ChimeraTool

+getAdderOperator() : AdderOperator*
AdderOperator

operators

mutators

type
matcherType

Fig. 8.11 Defining and registering of operators
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builds a new AdderOperator object and adds a MutatorAdder mutator in
it and then returns a pointer to the newly created AdderOperator instance, in
order to allow its registration.

8.3.5.3 Configuring and Running Clang-Chimera

In order to be able to proceed with the code mutation, the Chimera tool must be
configured using a CSV file that indicates on which portion of code—i.e., which
function—it is necessary to act and which operator must be used to perform the
mutations. Suppose you want to make the mutation of the DCT calculation algo-
rithm in Listing 8.13, the configuration file might look like the one in Listing 8.14.
In addition, when you launch the tool, you must specify the set of source files on
which you want to perform the mutations and any other options for compiling.

When Chimera finishes its execution, it produces the mutated source and a report
containing all the mutations that have been performed. An example is reported in
Listing 8.15

1 void BC12_dct1d(const int * const input, int * const output)
2 {
3 int x0b = input[0] + input[7];
4 int x1b = input[1] + input[6];
5 int x2b = input[2] + input[5];
6 int x3b = input[3] + input[4];
7 int x4b = input[3] - input[4];
8 int x5b = input[2] - input[5];
9 int x6b = input[1] - input[6];

10 int x7b = input[0] - input[7];
11

12 int x0c = x0b + x3b;
13 int x1c = x1b + x2b;
14 int x2c = x1b - x2b;
15 int x3c = x0b - x3b;
16 int x4c = 0 - x4b;
17 int x5c = 0 - x5b;
18 int x6c = 0 - x6b;
19 int x7c = x7b;
20

21 output[0] = x0c + x1c;
22 output[4] = x0c - x1c;
23 output[6] = 0 - x2c;
24 output[2] = x3c;
25 output[7] = x4c;
26 output[3] = x5c;
27 output[5] = x6c;
28 output[1] = x7c;
29 }

Listing 8.13 DCT computation using the BC12 algorithm

1 BC12_dct1d,MutatorAdder

Listing 8.14 The Chimera CSV configuration file
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1 int nab_0 = 0;
2 ...
3 int nab_17 = 0;
4 ...
5 ...
6 void BC12_dct1d(const int * const input, int * const output)
7 {
8 int x0b = ax_sum(input[0], input[7], nab_0);
9 int x1b = ax_sum(input[1], input[6], nab_1);

10 int x2b = ax_sum(input[2], input[5], nab_2);
11 int x3b = ax_sum(input[3], input[4], nab_3);
12 int x4b = ax_sum(input[3], - input[4], nab_4);
13 int x5b = ax_sum(input[2], - input[5], nab_5);
14 int x6b = ax_sum(input[1], - input[6], nab_6);
15 int x7b = ax_sum(input[0], - input[7], nab_7);
16

17 int x0c = ax_sum(x0b, x3b, nab_8);
18 int x1c = ax_sum(x1b, x2b, nab_9);
19 int x2c = ax_sum(x1b, - x2b, nab_10);
20 int x3c = ax_sum(x0b, - x3b, nab_11);
21 int x4c = ax_sum(0, - x4b, nab_12);
22 int x5c = ax_sum(0, - x5b, nab_13);
23 int x6c = ax_sum(0, - x6b, nab_14);
24 int x7c = x7b;
25

26 output[0] = ax_sum(x0c, x1c, nab_15);
27 output[4] = ax_sum(x0c, - x1c, nab_16);
28 output[6] = ax_sum(0, - x2c, nab_17);
29 output[2] = x3c;
30 output[7] = x4c;
31 output[3] = x5c;
32 output[5] = x6c;
33 output[1] = x7c;
34 }

Listing 8.15 Mutated code

8.3.5.4 Configuring and Running Bellerophon

Since it has a lot of tunable parameters, Bellerophon comes with a set of scripts to
make it easy to configure and execute. In addition to the configuration parameters
of the genetic algorithm itself, Bellerophon needs to be configured so that it is able
to compile and link the mutated code, generated by Chimera, every time the value
of a gene is modified.

At the end of its execution, Bellerophon will provide the designer with a set of
Pareto-optimal solutions: Fig. 8.12, for instance, depicts the Pareto front for the DSE
for Listing 8.15. The error function used during the exploration phase calculates
the error as the difference between the DCT calculated using the BC12 algorithm
and the one calculated using the different configurations of the approximate BC12
algorithm. The reward function, instead, is calculated simply as the sum of the value
assumed by each “nab” parameter. The tool also provides the designer with full
details concerning configurations belonging to the Pareto front, allowing him/her to
suitably configure the final target application.
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Fig. 8.12 Pareto front estimation provided by Bellerophon

8.4 Conclusion

In the first part of this chapter, we briefly introduced AxC, focusing on its fields of
application, the main techniques, and the open issues and challenges that may slow
down its adoption.

As we believe that the availability of automatic tools for AxC is an important
factor for a wider adoption, we then presented the state of the art for AxC
tools targeting digital circuits and software applications, highlighting the main
innovations of the discussed tools.

We concluded the chapter presenting IDEA, an extendible tool suite that allows
to describe AxCTs, apply them to C/C++ code, and explore the design space of the
obtained approximate variants to find an estimate of the Pareto front. A detailed
walkthrough is provided, which guides the reader through all the passes required to
obtain and evaluate the approximate variants of an original algorithm; the results can
then be used directly in software or as a basis to guide a hardware implementation.
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Chapter 9
Wordlength Optimization of Fixed-Point
Algorithms

Gabriel Caffarena

9.1 Introduction

Computing systems possess an inherent limitation when it comes to represent
numbers and this imposes a tight constraint in the mathematical precision of feasible
algorithms. A deep understanding of the way that limited precision affects the
quality of applications, as well as the cost of systems (i.e., power consumption) is
essential in order to satisfactorily implement algorithms. One of the most interesting
aspects of approximate computing is its ability to trade-off accuracy with energy
efficiency. Fixed-point refinement [1–3] is a branch of approximate computing [4]
where the signals size (e.g., wordlengths) is reduced, trying to minimize the
produced errors, as well as the cost. So, the operations are not approximated,
but their results are. An important stage of fixed-point refinement is wordlength
optimization (WLO), a task devoted to finding the fractional part of signals while
optimizing implementation cost. This chapter presents a review on the different
available approaches.

This section contains an introduction to the main concepts involved in WLO. The
remaining sections cover the following aspects: most important WLO techniques,
how to deal with complexity, the different cost functions used to steer optimization,
fusion with architectural explorations, a comparison between techniques, and
finally, some conclusions.
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Fig. 9.1 Fixed-point representation. Example a shows a number with no integer part. Example b

shows a number with both integer and fractional parts

9.1.1 Fixed-Point Refinement Overview

Let us briefly introduce fixed-point refinement.1

Fixed-point arithmetic is in many occasions preferred to floating-point arithmetic
due to its energy efficiency and operation speed [5]. The fixed-point hardware
operators are simpler than the floating-point counterparts, but, one of their main
drawbacks is that they are not suitable for dealing with large dynamic range signals.
However, the benefits are clear. For example, a 32-bit fixed-point addition and a 16-
bit fixed-point multiplication require 0.5 pJ and 2.2 pJ, respectively, while a 64-bit
floating-point unit consumes 50 pJ [6, 7].

First, we are going to assume that signals are in two’s complement fixed-point
format. As displayed in Fig. 9.1, a fixed-point number is defined by an n-bit integer
mantissa, that includes the sign bit, and the location p of the fractional point from
the sign bit. Thus, the value of a fixed-point number x, given its mantissa xm and
the couple (n, p) is:

xf xp = xm · 2n−p (9.1)

1 Also known as quantization.



9 Wordlength Optimization of Fixed-Point Algorithms 263

For a given algorithm variable (or circuit signal), the couple (n, p) is selected
trying to fulfill two main objectives: (i) the complete dynamic range can be
represented (or at least, a high percentage of it); and, (ii) the fractional bits are
enough to produce a tolerable error that do not hinder the application performance.

Selecting the right size per variable could have a significant impact in the final
cost of the system. Power savings close to 30% [8] and area savings up to 45% [1]
are reported. For instance, if the inputs of a multiplier are truncated, this could lead
to a quadratic silicon area reduction of the operator. Reducing the wordlength of a
multiplier’s output does not have any impact on the area of the operator itself, but it
definitively has an impact on posterior operations. The decision about which signals
must have a reduction in their mathematical precision is not only a function of cost
(i.e., area) but also on the quality degradation produced by such changes. Thus,
fixed-point refinement is necessary to orchestrate the selection of (n, p) couples for
all signals, so that cost is reduced while accuracy is kept within the required bound.

Fixed-point refinement is the procedure that selects the fixed-point format (n, p)

for each variable or signal in order to optimize a particular design cost, while
complying with a given output error constraint. It is common to perform two main
stages: Dynamic Range Analysis2 and Wordlength Optimization. The range analysis
stage fixes the position of the most significant bit (MSB) of the signal, choosing
the position of the binary point (i.e., p). The wordlength optimization stage finds
the proper set of signal wordlengths (i.e., n) – the least significant bits (LSB)—
which minimizes cost. Dynamic range can be obtained by means of interval-based
methods [9–11], statistical [12–15] and stochastic methods [2, 16, 17]. For linear
time-invariant (LTI) systems the use of impulse-response evaluation techniques
stands as the most efficient option [2, 16, 18].

Wordlength optimization is normally an intensive iterative process in contrast
with dynamic range analysis, which can be solved analytically or with several
simulations. In the next subsection we elaborate on the particularities of wordlength
optimization.

9.1.2 Wordlength Optimization

The ultimate goal of fixed-point refinement is to enable the implementation of
mathematical algorithms, bounding the cost to a reasonable figure. Ideally, the
designer seeks the minimization of the cost (C(W )) while keeping a maximum
allowed degradation (Dmax). W is a vector that holds all couples (n, p).

minC(W ) (9.2)

D(W ) ≤ Dmax

2 Also called Scaling or Integer Part Analysis.
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Fig. 9.2 Fixed-point refinement diagram. The wordlength optimization process is detailed

The right side of Fig. 9.2 displays a diagram of the basic blocks forming WLO.
Basically, the process iterates trying different wordlengths (i.e., n) combinations
until the cost is minimized. This involves an error estimation (or application
quality estimation) and, ideally, a cost estimation. The cost estimation is not always
performed and in many occasions the optimization is performed to the error. The
estimation of the error might require bit-true simulations [14, 19] or the use of
analytical expressions [2, 3, 5]. The latter requires an initial stage, not shown in
the diagram, to obtain the analytical model. Also, for these kind of estimations
is essential to perform a wordlength propagation prior to the error estimation (see
Sect. 9.3 for a detailed explanation). The optimizer control block selects the size of
the wordlengths (set of n) using the values of the previous error and cost estimations
and decides when the optimization procedure has finished.

WLO is a NP-hard problem [20], suffering from an exponential growth in
complexity as long as the number of variables is increased. Thus, it is common
to oversimplify the process or to resort to heuristics to bound the optimization time.
For instance, the quantization of an IIR biquad filter with 8-bit coefficients with a
SQNR (signal to quantization noise ratio) of 30 dB requires approximately 300 noise
estimates using a gradient descent optimization algorithm. That means carrying out
300 error estimations. Oversimplification comes from schemes such as the uniform
wordlength (UWL) approach, which assigns a global parameter (n, p) to all signal.
The optimization process is trivial and the number of error estimations are scarce.
As expected, the results are far from optimal and the multiple wordlength (MWL)
approach [1, 21, 22] is preferred, yet it requires long design times. According to [23],
WLO may take up to 25–50% of the whole design time.
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9.2 Optimization Techniques

There is a wide variety of optimization techniques applied to WLO. In this section,
the most common techniques are presented, focusing on the design of fixed-point
circuits. In Sect. 9.6, a comparison between these techniques is presented.

The reader may find very useful the reviews and comparison performed in papers
such as [14, 24–28].

The optimization methods presented have been divided into five categories:

• Optimal: They provide an optimal solution. Computation times could be pro-
hibitive.

• Constrained search: Thorough but not as exhaustive as the optimal approaches.
Computation times can be elevated.

• Local search: heuristics aiming at producing fast optimization. Computation
times are standard but there is a risk or getting stuck in a local minimum.

• Non-integer wordlengths: Wordlengths are considered real, so faster optimization
methods can be applied. Computation time are standard but results are sub-
optimal.

• Stochastic: Randomness is introduced in the optimization process. Computation
times can be high but local minima are avoided.

Figure 9.3 presents the classification used as well as the different published works.

Optimization
techniques

Optimal
[80, 16,

46, 24, 10]

Constrained
search
[81, 19]

Local
search
[19, 24,

16, 45, 15,
44, 16, 80]

Non-integer
[36, 30,
35, 22]

Stochastic
[34, 6,

7, 8, 67]

Fig. 9.3 WLO techniques
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9.2.1 Optimal Approaches

Complete search3 [14, 27, 29] applies brute force to test all possible wordlength
combinations within a wide space. The number of wordlengths combinations that
must be tested is computed in [27]. The best solution found, the one that minimizes
cost, is selected. In order to reduce the design space, lower and upper bounds for all
wordlengths are computed. Obtaining such bounds is not trivial and the proposals,
such as minimum uniform wordlength4 as an upper bound [32] and the minimum
wordlength set5 as a lower bound [29, 32] might not be good estimates. The main
reason is that, as proven in [1], the quantization error at the output of a system is
non-monotonic and non-linear with respect to the wordlengths. In summary, there
is a risk that the global minimum is not found within these bounds.

A Mixed Integer Linear Programming (MILP) [42] formulation of the WLO
problem for LTI algorithms is presented in [1]. MILP requires to formulate the
optimization problem by means of equations and inequalities that are fed to a solver.
The formulation is based on the use of an analytical model of error propagation that
relates wordlengths with the variance of the error at the output [1]. There might
be an explosion in the number of variables and MILP inequalities for medium
size problems since the formulation considers: implementation cost (e.g., area of
adders, delays, and constant multipliers), inequalities expressing the error function,
wordlength propagation rules with possible signal branching (i.e., forks), and the
error constraint. Thus, such an approach is used to assess the quality of a faster
heuristic proposed. For medium size algorithms, the reported solving times are in
the order of several days. This work was extended to consider resource sharing
in [30].

9.2.2 Constrained Search

Constrained search is referred to techniques that perform a thorough, but not
complete, design space exploration [29].

The Min+b [25] starts with a minimum wordlength set [29] which is refined
iteratively until the error constraint is met. The optimization is based on distributing
b bits among several signals. All combinations are assessed, starting with b = 1,
increasing if the error constraint is not fulfilled, and stopping when the output error
is satisfactory. Stopping when the first solution is found might lead to sub-optimal
results, since many possibilities are still to be explored. We can find the algorithm

3 Some authors use the term exhaustive search [29].
4 Minimum global wordlength that complies with the error constraint.
5 For each variable, the minimum wordlength that complies with the error constraint considering
that the wordlength for the rest of signals is infinite, is computed. The set is composed with all the
individual minimum wordlengths.
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applied to minimizing the error6 and the cost7 [27], both referred in this text as
Min+berr and Min+bcost .

A branch and bound technique is proposed in [32]. This time, the algorithm
starts with a suitable uniform solution and it starts decreasing the wordlengths until
reaching a minimum wordlength bound (i.e., the minimum wordlength set [29]).
Initially, there is only a set of wordlengths and at each iteration new sets are
generated by reducing one unit a single signal. All the wordlength sets are then
tested and the ones not complying with the error limit are discarded. In the next
iteration, a new collection of wordlength sets is created following a similar fashion.
The process finishes when it is not possible to further reduce the error. The solution
with the smallest cost is selected. Note, that when a wordlength set is discarded, it is
assumed that future modifications will never comply with the error constraint. This
is not true, given the non-monotonic nature of quantization.

9.2.3 Local Search

Many optimization techniques are based on gradient algorithms, since they are easy
to implement and do not require an excessive number of iterations.

A gradient descent optimization, that we referred to as Max-1cost is proposed
in [29]. The algorithm starts with an upper bound of the wordlengths and it starts
decreasing the wordlengths until reaching a minimum wordlength bound. The effect
of reducing one unit for each wordlength individually is assessed. If the error limit
is not surpassed, then the cost is evaluated. The signal that produced the maximum
cost reduction is then reduced permanently and the process starts again. In [14], a
similar algorithm (Max-1err ) is presented, though the error, not the cost, is used as
the optimization function.

Max-1enh
cost [1] is an enhanced version of the Max-1cost algorithm. In this method,

the wordlengths are reduced individually until the maximum error constraint is
violated and the signal that produced the maximum cost reduction is decreased by
one bit permanently. The idea is to make gradient descent less dependent on local
information, thus, reducing the chances of falling into a local minimum.

In [14, 26], a gradient-ascent algorithm is used instead (Min+1). The algorithm
starts with the minimum wordlength solution and, then, it tests all possibilities of
increasing signals by 1 bit. The signal that produced the maximum error decrease is
chosen and its wordlength is increased by one unit permanently.

An approach that considers simultaneously cost and error gradients to guide
the local search is presented in [27]: the Min+1cost

err .8 This idea was previously
presented, but only briefly mentioned, in [43]. Min+1 bit is performed as explained

6 Called sequential search in [27].
7 Called local search in [27].
8 CDM search (complexity and distortion measure search) in the paper [27].
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before, but the decision of the candidate to be reduced is based on the minimum
gradient of αc · cost + αd · error , with αc + αd = 1. The authors claim that the
optimization time is reduced in comparison to considering only cost or only error
gradients.

A similar procedure to Max-1enh
cost [1] is the evolutive procedure of [14]. Initially,

all signals have infinite precision (i.e., floating-point). Then, a signal is selected
and its wordlength is decreased until the error criterion is not met. The signal
then is permanently assigned to the minimum wordlength plus two units. Then, the
same procedure is applied to another signal. The method stops when all signals are
quantized. An extension of this method is proposed in [25] with a final extra phase
that applies Max-1cost to the obtained solution.

The All+1 method9 is presented in [29]. The initial point is the minimum
wordlength solution and all signal wordlengths are increased one bit until the
specifications are met.

The preplanned search in [26] starts with an initial phase that computes the
sensitivity of each signal wordlength. The sensitivity information enables to assign
priorities to the signals and determine the order of wordlength reduction. The
procedure stops when the error is below the permitted value.

The hybrid procedure of [25] first applies Min+1 and it feeds the obtained solu-
tion to the Max-1err . Another method that combines two optimization techniques is
the heuristic of [25] that first applies All+1 and then Max-1cost .

9.2.4 Optimization with Non-integer Wordlengths

There are also approaches where the optimal techniques are applied to solve the
quantization problem assuming real wordlengths. The obtained solution is then
refined looking for a feasible realization with integer wordlengths. Optimality is
not guaranteed, but the authors claim that the time of the optimization process has
been reduced.

This idea was first proposed in [34]. Three simplifications are performed:

• The wordlengths are real numbers.
• The cost is a linear combination of the wordlengths.
• The quantization noise of a signal only depends on its final wordlength.

The last assumption implies that more refined noise models such as [44] are
neglected. The optimization is then based on an approximate solution to the problem
using the Lagrangian multipliers that results in a linear expression of the cost that is
a function of the wordlength and the so-called noise gains. The noise gains relates
the wordlengths to the error. A similar approach is taken by [45]

9 Called constrained search in [29] and heuristic in [31].
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In [35] the error estimation is performed by means of interval arithmetic and the
worst-case error contribution of each signal to the outputs is computed (as in [21]).
Also, the objective function is linear, since they use the summation of wordlengths
as an implementation complexity measure. Thus, the optimization problem can be
solved by Linear Programming, reducing the computation time.

Fiore [36] presents a non-linear iterative algorithm that is applied to find the
fractional wordlengths minimizing area. The area cost is estimated using a quadratic
function for multipliers and a linear function for adders. The convergence of the
optimization method is analyzed and bounds on the wordlengths are given. The error
estimation is based on the pre-computation of the contribution to the SQNR of each
signal quantization. The method allows the generation of pareto-optimal curves—
cost vs. error—that helps the designer to choose the proper set of wordlengths that
complies with a certain error and cost constraint.

A quadratic objective function is addressed in [37] by means of sequential
quadratic programming. The main contributions of this work in comparison to the
other continuous-domain approaches are that it considers the discrete noise model
from [44] and also the noise correlation in signal forks. Though, forks behavior is
simplified to ensure the convexity of the optimization function.

Parashar et al. [46] presents a method that relaxes the integer constraints on
wordlengths. It uses the power of the quantization noise as the error function and a
cost function based on the energy dissipation of the operators. The authors proves
that both the cost and error functions are convex when the wordlength are real
and rounding modes with zero mean are used. The operators are analyzed and a
continuous convex function with the pareto front is obtained.

9.2.5 Stochastic Optimization

Stochastic methods introduce random steps within the optimization procedure in
order to avoid local minima.

Simulated annealing (SA) is an iterative optimization method that is based in
changing the values of the problem variables by means of the so-called movements.
Each time a movement is performed, the resulting cost as well as the output error
of the current solution are computed. If the noise constraint is met and the cost
is smaller than the current minimum one, the movement is accepted. If the cost
is greater than the minimum achieved so far, the movement is accepted with a
certain probability that decays with time (by means of a decreasing temperature). If
the movements and the SA parameters (i.e., initial solution, temperature annealing
function, etc.) are wisely selected the method can reach an optimal solution.

Fiore [38] presented a SA procedure where the movements are based on the use
of a Markov-chain. In [24] SA is used to perform WLO and comparison results with
Max − 1 and Max − 1enh are provided. There are only two possible movements
applied to randomly picked signals: increase the wordlength by one unit and
decrease it by one unit. The increment had half the probability of happening. Also,
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in [39, 40], SA is used to perform the simultaneous wordlength optimization and
architectural synthesis, and some comparison results with the heuristics in [1, 32] are
provided. Here, SA is used to handle the complexity of combining two optimization
processes.

The algorithm GRASP (Greedy Randomized Adaptive Search Procedure) is
presented in [41]. The algorithm applies two phases iteratively: construction and
local search. The first phase, called construction, is based on algorithm such as
Max − 1 and Min + 1 with the particularity that instead of selecting the signal
with the best performance, there are TRCL candidates (RCL stands for restricted
candidate list) and one is chosen randomly to get the permanent wordlength
variation. In the second phase, a TABU search [47] is applied over the previous
solution. The TABU search allows both increments and decrements of wordlengths
and uses a short buffer to store wordlength sets that did not comply with the error
constraint. The whole procedure is repeated several times and the best solution
is selected. Two versions are tested; one that uses only error as the optimization
function and another that uses the ratio between error decrease and cost increase.
The latter follows a similar idea to [33].

9.3 Dealing with Complexity

Quantization is an NP-hard problem [20], thus, optimal or quasi-optimal approaches
imply computationally intensive exhaustive analysis in which all possible outcomes
need to be tested. Moreover, if a simulation-based approach [13, 48] is followed to
evaluate the quantization error of every outcome, then, the optimization times are
impractical even for small designs.

Some solutions proposed to deal with complex systems are:

• Make use of parallel computation architectures
• Use fast estimators for the error/quality computation
• Cluster signals to reduce the optimization variables
• Perform multi-objective optimization
• Relax the integer constraints on wordlengths
• Use a divide-and-conquer approach which partitions the system in sub-blocks

Parallel Hardware
Making the best of the parallelization capabilities of microprocessors and graphics
processing units (GPU) is a solution to reducing time-to-market constraints. Algo-
rithms that require several starts, such as [41], can exploit parallelism by means of
issuing several simultaneous optimization processes or threads in a computer or in
a cluster of computers. Also, when bit-true simulations are required, it is possible to
run several independent simulations in multi-core or distributed-memory systems.

The massive parallelization of GPUs was first proposed to be exploited for bit-
true simulations in [49]. The benchmarks were synthetic algorithms with a total
number of operations ranging from 100 to 2000. Accelerations with respect to a
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single-thread CPU computation are in the approximate range from ×40 to ×60
when the number of operations is no less than 1000 with input vectors with 104

samples. In [50], this idea is extended to interval-based error computation. The
speedups range from 50 to 1000 in comparison to a 16-thread CPU execution.
However, the benchmarks used have less than 25 operations, so the proposal, yet
interesting, is not suitable for realistic problems.

Fast Error Estimation
Fast estimators have been applied to LTI systems and some linear systems with mild
non-linearities (the so-called smooth operators [51]). The basic idea is to perform
an analysis of the algorithm in order to obtain an error model that accounts for the
way that errors propagates to the output. During WLO, the model can be used to
quickly assess the quality of the system at each optimization step without requiring
to perform costly bit-true simulations. Figure 9.4 depicts the new tasks required to
apply fast estimation. The error analysis task obtains an error propagation model.
This is a function that relates the local errors to the overall error at the output. During
the optimization loop, it is common to have a wordlength propagation task—not
to be confused with the error propagation model—that considers the wordlength
changes proposed in the previous wordlength variations task to condition all

Fig. 9.4 WLO with fast
estimation of the error
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wordlengths in the algorithms. For instance, if the wordlengths of the inputs of
an adder are reduced, it is likely that the output’s wordlength can be also reduced
without losing precision (the precision loss happened at the output). This new
change, in turn, could also affect other wordlengths. Noise models such as [44]
depends on having the exact wordlengths for all signals. For other error models, this
task might not be necessary. Finally, the fast error estimation task makes use of the
set of couples (n, p) to obtain an estimation of the output’s error. In [3], optimization
time reductions of up to three orders of magnitude are reported when comparing fast
estimation with bit-true fixed-point simulation.

We comment here only the works that use an additive noise model [44, 52] and
use the noise power/variance at the output as a quality metric [2, 3, 18, 51, 53, 54].
The error model is based in computing a gain that relates the local errors with
their contributions to the output. Also, there are other parameters required to
express the correlation between errors. For LTI systems, there are works that base
the computation of the gains on the impulse response [2] and the use of affine
arithmetic [3, 18]. For non-linear systems with smooth operations, a pseudo impulse
response is applied in [51], affine arithmetic in [3] and a hybrid method combining
simulations and analytical expressions in [53, 54].

Signal Grouping
A way to reduce optimization time is to decrease the number of variables of the
optimization problem by grouping together signals [31, 43]. Instead of optimizing
the wordlength of each single variable, these are clustered to reduce complexity.
The grouping is carried out following different criteria. For instance, in [29, 31, 55],
inputs and outputs of adders are grouped together. The same applies to multiplexers
or delays.

Also, signal grouping can be made considering architectural issues, such as
temporal mobility in resource-shared implementations, as in [56]. When resource
sharing is applied it might be sensible to assign the same wordlength to operations
that are executed using the same arithmetic resource. This approach tries to match
resource binding with wordlength grouping in an interactive fashion (see Sect. 9.5).

Non-integer Wordlengths
Optimization based on non-integer wordlengths was addressed in Sect. 9.2. Some
approaches report that applying an optimization with relaxed constraints on the
wordlengths, followed by a final stage of rounding up their values leads to better
optimization time if compared with algorithms such as Min−1 [35–37, 46] as well
as reductions in the final cost [37, 46]. Doi et al. [35] reports time reduction of three
orders of magnitude, although the benchmarks are of low complexity. Fiore [36]
reports a reduction of optimization time of two order of magnitude with complex
algorithms. Finally, [37] also reports up to three orders of magnitude speedups.

Multi-Objective Optimization
The aforementioned gradient-based search approaches from [27] achieve fast
quantization by means of steering the optimization using a linear combination of
cost and error gradients simultaneously. The number of iterations can be reduced
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down to a third and the results are quasi-optimal for the tested benchmarks. In [41],
the ratio between the error gradient and the cost gradient is used and it is reported
that the number of simulations can be reduced a 50% in comparison to using only
the error as an optimization metric.

System Partitioning
Finally, it is interesting to mention works where industrial-size designs are
addressed in practical time. The key to do so is to use hierarchical methods, where
the quantization problem is subdivided in several independent problems. In [57]
quantization goes as follows. First, the system is divided in top-level entities—
which basically are the main processing blocks (i.e., FFT, channel equalizer,
etc.). Then, the top-level signals—the inputs and outputs of top-level entities—
are quantized complying with the error constraint and following a cost estimation
reduction criteria. Finally, each top-level entity is quantized independently given
the error constraints imposed by the quantization of the top-level signals. The
method provides a practical solution to the complexity explosion of wordlength
optimization.

Also, in [58], a mixed analytical and simulation-based hierarchical approach is
presented where significant design time reductions are reported (three orders of
magnitude). The technique is based on dividing the algorithm in smooth and non-
smooth blocks and applying analytical approaches whenever possible. The partition
is manual, but there are recent techniques to automatize this process [59].

In [60], a hierarchical approach applied to a communication system is presented
aiming at reducing the number of bit-error-rate (BER) simulations and favoring
noise variance simulations, since these require smaller input vectors. First, the
blocks’ outputs are injected a zero-mean normal noise and the variance that meets
a specified maximum BER (β) is found. Secondly, each group is individually
optimized applying the Max − 1 algorithm complying with the output noise
variance. Then quantization is applied even further until the β is met. Finally, a
global refinement is applied with the Max − 1 algorithm using BER simulations. A
speedup of ×9 is reported.

9.4 Optimization Function

It is not common to find works where direct design objectives (such as area, delay,
energy consumption) are optimized though quantization. Most of works rely on the
naive idea that reducing wordlength lead to reducing cost, but this is a high level
cost function which normally is poorly correlated with the real design optimization
objectives. Many approaches that minimize the summation of wordlengths as a
way to produce cost-efficient designs, can be found [5, 12, 14, 25, 61, 62]. In [5],
it is shown how the area and latency costs are benefited from an error-oriented
wordlength optimization. However, as pointed out in [27], the direct use of cost as



274 G. Caffarena

the minimization function clearly outperforms the results obtained by error-oriented
approaches.

Pioneer work [32] deals with speed, area and power optimization. They provide
objective functions for the three design costs and show that, for some examples (i.e.,
FIR filter), speed optimization leads to a quasi-uniform approach, while the MWL
approach is always the preferred for area and power consumption minimization.
Also, the solutions for area and power minimization are quite similar. However, this
results cannot be generalized.

Area has been considered in [1, 14, 21, 22, 24–27, 30–32, 36, 39, 53, 55, 63, 64],
and area savings of more than 50% with respect to the UWL approach are reported.
Some of these works also show that, as a bonus, power or speed are typically
improved [1, 65].

There are some approaches which expose the effect of quantization on power
consumption or energy dissipation [33, 65–67], and these costs are directly con-
sidered as optimization functions in [37, 43, 46, 68–70]. Power reductions up to
20–35% compared to UWL are provided. [69] shows that area optimal solutions
can even have worse power performance than UWL solutions.

Finally, it is interesting to highlight that apart from [32] there are not many works
that directly consider clock frequency as the minimization function.

9.5 Combined Wordlength Optimization and Architectural
Synthesis

Traditionally, WLO has been decoupled from architectural design to manage
complexity [8]. However, even though the quantization process is already an NP-
hard problem, there have been attempts to extend the optimization problem to
consider also architectural issues (i.e., resource sharing, fine grain-coarse grain
operator trade-off, etc.).

One of the pioneer works in closing the gap between WLO and architectural
synthesis is [21], where the wordlength optimization is carried out by minimizing
a lower bound on the area cost of a resource sharing architecture. Once the
wordlengths are selected, scheduling, resource allocation and resource binding are
performed. The interesting point of this work is that quantization makes use of
an estimation of the total area based on both the algorithm execution latency and
the wordlengths. The latency of resources is considered variable, although a very
simple model is used. The results are compared to an UWL approach, but there is
no comparison to the traditional two-step approach, where WLO is performed prior
to architectural synthesis.

In [55] WLO and architectural synthesis are interleaved. First, the system is
quantized using a noise constraint a little bit more relaxed than the required in
the specification. Then, a datapath is created by applying scheduling, resource
allocation and resource binding. Finally, wordlengths are refined by increasing the
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operators’ wordlengths until the noise constraint is met. The work is valuable,
however, the approach is too simplistic: a single optimization iteration, 1-cycle
latency operators, etc. Again, the authors do not provide any comparison with a
traditional two-step approach.

In [30] the combined problem is explored by means of MILP. Due to the very
long computation times required by MILP, the problem complexity is reduced
through some simplifications: 1-cycle latency operators, multiplexers and registers
neglected, etc. The results prove the validity of the combined approach and serves
as a starting point to develop heuristics. This work has been extended in [39], where
a simulated annealing approach is used to intertwine wordlength and architectural
optimization, targeting FPGA implementations. Area reductions up to 21% in
comparison with traditional approaches are reported. In [40] the same method is
applied to FPGAs with embedded DSP blocks and a method to balance logic blocks
and DSP blocks is provided with similar results reported.

The work in [56] also presents an iterative approach. Here, the operators costs
(area, latency and power consumption) are wordlength dependent. Basically, WLO
and architectural synthesis are introduced within the optimization loop. Operations
are grouped after architectural synthesis, based on mobility and wordlength infor-
mation. The wordlength of each group is optimized by means of quantization to
reduce cost. Every change in the wordlengths of operations produces a new datapath
which leads to new groups of operations. The method iterates several times and
records the best solution.

Another interesting point of view is that of exploiting the information about
precision sensitivity to wisely distribute operations among fine-grain processing
blocks (i.e., logic fabric of FPGAs) and coarse-grain blocks (i.e., DSP blocks of
FPGAs) [71] presents the interleaved application of quantization and resource bind-
ing (binding between arithmetic operations and FPGA resources) for datapaths with
no resource sharing. Here, the operations which require the greatest wordlengths
are quantized and are assigned to resources first. In fact, they are assigned to FPGA
embedded multipliers, which are suitable for high wordlength operations. By doing
that, it is possible to implement operations with small wordlengths in the remaining
LUT-based resources, therefore, making a better use of the overall FPGA resources.

9.6 Comparison Between Techniques

Comparing techniques is a difficult task since there is no common framework. In
this section a summary of different papers dealing with the comparison of several
WLO techniques is presented. The conclusions extracted from these paper may help
the reader to choose the appropriate technique. However, it must be bore in mind
that each work uses a different set of benchmarks and, also, that the complexity of
the benchmarks is low. For instance, system partitioning approaches or non-integer
optimization are not considered in the summarized papers.
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Table 9.1 All compared techniques. Checkmarks indicate if a technique is considered in one
comparison work

M.A. Cantin G. Constantinides K.H. Han G. Caffarena

Papers 2002 [25] 2003 [1] 2006 [27] 2008 [24]

Branch and bound [32] � �
Complete search [14, 27, 29] �
Evolutive search [14] � �
Exhaustive search [31] � �
Heuristic [25] �
Hybrid [25] �
Max-1cost [29] � �a

Max-1enh
cost [1] � �b

Max-1err [14] � �
Min+1err

cost [14] � �c

Min+bcost [27] �d

Min+berr [25] � �e

MILP [1] �
Preplanned [26] � �
Simulated annealing [39] � �

a
GRAD in [24]

b
GRAD2 in [24]

c
Complexity-distortion measure (CDM) in [27]

d
Local search in [27] (a gradient-ascent version of the proposal in [32])

e
Sequential search in [27]

The papers summarized are [14, 24, 25, 27]. Table 9.1 shows the techniques
covered by each of the four works.

Comparison by M.A. Cantin, 2002 [25]
A total of 12 DSP benchmarks with a number of operations ranging from 3 to 36
were used. The details are not specified. The average number of bits of all the signals
and the number of optimization iterations are used as comparison metric.

The main conclusions are:

• All methods reach optimal solutions for benchmarks with a small number of
operations.

• In general, methods which do not impose the minimum WL solution as a lower
bound obtain improved results. This reinforces the idea that the original upper
and lower wordlength bounds has a deep impact in the final results.

• The algorithms which required longer computation times were evolutive, SA,
exhaustive and branch and bound.

• Combining two optimization methods, such as hybrid and heuristic, lead to
improved results in terms of minimization.

• It seems that the lower bound limitation makes the exhaustive method to perform
poorly.
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• the number of iterations of SA is limited to 10 times the number of operations
of the algorithm, thus, the result are not necessarily optimal (see below for more
results on simulated annealing).

• the fastest for the benchmarks tested is preplanned.

These results must be interpreted with care, since the set of benchmarks chosen is
limited, mainly formed by small-size examples, and the metric, the average number
of bits, is tangentially related to cost.

Comparison by G. Constantinides, 2003 [1]
In this work, the benchmarks used are LTI algorithms with small and medium size
(the largest is a 126-tap FIR filter). The optimization function is the area.

The main conclusions are:

• The authors state that MILP is not practical for medium size problems, and they
point out that for some cases the solver used cannot reach a solution due to
stability problems.

• Max-1enh
cost reduces the area cost up to 6% when compared to Max-1cost , proving

that local minima are somehow avoided.

Comparison by K. Han, 2006 [27]
The testbench are a CDM demodulator with 5 quantized signals, an OFDM
demodulator with 4 quantized signals, an IIR filter with 7 quantized signals and
a noise cancellation filter with 5 quantized signals. For the latter, several optimal,
constrained and local methods. For the rest of benchmarks, the followed procedure
for testing the performance of the algorithms is to use a lower bound for the Min+b

algorithms (including b = 1) and an upper bound for the Max − 1 algorithm. The
lower bound is obtained by means of finding the minimum wordlength for each
signal that complies with a given quality constraint while the rest of signal has
infinite precision. The upper bound is the global minimum value that complies with
the constraints. The tested algorithms are used to find a feasible solution that is
finally refined with an optimal search.

The main conclusions are:

• The complete search requires a number of iterations 4 to 5 orders of magnitude
bigger than the rest of options.

• Min+berr and preplanned reduce the number of iterations 65% and 95%,
respectively, against exhaustive.

• Preplanned emerges as the fastest approach, although the results are not quasi-
optimal and they are highly dependent on the input vectors used for simulation.

• Min+berr has fast convergence, but in some cases the results are far from optimal.
• Min+bcost has a slow convergence, and for some experiments the obtained costs

are high in comparison with the optimal.
• Min+1err

cost displays fast convergence and produces minimal solutions if the
contribution of the error and the cost is balanced.

In summary, the use of constrained or local search techniques produce results
much faster than optimal approaches and also the combination of error and cost in
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the gradient computation seems to have beneficial effects in both convergence and
optimization. However, the conclusions, yet interesting, are not definitive due to the
scarcity and simplicity of the benchmarks.

Comparison by G. Caffarena, 2008 [24]
Small-size LTI are used as benchmarks with 21 to 38 quantized signals and the
optimization function is the area.
The main conclusions are:

• Regarding computation time:

– The fastest algorithm is Max-1cost .
– Max-1enh

cost takes times 1 order of magnitude bigger.
– SA times are 2–3 order of magnitude bigger.

• In terms of cost minimization:

– The average reduction of Max-1enh
err vs. Max-1err is around 5%, while there

are a few cases where Max-1err performs better.
– Comparing SA and Max-1err , the latter always performs better and the average

cost reduction is around 10% for the benchmarks tested.

9.7 Conclusions

This chapter presented the most common techniques applied to wordlength opti-
mization, a design stage that enables efficient fixed-point implementations. In this
last section the authors would like to provide some overall conclusions, not only
to help the reader to choose the appropriate techniques for WLO when designing
efficient hardware, but also to expose the current gaps that might be overcome in
future research works.

Hierarchical techniques (i.e., [46, 57–60]) stand as the key to the optimization of
complex systems. The partitioning itself provides a reduction in complexity, since
each block can be optimized independently, and time-consuming simulations are
deferred to a final stage with less optimization iterations. However, a wise selection
of the partitions may allow the partial application of fast techniques (i.e., LTI fast
estimators) that will reduce design time even further. Automatic partition can be
a clear asset in this context. Also, there are many fast estimators dealing with
the variance or the power of the quantization noise, so adapting these metrics to
other application performance metrics at a system level (i.e., BER) might lead to
significant improvements [60, 72]. In the same line, the application of techniques
to reduce number of the required bit-true simulations or the computation time they
need, can be essential [7, 58, 73, 74].

Regarding the particular optimization techniques, a wide range of these has been
covered in the chapter. The optimal approaches take too long to be considered
practical and they seem to be relegated to assessing the quality of heuristics with
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small-size benchmarks [1, 24, 30]. However, optimal approaches in the context of
real wordlengths [34, 34, 35, 37, 45, 46] provide quasi-optimal results in standard
optimization times. These techniques require a final quantization step that assign
a proper integer wordlength to each signal. Many works reported that the results
are more optimized than those of heuristics which directly use integer wordlengths.
However, there is not a thorough analysis on the implications of that final stage,
where a bit budgeting must be applied with the risk of moving the solution far
from an optimal or quasi-optimal state. Regarding the heuristics presented in works
like [1, 14, 24, 25, 32], etc., many conclusions can be gathered. There is a trade-
off between optimization time and optimality. Fast heuristics, such as Min-1 or
Max-1 tend to get stuck in local minima. However, they can be used to obtain
an initial solution to more complex optimization processes. The combination of
several heuristics seems to provide good results [25, 41]. Also, heuristics with the
possibility of increasing and decreasing the wordlength at each iteration seem to
avoid local minima, with a penalty in computation time. The recent introduction of
TABU search in [41] arises as an interesting option to be further investigated.

As for the cost function, it is clear that using directly cost as the optimization
function is the sensible thing to do, although there is again no thorough analysis
about the effect on the final cost of using other—sometimes easier to obtain—
metrics (i.e., error, summation of wordlengths, etc.) in the optimization. It would be
interesting to see the benefits and drawbacks (i.e., time vs cost reduction) of using
simple models such as in [25, 34]. Moreover, the simultaneous use of error and cost
gradients accelerates the optimization process and avoid local minima [27, 41, 73].
Getting to the opposite side, using an accurate cost model that not only considers the
cost of each operation but also the specific architectural details of the final system
has proved to provide cost reduction up to 20% [21, 30, 39, 40, 55, 56, 71]. The
combination of system-level partitioning with the combined WLO and architectural
synthesis poses as an interesting research line.

As a final remark, this chapter ends providing the reader with some references
about floating-point WLO. The decision about when using floating-point rather
than fixed-point is not always easy to make [5, 75, 76]. The use of non-standard
precisions for floating-point arithmetic implementations has been researched in the
last couple of decades [5, 68, 77–80] in order to achieve efficient implementations in
applications that require a wide dynamic range. WLO optimization has been applied
in several works [17, 81–83] aiming at applying customized wordlengths for the
exponent and mantissa of each signal within the algorithms. Moreover, there are
also works where fixed-point and floating-point arithmetic are combined in the same
designs [77, 84–87]. In general, the techniques presented in this chapter can also
be applied to floating-point WLO, but there are still many open topics, such as the
elaboration of accurate error models, techniques to efficiently combine fixed-point
and floating-point, etc.
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Chapter 10
Exploiting Approximations in Real-Time
Scheduling

Kamyar Mirzazad Barijough, Lin Huang, I-Hong Hou, Sachin S. Sapatnekar,
Jiang Hu, and Andreas Gerstlauer

10.1 Introduction

In real-time systems, reaction time and latency guarantees are of critical importance.
In such systems, tasks have constraints in the form of deadlines that must be met
during system execution. Real-time analysis methods can provide deadline guaran-
tees, but they rely on knowledge about upper bounds for individual task execution
times [1]. Furthermore, when there are dependencies between tasks, upper bounds
are also needed for communication times. These bounds are generally chosen with
pessimism to account for all scenarios and, therefore, are significantly larger than
average computation and communication times. This pessimism often leads to
overdesign of real-time systems, which ultimately reduces schedule admissibility
and resource utilization.

In case of independent tasks, as an alternative to pessimistic upper bounds, one
can use tighter bounds for execution times and schedule tasks according to the opti-
mistic bounds. While on average such bounds may be satisfied, task deadlines might
be violated occasionally, e.g., when the system is under stress or task execution
times grow large for certain inputs. In the general case, deadline violations will lead
to task results being dropped. In mixed-criticality settings [2], tasks can thereby be
partitioned into different criticalities based on their overall contribution to quality,
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such that only low-criticality tasks with minor quality impact will be dropped.
Nevertheless, this provides only a very coarse notion of quality management, e.g.,
on a complete frame basis in audio/video applications. By contrast, many such
applications support a more graceful tradeoff between execution time and quality
degradation. For example, instead of completely skipping a task, its precision
in computation can be lowered in exchange for earlier completion. The inherent
error tolerance of these applications can be generalized and exploited through
approximate or, as it is often also called, imprecise computing where deadline
violations are translated into reduced quality. In such scenarios, scheduling can be
formulated as a quality optimization problem in terms of task execution time budgets
under total scheduling constraints.

In case of dependent tasks, in addition to task execution times, there is the
added problem of accounting for communication latency in allocating task budgets.
Oftentimes, such as in single-device systems, tightly coupled systems or distributed
systems with closed networks, communication times are either highly predictable
or insignificant compared to computation times. Traditional distributed real-time
frameworks [3, 4] rely on such assumptions to provide overall guarantees. However,
many systems, such as the Internet of Things (IoT), utilize inherently open and often
wireless networks for communication, which can have losses and unpredictable
or potentially unbounded delays. This requires assignment of timeouts to bound
communication delays. Real-time network protocols [5] follow such approaches to
tradeoff latency for quality, e.g., in video or audio streaming, but such protocols
are intended for end-to-end communication and not distributed computation. In
distributed real-time systems, scheduling algorithms need to allocate communi-
cation budgets as well as computation budgets. Similar to computation budgets,
communication budgets can be enforced by skipping partial communication, drop-
ping intermediate data and thus reducing quality. Therefore, in the general case,
scheduling of real-time systems is a quality optimization problem in terms of both
task computation and communication budgets.

In this chapter, we consider reducing pessimism in scheduling of real-time
systems through exploiting approximate computation or communication while opti-
mizing overall quality. Towards this end, we first consider the case of independent
tasks executing in a single multiprocessor device. Then, we turn our attention to
dependent tasks executing locally or in a distributed fashion. Finally, we conclude
with a summary.

10.2 Scheduling Independent Tasks

A common application scenario for real-time scheduling is for computing tasks
without inter-dependencies among them, i.e., there is no constraint specifying
that a task must proceed another. We introduce the application of approximate
computing for a recently popular independent task scheduling model—mixed-
criticality systems, with an emphasis on multiprocessor scheduling.
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10.2.1 Mixed-Criticality (MC) System Model

A mixed-criticality (MC) system [2] has a set of independent sporadic tasks
T = {τ1, τ2, . . .} and each task τi ∈ T consists of an infinite sequence of jobs
{J 1

i , J 2
i , . . .}. A basic and perhaps the most common type of mixed-criticality

system is dual-criticality system, where only two criticality levels exist. Without loss
of generality, the system model description here is based on dual-criticality systems.
As such, task set T is composed by two disjoint subsets of low-criticality tasks TL

and high-criticality tasks TH . The system may operate in either low-criticality mode
or high-criticality mode. We use subscript in {L,H } to indicate task criticality and
superscript in {lo, hi} to differentiate low-criticality and high-criticality modes.

Each task τi ∈ T is characterized by (Ti, χi, R
lo
i , Rhi

i ), where Ti is the minimal
time interval between two consecutive jobs of task τi , χi ∈ {L,H } indicates its
criticality level, and Rlo

i and Rhi
i are estimated job execution time in low-criticality

and high-criticality mode, respectively. If job J
j
i is released at time a

j
i , its deadline

is a
j
i + Ti . Therefore, Ti implicitly specifies job deadline and is also called period

for convenience.
A system starts with low-criticality mode, which is also the ordinary operation

mode. In order to reduce the pessimism of WCET (Worst-Case Execution Time)
estimate in conventional real-time scheduling, execution time estimate Rlo

i is not
very conservative for high-criticality tasks. Consequently, there is a low but non-zero
probability that an actual execution time exceeds Rlo

i . In the classic MC model [2],

as long as any high-criticality job J
j
i has actual execution time exceeding Rlo

i ,
the system switches to high-criticality mode. In high-criticality mode, all high-
criticality tasks are scheduled with very pessimistic Rhi

i , i.e., Rhi
i > Rlo

i , such
that there exists a guarantee for meeting deadlines of all high-criticality tasks.
Meanwhile, all low-criticality tasks are discarded and no longer executed in high-
criticality mode.

10.2.2 Scheduling of Mixed-Criticality Systems

The goal of scheduling is to decide when to execute each job. For a multiprocessor
system, the scheduling also allocates jobs to certain processors. We consider typical
preemptive scheduling, where a low-priority job can be preempted by a high-priority
job during its execution. For each task τi , its utilizations in low and high-criticality
modes are defined as

ulo
i =

Rlo
i

Ti

, and uhi
i =

Rhi
i

Ti

,
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respectively. Then, the total utilizations of all low-criticality tasks are given by

Ulo
L =

∑

τi∈TL

ulo
i and Uhi

L =
∑

τi∈TL

uhi
i .

Likewise, the total utilizations for high-criticality tasks are defined as

Ulo
H =

∑

τj∈TH

ulo
j and Uhi

H =
∑

τj∈TH

uhi
j .

Please note in classic MC model, Uhi
L = 0 since all low-criticality tasks are

discarded in high-criticality mode.

10.2.2.1 Uniprocessor Scheduling

One well-known technique for MC scheduling on uniprocessors is EDF-VD
(Earliest Deadline First with Virtual Deadlines) [6]. EDF-VD is similar to EDF [7]
except that the implicit deadlines of all high-criticality tasks are scaled by a factor
x ∈ (0, 1) in low-criticality mode. That is, for each high-criticality task τi , its virtual
implicit deadline is T̂i = x · Ti in low-criticality mode while its implicit deadline
in high-criticality mode remains to be Ti . The sufficient schedulability condition in
low-criticality mode is given by the following theorem.

Theorem 1 (Theorem 1 in [6]) If the following condition is satisfied, sporadic task
set T is schedulable with EDF-VD method on uniprocessor in low-criticality mode.

Ulo
L +

Ulo
H

x
≤ 1. (10.1)

The scaling factor x can be obtained as x = Ulo
H /(1− Ulo

L ).

10.2.2.2 Partitioned Scheduling on Multiprocessors

In this approach [8], n = |T| tasks are partitioned onto m unit-speed processors.
After the partitioning, each task is never changed to another processor. As such,
there is a fixed subset of tasks on each processor. Then, uniprocessor scheduling
methods can be applied to each processor individually. In [8], a 2-phase task
partitioning algorithm is introduced. In phase 1, high-criticality tasks are assigned
to each processor one by one as long as the high-criticality utilization Uhi

H for each
processor does not exceed 3

4 . In phase 2, low-criticality tasks are further assigned
to processors one by one following the condition that the low-criticality utilization
Ulo

L + Ulo
H is no greater than 3

4 .
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10.2.2.3 Global Scheduling on Multiprocessors

Global scheduling allows the jobs of a task to be allocated onto different pro-
cessors. The method of fpEDF (fixed-priority EDF) [9] is a state-of-art global
scheduling approach for multiprocessor in traditional real-time systems without
mixed-criticality. Fixed-priority means the priority of one job cannot be changed
during its execution. For a task set

⋃
τi∈T (Ti, Ri) to be scheduled on m identical

processors, fpEDF first chooses a subset Thp ⊂ T of at most m − 1 tasks,
each with utilization greater than 1

2 , and assigns them on mhp processors with the
highest priority. The priorities of remaining tasks Tlp ⊂ T are lower and scheduled
according to EDF (Earliest Deadline First) principle on the other mlp = m − mhp

processors. The schedulability condition for fpEDF is given in Lemma 1 [9].

Lemma 1 Consider a task set
⋃

τi∈T (Ti, Ri) to be scheduled on m identical

processors. Let Utotal
lp be the total utilization of the tasks in Tlp, and Umax

lp be the

maximum utilization of tasks in Tlp. If Utotal
lp ≤ mlp − (mlp − 1) ·Umax

lp is satisfied,
this task set T is schedulable by fpEDF method.

The work of fpEDF-Virtual Deadline (fpEDF-VD) [10] is an extension of fpEDF
to mixed-criticality systems. Virtual deadlines are enforced for high-criticality tasks.
Each high-criticality task τj is mapped to (T̂j , R

lo
j ) in low-criticality mode, where

T̂j = x · Tj (0 < x < 1) is the virtual deadline that is enforced in both offline
schedulability test and online execution. Each low-criticality task τi is mapped
to a regular implicit deadline task (Ti, R

lo
i ) in low-criticality mode, and all low-

criticality tasks are dropped in high-criticality mode. The schedulability conditions
for fpEDF-VD are as follows.

• Task set (
⋃

τi∈TL
(Ti, R

lo
i ))

⋃
(
⋃

τj∈TH
(x · Tj , R

lo
j )) is schedulable on m pro-

cessors in low-criticality mode according to Lemma 1.
• Task set

⋃
τj∈TH

((1− x) · Tj , R
hi
j ) is schedulable on m processors in high-

criticality mode according to Lemma 1.

For a high-criticality task τj ∈ TH in high-criticality mode, its implicit deadline
(1 − x) · Tj is used in the offline schedulability check. However, only its original
deadline Tj needs to be enforced during online execution.

The schedulability condition in high-criticality mode leads to the following
important conclusion.

Lemma 2 ([10]) If a mixed-criticality task set T is schedulable by fpEDF-VD,
each of its high-criticality job J k

j in high-criticality mode can start from its virtual

deadline d̂k
j = ak

j + x · Tj and guarantee to finish by actual deadline dk
j with

execution time Rhi
j following fpEDF-VD scheduling.
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10.2.2.4 DP-Fair Scheduling on Multiprocessors

DP (Deadline Partition)-Fair [11] is a scheduling method based on proportional
fairness for regular (non-MC) multiprocessor systems, and also allows a task to
be allocated onto different processors. In DP-Fair, the density of each task τi is
computed as δi = Ri

Ti
, where Ri and Ti are the worst-case execution time and period

of task τi , respectively. DP-Fair divides time into slices, where boundaries between
slices are formed by release time and deadlines of all jobs. Jobs are allocated in
small pieces that have the same deadline in each slice. Assuming the length of a
slice is l, δi · l is executed for task δi in this slice. The schedulability condition for
DP-Fair is as follows.

Theorem 2 (Lemma 14 in [12]) A non-MC task set T is schedulable under DP-
Fair iff

∑
τi∈T δi ≤ m, where m is the number of processors.

MC-DP-Fair [12] is an extension of DP-Fair for mixed-criticality systems. A
main change is that each task τi is assigned a virtual deadline 0 < T̂i ≤ Ti . Let � be
the earliest job release time or deadline after a system is switched to high-criticality
mode. The virtual deadlines and the original deadlines are enforced before and after
�, respectively. MC-DP-Fair has schedulability equivalent to MC-Fluid [12], which
is a theoretically optimal approach.

10.2.3 Approximations in Mixed-Criticality Systems

The treatment to low-criticality tasks in the classic MC model is controversial. All
low-criticality tasks are dropped in high-criticality mode to facilitate the guarantee
for high-criticality tasks. Despite their low-criticality, these tasks are still very much
needed and completely abandoning them is a significant loss of Quality of Service
(QoS).

Approximate computing [13], a.k.a. imprecise computing, can help reduce
such complete loss of low-criticality tasks in high-criticality mode. Approximate
computing does not provide precise results, but costs relatively short execution time,
which allows low-criticality tasks to continue in high-criticality mode. In such an
approach, each low-criticality job consists of two parts: a mandatory part and an
optional part. Since more processing time is needed for high-criticality tasks in
high-criticality mode, low-criticality tasks only need to complete their mandatory
parts in high-criticality mode, while they need to complete both mandatory and
optional parts in low-criticality mode. As such, we have Rlo

i > Rhi
i ≥ 0 for each

low-criticality task τi .
Approximate computing facilitates two additional system models.

1. Imprecise MC (IMC) system: a low-criticality task τi has a precise computing
realization with execution time R̂i and an approximate implementation with
execution time R̃i < R̂i . Let Rlo

i = R̂i and Rhi
i = R̃i , which is a non-zero
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constant. When the system is switched to high-criticality mode, if a low-
criticality job has executed longer than Rhi

i , it would be aborted for this period,
otherwise it would continue to execute till Rhi

i .

2. Variable-Precision MC (VPMC) system: for a low-criticality task τi , Rlo
i = R̂i

and Rhi
i ∈ {R̂i , R̃i} corresponds to a decision variable. Since approximate

computing leads to errors, the objective of VPMC is to minimize computing
errors, or maximize precise computing, for low-criticality tasks in high-criticality
mode.

The idea of exploiting approximate computing in real-time scheduling appeared
more than two decades ago [14]. However, the adoption of approximate computing
for MC systems is fairly recent and most works are built upon existing MC schedul-
ing techniques. A uniprocessor scheduling considering approximate computing for
low-criticality tasks is [15], which is an extension to EDF-VD (Virtual Deadline)
scheduling [6]. Its schedulability condition in low-criticality mode is the same as
EDF-VD. In high-criticality mode, the method of [15] continues to execute low-
criticality tasks with approximate computing, and derives the following sufficient
schedulability condition.

Theorem 3 (Theorem 2 in [15]) If the following condition is satisfied, sporadic
task set T is schedulable with EDF-VD method on uniprocessor in high-criticality
mode.

xUlo
L + (1− x)Uhi

L + Uhi
H ≤ 1, (10.2)

where x is the scaling factor for virtual deadlines.

Theorem 4 (Theorem 3 in [15]) Given a task set, if
Ulo

H

1−Ulo
L

≤ 1−(Uhi
H +Uhi

L )

Ulo
L −Uhi

L

, where

Uhi
H +Uhi

L < 1 and Ulo
L < 1 and Ulo

L > Uhi
L , then this task set can be scheduled by

EDF-VD with a deadline scaling factor x chosen in the following range

x ∈
[

Ulo
H

1− Ulo
L

,
1− (Uhi

H + Uhi
L )

Ulo
L − Uhi

L

]

. (10.3)

All these methods [15–17] execute low-criticality tasks with approximate com-
puting in high-criticality mode. By contrast, a later work [18] allows some low-
criticality tasks to be executed with full precision in high-criticality mode. It
formulates an integer linear programming to maximize the number of low-criticality
tasks that can continue with precise computing. Like [17], this work is also based
on the fluid model and is applied on multiprocessors.
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10.2.4 Multiprocessor Scheduling of Mixed-Criticality Systems
with Approximate Computing

We introduce how approximate computing helps improve partitioned scheduling,
global scheduling based on fpEDF-VD, and MC-DP-Fair scheduling in multipro-
cessor MC systems.

10.2.4.1 Partitioned Scheduling for IMC/VPMC Systems

For EDF-VD on uniprocessor IMC/VPMC systems, we introduce a sufficient
schedulability condition that has a form similar to that in conventional MC systems.

Lemma 3 If a task set in IMC/VPMC system satisfies the condition max(Ulo
L +

Ulo
H ,Uhi

L + Uhi
H ) ≤ 3

4 , it is schedulable by EDF-VD on uniprocessor.

Proof According to Lemma 2 in [15], if max(b + αc, λb + c) ≤ S(α, λ), then
αc

1−b
≤ 1−(c+λb)

b−λb
, where Uhi

H = c, Ulo
H = αc, Ulo

L = b, Uhi
L = λb and S(α, λ) =

(1−αλ)((2−αλ−α)+(λ−1)
√

4α−3α2)

2(1−α)(αλ−αλ2−α+1)
. Based on Theorem 4 in [15], S(α, λ) ≥ 3

4 . As such,

if max(Ulo
L + Ulo

H ,Uhi
L + Uhi

H ) ≤ 3
4 , then

Ulo
H

1−Ulo
L

≤ 1−(Uhi
H +Uhi

L )

Ulo
L −Uhi

L

, which is the

sufficient schedulability condition for EDF-VD according to Theorem 4. ()
The given tasks are first partitioned onto m unit-speed processors in the same

order as that described in Sect. 10.2.2.2. When a task is assigned to a processor, the
schedulability check is based on Lemma 3 instead of the conventional approach [8].
This change is to accommodate the IMC/VPMC model. This partitioning method
is called VPMC partitioning. After the partitioning, the tasks on each processor are
scheduled in the same way as EDF-VD under the IMC model [15]. Under the same
schedulability constraints, VPMC further allows some low-criticality task to execute
with full precision in high-criticality mode.

We introduce two techniques to enhance the above VPMC partitioning. The
first improvement is to change the schedulability check in the partitioning from
Lemma 3 to Theorem 4. From the proof of Lemma 3, we can tell the schedulability
condition in Lemma 3 is sufficient for the schedulability condition in Theorem 4.
On the other hand, the Lemma 3 condition is not necessary for the Theorem 4
condition. Therefore, the condition of Theorem 4 is less conservative according
to [19]. The second enhancement is to balance the utilizations of each processor
between the two different criticality modes. More specifically, we attempt to make
the difference between Ulo

L + Ulo
H and Uhi

L + Uhi
H on each processor as small as

possible. The intuition is that a small difference or balanced utilization can avoid
one criticality mode being a bottleneck of the whole system. Each time a task τi is
to be assigned to a processor, all the processors are sorted in non-decreasing order
of Uhi

L + Uhi
H − Ulo

L − Ulo
H and indexed from 1 to m. If χi = H , the attempts of

assigning τi to a processor are in the order from 1 to m. Otherwise, the attempts
follow the order from m to 1.
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10.2.4.2 Global Scheduling for IMC/VPMC Systems

We extend the popular global scheduling technique, fpEDF-VD (Sect. 10.2.2.3) [10],
for IMC/VPMC systems, where low-criticality tasks continue to be executed
by approximate computing, or even precise computing, in high-criticality
mode. As such, Rhi

i for each low-criticality task τi ∈ TL is no longer 0 and
Rlo

i � Rhi
i > 0,∀τi ∈ TL is satisfied.

The low-criticality mode of an IMC/VPMC system is handled in the same way as
fpEDF-VD. More specifically, a task set (

⋃
χi=L (Ti, R

lo
i ))

⋃
(
⋃

χi=H (x · Ti, R
lo
i ))

is schedulable on m processors by fpEDF according to Lemma 1 in Sect. 10.2.2.3.
Please note by scaling Ti by x ∈ (0, 1), virtual deadline x · Ti is applied for all
high-criticality tasks.

The transition from low-criticality to high-criticality mode is subtle and deserves
a lot of attention [15]. We introduce three techniques for handling such transitions
as well as high-criticality mode: (A) direct application of fpEDF-VD without any
modifications; (B) fpEDF-DVD (fpEDF with Dual Virtual Deadlines); (C) service
preserving.

(A) Direct Application of fpEDF-VD This technique may result in one-time loss
of some low-criticality jobs during the transition. Except this loss, everything else
is the same as fpEDF-VD in classic MC systems. Let t∗ be the moment when the
system enters high-criticality mode. We define dhi as the earliest deadline (virtual
deadline for high-criticality tasks) among all jobs that are active right after t∗. We
further define ahi to be the earliest release time among jobs released after t∗. We call
� = min(dhi, ahi) the critical moment. After �, the schedulability check of high-
criticality mode is the same as that in classic MC systems. However, the transition
time interval [t∗, �] needs particular attention for IMC/VPMC systems. During
[t∗, �], there can exist carry-over jobs, which are jobs that are released before t∗
and have not been completed at t∗. By the fpEDF-VD algorithm design, high-
criticality carry-over jobs can be guaranteed to complete before their deadlines if
the schedulability check is passed. If a low-criticality carry-over job J

j
i has already

executed at least R̃i amount of time (time of approximate computing) at t∗, we take
its approximate computing result [14] and quit this job. If J

j
i has executed less than

R̃i , we continue it till � and then quit. By disallowing low-criticality carry-over jobs
after �, the schedulability of all high-criticality jobs can be maintained. In the worst
case, a low-criticality task may lose its job once during [t∗, �].
(B) fpEDF-DVD (Dual Virtual Deadline) Like the virtual deadlines for
high-criticality tasks in fpEDF-VD, we apply virtual deadlines for low-
criticality tasks in order to avoid their one-time loss during the transition. More
specifically, each low-criticality task τi has deadlines y · Ti and (1 − y) · Ti

for low-criticality mode and high-criticality mode, respectively, where y is
a scaling factor between 0 and 1. The value of y is found by sweeping
between 0 and 1 and selecting the one that satisfies schedulability conditions,
i.e., both task systems (

⋃
χi=L (y ∗ Ti, R

lo
i ))

⋃
(
⋃

χi=H (x ∗ Ti, R
lo
i )) and
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(
⋃

χi=L ((1− y) ∗ Ti, R
hi
i ))

⋃
(
⋃

χi=H ((1− x) ∗ Ti, R
hi
i )) are each (separately)

schedulable on m processors by fpEDF.

Theorem 5 If the virtual deadline based utilization of all tasks satisfy schedula-
bility conditions in both low-criticality and high-criticality mode, the fpEDF-DVD
scheduling guarantees all job completions before their deadlines and no job is
abandoned.

Proof If the schedulability conditions are satisfied, all tasks are evidently schedula-
ble by fpEDF in low-criticality mode and high-criticality mode. Special attention
needs to be paid to carry-over jobs, which are released before the moment t∗
entering high-criticality mode and have not been completed at t∗. Then, the low-
criticality mode virtual deadline for each carry-over job must be after t∗. The virtual
deadlines partition a task period into low-criticality mode portion, which are x · Ti

and y · Ti , and high-criticality mode portion, which are (1− x) · Ti and (1− y) · Ti ,
respectively. For the carry-over jobs, one can treat their low-criticality mode virtual
deadlines as their high-criticality mode release times, which are after t∗. As the
schedulability conditions are satisfied, even if the carry-over jobs start execution
at their low-criticality virtual deadlines, they are all schedulable for completion by
their actual deadlines. ()
Virtual deadline is effective for providing guarantee on meeting deadlines. However,
it is basically a conservative resource reservation approach that makes schedulability
condition more strict and hence causes under-utilization of resources. Applying
virtual deadlines for both low-criticality tasks and high-criticality tasks would
exacerbate the inefficiency and is an expensive price paid for avoiding one-time
loss of low-criticality jobs.

(C) Service Preserving Method This method can avoid the one-time loss of low-
criticality jobs and is less conservative than the fpEDF-DVD technique. In this
method, the treatment of high-criticality tasks is the same as fpEDF-VD [10].
Consider a high-criticality job J k

j that is active at moment t∗ of mode switching.

Its virtual deadline satisfies d̂k
j = ak

j + x · Tj ≥ t∗, otherwise this job would have
finished. Right after time t∗, the system enters high-criticality mode and the actual
deadline dk

j = ak
j + Tj is enforced. According to Lemma 2, the extra time budget

(1 − x) · Tj is sufficient for J k
j to finish with execution time Rhi

j . Therefore, high-
criticality tasks are guaranteed to satisfy their deadlines.

The challenging part is how to handle low-criticality tasks during the transition
interval at the beginning of high-criticality mode. The non-zero Rhi

i for low-
criticality tasks makes the schedulability guarantee quite difficult. We suggest a
service preserving interval [t∗, t∗ + P ], when only the active (carry-over) low-
criticality jobs are executed by DP-Fair scheduling [11], all active high-criticality
jobs are suspended and no newly arrival jobs are started. This is to facilitate that all
active low-criticality jobs can be finished with approximate computing during the
transition. Meanwhile, the interval P is designed in a way that the schedulability
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of all the other jobs are still maintained. A critical basis for the service preserving
interval is that execution time Rhi

j is accommodated after virtual deadline d̂k
j for a

high-criticality job J k
j in high-criticality mode according to Lemma 2 by fpEDF-

VD [10]. The service preserving interval length is defined as

P = min∀τj∈TH

Rlo
j . (10.4)

Next, we will discuss schedulability of active jobs and those involving the service
preserving interval.

Lemma 4 By following fpEDF-VD, all high-criticality jobs can guarantee to meet
their deadlines in high-criticality mode even if they are not executed in [t∗, t∗ +P ].
Proof The high-criticality jobs involving the service preserving interval [t∗, t∗+P ]
can be categorized into three cases, which will be discussed as follows.

Case 1 Overrun jobs. These are the high-criticality jobs that have executed Rlo

time but have not finished (see Fig. 10.1). At the end of the Rlo time, the system
enters high-criticality mode when the moment is t∗. According to the schedulability
conditions of fpEDF-VD, the virtual deadline d̂o

j of an overrun job J o
j satisfies d̂o

j ≥
t∗. The method of fpEDF-VD (Lemma 2) also indicates that all high-criticality jobs
can execute Rhi after their virtual deadlines and finish before their actual deadlines
in high-criticality mode. Since time Rlo

j has already been executed for job J o
j at

t∗, deferring the rest of its execution by Rlo
j maintains the schedulability. In other

words, the rest of the overrun job can start from d̂o
j + Rlo

j = d̂o
j + Rlo

j + t∗ − t∗ =
t∗+Pj , where Pj = d̂o

j +Rlo
j − t∗. Since d̂o

j ≥ t∗, Pj ≥ Rlo
j . Therefore, postponing

the execution of the rest of J o
j by Rlo

j will maintain the schedulability of overrun
jobs.

Case 2 Active high-criticality jobs without overrun (see Fig. 10.2). A high-
criticality job J k

j has been executed qk
j < Rlo

j by t∗. Then, its rest portion can

start from d̂k
j + qk

j with guarantee of meeting its deadline according to fpEDF-VD.

Fig. 10.1 Case 1: service
preserving interval for an
overrun job

Fig. 10.2 Case 2: service
preserving interval for an
active high-criticality job
without overrun
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Fig. 10.3 Case 3: service
preserving interval for an
immediate newly coming
high-criticality job

Like Case 1, d̂k
j + qk

j = t∗ + Pj , where Pj = d̂k
j + qk

j − t∗. By schedulability

condition in low-criticality mode, qk
j + d̂k

j − t∗ ≥ Rlo
j , then Pj ≥ Rlo

j . Hence, such

a job can be suspended in [t∗, t∗ + Rlo
j ] without affecting its schedulability.

Case 3 High-criticality jobs arriving during the service preserving interval (see
Fig. 10.3). The arrival time ak

j of such a job J k
j satisfies

t∗ ≤ ak
j ≤ t∗ + P. (10.5)

The schedulability conditions in fpEDF-VD require that

ak
j + Rlo

j ≤ d̂k
j . (10.6)

Combing inequality (10.5) and (10.6), we have

Rlo
j ≤ d̂k

j − ak
j ≤ d̂k

j − t∗ = Pj .

Since J k
j can guarantee to finish before its deadline even if it starts from d̂k

j

according to fpEDF-VD, its start time can be deferred by Pj , which is lower
bounded by Rlo

j .

Overall, all high-criticality jobs involving the service preserving interval can be
deferred by Rlo without affecting their schedulability. Hence, deferring by P =
min∀τj∈TH

Rlo
j for all these jobs can still guarantee to meet their deadlines. ()

Next, we describe schedulability conditions for active low-criticality jobs during
the service preserving interval [t∗, t∗ + P ]. At t∗, if a low-criticality job J k

i has
already been executed for at least Rhi

i , it is terminated with approximate computing
result. An active (carry-over) low-criticality job J k

i means that it has been executed
for qk

i < Rhi
i by t∗. The active low-criticality jobs are scheduled by the fluid-based

DP-Fair method (see Sect. 10.2.2.4) in the service preserving interval, while fpEDF-
VD is employed for all the other time. Although fluid scheduling tends to entail
frequent job preemptions, it is utilized only within the limited service preserving
interval. The schedulability for DP-fair method is largely decided by the job density.

Lemma 5 The density δk
i of an active low-criticality job J k

i in [t∗, t∗ + P ] is no
greater than max

(
Rhi

i

P
,

Rhi
i

Rlo
i

)

.
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Fig. 10.4 Active
low-criticality job with
deadline after t∗ + P

*

Fig. 10.5 Active
low-criticality job with
deadline before t∗ + P

*

Proof This bound is derived from two cases. In one case, deadline dk
i ≥ t∗ + P as

shown in Fig. 10.4. In the worst-case for the service preserving interval, entire job
Rhi

i is executed by t∗ + P , the density of this case is upper bounded as

δk
i |dk

i ≥t∗+P ≤
Rhi

i

P
. (10.7)

In the other case, dk
i < t∗ + P as shown in Fig. 10.5. If qk

i has been executed by
t∗, the density is estimated by

δk
i |dk

i <t∗+P =
Rhi

i − qk
i

dk
i − t∗

. (10.8)

By the schedulability condition in low-criticality mode, Rlo
i − qk

i ≤ dk
i − t∗.

Therefore,

δk
i |dk

i <t∗+P =
Rhi

i − qk
i

dk
i − t∗

≤ Rhi
i − qk

i

Rlo
i − qk

i

. (10.9)

Consider a function

f (x) = Rhi
i − x

Rlo
i − x

, 0 ≤ x < Rhi
i < Rlo

i . (10.10)

Since derivative f ′(x) = Rhi
i −Rlo

i

(Rlo
i −x)2 < 0, f (x) is a monotone decreasing function and

its maximum is at x = 0. Hence,

δk
i |dk

i <t∗+P ≤
Rhi

i − qk
i

Rlo
i − qk

i

≤ Rhi
i

Rlo
i

. (10.11)
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By combining the two cases, we have

δk
i ≤ max

(
Rhi

i

P
,
Rhi

i

Rlo
i

)

. (10.12)

()
In the worst case, every low-criticality task has an active job at t∗. According to

Theorem 2 and Lemma 5, a sufficient condition for DP-Fair method to successfully
schedule all the active jobs on m processors in [t∗, t∗ + P ] is

∑

∀τi∈TL

max

(
Rhi

i

P
,
Rhi

i

Rlo
i

)

≤ m. (10.13)

Last, we discuss new low-criticality jobs that arrive in [t∗, t∗ + P ]. Our method
does not allow such jobs to be executed until t∗ +P . In other words, their execution
is deferred by at most P . We specify that task set

⎛

⎝
⋃

τi∈TL

(Ti − P,Rhi
i )

⎞

⎠
⋃

⎛

⎝
⋃

τj∈TH

((1− x) · Tj , R
hi
j )

⎞

⎠

must be schedulable according to Lemma 1 in high-criticality mode. More specifi-
cally, a low-criticality task τi is scheduled with period (implicit deadline) Ti − P .
Thus, with deferral of P , a low-criticality job arriving in [t∗, t∗ + P ] is still
schedulable.

Putting everything together, the service preserving policy is stated as follows.

Service Preserving Policy From the moment t∗ switching to high-criticality mode
to t∗ + P , where P = min∀τj∈TH

Rlo
j , only active low-criticality jobs are executed

with DP-Fair scheduling and all the other jobs cannot be executed.

From Lemmas 4 and 5, we can reach the following conclusion.

Theorem 6 When applying the service preserving policy with fpEDF-VD schedul-
ing, a task set T is schedulable on m identical processors if T satisfies the following
schedulability conditions.

• task set
⎛

⎝
⋃

τi∈TL

(Ti, R
lo
i )

⎞

⎠
⋃

⎛

⎝
⋃

τj∈TH

(x · Tj , R
lo
j )]

⎞

⎠

must be schedulable on m processors according to Lemma 1.

•
∑
∀τi∈TL

max(
Rhi

i

P
,

Rhi
i

Rlo
i

) ≤ m during [t∗, t∗ + P ], where P = min∀τj∈TH
Rlo

j .
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• task set
⎛

⎝
⋃

τi∈TL

(Ti − P,Rhi
i )

⎞

⎠
⋃

⎛

⎝
⋃

τj∈TH

((1− x) · Tj , R
hi
j )

⎞

⎠

must be schedulable on m processors according to Lemma 1.

10.2.4.3 Extension of MC-DP-Fair Scheduling for IMC/VPMC Systems

MC-DP-Fair is one realization of the fluid-based scheduling [12], which is not
directly implementable by itself. Fluid-based scheduling improving QoS for low-
critical tasks has been studied for VPMC in [18] and the method is called MCFQ,
however, MC-DP-Fair scheduling for VPMC is barely discussed in [18]. Here, we
show how to extend MC-DP-Fair scheduling to VPMC-DP-Fair scheduling. In DP-
Fair scheduling, an important concept is task density δi for task τi , which is usually
equal to Ri

Ti
with a few exceptions. Fluid-based scheduling uses another concept,

execution rate θi for τi , which is the fraction of a unit-speed processor allocated for
executing τi .

For a low-critical task τi in VPMC-DP-Fair, δlo
i = θ lo

i = Ulo
i and δhi

i = θhi
i =

Uhi
i . Its virtual deadline T̂i = Ti . Please note δhi

i = 0 in MC-DP-Fair. Let wi be the
length of time interval from job release time of τi to �, which is the earliest deadline
or new job release time after the system enters high-criticality mode.

Lemma 6 In VPMC-DP-Fair scheduling, a low-criticality carry-over job of τi can
be executed for at least R̃i time, where R̃i is the execution time of approximate
computing.

Proof Let RT R
i denote the actual execution time of a carry-over job of τi .

RT R
i = wi · δlo

i + (Ti − wi)δ
hi
i = wi · Ulo

i + (Ti − wi)U
hi
i

≥ wi · Uhi
i + (Ti − wi)U

hi
i = Ti · Uhi

i = R̃i .

()
For a high-criticality task τi , δlo

i = θ lo
i , which is proved to be no greater than

Uhi
i [18], virtual deadline T̂i = Rlo

i /θ lo
i . Its density in high-criticality mode is

specified by Lee et al. [12]

δhi
i = Rhi

i − δlo
i · wi

Ti − wi

. (10.14)

Lemma 7 Given a task set that is deemed to be schedulable by MCFQ [18], if it is
scheduled by VPMC-DP-Fair, then δlo

i ≤ θ lo
i and δhi

i ≤ θhi
i for each task τi .
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Proof For each task τi , we have δlo
i = θ lo

i . For each low-criticality task τi , we have
δhi
i = θhi

i . For each high-criticality task τi , since δhi
i is a variable depending on

wi according to Eq. (10.14), we need to show that the maximum value of δhi
i is no

greater than θhi
i . Consider the derivative of δhi

i with respect to wi

dδhi
i

dwi

= Rhi
i − δlo

i · Ti

(Ti − wi)2 = Uhi
i − δlo

i

(Ti − wi)2/Ti

. (10.15)

Since δlo
i = θ lo

i ≤ Uhi
i [18], the derivative is non-negative and function (10.14)

is monotonically increasing. By definition, we know wi ≤ T̂i . Thus, δhi
i has the

maximum value when wi = T̂i ,

δhi
i,max =

Uhi
i − Ulo

i

1− Ulo
i /θ lo

i

. (10.16)

In MCFQ [18], θhi
i = Uhi

i −Ulo
i

1−Ulo
i /θ lo

i

, which is equal to δhi
i,max , then we have δhi

i ≤ θhi
i

for high-criticality tasks. ()
Lemma 8 Given a task set that is deemed to be schedulable by MCFQ, it is
schedulable by VPMC-DP-Fair.

Proof Given a task set that is deemed to be schedulable by MCFQ, we have∑
τi∈T θ lo

i ≤ m and
∑

τi∈T θhi
i ≤ m, then we have

∑
τi∈T δlo

i ≤ ∑
τi∈T θ lo

i ≤ m

and
∑

τi∈T δhi
i ≤ ∑

τi∈T θhi
i ≤ m from Lemma 7. Hence, low-criticality mode

schedulability and high-criticality mode schedulability by Theorem 2 are satisfied
and the task set is schedulable by VPMC-DP-Fair. ()

10.2.5 Precision Optimization for Variable-Precision
Mixed-Criticality Systems

10.2.5.1 Optimization Kernel

Under the VPMC model, there can be utilization slack for some processors when
schedulability conditions are satisfied. The slack allows some low-criticality tasks to
be executed with precise computing in high-criticality mode while the schedulability
conditions are still satisfied. For a low-criticality task τi , the error of its approximate
computing is denoted by ei . The error of a low-criticality task τi execution in
high-criticality mode is denoted by ehi

i , which is equal to ei if it is executed with
approximate computing and otherwise 0. If each task τi has a weighting factor ηi

indicating its importance, the precision optimization problem is stated as follows.
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Problem 1 Given a set of independent sporadic tasks T = {τ1, τ2, . . .} in VPMC
model and a scheduling method S, decide if each low-criticality task τi is executed
with precise or approximate computing in high-criticality mode such that the total
weighted error

∑
χi=L ηi · ehi

i is minimized while the schedulability conditions for
S are maintained.

For each low-criticality task τi , let �Ui denote the additional processor utilization
when its execution is changed from approximate to precise computing and thus

�Ui = R̂i − R̃i

Ti

. (10.17)

Let Ūhi
L denote the maximal possible Uhi

L under the schedulability constraint for a
scheduling method. The utilization slack � for low-critical tasks in high-criticality
mode is defined as

� = Ūhi
L − Uhi

L . (10.18)

Then, Problem 1 is essentially 0-1 knapsack problem. Let zi be a binary decision
variable for each low-criticality task τi . When zi = 1, task τi is assigned to precise
computing; otherwise it is executed with approximate computing in high-criticality
mode. The knapsack problem formulation is as follows.

maximize
∑

χi=lo

ηi · ei · zi

subject to
∑

χi=lo

�Ui · zi ≤ �

zi ∈ {0, 1}, ∀τi ∈ TL.

(10.19)

In this formulation, the objective is to maximize the error reduction obtained from
using precise computing compared to IMC model. The 0-1 knapsack problem
is a well-known NP-complete problem. It can be optimally solved by dynamic
programming with pseudo-polynomial time complexity.

10.2.5.2 Utilization Slack Estimation and Customization for Different
Scheduling Methods

For partitioned scheduling, if Ulo
L + Uhi

H ≤ 1, all tasks can be scheduled with EDF
and all low-criticality tasks can be executed with precise computing. Hence, the
slack estimation and precision optimization is necessary only when Ulo

L +Uhi
H > 1.

For the partitioned scheduling methods introduced in Sect. 10.2.4.1, utilization slack
is estimated for individual processors. On each processor, the maximal schedulable
utilization Ūhi

L can be derived according to Theorem 1 and Theorem 3.
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Theorem 7 The utilization slack of a processor after the VPMC partitioning is
1−Ulo

L −Ulo
H Ulo

L −Uhi
H +Ulo

L Uhi
H

1−Ulo
L −Ulo

H

− Uhi
L .

Proof From inequality (10.1), we can find the range of the scaling factor as

x ≥ Ulo
H

1− Ulo
L

. (10.20)

Further, we know from inequality (10.2) that

Uhi
L ≤ 1− xUlo

L − Uhi
H

1− x
. (10.21)

Taking derivative with respective to x on right-hand-side of inequality (10.21), we
have

1− Ulo
L − Uhi

H

(1− x)2 . (10.22)

Since Ulo
L + Uhi

H > 1, the right-hand-side of inequality (10.21) is a decreasing
function with respect to x. Then, Ūhi

L can be obtained by plugging RHS of
inequality (10.20) into inequality (10.21):

Ūhi
L = 1− Ulo

L − Ulo
H Ulo

L − Uhi
H + Ulo

L Uhi
H

1− Ulo
L − Ulo

H

. (10.23)

Therefore, the utilization slack is given by:

� = 1− Ulo
L − Ulo

H Ulo
L − Uhi

H + Ulo
L Uhi

H

1− Ulo
L − Ulo

H

− Uhi
L . (10.24)

()
Under fpEDF, a subset Thp ⊂ T of tasks are designated with the highest priority

and mhp = |Thp| processors are allocated for them. Please note this allocation
is not static, i.e., the mhp processors at one time may be different from the mhp

processors at another time. The other tasks Tlp = T − Thp follow EDF priority
and are executed on mlp = m−mhp processors. Each low-criticality task τi ∈ Thp

can always execute with precise computing in high-criticality mode, since an entire
processor is allocated to one task in Thp and this allocation is sufficient for precise
computing.

For the fpEDF-VD-VPMC method, the utilization slack of Tlp is estimated by
the following statement according to Lemma 1.

Proposition 1 The utilization slack for Tlp on the mlp processors under fpEDF-
VD-VPMC scheduling is mlp − (mlp − 1) ·Umax

lp −Utotal
lp , where Umax

lp and Utotal
lp

are the maximal task utilization and total utilization for Tlp, respectively.
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This estimation can be applied with fpEDF-DVD-VPMC method. However, the
partition between Thp and Tlp in fpEDF-DVD-VPMC is different from that in the
direct application of fpEDF-VD in VPMC due to the virtual deadlines applied to
low-criticality tasks.

The utilization slack for VPMC-DP-Fair Scheduling is estimated by � = m −∑
τi∈T θhi

i , where θhi
i is the execution rate of task τi in high-criticality mode, which

is computed according to [18].

10.2.6 Experiments and Result

In our experiments, we evaluate the schedulability and computing errors of the
following methods through software simulations.

• Partition-MC: Partitioned scheduling with the conventional MC model [8].
Since this method does not incorporate any approximations, its results are used
to provide a reference level for schedulability, but cannot be used for comparing
computing errors.

• Partition-VPMC: The partitioned scheduling method with precision optimiza-
tion.

• Partition-VPMC-E: Enhanced partitioned scheduling with precision optimiza-
tion.

• fpEDF-VD-MC: fpEDF-VD scheduling with the conventional MC model [8].
Since this method drops all low-criticality tasks in high-criticality mode, it is not
included for error analysis.

• fpEDF-VD-VPMC: fpEDF-VD scheduling with precision optimization.
• fpEDF-DVD-VPMC: fpEDF dual virtual deadline method, with precision opti-

mization.
• Service Preserving: Our service preserving method based on fpEDF-VD

scheduling. In this method, low-criticality tasks continue to execute with
approximate computing in high-criticality mode.

• Fluid-VPMC: The MCFQ method [18] with precision optimization replaced by
the dynamic programming-based knapsack solution described in Sect. 10.2.5.

The testcases are randomly generated as follows. For each task set, the prob-
ability of a task being low-criticality (high-criticality) is 0.5. For a low-criticality
(high-criticality) task τi , its utilization in low-criticality (high-criticality) mode Ulo

i

(Uhi
i ) is randomly chosen within the interval [0.05, 0.9] under uniform distribution.

The period Ti of each task is randomly chosen from a uniform distribution in
[50, 500]. For a low-criticality task τi , we set Rlo

i = R̂i = Ti ·Ulo
i , R̃i = kL ·R̂i . The

scaling factor kL is randomly chosen from a uniform distribution in [KL, 0.9], where
KL is a parameter. For a high-criticality task τi , we set Rhi

i = Ti ·Uhi
i , Rhi

i = kH ·Rlo
i

and 1.1 ≤ kH ≤ KH , where KH is a parameter. For each low-criticality task τi ,
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Fig. 10.6 Acceptance ratio vs. normalized utilization of 4 processors (KL = 0.1, KH = 5)

its approximate computing error is randomly chosen from a uniform distribution
between 1 and 10. We set error weighting factors (defined in Sect. 10.2.5) ηi = 1.

Evaluation of the Acceptance Ratio Acceptance ratio is the ratio of schedulable
tasks among all given tasks. We first evaluate the acceptance ratio at several values of
the utilization, Ui . For each Ui , we generate 10,000 testcases, and for each testcase,
we iteratively add new tasks till max(Ulo

L + Ulo
H , Uhi

L + Uhi
H ) reaches Ui . The

acceptance ratios on 4 processors are depicted in Fig. 10.6.

We see from the plot that Fluid-VPMC provides the best acceptance ratio
(this is not surprising as the fluid-based scheduling is optimal in theory), while
the three variants of fpEDF-VD have the lowest acceptance ratio due to their
very conservative schedulability conditions. The acceptance ratio of fpEDF-VD-
VPMC is very close to that of fpEDF-VD-MC. This implies that continuing
low-criticality tasks at high-criticality mode hardly degrades schedulability. The
dual virtual deadline technique reduces acceptance ratio, but it guarantees that no
low-criticality job is dropped while the fpEDF-VD-VPMC cannot provide such
guarantee. The result also shows that the enhancement techniques can indeed
improve schedulability of partitioned scheduling.

The simulation for Fig. 10.6 does not consider overhead, which is important in
practice. Overhead includes the time on context switching, job migration among
processors, execution monitoring, scheduling job executions, etc. For each of the
VPMC methods, we estimate its overhead according to data from Linux prototyping.
Then, the overhead is added into the task execution time for the simulation. The
acceptance ratio result with consideration of overhead is shown in Fig. 10.7. One
can see that Fluid-VPMC is no longer the best due to its large overhead, and the best
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Fig. 10.7 Acceptance ratio versus normalized utilization of 4 processors with consideration of
overhead

results are obtained from partitioned scheduling. The gap between Fluid-VPMC and
fpEDF-VD-VPMC also becomes smaller.

We evaluate the acceptance ratio of our service preserving technique and
compare with the dual-VD method. The testcase generation is similar to Fig. 10.6
with a few small changes: (1) each task utilization is obtained randomly from
interval [0.1, 0.9] under uniform distribution; (2) period Ti of each task τi is
randomly chosen in [100, 500] according to uniform distribution; (3) scaling factor
kL is randomly chosen in [0.1, 0.9] following uniform distribution. The result for 8
processors is shown in Fig. 10.8. The difference between the two methods mainly
exhibit around utilization 0.6, where service preserving can improve as much as
50%.

Evaluation of Errors Next, we evaluate computing errors of low-criticality tasks
in high-criticality mode for different methods. Following the same testcase genera-
tion for evaluating the acceptance ratio, 1000 schedulable testcases are obtained at
each utilization value. Figure 10.9 shows the mean error with standard deviation
among tasks as function of the normalized utilization. For a single testcase,
minimizing mean error is equivalent to minimizing the total error as the number
of tasks is a constant for the precision optimization. When evaluating multiple
testcases, mean error is more like a normalized result that can avoid the result being
dominated by a few cases. In both of the figures, errors from IMC is plotted besides
those from other methods. IMC is the model where all low-criticality tasks continue
with approximate computing in high-criticality mode. Hence, its error is the same
for different scheduling methods. One can see that the VPMC model can provide
large error reductions. Again, Fluid-VPMC provides the lowest error levels as its
optimality allows more utilization slack for error reduction.
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10.3 Scheduling Dependent Tasks

In this section, we consider the real-time scheduling of tasks with dependencies and
communication. Such tasks are often modeled as directed acyclic graphs (DAGs),
named task graphs, where each vertex corresponds to a task and edges represent
the dependencies. Scheduling these graphs, in addition to traditional mapping
and scheduling, requires budgeting of computation and communication times.
Traditionally, such budgeting is done to account for worst-case execution times
and communication delays. This can be difficult or impossible especially in case of
distributed settings with communication over open and wireless networks that can
have losses and unpredictable or potentially unbounded delays. In an approximate
context, the goal is to tighten the budgets in exchange for accepting losses in
communicated data as well as imprecision or dropping of computations [20].

10.3.1 Task Graph System Model

Formally, given a task graph G(T, C), with tasks T and communication dependen-
cies C, scheduling such a graph can be expressed as a mapping of tasks τi ∈ T
to a set of processing hosts H and assignment of start times ti to each τi such that
dependencies (τi, τj ) ∈ C are not violated. The goal of real-time execution of task
graphs is to set a constraint or deadline on the latency between the start times of the
first source and last sink actor that execute in the graph.

Traditionally, when exact bounds for computation and communication times are
known, start times are chosen according to those bounds. However, in approximate
settings, an assignment of start times can be made that might occasionally lead to
violations of associated computation and/or communication deadlines. This in turn
requires subsequent and dependent tasks to execute without or with incomplete data,
which results in errors and thus a degradation in quality of computed results at the
outputs of the task graph. Existing task graph models do not inherently account for
such scenarios.

In [21], we proposed Reactive and Adaptive Data Flow (RADF) as an extension
of synchronous data flow (SDF) models to incorporate the notion of losses. RADF,
in addition to traditional lossless channels, provides lossy channels that do not
require communication to be reliable. Losses in these channels are represented by
replacing lost token(s) with empty token(s). This simple extension allows preserving
analyzability and determinism of the underlying data flow model even in the
presence of unreliable communication. Following SDF semantics, every actor has a
firing rule that specifies firing conditions in terms of the number of tokens consumed
from input channels and the number of tokens produced in output channels. Upon
firing, an RADF actor can consume empty tokens as well as non-empty tokens but
is required to produce non-empty tokens regardless.
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Although RADF is based on an SDF model, task graphs are a special case of
acyclic and homogeneous SDF graphs. As such, the concept of empty tokens can
be similarly used to model communication losses as well computation losses in
task graphs. In real-time scheduling of distributed task graphs, we therefore assume
that deadline violations will be realized by empty computation and communication
tokens and lossy executions of dependent tasks.

10.3.2 Approximations in Task Graph Scheduling

Figure 10.10a shows a simple task graph with a linear chain of tasks executed in a
distributed fashion on three network nodes or hosts (h0 through h2). To provide a
real-time latency guarantee, we assign a fixed start time to the sink task τC and allow
it to potentially fire without data. Given that task graphs often execute in steady
state periodically, the period of task τC between firings translates into an offset
between its firing time and that of task τA. This offset can be statically calculated
by subtracting τC’s worst-case execution time from the overall latency constraint.
Assigning fixed offsets and start times is equivalent to determining timeouts based
on the deadline for the sink task. The more relaxed this relative constraint and
timeout is, the more likely it is that input data will arrive at τC before it fires.

In addition to the sink task, instead of just waiting for data to arrive, intermediate
tasks might have or require their own deadlines and timeouts, e.g., in cases
where data order is important, such as tasks with multiple inputs or with state.
Figure 10.10b shows an example of such a graph, where task τA fuses data from

h0 h1 h2

(a)

h0

h1

h2 h3 h4

(b)

Fig. 10.10 Examples of distributed task graphs. (a) A graph with linear task chain. (b) A graph
with multiple source tasks
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τX and τY . If τA receives data on one input, it would need to buffer and wait until
matching data is received on the other input. The RADF model is based on allowing
not only the sink but any task in a graph to fire without (or only with partial) data
and in turn produce outputs with reduced quality, e.g., by interpolating results from
previous data. If delays exceed overall latency constraints, at least one of the tasks
in the chain needs to fire without data. Since it is better to allow partial computation
with a single input at τA rather than letting τC fire without any data, τA can be
assigned its own deadline and timeout. This introduces further tradeoffs: the smaller
the offset of τA relative to τX/τY is, the higher the data loss at τA and the lower the
loss at τC , and vice versa. Further extending the deadline concept, even task τB can
time out to react to network delay and loss earlier in the chain.

Figure 10.11 shows three different schedules for the graph of Fig. 10.10b under
period and latency constraints of 1 and 13 ms, respectively. Figure 10.11a shows a
pure data-driven schedule, where tasks execute only once dependencies are satisfied
and data is available. Due to increased network delay in the second iteration, the
overall constraint and deadline of task τC is violated and hence no data is produced
in the second, third and, subsequently, all following iterations. Note that if tasks τA,
τB and τC are allowed to fire out of order, violations in the third and subsequent
iterations can be avoided. However, in general task graphs, e.g., in case of tasks
with state, deterministic token and task firing orders need to be maintained, where
large network delays or network losses can lead to long-lasting or permanent latency
violations in a data-driven schedule.

In Fig. 10.11a, we can allow sink task τC to time out and thus avoid deadline
violations. However, this would require τC to fire without data in the second and all
subsequent iterations. By contrast, Fig. 10.11b shows a schedule where the latency
budget is equally distributed between input channels of tasks τA, τB and τC , giving
each a timeout of 3 ms. As seen in the figure, the constraint is met in all four
iterations, but in the second and third iteration, τA fires without any data. Crucially,
however, rather than violating the deadline in all subsequent iterations, this schedule
avoids any losses in the fourth and following iterations. Noticing that increasing the
timeout of task τA can eliminate its loss in the third iteration, Fig. 10.11c shows an
alternative schedule where delay budgets are shifted by 1ms from τC to τA. This
schedule prevents τA from firing without data in the third iteration and improves
overall quality. This example shows that, depending on the network and application
characteristics, there is a non-trivial schedule that optimizes the quality/latency
tradeoff.

For a simple graph such as the one in Fig. 10.10a, the output quality can be
defined as the number of iterations that execute without a loss. We can assign a
probability of a task firing without a loss as the probability of the random network
delay on its input channel being smaller than the timeout. The probability of an
iteration executing without a loss then becomes the product of loss-free probabilities
over all tasks and links in the chain. To maximize this product, all probabilities
should be made equal. This requires timeouts to be selected in accordance with
differences in network delays across channels. In general task graphs, however, not
all losses are equal and the impact of losses on overall application quality depends
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Fig. 10.11 Comparison of different schedules for graph of Fig. 10.10b. (a) A pure data-driven
schedule. (b) A schedule with uniform latency budget distribution. (c) A schedule with optimized
latency budget distribution

on their location in and how they propagate through the graph, the execution history,
and input data in general. As such, more complex, application-specific quality
models will be needed to derive optimal timeouts.

In the aforementioned schedules, we also assumed that the communication delay
between τX running on host h0 and τA running on host h2 is similar to that of τY

running on h1 and τA on h2. However, in a scenario, where either h0 or h1 has a
better connectivity and thus lower delay in communicating with h2, it is easy to see
that task mapped to the node with worse connectivity will experience more losses.
As such, by optimizing the mapping of tasks to host, one can ensure that tasks that
produce data with higher impact on overall application quality will have less losses
and the overall quality will be maximized. This requires corresponding extensions
of traditional task graph mapping and scheduling approaches.
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10.3.3 Quality/Latency-Aware Task Graph Scheduling

For distributed execution of task graphs under given latency constraints, we need
to map tasks and derive start times. In addition to the graph, this requires task
execution times on each host, latency constraints and a network specification to be
known. The network specification lists delay and loss characteristic of network paths
between hosts. Network delays are assumed to be continuous random variables that
are specified in terms of a Network Delay Distribution (NDD), i.e., a probabilistic
distribution model that specifies the likelihood of a given one-way network delay
in absence of any retransmission [22]. A similar model of task execution times as
random variables can then be assumed and incorporated.

10.3.3.1 Scheduling Formulation

Analyzing a graph to derive a schedule that provides static guarantees requires
instantaneous timeouts of all intermediate tasks to be statically derived. In this
work, we perform a conservative analysis assuming a fixed schedule in which all
intermediate tasks execute with a constant period as given by the overall period of
the task graphs. This reduces the timeout problem to determining offsets between
periodic task executions while allowing for a static analysis that provides upper
bounds on latency and data losses. In practice, a schedule can be dynamically
adjusted to further optimize latency or quality at runtime, e.g., by firing tasks and
sending outputs early if input data arrives before the start of the next period.

Figure 10.12 shows a task graph with a chain of N tasks, each mapped to a
separate host. Given the execution time ri of task τi and communication delay di,j

between tasks τi and τj , the total latency of this task graph is:

l =
N−1∑

i=0

ri +
N−2∑

i=0

di,i+1 ≤ l′, (10.25)

where l′ is the end-to-end latency constraint for the graph. Satisfying this constraint
requires bounds on execution times ri ≤ r ′i and communication delays di ≤ d ′i to
be known or assigned. The choice of these bounds determines the probability of
deadlines being missed and results or data being dropped.

ℎ0

0

ℎ −1

−1

ℎ1

1

ℎ

Fig. 10.12 A linear task graph with N tasks mapped to N hosts
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Assuming that the execution time of task τi mapped to host hi is modeled as
a continuous random variable Rτi,hi

, the probability pr
i that it will not violate its

computation deadline r ′i can be calculated as:

pr
i = FRτi ,hi

(r ′i ), (10.26)

where FRτi ,hi
is the cumulative distribution function (CDF) of random variable

Rτi,hi
.

Similarly, the probability pd
i,j that data sent from task τi on host hi to task τj

mapped to host hj will not violate the deadline d ′i,j can be calculated as:

pd
i,j = FDhi ,hj

(d ′i,j ), (10.27)

where Dhi,hj
is the random variable modeling the communication delay between

hosts hi and hj , and FDhi ,hj
is the cumulative distribution function (CDF) of random

variable Dhi,hj
.

To minimize the probability of violations, we need to maximize r ′i and d ′i,j .
However, given a total end-to-end latency constraint, the total latency budget needs
to be partitioned among computation and communication budgets r ′ and d ′ such that
the total latency constraint is satisfied while overall quality is maximized. Towards
this end, in the remainder of this section, we first develop a quality model that, given
a mapping and scheduling, describes the relationship between overall application
quality and computation and communication budgets. Using this model, we then
propose heuristics for general mapping and scheduling of tasks to hosts. Finally,
we formulate real-time budgeting of task graphs as an optimization problem that
determines assignments of computation and communication budgets to maximize
overall quality while meeting a total latency constraint.

10.3.3.2 Quality Model

The output quality of a distributed application is inversely related to the impact
of data losses on output quality and the frequency of such computation and
communication losses. Given a mapping, scheduling, and budgeting in real-time
execution of a task graph, a deadline violation and data loss in any intermediate
task in the graph can be handled at runtime by using replacement functions to
estimate values to compute with instead of unavailable data. Such replacement
functions can be based on using the last value previously computed or received,
or some more complex history-based prediction. In case of computation deadline
violations, replacement functions can also take the form of the output computed by
a shorter imprecise or reduced-precision part of a task as described in Sect. 10.2.
Given that replacement functions will not be accurate in case of all violations, they
introduce errors and degrade the overall application quality. The magnitude of errors
in computation or communication outputs depends on the relative accuracy of the
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replacement functions, while their frequency is determined based on the probability
of computation and communication budget violations pr and pd described in the
previous section.

The output quality Q of a distributed application is then a function of (1) the
magnitude and frequency of errors ei,j in the data values vi,j generated by task
τi and communicated to task τj , (2) the amplification, reduction, combination or
cancelling out of errors as they propagate through the graph to primary outputs, and
(3) the metric used to translate errors in primary outputs into an overall application-
specific quality Q. Developing quality models that capture the relationship between
computation and communication budgets and overall application quality Q thus
require developing appropriate models for error generation and propagation all the
way to final quality metrics. Errors ei,j can be modeled as random variables that
account for their dependencies on input data and loss probabilities. From error
distributions at each location in the graph, a variety of metrics such as min/max
errors can then be extracted and propagated through the graph. In special cases, such
as linear systems using well-defined replacement functions and statistical quality
metrics such as SNR, this allows closed-form quality models to be derived [20], e.g.,
by applying well-known variance-based noise generation and propagation methods
from fixed-point optimization of digital signal processing systems [23, 24].

In general non-linear applications with arbitrary replacement functions and
quality metrics, however, developing closed-form models of application quality
Q will be infeasible. Instead, we can develop models that estimate the expected
quality degradation �Q due to reduced computation and communication budgets.
The quality impact �qi,j of an individual error ei,j in data exchanged between task
τi and its consumer τj can by calculated as the product of error ei,j and the derivative
∂Q/∂vi,j of Q with respect to values vi,j communicated between τi and τj :

�qi,j = ei,j · ∂Q/∂vi,j . (10.28)

Gradients ∂Q/∂vi,j can be computed using methods similar to back-propagation in
neural network training. Due to the random nature of computation and communi-
cation losses, the quality impact is in practice a random variable that depends on
loss probabilities pr

i and pd
i,j and hence, in turn, computation and communication

budgets r ′i and d ′i,j . Assuming that errors ei,j will be incurred at the input of
consuming task τj in case of computation τi or communication between τi and
τj violating deadlines, their quality impact is a discrete random variable that is zero
with probability pr

i · pd
i,j , and �qi,j otherwise. Hence, the expected quality impact

�Qi,j can be quantified as:

�Qi,j (r
′
i , d

′
i,j ) = �qi,j ·

(
1− pr

i · pd
i,j

)

= �qi,j ·
(

1−
(
FRτi ,hi

(r ′i ) · FDhi ,hj
(d ′i,j )

))
.

(10.29)
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Fig. 10.13 A task graph with two parallel task chains

Equation (10.29) gives the quality impact of errors at a single location in the graph.
The combined quality impact across multiple locations depends on the topology of
the task graph. For dependent tasks with sequential producer-consumer relationship,
such as those depicted in Fig. 10.12, errors, gradients and hence loss impacts interact
and are dependent on each other. The total combined impact will be bounded by the
maximum individual impacts on the lower end and the sum of individual impacts at
the upper end. Optimistically, we can use the maximum to derive total impact:

�Q = max
(
�Q0,1,�Q1,2, . . . ,�QN−2,N−1

)
. (10.30)

In case of parallel sub-graphs as shown in Fig. 10.13, the gradients and losses
are independent and hence, the total combined impact will be the sum of individual
impacts:

�Q = �Qx +�Qy. (10.31)

By combining Eqs. (10.30) and (10.31), we can estimate the quality impact
for arbitrary task graph topologies. Note that if task τi and its consumer τj are
mapped to the same host, FChi ,hj

(c′i,j ) will be equal to one and there will be
no communication losses nor quality impact. Likewise, as in traditional data flow
models, if upper bounds on task execution times are known, FRτi ,hi

(r ′i ) will be equal
to one and there will be no computation losses.

10.3.3.3 Mapping Heuristics

Mapping and scheduling of DAGs and task graphs across a target platform
consisting of multiple, potentially heterogeneous processors or hosts to minimize
total schedule makespan is a classic and widely studied problem. Multiprocessor
DAG scheduling to minimize makespan is in general NP-complete. List schedulers
and their variants are commonly used as effective heuristics. In list schedulers, tasks
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are scheduled on a processing element that provides maximum performance where
choices among tasks that are ready to execute are resolved based on a notion of
priority that reflects their inherent criticality.

Minimizing makespan under a total latency constraint will increase the total
latency budget available, i.e., will inherently increase quality. In addition, quality
can be further optimized by taking the quality impact of different mapping choices
into account. Specifically, network delay distributions and hence communication
delays di,j will generally depend on the connectivity of each host. As such, mapping
tasks with higher quality impact onto hosts that are better connected and hence less
likely to experience losses will significantly improve overall quality. This can be
achieved by folding estimates of quality impacts of different host mappings into the
list scheduler’s priority function, e.g., to resolve choices among tasks that otherwise
would have the same priority.

Quality impact estimates of different mappings can be calculated following
Eqs. (10.30) and (10.31). Computation of quality impacts, however, requires an
initial estimate of computation and communication budgets r ′i and d ′i,j for each task
τi and each dependency (τi, τj ). Such initial estimates for mapping purposes can be
derived by assuming a uniform budget assignment at each τj or by incorporating
additional application-specific information, such as partitioning the total end-to-
end latency constraint l′ according to the maximum loss impact �qi,j at each
consuming task τj . Following Eq. (10.29), local budgets at each τj can be further
partitioned into optimal computation and communication budgets r ′i and d ′i,j by
ensuring that computation and communication losses impact quality equally, i.e.,
such that FRτi ,hi

(r ′i ) = FDhi ,hj
(d ′i,j ). Using budget estimates d ′i,j , r ′j and d ′j,k when

mapping the ready task τj to the set of available hosts h0, . . . , hN−1, we can then
rank target hosts based on the least quality impact. Note that since any successor task
τk will not yet have been mapped, the loss probability and ultimately quality impact
of the (τj , τk) communication will be unknown. In practice, one can optimize for
the worst case by assuming a mapping hk for τk with the worst connectivity, i.e.,
minimum FDhj ,hk

](d ′j,k).

10.3.3.4 Budgeting Formulation

Given a mapping h of tasks τi to hosts hi , assignment of computation and
communication budgets r′ and d′ can finally be formulated as an optimization
problem that minimizes total quality degradation under a total latency constraint
l′:

minimize
r′,d′

�Q(h, r′,d′)

subject to
∑

(τi ,τj )∈w

r ′i + d ′i,j ≤ l′, ∀w ∈ w,

(10.32)

where w is the set of all paths from source to sink of the graph. Equations (10.30)
and (10.31) enable calculating quality impact for a given mapping h and budgets
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r′ and d′. Total quality degradation �Q(h, r′,d′) can be expressed in (max,+)-
algebra following a traversal of the task graph, but individual sub-expressions will
contain non-linear and non-convex terms. However, an iterative gradient-based
approach based on tasks with maximum impact in each chain and derivatives of
probabilities pr and pc in Eqs. (10.26) and (10.27), respectively, can be used to solve
this optimization problem. Note that when quality Q can be directly expressed in
terms of computation and computation budgets, budget assignment can be expressed
as a similar optimization problem that aims to directly maximize Q(h, r′,d′) [20].

10.3.4 Experiments and Results

We evaluated the quality/latency-aware task graph mapping, scheduling, and bud-
geting approaches described in this chapter for distributed real-time execution
of neural network inference applications in edge computing settings. We applied
our approach to an image segmentation and two object detection neural networks
from [25–27] implemented on top of the Darknet deep learning framework [26]. We
distribute the convolutional neural networks by tiling, fusing, and executing layers in
a map-reduce scheme similar to [28]. In our evaluation, we focus on communication
budgeting by assuming fixed worst-case bounds for compute tasks. Budgeting such
a distributed neural network task graph requires partitioning the total latency budget
among each layer groups’ scatter and gather operations. Mapping of this graph
entails assigning fused tile stacks of each layer group to one of the edge devices
in the local network, where a master node coordinates all task distribution.

We use the Zurich Urban Micro Aerial Vehicle Dataset [29] for all three
applications. Given edge computation and communication limits, we downsample
the dataset to 500 frames at 0.2 fps. For all three applications, we generate ground
truth by processing the input dataset via baseline versions of each neural network.
We use mean average precision (mAP) and intersection over union (IoU) as quality
metrics for objection detection and image segmentation, respectively. We compute
gradients for quality estimation using a custom loss function and back-propagation
pass.

We evaluated distributed real-time execution both in simulation as well as in
a real-world deployment. Our custom network simulator emulates timeouts by
injecting random losses assuming normally distributed packet delays with an MTU
of 1500 bytes, an average bandwidth of 600 Mbps corresponding to the IEEE
802.11n Wi-Fi standard, and a coefficient of variation of 0.2 (σ = 0.2 ∗ μ). The
simulator assumes six nodes with client hosts placed at increasing distances from
the master node with a 20% increase in average delays and variances from node to
node.

For real-world experiments, we deployed our approach on a cluster of six
Raspberry Pi 3 devices with a quad-core ARM Cortex-A53 CPU and 1 GB of RAM
using a custom middleware framework for task distribution and budgeting. Given
the limited amount of memory available for back-propagation, we only evaluated the
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(a) (b) (c)

Fig. 10.14 Quality/latency tradeoff in simulated real-time execution of distributed neural network
applications under optimized mapping and budgeting. (a) YOLOv2. (b) YOLOv3. (c) Image
segmentation

Fig. 10.15 Quality/latency tradeoff in distributed real-time execution of YOLOv2 object detection
network on a Raspberry Pi3 cluster under different optimizations

32-layer YOLOv2 object detection network. To provide consistent measurements
and avoid interference, a 54 Mbps 801.11g wireless network with Nakagami fading
model was emulated using CORE/EMANE [30] running over Ethernet interfaces.
Emulated nodes were placed at uniformly spaced distances ranging between 3m and
17m from the master node.

Simulation Results Figure 10.14 shows the tradeoff in the classification accuracy
of simulated applications as a function of latency constraints normalized against 99-
percentile network delays. We compare a baseline configuration that uses uniform
budgeting and random mapping against optimizations applied every 25 frames.
As seen in this Figure, mapping greatly improves accuracy (up to 20%) across
different applications and latency constraints. Optimized budgeting further improves
accuracy by up to 10%. The impact of optimizations is more significant under tight
latency constraints and becomes smaller as constraints are relaxed.

Deployment Results Figure 10.15 shows the quality/latency tradeoff of the
YOLOv2 object detection network when executed in a distributed real-time fashion



320 K. M. Barijough et al.

on a Raspberry Pi3 edge cluster. Results are similar to simulations and confirm that
optimizations can significantly improve classification accuracy under tight latency
constraints in real-world distributed real-time edge machine learning deployments.

10.4 Summary and Conclusions

In this chapter, we discussed how approximate computing ideas can be applied
to real-time scheduling by trading off tightness of bounds on computation and
communication deadlines for quality degradations. By establishing tighter than
worst-case bounds and allowing for occasional deadline violations, schedule admis-
sibility or reaction times can be improved in exchange for data losses or a
reduction in data precision. We showed how scheduling of such systems for both
independent and dependent task sets can be formulated as an optimization problem
to maximize quality while satisfying schedule admissibility or real-time guarantees.
For independent tasks, we extend traditional mixed-criticality (MC) system models
to allow low-criticality tasks to execute with lowered precision such that combined
quality is maximized while satisfying schedule admissibility. For dependent tasks,
we find optimized mapping, scheduling, and budgeting of task graph models that
minimizes overall quality degradation while meeting end-to-end latency constraints.

Overall, exploiting approximations opens new avenues for real-time system
design. Given the challenges in determining tight worst-case bounds, e.g., on task
execution times, hard real-time systems are often over-designed. Incorporating
approximations will allow dynamically recovering available deadline slack to
perform more useful work. This opens new opportunities in connecting real-time
system design to approximation techniques at software and hardware implementa-
tion levels.
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Chapter 11
Security in an Approximated World: New
Threats and Opportunities in the
Approximate Computing Paradigm

Paolo Palmieri, Ilia Polian, and Francesco Regazzoni

11.1 Introduction

Approximate Computing (AxC) was originally intended for low-cost systems, such
as low-end IoT devices, where security did not play a significant role. However,
recent progress in AxC makes this technology attractive for applications which are
resource-constrained and security-critical at the same time. For example, wearables
are processing sensitive health information that needs to be protected, and emerging
autonomous systems (automotive and beyond) incorporate deep-learning engines
that can benefit from AxC [1]. Therefore, security of AxC implementations can be
no longer neglected. This chapter provides an overview of security threats that apply
to approximate circuits and systems, and on potential of AxC to improve security. It
goes beyond existing overviews and position papers [2–4] by discussing the entire
universe of security aspects of AxC technology that are foreseeable today.

As with many new topics, the exact scope of AxC is not universally agreed
upon among researchers. For example, some consider stochastic computing [5] a
subclass of AxC while others regard it as a separate concept. Furthermore, some
researchers count non-deterministic techniques such as voltage overscaling as AxC
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Fig. 11.1 Scope of AxC techniques discussed in this chapter

and some do not. Figure 11.1 shows a simple taxonomy of various AxC techniques
with an indication which of them are relevant in the context of this chapter. We
briefly describe the different techniques next, motivating why some of them are
not further discussed with respect to their security. We include both stochastic
computing and non-deterministic AxC, yet we do not include traditional computing
procedures associated with some accuracy loss, such as lossy compression or
processing digitized analog data represented using a floating-point or fixed-point
numbers.

A central aspect in assessing security implication of an AxC class is whether it
introduces non-determinism on the hardware level. In general, a non-deterministic
system can develop a multitude of behaviors, some of which may compromise
security, thus enlarging the potential attack surface and making it more difficult to
rule out security loopholes. A deterministic system is easier to predict and analyze
for security vulnerabilities, yet even deterministic AxC schemes can open up new
possibilities for attackers, as discussed in the next section.

We start discussing Fig. 11.1 with its left part, namely the deterministic AxC
techniques, moving from upper to lower level of abstraction. Several of them are
defined on software level [6]. Examples of software-only techniques include loop
performation (executing only a some of an iterative algorithm’s loops) [7], precision
scaling (replacing floating-point by fixed-point operations or reducing the bitwidth
of operands) [8], speculative approximation of load values to avoid cache misses
[9], or relaxed synchronization [10]. While these approaches unfold the accuracy-
cost trade-off, they do not seem to introduce new security vulnerabilities per se. If
an approximate algorithm (and its implementation) need to be protected against a
security threat, the same techniques as for an exact algorithm are applicable.

Specific architectures, often containing both hardware and software components,
can give rise to AxC. One prominent class of such architectures are deep neural
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network (DNN) accelerators for machine learning applications. Their relationship
to AxC is twofold. First, DNN-based classification as such can be seen as an
approximate algorithm, as it exhibits non-trivial false-positive and false-negative
rates for most practical applications. Second, DNN accelerators are a prime instance
of systems that can clearly benefit from approximate circuits. They consist of a
large number of arithmetic primitives, first and foremost adders and multipliers,
so even small savings in area or power consumption for an individual primitive
are effective with respect to the whole network. Moreover, DNNs tend to tolerate
inaccuracies that occur during processing. Another relevant class of architectures are
cryptographic accelerators. While cryptography has historically been found “not
amenable for approximation” [6], Sect. 11.3.1 will discuss how AxC can be helpful
in (complex) cryptographic schemes.

An interesting architecture that is intrinsically approximate is stochastic comput-
ing (SC) [5], offering extremely low-area (and therefore low-power) realizations of
important arithmetic operations. While stochastic circuits as such are rarely used
for security-relevant calculations, they turn out to be helpful in protecting neural
networks against adversarial attacks, as discussed in Sect. 11.3.2.

The perhaps most prominent class of AxC on hardware level are approximate
arithmetic primitives, such as approximate adders or multipliers [11]. These circuits
offer lower implementation cost at the expense of not working correctly for certain
inputs. The inaccuracy is typically bounded by a certain error rate (proportion of the
inputs for which the operation is incorrect) and/or error magnitude (maximal extent
of the deviation).

Non-deterministic AxC techniques form the right hand side of Fig. 11.1. They
are not well-defined on the pure software level, since the non-determinism of the
discussed AxC approaches originates from hardware. The main technique here is
underprovisioning, where a system is operated at either too-fast frequency or too-
low voltage for all circuit paths to finish switching before the cycle time. One
can distinguish between voltage overscaling [12], frequency overscaling [13] and
adaptive techniques where the operating point is continuously updated until error
are detection, and yet the errors that happen are not corrected [14, 15].

A further source of approximation is the use of emerging technologies that are not
yet sufficiently well controlled and result in non-trivial error rates on device level.
Following the early ideas by von Neumann [16], architectures for executing software
on unreliable substrates are being designed in, e.g., [17]. A similar idea is the
usage of analog properties of (inherently noisy) emerging devices in neuromorphic
computing [18].

Finally, approximate storage has recently received some attention [3]. This term
subsumes memories (static RAMs, dynamic RAMs and emerging nonvolatile stor-
age solutions such as phase-change memories) that are operated under conditions
that do not guarantee their reliable operation, not unsimilar to underprovisioned
approximate circuits. For instance, they can use an aggressively low voltage or
slow refresh rate. The failure patterns of an approximate memory are unpredictable,
and therefore this class of AxC falls under non-deterministic schemes. While
approximate storage can introduce errors and inaccuracies and thus disrupt the
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operation of the system using the memory, the uncontrollable and unpredictable
nature of such disturbances makes them less security-critical. Therefore, we decided
to omit them from this chapter.

After the AxC techniques in scope of this chapter have been outlined above,
the subsequent chapters will describe both the (potentially) negative and positive
impacts of AxC with respect to security. Section 11.2 will focus on security threats
and vulnerabilities related to approximate computing. Section 11.3 shows how AxC
can help in providing solutions to make systems more secure. Figure 11.2 visualizes
this chapter’s structure.

11.2 Approximate Computing and Security Threats

Approximate computing is a relatively new computing paradigm and its impli-
cations on security are not well known. In this section we summarize the main
security threats for classical computing paradigm and we discuss possible effects
that approximate computing can have on them.

11.2.1 Passive Side Channel Attacks

The first class of security threat that we explore is the one of passive side channel
attacks. Passive side channel attacks are attacks in which the adversary observes a
physical quantity, for instance, the power consumed [19] by the device during an
encryption operation (or the time needed to complete it [20]) and uses this physical
quantity to extract secret information. The attacks usually take their name from
the physical quantity used to mount the attack. The most popular ones are timing
attacks, which exploit the different times needed by computations, power analysis
attacks, which exploit the power consumed by the computation, and electromagnetic
attacks, which exploit the electromagnetic emissions. Passive side channels have
been presented to the scientific community in 1996, and from that moment they
have been subject of extensive research.
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One of the most active topic of research in the field of passive side channel is the
evaluation of the robustness of certain implementation against specific attacks. The
topic has been widely explored in the context of power analysis, with few metrics
being proposed and a number of common criteria and “de facto” standards for the
security assessment of devices. Among the widely accepted methods for security
evaluation are mutual information, which is a metric to quantify the leakage of
information, and the t-test methodology, which is a statistical test to evaluate the
dependency between the power trace and the secret key.

Statistical tests and metrics are typically carried out on traces collected at a spe-
cific operation voltage. However, this might not hold in the context of approximate
computing. Aggressive power saving techniques used in the approximate paradigm
can involve a self-adaptive voltage scaling. In that case, one should ensure that the
evaluation carried out at a specific operational point is still valid at all the other
ones. Alternatively, test and security assessment procedures should be revised to
include evaluation at multiple operational points. Indeed, this would increase the
time required and the complexity of the security evaluation when compared to the
classical computing paradigm.

Self-adaptation circuits can also be the source of leakage. Certainly, they can
be paired with an hardware Trojan to build covert channels, communicating secrets
from the inner core to the external world by modulating the information as high
or low voltage. Furthermore, when approximate circuits using voltage scaling
are used to compute sensitive data, the self-adaptation circuit can, as all the
other electronic components, unintentionally cause the leakage of information. To
avoid this, protections against side channel attacks should be applied also to self-
adaptation and power scaling circuits, exactly as it is done for the main circuits
carrying out security computations.

Approximate computing can also have positive effects on robustness against
passive side channel attacks. Firstly, voltage scaling could add another dimension to
the protection space, since it gives designers the possibility to alter the power traces
during the computation, making the adversary’s task of measuring and verifying
her attack hypothesis more complex. Secondly, approximate computing paradigm
could help in realizing circuits that are intrinsically more robust. For instance, to
defeat timing attacks it is necessary to realize circuits that compute in constant
time. This could be hard (or expensive) to achieve in classical computing paradigm.
Approximate circuits could instead simplify the guaranteed of constant computation
time. In cryptography, these circuits could be used, for instance, in lattice-based
schemes, where classical multiplies could be replaced by approximate multipliers
achieving protection against timing attacks while having only a minimal effect on
the performance. Constant-time multiplier realized using the classical computing
paradigm incurs, in fact, in a quite high overhead.
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11.2.2 Active Attacks

The adversary can also directly tamper with the device with the goal of inducing
it into a wrong state or with the goal of exploiting the faulty behavior. We call the
physical attacks mounted in this way “active attacks”, since the adversary actively
intervenes on the device instead of just passively observing its behavior. The most
common active attack is fault attack [21], where the adversary injects a fault into a
device computing a cryptographic function to reduce the security of the algorithm
(for instance, by reducing the number of rounds that are computed) or to extract the
secret key comparing the correct and the faulty outputs. These attacks often require
a precise faulty pattern to be successful. The precision and the granularity of the
faults largely depends on the equipment available to the attacker. It is, however,
important to mention that fault attacks can be successfully carried out also with an
extremely cheap equipment, for instance, with a supply voltage used to underfeed
the cryptographic device.

These types of faults are very likely to be quite simple to be caused in
approximate circuits. In fact, approximate circuits often operate at the edge of the
operation conditions, making the injection of fault a much easier task compared to
the one of injecting faults in regular circuits. This simplification, however, does
not necessary brings advantages to the attacker. This is because the sweet spot
for injecting the right fault to mount the attack is generally reduced, such that an
exploitable fault has to be injected using much more expensive and much more
precise injection devices. Ultimately this would increase the cost of the attack [22].
Also, the very nature of approximate circuits could make certain types of fault
attacks, the ones that require well-defined faulty patterns, much harder to be carried
out.

Another important point is related to the deployment of countermeasures. The
typical way to counteract fault attacks is to limit the access to faulty outputs. This is
obtained by using error detecting and, when possible, error correcting codes. These
codes, however, have been studied and developed so far only for exact circuits. Their
application to approximate computing paradigm, even if some codes can tolerate
randomness [23], is largely unexplored and their effectiveness in this context has
not been proved yet.

11.2.3 Reverse Engineering

Reverse engineering [24], in the context of hardware security, is a threat that attacks
confidentiality, meaning that a certain information should be accessible only to
legitimate parties. Here, the information to be kept secret is the hardware circuit
itself, since it is the outcome of a costly and time consuming work. During reverse
engineering, an adversary analyzes the circuit itself or its behavior (or a combination
of both) to infer the original design. This operation is often done maliciously, with
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the goal of reconstruct the original circuit for stealing the intellectual property
associated with it. However, reverse engineering can also be carried out with the
legitimate goal of discover contract violations or patent infringements.

Circuit analysis usually start with the depackaging of the chip. High-resolution
images of the chip are then collected. If the adversary has advanced capabilities
and equipment that makes it possible, he can take high-resolution images of each
layer of the circuit. The attempt of reconstructing the original circuit is then carried
out using a pattern-matching tool, to match the collected images with the expected
layout, and with machine learning techniques that are sufficiently powerful to allow
the precise reconstruction of the initial netlist.

It is not yet known how reverse engineering could behave on approximate
circuits. As discussed, one of the phases of reverse engineering involves pattern
matching, which is typically done starting from known structures and basic blocks.
Examples of such blocks are finite state machines, multipliers, and control flow
blocks. Since the computation in approximate computing is not exact, it is possible
that approximated structures do not precisely match the reference structures used in
exact computation (this is true, for instance, in control flow). As a result, the task
of the adversary could be more complicated, since it could not be able to detect the
approximation or, at least, the selected approximation.

Certainly, it would be simpler for an attacker to identify blocks that do not use
approximated circuits. These could be immediately identified as critical blocks,
implementing, for instance, cryptographic functions (since they cannot, at least gen-
erally, be implemented in an approximated way—see Sect. 11.3.1 for an interesting
class of cryptographic functions that can benefit from AxC). The identification
of cryptographic blocks could point the adversary to relevant components of the
cryptographic module, for instance, the memory cells where the key is stored.

It is also not known whether and to which extent approximation, by its very
nature, could help the adversary. Approximation, in fact, is designed to “tolerate”
errors. These errors, in approximate circuits, can come from aggressive power
scaling or similar optimizations. However, approximation could also stem from a
not completely correct reverse engineering process. If approximation is tolerant
to errors, it can be that the same paradigm offers one additional weapon to the
adversary, since he knows that, even if imperfectly reverse engineered, the circuit
can be still working in a satisfactory way.

11.2.4 Hardware Trojans

Hardware Trojans are malicious and deliberate changes to an hardware design or
circuit inserted with the goal of modifying its original behavior [25]. Often, the
goal of an attacker is to cause a leak of the information handled by the circuit or
to cause a denial of service. Hardware Trojans can be inserted at any point of the
design flow, from the early stages [26] to the alteration of the polarity of the doping
in transistors [27]. Insertion of Trojans at early stages of the hardware design can
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be performed by rogue designers (in principle, even by as single one) by simply
modifying the circuit specifications or the circuit architecture. Trojans can also be
inserted by malicious foundry (that has anyway to reverse engineer the circuit to
understand where the alteration should be inserted and to cause a “meaningful”
effect) or by malicious design tools that can potentially automatically insert circuitry
during the various steps of the design flow.

Approximate computing usually requires the presence of dedicated circuits to
control the approximation. These additional circuits represent an extension of the
surface available to the attacker. It can be even argued that circuits controlling
the approximation are an appealing target for injection of hardware Trojans. For
example, it is quite simple to modify the circuit controlling the voltage scaling
to cause a denial of service attack. In this case, since the controlling circuit is
already present, the Trojan is very likely to be simple and small, ultimately difficult
to be detected. Circuits realized using the approximate computing paradigm often
require, in addition to the already mentioned controls for approximation, also error
correction circuits. These circuits can be used to create covert channels, modulating
the information that needs to be leaked through the error rate or the number of errors

The intrinsic tolerance of approximate circuits against errors could, on the
positive side, make the realization of effective hardware Trojans more difficult.
As a result, it is possible that, to be meaningful, hardware Trojans should be quite
complex. As a direct consequence, such Trojans would also occupy a larger amount
of area and consume an higher amount of power. This fact would simplify the task
of Trojan detection [28].

11.2.5 Cloning and Counterfeiting

The final class of threats for hardware security analyzed in this chapter are cloning
and counterfeiting. These two threats, which are direct consequences of an highly
fragmented design and fabrication chain, cause a huge economic loss every year.
Cloning is the attempt to illegitimately copy an hardware design, with the purpose
of reselling or using it without paying the required amount. Fabricating more chips
than the ordered amount (usually called overproduction) is an example of cloning.
Counterfeiting is an attempt of selling an illegitimate product as a regular one. A
possible example of this is the fabrication of a reverse engineered circuit, or the
selling of an used circuit as a regular one.

Locking and metering are possible countermeasure against these attacks. The
key idea behind these approach is that a circuit operates correctly only of the correct
unlocking sequence is provided. The sequence is often paired with a unique ID
stored in (or extracted from) the circuit itself. The sequence is known only to the
circuit designer and to the legitimate user, and it is unknown from all the other
parties involved in the fabrication process. Illegitimate users will not have the
unlocking sequence and thus should not be able to operate the circuit (or, at least, to
operate it properly).
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Applying locking and metering scheme to approximate circuit could not be
trivial. In fact, approximation naturally means that multiple execution paths can
be followed to reach an acceptable result. On the contrary, locked circuits are
attempting exactly the opposite, namely limiting the number of acceptable paths.
The situation is even more complex in circuits designed to operate also in presence
of errors (such as non-deterministic circuits). Since these errors can be caused by
the wrong unlocking, it could be that the circuit itself is capable of operating, at least
to some extent, even when the correct locking sequence is not provided.

11.3 Approximate Computing and Security Solutions

In this section, we discuss two distinctive security techniques which benefit from
approximate computing. The first, in the domain of cryptography, the second one
in the area of designing secure neural network implementations. While diverse in
nature, these two techniques highlight the—sometimes unexpected—potentials that
AxC offers for making systems more secure at a reasonable cost.

11.3.1 Cryptography Based on Approximate Primitives

In Mittal’s survey of approximate computing [6], he discusses some of the limi-
tations of the paradigm, in particular with regards to AxC’s applicability. Mittal
believed that “due to their nature, some applications are not amenable to approxi-
mation, for example, cryptography” ([6], page 62:5). However, some specific novel
techniques in cryptography can potentially work, and indeed benefit, from approx-
imate computing, being already based on approximation themselves. The most
important example is homomorphic encryption, which incidentally, is particularly
suited as a security mechanism to protect some of the main applications running
on AxC, namely those based on artificial intelligence technology (e.g., machine
learning, neural networks).

11.3.1.1 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows calculations to be
performed on the encrypted data (the ciphertext) without decrypting it first. For
example, if we have two integers a and b, and their encryptions Enc(a) and Enc(b),
the encryption scheme (or cipher) is homomorphic with respect to the addition
operation if there is an operation �, for which

Enc(a) � Enc(b) = Enc (a + b) (11.1)
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is true for any (a, b). The operation � is the equivalent on ciphertexts of addition on
plaintexts (the unencrypted data). We say that � operates in the ciphertext space: in
fact, both the inputs and the result of the computation are in encrypted form. When
the result is decrypted, it is the same as if the equivalent operation in the plaintext
space (+) had been performed on the unencrypted data.

The potential of homomorphic encryption is self-evident: if an encryption
scheme is found that is homomorphic for a wide range, or potentially all operations,
then computation could be securely outsourced. The outsourcing party could keep
their inputs in the computation private, only providing them in encrypted form to
the party performing the computation. As long as the encryption scheme is secure,
the party performing the computation cannot learn the inputs or indeed the outputs
of the computation. More broadly, homomorphic encryption can provide security
in any secure multi-party computation scenario, that is, when two or more parties
are interested in computing a function cooperatively, but want to maintain their
inputs private. For these reasons, the design of homomorphic encryption schemes
has become one of the main research challenges in modern cryptology.

The problem of constructing an homomorphic encryption scheme was first pro-
posed in 1978, within a year of publishing of the popular and still widely used RSA
public-key encryption scheme [29]. The RSA scheme, in fact, is homomorphic with
respect to multiplication. Other schemes also exhibit homomorphic properties, such
as ElGamal (multiplication), or the Benaloh and Paillier cryptosystems (addition).
For over 30 years, however, it was unclear whether a cipher allowing any operation
to be performed homomorphically could be created. For such a scheme to exist, it
would have to support both addition and multiplication operations on ciphertexts,
from which it would then be possible to construct circuits for performing arbitrary
computations.

A scheme that supports only addition or multiplication, but not both, is called
partially homomorphic. If we consider computations as circuits composed of
arithmetic operations (addition, multiplication), partially homomorphic schemes
support the evaluation of circuits consisting of only one type of operation, that
is, either addition or multiplication. Certain schemes may support both addition
and multiplication, but be limited in their capabilities: somewhat homomorphic
encryption schemes can evaluate the two types of operations, but only for a subset
of circuits; while leveled fully homomorphic encryption supports the evaluation of
arbitrary circuits of bounded (pre-determined) depth. Finally, fully homomorphic
encryption (FHE) allows the evaluation of arbitrary circuits of unbounded depth,
and is the strongest form of homomorphic encryption.

For the majority of homomorphic encryption schemes that would theoretically
support both additions and multiplications, the limitation in the kind of circuits to
be evaluated (somewhat) or their depth (leveled) derives from the fact that each
ciphertext is noisy in some sense, and the noise grows as ciphertexts are added
and multiplied, ultimately making the final output ciphertext indecipherable. In
particular, the main limitation in performing computations over encrypted data is
the multiplicative depth of circuits. The specific definition of noise varies slightly
depending on the specific public-key encryption scheme that is at the base of the
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homomorphic construction, but in general a ciphertext c is considered a function
c = γ (v, x) where vector v fulfils some (algebraic) property and vector x represent
the noise. It is possible to correctly decrypt γ (v, x) as long as x is not too large.
Applying operations (additions and/or multiplications) to encrypted data will yield
new ciphertexts c′ = γ (v′, x′). For a good construction, the increase of noise during
one operation should be bounded, but successive operations will ultimately result
in an undecipherable c. The presence of this noise is what makes computations
performed over homomorphic encryption somewhat similar to those performed in
approximate computing; but it is also what limited, until recently, the practical
applicability of the technology.

The first major breakthrough came in 2009, when Craig Gentry proposed the
first construction for a fully homomorphic encryption scheme, based on lattice-
based cryptography [30]. The construction is based on a somewhat homomorphic
scheme, which is limited to evaluating low-degree polynomials due to the noise
in the ciphertext. In the scheme, v is in the ideal lattice, and the vector x grows
with each addition and (especially) multiplication operation: similarly to other
schemes, x eventually becomes so long that it causes a decryption error. However,
Gentry’s intuition was that the noise could be reduced before it made the ciphertext
undecipherable, by using an appropriate technique at some point in the computation.
If the noise reduction technique can be applied multiple times, then theoretically a
circuit of unlimited depth or complexity could be evaluated. Gentry’s strategy is
to make the cipher bootstrappable, i.e., capable of evaluating its own decryption
circuit (homomorphically) and then at least one more operation. Any bootstrappable
somewhat homomorphic encryption scheme can be then converted into a fully
homomorphic encryption scheme by recursive self-embedding.

The function of the bootstrapping procedure is to “refresh” the ciphertext by
applying to it the decryption procedure homomorphically: this results in a new
ciphertext that encrypts the same value as the previous one, but has lower noise.
Bootstrapping is a noise reduction function, i.e., it replaces c = γ (v, x) by
a value cboot = γ (v, xboot) with xboot * x. By applying the bootstrapping
procedure sufficiently often, whenever the noise exceeds a certain threshold, it is
possible to compute an arbitrary number of additions and multiplications while
keeping the processed ciphertext decryptable. Intuitively, it is easy to see how
an appropriately designed bootstrapping scheme could potentially also be used
to allow homomorphic encryption to be performed over approximate computing,
which similarly introduces “noise” in the computation in the form of approximation.
Since the scheme inherently tolerates non-determinism associated with noise x, it
is suitable, in principle, to tolerate effects of approximate arithmetic operations as
well.

11.3.1.2 Approximate Homomorphic Encryption

Following Gentry’s first proposal for fully homomorphic encryption, a number of
improvements and new schemes have been proposed in the literature. The new
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schemes focus on two main areas: a different security assumption (e.g., the hardness
of a different problem), and increased efficiency. The latter is normally achieved
through improvements in the efficiency of the bootstrapping procedure (e.g., in
[31, 32]), or in schemes that achieve a slower growth of the noise during the
homomorphic computations (e.g., [33, 34]), which in turn means bootstrapping has
to be performed less frequently, if at all.

The Brakerski-Gentry-Vaikuntanathan scheme [33], first proposed in 2011, and a
number of following constructions base their security on the hardness of the (Ring)
Learning With Errors (RLWE) problem. Learning with errors is the computational
problem of inferring a linear n-ary function over a finite ring from a set of given
samples, some of which may be erroneous [35]. RLWE is a specialization of the
learning with errors problem to polynomial rings over finite fields [36]. Because
of the presumed difficulty of solving the RLWE problem on a quantum computer,
cryptographic schemes based on this security assumption are assumed to be post-
quantum secure. (R)LWE-based cryptosystems are inherently approximate, and the
decryption function is probabilistic by design. Therefore, an appropriate selection
of parameters may permit approximate hardware or approximate computing tech-
niques to be deployed in the implementation of homomorphic encryption schemes
based on this paradigm, although this is limited to the decryption function.

In 2017, the CKKS (Cheon-Kim-Kim-Song) scheme was proposed, marking yet
one more step towards the realization of a practical fully homomorphic scheme
[37]. The CKKS scheme is also derived from the RLWE problem, and supports
efficient rounding operations. Rounding controls the noise increase over encrypted
multiplications, thus reducing the number of bootstrapping operations in a circuit.
Interestingly, CKKS performs additions and multiplications on encrypted real
numbers but yields approximate results (the evaluation of an approximate circuit
over a ciphertext returns an approximation rather than an exact result), and is
constructed to deal efficiently with the errors arising from these approximations.
The CKKS approach is suited for fast polynomial approximation and floating-
point computations. In particular, fast polynomial approximation in CKKS can
evaluate the multiplicative inverse, exponential, and logistic functions, as well as the
discrete Fourier transform. These properties make the schemes particularly suited
for machine learning applications [38], which have inherent noises in their structure,
and also open the way to the implementation of fully homomorphic encryption over
approximate computing.

Preliminary results of the application of approximate computing to approximate
homomorphic encryption demonstrate the promise of this research direction. In [39]
Bian et al. apply hardware-based approximate computing techniques to an appropri-
ately designed approximate decryption technique for (R)LWE-based cryptosystems.
Their results indicate that speed increase, area reduction, power reduction, and
ciphertext size reduction can be achieved simultaneously, with efficiencies of 20%
or higher on the decryption function. Khanna et al. [40] apply a variation of the
approximate computing techniques of task skipping and depth reduction (derived
from loop perforation) to functions evaluated using the CKKS scheme, thus further
approximating the function, with the goal of increasing the performance of the
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homomorphic evaluation. Their experiment targets logistic (commonly used in
statistics, neural networks and machine learning) and exponential functions, which
are implemented with and without approximate computing optimizations over
CKKS. The results indicate a speed up in running time for homomorphic encryption
evaluation with task skipping is between 12.1% and 45.5%.

The significance of these results is linked to the fact that current homomorphic
encryption techniques imply large computational overheads, making widespread
deployment of the schemes still far from being realistic. Approximate computing
can substantially increase the efficiency of fully homomorphic schemes, and
therefore contribute to the ultimate goal of widespread deployment of FHE in real-
world systems.

11.3.1.3 Implementations and Standardization

As evidence of the increasing viability and practicality of fully homomorphic
encryption, a number of related libraries have been developed and released.

Some libraries are the implementation of specific schemes, such as HEAAN
(Homomorphic Encryption for Arithmetic of Approximate Numbers) [41], which
implements the approximate homomorphic encryption scheme proposed by Cheon,
Kim, Kim and Song (CKKS) [37]. FHEW (Fully Homomorphic Encryption library)
[42] implements the Fully Homomorphic Encryption scheme by Ducas and Mic-
ciancio [43]. Their work was later improved by Chillotti et al. in [44], which resulted
in the TFHE library [45].

Recently, a number of large industry players have also displayed increas-
ing interest in the development of homomorphic encryption solutions, including
Microsoft and IBM. Instead of proposing yet another cryptographic scheme, the
industry has focused on developing multi-scheme frameworks that implement a
number of existing FHE primitives. The most notable frameworks are presented in
Table 11.1. These include HElib [46], developed by Shai Halevi and Victor Shoup
at IBM; SEAL [47], by Microsoft Research; and PALISADE [49], developed by
a consortium of industry partners and universities lead by Duality Technologies
and New Jersey Institute of Technology, and funded by DARPA, the US Defense
Advanced Research Projects Agency. The same consortium is also working on a
DARPA project to develop an application-specific integrated circuit (ASIC) chip
for hardware-accelerated homomorphic encryption, currently codenamed TRE-

Table 11.1 A list of current libraries supporting multiple FHE schemes

Library Developer Supported FHE schemes

HElib [46] IBM BGV [33], CKKS [37]

SEAL [47] Microsoft CKKS [37], BFV [48]

PALISADE [49] Consortium of
DARPA-funded defense
contractors and academics

BGV [33], CKKS [37],
BFV [48], FHEW [43],
TFHE [44]
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BUCHET. Worthy of note is also SHEEP [50], by the Alan Turing Institute, which
is a homomorphic encryption evaluation platform aimed at providing a tool for
practitioners to evaluate the state-of-the-art of (fully) homomorphic encryption
technology in the context of their concrete application.

Another indication of the readiness of homomorphic encryption for real-world
computation scenarios is the joint standardization effort by a government, indus-
try, and academia consortium promoted through two Homomorphic Encryption
Standardization Workshops in 2017 and 2018. The first workshop produced three
white papers addressing the security [51] and applications [52] of homomorphic
encryption as well as the development of an API [53]. After a public comment
period and peer-review, the security white paper was publicly endorsed at the
second standardization workshop, resulting in the first draft of the Homomorphic
Encryption Standard [54].

11.3.2 Defending Against Adversarial Attacks on Neural
Networks

The explosive proliferation of artificial intelligence (AI) technology has given rise
to new security threats. Adversarial attacks against neural networks (NNs) is one
such threat. In contrast to attacks considered in Sect. 11.2, these adversarial attacks
are not hardware-oriented; they apply to hardware and software implementations
of NNs alike. We will discuss, however, that approximate hardware can provide
protections against such attacks.

11.3.2.1 Adversarial Attacks

An NN takes an object, e.g., an image, a video or an audio sample, as input and
produces a classification for this object. A classification can be understood as the
index of one out of a finite list of predefined classes, such as letters, road signs, or
control instructions for a personal assistant device. During an adversarial attack, the
attacker (adversary) makes minimal perturbations to the input with the malicious
purpose to obtain a mis-classification [55, 56]. These perturbations are often called
adversarial noise, but it is important to distinguish them from natural noise due to,
e.g., radiation or electromagnetic disturbances. Perturbations due to natural noise
are random and happen with no particular intent; perturbations due to adversarial
noise are carefully calculated by the adversary and guided by the intent to achieve
mis-classification. Figure 11.3 shows an example of an adversarial attack on an
image. Such attacks can also affect AI in the context of text or audio processing.
For example, Chen et al. [57] reported that an image correctly captioned “A red stop
sign sitting on the side of a road” was captioned “A brown teddy bear laying on top
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Fig. 11.3 Adversarial attack example: Image classified as trombone with confidence 24.67%
(a); perturbed image classified as mousetrap with confidence 55.07% (b); perturbations
(differences) between the two images (c). Original image from https://commons.wikimedia.org/
wiki/Trombone

of a bed” due to an adversarial attack. A collection of playable adversarial audio
examples can be found on the website [58].

The potential consequences of a successful adversarial attack can be grave.
Imagine a person saying to the personal assistant device “Open the window”,
whereas the adversary adds to the recorded sound a perturbation making the device
understand the sentence as “Transfer $100 to bank account number such-and-such”.
Even more dangerous, consider a vehicular network of autonomous self-driving
cars that are exchanging images. One car arriving at a crossing makes a photo
of the traffic situation and forwards it to the following cars which have no direct
line of sight to the crossing, in order to provide them with situational awareness
and improve their autonomous decision-making, ultimately improving safety. If the
image contains a stop sign, but an adversary manages to hijack the communication
and to replace this image with one that looks identically but where the stop sign is
interpreted as, e.g., turn-right sign, the following car will likely cause an incident
even though the available images look unsuspicious.

One can distinguish between different types of attacks. The most important
distinctions are [56]:

Targeted vs. untargeted attack: In a targeted attack, the adversary’s intent is to
change the classification of an input from correct class tcorr to one particular
class ttarget. In an untargeted attack, the adversary simply wants to achieve mis-
classification; an attack is considered successful if the classification changes from
tcorr to any class t �= tcorr.

White-box vs. black-box attack: In a white-box attack, the adversary knows the
structure of the NN and its parameters (weights, biases, etc.). In a black-box
attack, the adversary can observe the outcomes of the classification but does not
know the NN’s internals.

From the adversary’s perspective, a targeted attack is more difficult than a untargeted
attack, and a black-box attack is more difficult than a white-box attack. Conse-

https://commons.wikimedia.org/wiki/Trombone
https://commons.wikimedia.org/wiki/Trombone
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quently, designing an effective countermeasure against untargeted and white-box
attacks is harder compared with targeted and black-box attacks.

Mathematically, the adversary is trying to solve the following optimization
problem in the untargeted, white-box case [59]:

min
x∈[0,1]d

f (x) = (x − x0)
2 + λ · Loss(x,Net (x), tcorr). (11.2)

Here, (x − x0)
2 is the difference between the sought input x and the original,

unperturbed input x0; this part of (11.2) guides the search towards values that are as
close to x0 as possible. Net(x) is a function that represents the neural network; it
assigns every class t a score Net(x)t . The expression Loss(x,Net (x), tcorr) stands
for

Loss(x,Net (x), tcorr) = max

{

Net(x)tcorr − max
t �=tcorr

{Net(x)t } + κ, 0

}

. (11.3)

This part of (11.2) incurs a penalty when x is still classified in the correct class tcorr,
with κ serving as a safety margin and enforcing that x has “crossed the boundary” to
the neighboring class by at least this amount. λ balances between the two objectives.

In the targeted case, the loss term in (11.2) would be defined with respect to
the target class ttarget rather than t �= tcorr. For the black-box attack, the function
Net(x) is unavailable, but the network can still be used for arbitrary values of x.
One workaround is to approximate f ’s gradients by perturbing each of the input’s
d components. For example, Ting and Hayes [59] define a small constant ε and
approximate gradients by

∂f (x)

∂xi

≈ f (x + εei)− f (x − εei)

2ε
, (11.4)

where ei is the i-th standard basis vector.
Figures 11.4 and 11.5 show the example application of the white-box untargeted

attack against MobileNetV2 trained with the ImageNet dataset. One can see how
adding perturbations calculated the method discussed in [60] weighted by parameter
ε first leads to a rather high-confidence mis-classification (Fig. 11.4). For larger
values of ε (Fig. 11.5), the visual quality of perturbed images is reduced, the
classification is still wrong and the confidence low. Note that the case ε = 0.01
in Fig. 11.4 corresponds to Fig. 11.3b and c.

The key idea of the protection from [59] is to use NNs implemented based
on stochastic computing, a variant of AxC associated with a certain degree of
randomness, and actually increase this randomness by adding a small dedicated
circuit to the NN hardware. This will corrupt, to some extent, the gradient
calculation according to (11.4) and interfere with its usage in (11.2), thus thwarting
the attack in most cases. Employing too much randomization will deteriorate the
actual performance of the implemented NN. However, a careful control of the
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Fig. 11.4 Adversarial attack example: Perturbations calculated by the method from [60] for image
from Fig. 11.3a, and the results of adding these perturbations weighted by ε = 0.01 and 0.02
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Fig. 11.5 Adversarial attack example cont’d: Results of adding perturbations from Fig. 11.4 to
image from Fig. 11.3a, weighted by ε = 0.05 and 0.10

additional injected randomness can deliver a good compromise between greatly
improved attack protection and insignificantly reduced classification performance.

11.3.2.2 Neural Networks Based on Stochastic Computing

Stochastic computing (SC) is a special type of approximate computing that leads
to very area- and power-efficient arithmetic operations and is therefore very useful
for implementing NNs. The focus of this section is how SC is useful in protecting
NN implementations against adversarial attacks. To this end, instead of giving
a full introduction into different flavors of SC, the following paragraphs will
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concentrate on SC concepts and primitives that are useful for implementing NNs.
More information about SC in general can be found in, e.g., [5]; for a more in-depth
coverage of SC-based NNs, see the overview paper [61] and the upcoming (at the
time of writing this chapter) Special Issue of the IEEE Design & Test magazine on
Stochastic Computing for Neuromorphic Architectures.

SC is based on the notion of a stochastic number (SN). While different definitions
of an SN exist, the focus here is on bipolar SNs and refer to them as SNs in the
following. An N -bit SN is a string of N bits (0s or 1s). The value val(a) of an
SN a is defined to be (N1 − N0)/N , where N1 and N0 are the number of 1 and 0
values in a, respectively. For example, the value of a 4-bit SN 1110 is val(1110) =
(3 − 2)/4 = 0.5, the value of another 4-bit SN 0100 is (1 − 4)/4 = −0.5, and the
value of a 10-bit number 0100110000 is (3− 7)/10 = −0.4. It is apparent that SNs
can assume values between −1 and 1; all calculations with number exceeding this
range must be scaled into this range. It is also clear that SN values are not unique
and depend only on the numbers of 0s and 1s and not on their precise positions.

The striking feature of SN representations is that the basic arithmetic operations,
addition and multiplication, have an extremely compact representation. Given two
SNs a = a1 . . . aN and b = b1 . . . bN , applying these SNs, bit by bit, to the
inputs of an XNOR gate will produce an N -bit SN c at the outputs (c = c1 . . . cN

where ci = ai ⊕ bi for 1 ≤ i ≤ N ). c’s value is the product of values of a

and b: val(c) = val(a) · val(b). Moreover, applying a and b to the data inputs of
a multiplexer with the select input randomly switching between 0 and 1 (this is
equivalent to applying an SN with value 0 to the select input) will result in the
multiplexer’s output having value (val(a)+val(b))/2. This function is called scaled
addition; note that regular addition cannot be implemented in SC because adding
two numbers in range [−1, 1] will, in general, lead to leaving this range. With these
constructions, SC can represent arbitrary polynomials; non-polynomial functions
such as division can either be approximated or designed using sequential elements.
One prominent example is the stochastic hyperbolic tangent function stanh [62],
which is used as activation function in neural network.

Figure 11.6a shows the SC design of one 4-input neuron, consisting of a multiply-
accumulate part and the activation function. The first row of XNOR gates adds
weights wj to inputs ij . The 4-input multiplexer performs the scaled addition
(note that the multiplexer has two select inputs). The activation function outlined
in Fig. 11.6a is stanh from [62], implemented by an up-down counter. The gate-
level netlist of the activation function is not shown; note that some adjustment
within the stanh block is required to compensate for the scaling factor of 4 from
the multiplexer-based addition.

Figure 11.6b illustrates the multiply-accumulate part of the neuron for specific
values using the SN length N = 10. It starts with stochastic number generators
(SNGs) which take a binary number and convert it into the SC domain. In the
simplest case, an SNG consists of a comparator and a pseudo-random number
generator, even though more sophisticated designs exist [63]. It outputs N bits such
that their value equals (in the general case, approximates) the binary value on the
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Fig. 11.6 4-input neuron based on stochastic computing with stanh FSM as activation function
(a) and example calculation using its multiply-accumulate part (b)

SNG’s input. The circuit from Fig. 11.6b takes the values from the SNG outputs,
adds and multiples them.

One notices immediately that stochastic computing is associated with some
precision loss. For example, the second product (−0.2 · 0.2 = −0.04) in the
example of Fig. 11.6b has no exact representation as a 10-bit SN. Moreover,
the XNOR gate does not calculate the closest representable approximation of
−0.04, which would have been 0; instead it calculates 0011011110, which has
the value +0.2. One can define several sources of imprecision in SC, including
approximation, quantization, random fluctuations [64] and correlations [65]. In
general, imprecisions are considered undesired and limiting the performance of
stochastic circuits in general and stochastic NN in particular [66]. However, here
these imprecisions are utilized to defend NNs against adversarial attacks, and the
extent of such imprecisions is even artificially increased.



11 Security in an Approximated World 343

11.3.2.3 Adversarial Attack Defense Based on Stochastic Computing

The NN considered in [59] is the 19-layer version of the VGG network introduced
in [67], called VGG19-SC. This network’s structure is shown in Fig. 11.7. The
last fully connected layer of this network is implemented using SC whereas the
first layers are using the conventional binary representation. Note that this hybrid
approach necessitates binary-to-stochastic conversion by means of SNGs briefly
mentioned in the last section within the NN, rather than at its beginning, as
would be the case in a fully-SC implementation. The intrinsic imprecision of
SC complicates adversarial attacks against the network, yet [59] adds a further
protection mechanism: the randomness-injection circuit (RIC).

The RIC, shown in Fig. 11.8, takes a stochastic number x of arbitrary length N

and a parameter c, also represented as an SN. If c has the minimum value (i.e., it
consists of only 0 bits), the RIC does not modify x at all and simply outputs it one
clock cycle later at the output y. If, however, c has bits equal to 1, then y does
not track x but rather retains its value for every such bit. It was proven in [59] that
this construction guarantees, under certain assumptions, that the expected value of
y will be equal to that of the input x for all values of c. However, the “imprecision”,
or variance, of y increases with an increasing c.
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The experiment in [59] was based on the VGG19-SC network from Fig. 11.7 with
the last fully connected layer implemented in SC (using SNs of length N = 32)
and RICs added to its outputs. Since making parts of the network stochastic (i.e.,
approximate) and adding RIC may degrade its classification accuracy, the authors
compared both: the resistance against adversarial attacks and the classification
accuracy, when SC was used or not and for different values of parameter c. To
counter the accuracy degradation, they trained the network while adding Gaussian
noise to the inputs of fully connected layer. With the NN thus trained, the
classification accuracy was around 86% for the completely non-SC architecture with
the last fully connected layer implemented in binary and therefore no RICs. For the
SC version with different levels of c, the accuracy declined minimally, by up to
about 1%.

To quantify the protective capabilities of VGG19-SC, the attack success rate
ASR was calculated for all considered architectures. An attack was considered
successful if after performing 5,000 steps the mis-classification happened with
confidence parameter κ from (11.3) exceeding 0.2 and the distortion (x − x0)

2

from (11.2) was below 10. The ASR reported is simply the proportion of successful
attacks according to the above definition among 100 attack attempts. It turned out
that the non-SC NN lacking any protections had an ASR of 76%. For the largest
value of c, the ASR went down to 59%, demonstrating the effectiveness of SC as a
protective mechanism.

11.4 Conclusions

This chapter discussed the implications of approximate computing on security. It
provided a systematic overview of threats potentially caused or exacerbated by
adopting the AxC paradigm and the impact of AxC on the applicability of known
countermeasures. Moreover, it provided two examples how AxC based solutions
can provide benefits for emerging cryptographic approaches and for making neural
network implementations more secure. We believe that more research is required in
order to fully understand AxC challenges and potentials related to security and to
make this technology applicable in next-generation security-critical systems.

Acknowledgments This work was partially supported by the German Research Foundation
(DFG) under grant 1220/12-1 and by the European Union Horizon 2020 research and innovation
program under CPSoSAware project (grant no. 871738). The authors are thankful to John P.
Hayes of University of Michigan, Ann Arbor, and Florian Neugebauer, University of Stuttgart,
for provided materials and helpful discussions.



11 Security in an Approximated World 345

References

1. Vogel, S., Guntoro, A., & Ascheid, G. (2017). Efficient hardware acceleration for approximate
inference of bitwise deep neural networks. In DASIP (pp. 1–6). New York: IEEE.

2. Regazzoni, F., Alippi, C., & Polian, I. (2018). Security: The dark side of approximate
computing? In ICCAD (p. 44). New York: ACM.

3. Yellu, P., Boskov, N., Kinsy, M. A., & Yu, Q. (2019). Security threats in approximate
computing systems. In ACMGreat Lakes Symposium on VLSI (pp. 387–392). New York: ACM.

4. Liu, W., Gu, C., O’Neill, M., Qu, G., Montuschi, P., & Lombardi, F. (2020). Security in
approximate computing and approximate computing for security: Challenges and opportuni-
ties. Proceedings of the IEEE, 108(12), 2214–2231.

5. Alaghi, A., Qian, W., & Hayes, J. P. (2018). The promise and challenge of stochastic
computing. IEEE Transactions on CAD of Integrated Circuits and Systems, 37(8), 1515–1531.

6. Mittal, S. (2016). A survey of techniques for approximate computing. ACM Computing
Surveys, 48(4), 62:1–62:33.

7. Baek, W., & Chilimbi, T. M. (2010). Green: A framework for supporting energy-conscious
programming using controlled approximation. In PLDI (pp. 198–209). New York: ACM.

8. Shim, B., Sridhara, S. R., & Shanbhag, N. R. (2004). Reliable low-power digital signal pro-
cessing via reduced precision redundancy. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 12(5), 497–510.

9. Yazdanbakhsh, A., Pekhimenko, G., Thwaites, B., Esmaeilzadeh, H., Mutlu, O., & Mowry,
T. C. (2016). RFVP: Rollback-free value prediction with safe-to-approximate loads. ACM
Transactions on Architecture and Code Optimization, 12(4), 62:1–62:26.

10. Renganarayana, L., Srinivasan, V., Nair, R., & Prener, D. (2012). Programming with relaxed
synchronization. In Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for
Multicore and Manycore Scalability, RACES ’12, New York, NY (pp. 41–50). New York:
ACM.

11. Jiang, H., Liu, C., Liu, L., Lombardi, F., & Han, J. (2017). A review, classification, and
comparative evaluation of approximate arithmetic circuits. Journal on Emerging Technologies
in Computing Systems, 13(4), 60:1–60:34.

12. Hegde, R., & Shanbhag, N. (2004). A voltage overscaled low-power digital filter IC. IEEE
Journal of Solid-State Circuits, 39(2), 388–391 (2004)

13. Uppu, R. T., Uppu, R. K., Singh, A. D., & Chatterjee, A. (2013). A high throughput multiplier
design exploiting input based statistical distribution in completion delays. In VLSI Design
(pp. 109–114). Washington: IEEE Computer Society.

14. Krause, P. K., & Polian, I. (2011). Adaptive voltage over-scaling for resilient applications. In
DATE (pp. 944–949). New York: IEEE.

15. Uppu, R. K., Uppu, R. T., Singh, A. D., & Polian, I. (2014). Better-than-worst-case timing
design with latch buffers on short paths. In VLSI Design (pp. 133–138). New York: IEEE
Computer Society.

16. von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In Automata studies (pp. 43–98).

17. Cho, H., Leem, L., & Mitra, S. (2012). ERSA: Error resilient system architecture for
probabilistic applications. IEEE Transactions on CAD of Integrated Circuits and Systems,
31(4), 546–558.

18. Li, B., Gu, P., Shan, Y., Wang, Y., Chen, Y., & Yang, H. (2015). RRAM-based analog
approximate computing. IEEE Transactions on CAD of Integrated Circuits and Systems,
34(12), pp. 1905–1917.

19. Kocher, P., Jaffe, J., & Jun, B. (1999). Differential power analysis (Vol. 1666, pp. 398–412).
Berlin: Springer.

20. Kocher, P. C. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems (Vol. 1109, pp. 104–13). Berlin: Springer.



346 P. Palmieri et al.

21. Barenghi, A., Breveglieri, L., Koren, I., & Naccache, D. (2012). Fault injection attacks
on cryptographic devices: Theory, practice and countermeasures. Proceedings of the IEEE,
100(11), 3056–3076 (2012).

22. Barenghi, A., Hocquet, C., Bol, D., Standaert, F., Regazzoni, F., & Koren, I. (2014). A
combined design-time/test-time study of the vulnerability of sub-threshold devices to low
voltage fault attacks. IEEE Transactions on Emerging Topics Computing, 2(2), 107–118 (2014)

23. Wang, Z., & Karpovsky, M. (2011). Algebraic manipulation detection codes and their
applications for design of secure cryptographic devices. In IEEE 17th Int’l On-Line Testing
Symposium (IOLTS) (pp. 234–239). New York: IEEE.

24. Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. In CHES.
Lecture Notes in Computer Science (Vol. 5747, pp. 363–381). New York: Springer.

25. Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014). Hardware Trojan attacks:
Threat analysis and countermeasures. Proceedings of the IEEE, 102(8), 1229–1247.

26. Polian, I., Becker, G., & Regazzoni, F. (2016). Trojans in early design steps—An emerging
threat. In TRUDEVICE - 6th Conference on Trustworthy Manufacturing and Utilization of
Secure Devices. http://hdl.handle.net/2117/99414.

27. Becker, G. T., Regazzoni, F., Paar, C., & Burleson, W. P. (2013). Stealthy dopant-level hardware
trojans. In International Conference on Cryptographic Hardware and Embedded Systems
(pp. 197–214). New York: Springer.

28. Bhasin, S., & Regazzoni, F. (2015). A survey on hardware trojan detection techniques. In 2015
IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2021–2024). New York:
IEEE.

29. Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and privacy homomor-
phisms. Foundations of secure computation (pp. 169–179). New York: Academia Press.

30. Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher
(Ed.), Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, May 31–June 2, 2009 (pp. 169–178). New York: ACM.

31. Han, K., & Ki, D. (2020). Better bootstrapping for approximate homomorphic encryption. In
S. Jarecki (Ed.), Topics in Cryptology - CT-RSA 2020 - The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, February 24–28, 2020, Proceedings. Lecture Notes in
Computer Science (Vol. 12006, pp. 364–390). New York: Springer.

32. Alperin-Sheriff, J., & Peikert, C. (2014). Faster bootstrapping with polynomial error. In
J. A. Garay & R. Gennaro (Eds.), Advances in Cryptology - CRYPTO 2014 – 34th Annual
Cryptology Conference, Santa Barbara, CA, August 17–21, 2014, Proceedings, Part I. Lecture
Notes in Computer Science (Vol. 8616, pp. 297–314). New York: Springer.

33. Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (Leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory, 6(3), 13:1–13:36.

34. Gentry, C., Sahai, A., & Waters, B. (2013). Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti & J. A.
Garay (Eds.), Advances in Cryptology - CRYPTO 2013 – 33rd Annual Cryptology Conference,
Santa Barbara, CA, August 18–22, 2013. Proceedings, Part I. Lecture Notes in Computer
Science (Vol. 8042, pp. 75–92). New York: Springer.

35. Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptography. In
H. N. Gabow & R. Fagin (Eds.) Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, May 22–24, 2005 (pp. 84–93). New York: ACM.

36. Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors
over rings. Journal of the ACM, 60(6), 43:1–43:35.

37. Cheon, J. H., Kim, A., Kim, M., & Song, Y. S. (2017). Homomorphic encryption for
arithmetic of approximate numbers. In T. Takagi & T. Peyrin (Eds.), Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, December 3–7, 2017, Proceedings, Part
I. Lecture Notes in Computer Science (Vol. 10624, pp. 409–437). New york: Springer.

38. Wood, A., Najarian, K., & Kahrobaei, D. (2020). Homomorphic encryption for machine
learning in medicine and bioinformatics. ACM Computing Surveys, 53(4), 70:1–70:35.

http://hdl.handle.net/2117/99414


11 Security in an Approximated World 347

39. Bian, S., Hiromoto, M., & Sato, T. (2018). DWE: Decrypting learning with errors with errors.
In Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco,
CA, June 24–29, 2018 (pp. 3:1–3:6). New york: ACM.

40. Khanna, S., & Rafferty, C. (2020). Accelerating homomorphic encryption using approximate
computing techniques. In P. Samarati, S. D. C. di Vimercati, M. S. Obaidat, & J. Ben-
Othman (Eds.), Proceedings of the 17th International Joint Conference on e-Business and
Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris, July 8–10, 2020
(pp. 380–387). Setubal: ScitePress.

41. K. Crypto Lab Inc (2021). HElib - An implementation of homomorphic encryption. https://
github.com/snucrypto/HEAAN. Last accessed on 15 March 2021).

42. Ducas, L., & Micciancio, D. (2021). FHEW - A fully homomorphic encryption library. https://
github.com/lducas/FHEW. Last accessed on 15 March 2021).

43. Ducas, L., & Micciancio, D. (2015). FHEW: Bootstrapping homomorphic encryption in less
than a second. In E. Oswald & M. Fischlin (Eds.), Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, April 26–30, 2015, Proceedings, Part I. Lecture Notes in Computer Science
(Vol. 9056, pp. 617–640). New York: Springer.

44. Chillotti, I., Gama, N., Georgieva, M., & Izabachène, M. (2020). TFHE: Fast fully homomor-
phic encryption over the torus. Journal of Cryptology, 33(1), 34–91.

45. Chillotti, I., Gama, N., Georgieva, M., & Izabachène, M. (2021). TFHE - Fast fully homomor-
phic encryption over the torus. https://tfhe.github.io/tfhe/. Last accessed on 15 March 2021.

46. Halevi, S., & Shoup, V. (2021). HElib - An implementation of homomorphic encryption.
https://doi.org/10.1145/2535925. (Last accessed on 15 March 2021).

47. W. Microsoft Research, Redmond (2021). Microsoft SEAL. https://www.microsoft.com/en-us/
research/project/microsoft-seal/. Last accessed on 15 March 2021

48. Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012, 144.

49. D. Technologies and N. J. I. of Technology (2021). PALISADE lattice homomorphic encryp-
tion software library. https://palisade-crypto.org/. Last accessed on 15 March 2021.

50. U. Alan Turing Institute (2021). SHEEP - a homomorphic encryption evaluation platform.
https://github.com/alan-turing-institute/SHEEP. (Last accessed on 15 March 2021).

51. Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter, K., Lokam,
S., Moody, D., Morrison, T., Sahai, A., & Vaikuntanathan, V. (2017). Security of Homomorphic
Encryption, Tech. Rep., HomomorphicEncryption.org, Redmond WA, July 2017.

52. Archer, D., Chen, L., Cheon, J. H., Gilad-Bachrach, R., Hallman, R. A., Huang, Z., Jiang,
X., Kumaresan, R., Malin, B. A., Sofia, H., Song, Y., & Wang, S. (2017). Applications
of Homomorphic Encryption, Tech. Rep., HomomorphicEncryption.org, Redmond WA, July
2017.

53. Brenner, M., Dai, W., Halevi, S., Han, K., Jalali, A., Kim, M., Laine, K., Malozemoff, A.,
Paillier, P., Polyakov, Y., Rohloff, K., Savaş, E., & Sunar, B. (2017). A standard API for
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Chapter 12
Design, Verification, Test, and In-Field
Implications of Approximate Digital
Integrated Circuits
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12.1 Introduction

Despite significant energy efficiency improvements in the semiconductor industry,
computer systems keep consuming more and more energy [1]. Interestingly, many
widely used applications—such as Recognition, Mining, and Synthesis (RMS)
applications—now target a deployment toward mobile devices and on Internet of
Things (IoT) structures. Therefore, it is necessary to improve the next-generation
silicon devices and architectures on which these applications will run. The inherent
resiliency property of RMS applications has been thoroughly investigated over the
last few years [1–4]. This interesting property leads applications to be already
(partially) tolerant to errors—as long as their results remain close enough to the
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expected ones. As reported in [4], the main sources of error tolerance for these
applications are:

• noisy real-world inputs,
• redundant data,
• perceptual limitations of individuals who will use the computation output,
• non-deterministic algorithms which lead to non-unique outcomes, and
• self-healing capable systems.

As already pointed out in previous chapters, Approximate Computing (AxC) [1,
2] is an emerging computing paradigm that takes advantage of the inherent
resiliency property. AxC has garnered increasing interest in the scientific community
in the last years. It leverages the intuitive observation that selectively relaxing non-
critical specifications may lead to improvements in power consumption, execution
time, and/or chip area. AxC has been applied to the whole digital system stack, from
hardware to applications.

This chapter focuses on Approximate digital Integrated Circuits (AxICs) design
and manufacturing flow. Figure 12.1 depicts the main phases of the design flow. The
starting points are the requirements, i.e., which functionalities have to be designed
coupled with the energy, performances and area requirements, and the AxC metrics,
i.e., how to estimate the quality of the outcomes due to approximation. AxC design
stems from the application of AxC at hardware level. A widely used method to
design those circuits is functional approximation of conventional integrated circuits
(ICs) as described in Chaps. 3 and 4.

Fig. 12.1 AxIC design and manufacturing flow
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AxC verification aims at verifying that the approximate design satisfy both
the requirements and AxC metrics. If so, the AxC design goes through the
manufacturing flow, and the fabricated AxIC will be eventually tested. While AxC
Testing aims at screening defective circuits, it is interesting to note that AxC metrics
have to be considered during the testing phase. Indeed, manufacturing defects may
not significantly impact the functionality of the AxIC. AxC testing thus will focus
on detecting only defects causing unacceptable degradation of the circuit, usually
referred to as critical defects. All critical-defect-free circuits will be ready to be
employed in the in-field application.

This chapter overviews the AxIC design and manufacturing phases by presenting
the main challenges and state-of-the-art solutions. The chapter is structured as
follows: Sect. 12.3 considers the design phase, Sect. 12.4 the verification phase,
Sect. 12.5 the testing phase, and Sect. 12.6 the implication of Approximate Com-
puting on in-field operation. Finally, Sect. 12.7 summarizes the main contributions
of the chapter.

12.2 Background

This section introduces the basic concepts about testing, fault modeling, test
generation, and fault simulation. These concepts will serve as background in the
rest of the chapter.

12.2.1 Conventional IC Testing

To understand the impact of approximate computing on the design and manufactur-
ing, it is necessary to recall some basic principles of conventional IC testing. The
reported concepts are not intended to be exhaustive; for an extensive introduction to
them, readers may refer to [5]. As sketched in Fig. 12.2, in digital testing, the test is
carried out in the form of binary patterns (or test patterns) applied to circuit’s inputs.
The circuit’s outputs are compared with the expected ones (golden responses): if
they do not match, the circuit is marked as faulty. The idea came in 1959, when
Eldred proposed tests capable of observing the internal state of signals in large
digital system, by propagating their effect to primary outputs [6].

Very large-scale integration (VLSI) testing can be classified depending on the
goal it is intended to serve:

• Production testing: After chip manufacturing, the production testing determines
whether the actual manufacturing process produced correct devices or not. This
process is performed by the device manufacturer that owns full details about the
internal structure of the manufactured system and usually exploits Automated
Test Equipment (ATEs) for performing the tests. Different test types are usually
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Fig. 12.2 Digital testing [5]

performed at the end of manufacturing and their implementation or not may
depend on the targeted market of the device. Some of the most common testing
processes are: Wafer testing before the wafer is sliced and any device is packaged
as a standalone device. Manufacturing testing that checks for the key parameters
of the device and its main functionalities. Burn-in testing, where the produced
chips are stressed by placing them in high temperature environments, while
applying functional and post-production tests; by doing this over a certain period
of time, it is possible to guarantee the reliability of the tested devices since the
weak devices are eliminated during the burn-in process. During these testing
procedures, the devices are stressed by using structural and functional approaches
targeting different fault models and the test procedures are performed either at
nominal speed or at the speed required by the testing process.

• In-field testing: On the other side, when the device is already integrated in
the final application and under certain conditions, it is necessary to test the
device during its normal operational life, it is required to implement a periodic
testing strategy named In-field testing. In this case, the test cannot be performed
supported by an ATE, but it should be done through the available mechanisms
included in the device itself. In-field testing may require to test the device at the
turn-on and turn-off, or periodically while running concurrently with the actual
application. Today, some industrial standards such as ISO26262 for automotive,
and DO254 for avionics provide the guidelines for implementing these kind of
test strategies for different safety-critical applications.

Usually, two are the types of tests performed on VLSI chips:

• Functional test: it is possible to define functional test considering the way in
which the test procedure is applied and the information used to develop the whole
testing procedure. In the first case, the test procedure is performed acting on the
functional inputs of the device under test and observing the functional outputs,
only, without resorting to any kind of special mechanisms as the ones called
Design-for-Testability (DfT). On the other side, the test procedure is developed
on the basis of the functional information regarding the module under test, only:
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therefore, it aims at testing the functions rather than the faults, this kind of test
can be considered as a kind of black box testing strategy.

• Structural test: a structural test exploits the structural information of the device
under test to generate the resulting stimuli set. In most of the cases, the strategies
based on structural test use the circuit netlist, that represents the topological
distribution of all the logic gates composing the circuit, and the circuit fault
list to create specific test patterns able to cover the complete list of faults. Very
sophisticated algorithms and strategies have been proposer to efficiently exploit
the structural information of the circuit to generate the stimuli set, this is the case,
for example, of modern ATPG tools.

Structural testing is usually considered opposed to functional test since in general
these strategies do not use the functional inputs of the device to apply the test
patterns, but exploit, for example, the circuit scan chains and more sophisticated
strategies such as logic Built-In Self-Test (BIST), being in this way contrary to the
first definition of functional test. On the other side, since the stimuli set is generated
resorting to the structural circuit information and not use the circuit functionalities,
this makes this test strategy contrary to the second definition given before.

12.2.2 Defect Modeling

To correctly describe a faulty electronic circuit, different terms have to be defined.
Below, we report the common definitions of Defect, Error, and Fault.

• Defect: Unintended difference between the implemented hardware and its
design. Defects can occur during manufacture, as well as during the device
lifetime.

• Error: A wrong output signal produced by a defective system. An error is caused
by some defect in the hardware.

• Fault: An abstraction model of a defect.

It is important to highlight that even if a defect is present within an IC, its effects
might not affect the IC behavior. In general, given the list of all possible defects
(modeled as faults) that can occur within an IC, a fault is defined as detectable if
it exists an input pattern sensitizing and propagating the fault effect to outputs. All
faults being detectable are referred to as detectable faults. From now on in the text,
we will refer to defect and to its model – the fault – interchangeably.

Fault modeling can be described at different levels of abstraction:

• Behavioral level: Sometimes referred to as high level faults, behavioral level
fault models may not have correspondence in manufacturing defects because the
model the general behavior. Mostly, they are used in design verification rather
than testing.

• Logic level or Register-transfer level (RTL): At this level, we find fault models
usually built by considering the netlist, i.e., the circuit component list and their



354 A. Bosio et al.

interconnections. Stuck-at fault model is the most popular and used one in digital
testing. Among others, we find delay fault model and bridging fault model.

• Component level: this is the lower abstraction level, such as the transistor
level. Stuck-open fault model, which is a technology-dependent model, is mainly
used at this level. Mostly, analog circuit testing resorts to component level fault
models.

In this chapter, we focus on logic level fault models, since we address digital
integrated circuit testing. In the following, we report some definition’s concerning
faults, in order to provide readers with some useful terms for the rest of the
chapter.

• Stuck-at fault model (SaF)—In this abstraction, a circuit net is considered to
be permanently set at a constant value. By assigning a fixed (0 or 1) value to an
input or an output of a logic gate or to a flip-flop in the circuit, the SaF model
represents this condition. The SaF model is the most popular fault model used
in practice for digital IC testing. The most popular forms are the single stuck-at
faults. In this abstraction, a single faulty line is assumed to be present in the IC,
either stuck-at-1 (Sa1) or stuck-at-0 (Sa0).

• Delay fault model—Defects modeled by delay fault model prevent the correct
data from reaching outputs at the right time. Among different types of delay faults
models we find transition faults, gate-delay faults, path-delay faults.

• Redundant fault—In a combinational circuit, a redundant fault does not modify
the circuit’s output for any input combination. Thus, a test detecting a redundant
fault cannot exist. Redundant faults are a subset of the more general untestable
faults. In sequential circuits, faults for which no test pattern can be found fall into
the untestable fault category.

• Multiple fault—The condition that simultaneous single faults affect the same
circuit is referred to as multiple fault. Multiple Stuck-at faults model is usually
not considered, due to the tremendous complexity. Moreover, a very high
percentage of these faults are covered by single stuck-at faults tests.

• Equivalent faults—If two faults f1 and f2 lead a circuit to exhibit the exact same
behavior, they are defined as equivalent. A test detecting f1 detects also f2 and
vice versa. This leads to fault collapsing: partitioning all the faults of a circuit
into disjoint equivalence sets and selecting one fault from each equivalence set to
test. For a circuit having n lines (thus 2n single stuck-at faults) the equivalence
between 2(n2 − n) pairs of faults should be determined, which is complex.
Therefore, for stuck-at fault model, the fault equivalence is usually determined
between faults affecting each Boolean gate.

12.2.3 Fault Simulation

In the design of VLSI circuits, the concept of simulation is of great importance.
Firstly, it serves the purpose of verifying the circuit correctness. Secondly, it verifies
whether and how efficiently a test set fulfills its purpose.
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The circuit correctness verification is a fundamental step of the design activity.
After the synthesis process, the produced netlist is verified by a true-value simulator,
i.e., it produces the responses of the defect-free circuit. Since the goal is to verify
the circuit functionality according to the specification, the input stimuli (or vectors)
applied by the simulator to the circuit are based on the specification. The main
assumption is that circuit errors lead to change the design to make responses to
all stimuli different than the ones expected by the specification.

Simulation is also used for the development of manufacturing tests. A fault
simulator acts like a true-value simulator with the capability to simulate a faulty
circuit. Once the verified circuit netlist is available, the fault simulator can measure
the percentage of faults that are detected when a given set of input stimuli (usually,
the verification ones) is applied to the circuit. Faults are organized in fault lists and
input stimuli in test sets. Faults covered by the given test set are marked as detected
and the Fault Coverage is measured.

Definition 12.1 Fault Coverage (FC): the ratio of the number of faults detected
by a set of test patterns to the total number of faults in the fault list.

An adequate FC (98%–100%) is usually required in order to ship high quality
devices to the customers. A good-quality test is a test that can minimize the number
of faulty circuits sold, while keeping the test cost acceptable.

Definition 12.2 Test quality: the fraction of chips that, despite having passed the
test, are actually faulty. It is usually referred to as defect level (or field reject
rate). Defect level is expressed as parts per million (ppm). High quality tests are
considered as providing chips with a defect level of 100 ppm or lower.

Process variations, such as impurities in materials, dust particles, etc., can
produce defects during the manufacture. In turn, defects can cause circuits to fail.
Process variation effects reflect on the process yield defined as follows:

Definition 12.3 Process yield: the fraction (or percentage) of acceptable parts
(thus, sold) among all fabricated parts. It is also commonly referred to simply as
yield.

In a typical case, a newly designed chip has a low yield at its early manufacturing
period. Thanks to process diagnosis and correction, a higher process maturity is
achieved and, thus, a significantly higher yield.

12.2.4 Test Generation

In late-fifties, Eldred highlighted the necessity for the structural testing of logic
circuits to prevail over the classic functional test [6]. He argued that formulating test
conditions at the level of the components is “the only way in which all conditions
of operation of each logical function can be uniquely [. . .] defined and all logical
components within each logical function can be made to perform the task to which
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they are assigned [. . .] thereby producing a minimum program which tests and
detects failure”. The goal of structural test is to verify the presence of the minimal
set of faults in the circuit. Therefore, the application of fault equivalence is important
to reduce the final set of faults to test. The Automatic Test Pattern Generation
(ATPG) serves the purpose of producing patterns to test the internal structure of
a digital circuit, starting from its netlist description. The commonly used method in
ATPG, namely path sensitization, is based on three steps:

1. fault injection in the circuit netlist;
2. fault activation;
3. fault effect propagation toward circuit outputs.

To briefly describe path sensitization, let us resort to the stuck-at fault model (see
Sect. 12.2.2). Let us assume that we want to test if a line l is stuck to a constant
value (say 1). The test vector v detecting that fault is composed of input values such
that:

• the line l is set to the opposite value of the fault (say 0). This is commonly referred
to as fault sensitization or activation or excitation;

• the effect of the previous action is propagated to circuit outputs. This is
commonly referred to as fault propagation or path sensitization.

By simulating the pattern with the fault-free circuit, we obtain the fault-free output
value (expected output). Now, let us assume that an actual stuck-at fault (say Sa1)
occurs at line l. In presence of the fault, the circuit outputs will be different from
expected. Therefore, by applying the test vector v to the circuit and knowing the
expected output, we are able to detect the fault by observing a difference between
actual and expected outputs.

In the context of conventional IC test, even a little difference between the nominal
behavior and the manufactured IC behavior leads to reject the circuit. Later in this
chapter, we will discuss this aspect when approximate computing is considered.
In this particular context, the magnitude of the difference between the nominal
behavior and the manufactured IC behavior is important. In fact—under specific
conditions—the manufactured circuit may be still accepted even if some defects
occur.

The above described ATPG method works correctly only for combinational
circuits, i.e., without cycles. In fact, any circuit with cycles will lead the aforemen-
tioned method to fall into an infinite loop. ATPG methods for sequential circuits
exist but are usually very resource-consuming and sometimes inefficient. The main
difficulty for sequential ATPG is to control and to observe the internal state of the
circuit.

Therefore, design-for-testability (DfT) comes into play. As stated by Agrawal and
Seth [7],“testability is the property of a circuit that makes it easy (and sometimes
possible!) to test”. DfT refers to the set of design techniques for ICs aiming at
improving the testability of the target design. The most popular DfT technique is
the scan design. However, DfT techniques are out the scope of this chapter. More
details can be found in [7].
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12.3 Approximate Integrated Circuits Design Phase

The AxC paradigm has been successfully applied to digital ICs. The first technique
was referred to as over-scaling based approximation. Basically, the IC is forced
to work outside its specified operating conditions [2]. The classical example is the
reduction of the supply voltage under the minimum value. This will result in energy
saving but it will introduce timing errors. The second technique is the functional
approximation [2]. Functional approximation aims at modifying the circuit so that
its original behavior F is replaced by a similar one F ′, whose implementation leads
to area/energy reduction at the cost of a reduced accuracy. In other words, being
some responses of F ′ different compared to F , the circuit output is sometimes
erroneous but it is computed more efficiently. The accuracy loss is always measured
by means of quality metric(s). The most adopted ones are the Error Rate (i.e., how
many times an error is observed at circuit outputs) and the Error Magnitude (i.e., the
difference between the golden and erroneous outputs), formally defined in [2].

In the literature, several approaches for functional approximation have been
proposed so far, and they can be classified as manual or automated [2]. Manual
techniques target specific (small) circuit designs like adders and multipliers [8, 9].
On the other hand, to manage more complex circuit designs, automated approaches
are mandatory. State-of-the-art techniques for Approximated Logic Synthesis (ALS)
can be summarized as follows.

The approaches in [10] and [11] target two-level circuits and considers both the
error rate and error magnitude as quality metrics. Concerning multi-level circuits,
SALSA [12] encodes the quality metric as a function and it further simplifies the
circuit exploiting the resulting do not cares. This approach can only be applied
by taking into account error magnitude metrics. In [13], the authors propose to
consider both error rate and error magnitude during the ALS. SASIMI [14] aims at
identifying internal circuit net pairs with high probability to have the same logical
value. Then, it replaces one net with the other in order to simplify the circuit
structure. It considers Error Rate as the quality metric. In [15], the authors propose
an approach based on local node simplification in the circuit structure.

Shin et al. introduce in [16] a different approach based on the idea to inject stuck-
at-faults into the circuit to simplify it under a composite constraint on error rate and
error magnitude. All the above approaches target combinational circuits only. To the
best of our knowledge, ASLAN [17] is the only one targeting ASL for sequential
circuits. The basic idea is to “unroll” the sequential circuit in time frames also called
an iterative logic array of the circuit. For each time frame, the flip-flop inputs from
the previous time frame are often referred to as pseudo primary inputs with respect
to that time frame, and the output signals to feed the flip-flops to the next time frame
are referred to as pseudo primary outputs [18]. In this way, the sequential circuit can
be represented as a combinational one on which it is possible to apply the SASIMI
approach (on each time frame). Clearly, the complexity of ASLAN is very high and
generally depends on the sequential depth (i.e., how many time frames have to be
considered). Therefore, a faster and simpler ASL approach needs to be introduced.
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Fig. 12.3 Two-bit multiplier example

A different approach for functional approximation of multi-level circuits lever-
ages on the concept of fault simulation [16]. To better show the main principle,
let us resort to the example depicted in Fig. 12.3. The circuit example is a two-
bit multiplier described in [9]. On this simple circuit, we first define as the quality
metric the error magnitude and, more in detail, we set to 4 the maximum acceptable
error magnitude. In order to approximate the two-bit multiplier structure using the
approach of [16], we consider the output out3 as affected by a stuck-at-0 fault. In
other words, we force this output to be always at logic ‘0’. The example will clarify
why considering the stuck-at-0 fault affecting out3 ensures that the error constraint
will be satisfied. Now, the approach of [16] performs a back-track propagation of
the forced fault from the affected output back to a “barrier”. Each time that a logic
gate is traversed, faulty values are forced to its input to justify the faulty value at
its output, and the traversed gate is removed. The barrier is either a primary input
or a branch node. In Fig. 12.4, we report in bold the back-track propagation. When
a branch is found, a forward propagation is performed. The faulty value is now
propagated to reach other outputs and each time that a logic gate is traversed, it
is “simplified” depending on the traversed gate and the faulty value. The forward
propagation is reported in bold red in Fig. 12.4. Here, the logic value ‘0’ is set as
input of the XOR gate, that can be simply removed since x⊕ 0 = x. Finally, Fig. 12.5
reports the final result.

Looking at the obtained circuit, the error margin constraint can be satisfied by
removing the most significant output bit (out3 in figures). Table 12.1 gives all
the possible results for all the possible inputs. The only error (highlighted in red)
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Fig. 12.4 Fault Injection based functional approximation
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Fig. 12.5 Approximate two-bit multiplier

appears during the computation of 3 x 3. The result should be 9, but rather we get 5
due to the approximation. However, the erroneous result is still acceptable since the
error magnitude is 4 (9 - 5).

Please note that in this simple example only one fault is considered. However,
if more than one output has to be considered, multiple faults have to be used (one
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Table 12.1 Error magnitude
example

A x B 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 4 6

3 0 3 6 5

fault per output), thus leading to increase the complexity of the fault analysis (back-
track as well as forward propagation). Moreover, the fault affecting output out3 has
been selected because it allows to achieve the best approximate solution. Actually,
we performed the same analysis for the other faults and we found out that the
area reduction was lower compared to the one shown in the reported example. In
general, there are no guidelines for the selection of the fault. In [19], an extension
has been published including the strategy of considering a single fault instead of
multiple ones. Therefore, both processes of fault selection and fault analysis are
significant simplified compared to [16]. Additionally, the whole methodological
flow does not involve any iteration, but rather it requires to run a fault simulation
once. Moreover, it can be taken into consideration for approximating both sequential
and combinatorial circuits and it can be used with an arbitrary quality metrics,
including the Error Rate and Error Magnitude.

12.4 Approximate Integrated Circuits Verification Phase

The verification phase of a digital circuit design typically employs a method
capable of determining whether the circuit exhibits the same behavior as the so-
called golden model. The verification can be conducted by means of simulation,
but reaching all possible states of a complex circuit is usually intractable for any
simulation algorithm, i.e., the simulation does not guarantee that the circuit perfectly
meets all requirements. Hence, formal equivalence checking methods have been
developed that try to formally prove that two representations (the golden one and
the proposed one) of a circuit design exhibit exactly the same behavior. In the
context of approximate computing, the verification problem is reformulated in such
a way that we try to prove that the golden model and an approximate circuit are
equal up to some bound with respect to a chosen distance (error) metric [12].
A particular equivalence checking method’s success depends on several factors,
primarily including the circuit type, the circuit complexity, and the error metric.
Current methods are capable of an exact error analysis only for some circuits
and error metrics. On the other hand, complex approximate circuits (such as 128-
bit adders, 32-bit multipliers, 32-bit Multiply and Accumulate circuits, and 31-bit
dividers) have already been reported together with determining their exact worst-
case errors [20]. Most research deals with formal error analysis of arithmetic
circuits as they frequently appear in the most popular error-resilient applications
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such as deep learning and video processing. Formal methods can also be applied to
analyze the errors of other combinational circuits effectively (e.g., complex median
networks [21]) as well as sequential systems [22].

Two main approaches have been developed for equivalence checking techniques
based on Reduced Ordered Binary Decision Diagrams (ROBDD) and satisfiability
(SAT) solvers [23]. In both cases, an auxiliary circuit, the so-called miter, is
constructed and then analyzed. The miter connects corresponding outputs of the
candidate circuit (to be checked), the golden circuit, and an error-specific circuit
to determine the approximation error. As ROBDDs are inefficient in representing
classes of circuits for which the number of nodes in the BDD is growing exponen-
tially with the number of input variables (e.g., multipliers and dividers), their use
in equivalence checking of approximate circuits is typically possible for adders and
other less structurally complex functions [23].

If the error analysis is based on SAT solving, the miter is represented as a logic
formula in Conjunctive Normal Form (CNF) for which SAT solver decides whether
it is satisfiable or unsatisfiable. The interpretation of this outcome depends on the
construction of the miter, see Chap. 4. Common SAT solvers are, in principle,
applicable to the worst-case analysis only. However, this approach is more scalable
than ROBDDs for the error analysis of multipliers [24]. Specialized SAT solvers
(#SAT) are capable of counting the number of satisfiable assignments. Still, their
scalability is very limited, and thus they are currently less practical for the exact
error analysis [23].

The performance of verification algorithms is critical if the circuit approximation
process is based on a fully automated search in the space of approximate implemen-
tations and every candidate implementation has to be verified. A detailed overview
of formal verification techniques for approximate arithmetic circuits is provided in
Chap. 4.

12.5 Approximate Integrated Circuits Testing Phase

This section focuses specifically on the testing aspects of functionally approximate
circuits. These circuits are referred to as Approximate Integrated Circuits (AxICs).
Since approximating circuits alters their functional behavior, techniques to test them
must be revisited [25–35]. As a matter of fact, extending the basic testing concepts to
AxICs is not straightforward. In particular, as mentioned in Sect. 12.2.4, during the
test of a conventional circuit, any change in its functional output signals with respect
to the expected values leads to labeling the circuit as faulty and discarding it. When
dealing with AxICs, the presence of a fault may lead the circuit to behave differently
than expected, yet still in an acceptable manner. In this case the circuit should
not be discarded. Acceptable behaviors are defined according to one or more error
metrics and corresponding bounds, fixed in the design phase and usually expressed
as thresholds. Mastering these mechanisms may lead to increase the production
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(a) accurate 1-bit full adder (b) approximate 1-bit full adder
Inputs Accurate Approximate

# C X Y C S Int C S Int
0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1
2 0 1 0 0 1 1 0 1 1
3 0 1 1 1 0 2 0 0 0
4 1 0 0 0 1 1 0 1 1
5 1 0 1 1 0 2 1 0 2
6 1 1 0 1 0 2 1 0 2
7 1 1 1 1 1 3 0 1 1

(c) Truth tables

Error metric Threshold
WCE 2
MAE 0.5
MSE 1
EP 0.25

(d) Error thresholds

Fig. 12.6 (b) Example of an approximate 1-bit full adder, obtained from the accurate 1-bit full
adder in (a). The subfigure (c) shows the truth tables of the two circuits: for each input, the output
bit values are reported (S and Cout ), as well as their unsigned integer representation, calculated
as S ∗ 20 + Cout ∗ 21. Subfigure (d) reports the error thresholds for the approximate circuit, for
different error metrics

process yield, i.e., increase the percentage of sold AxICs among all fabricated
AxICs.

To illustrate the issue related to the AxIC test, throughout the whole section we
refer to a simple arithmetic circuit, shown in Fig. 12.6. The figure depicts a 1-bit
Full Adder (FA) (Fig. 12.6a) and an approximate version of it (12.6b), which is
more efficient, i.e., with reduced area (3 logic gates instead of 5) and lower delay
(2 logic levels instead of 3), but shows some errors at outputs. Figure 12.6c reports
the truth tables of both the circuits. We also report the integer representation of both
the circuit outputs (“Int” column), calculated as S ∗ 20 + Cout ∗ 21. As reported in
Fig. 12.6d, by considering all the possible circuit inputs, we can calculate the error
values according to the following metrics, Worst-Case Error (WCE), Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Error Probability (EP) [36], defined
as follows:

WCE = max
∀i∈I

∣
∣
∣O

approx
i −O

precise
i

∣
∣
∣ (12.1)

MAE =
∑

∀i∈I

∣
∣
∣O

approx
i −O

precise
i

∣
∣
∣

2n
(12.2)



12 Testing 363

MSE =
∑

∀i∈I

∣
∣
∣O

approx
i −O

precise
i

∣
∣
∣
2

2n
(12.3)

EP =
∑

∀i∈I: Oapprox
i �=O

precise
i

1

2n
(12.4)

where:

i ∈ I is the input value within the set of all possible inputs I,
O

precise
i is the precise output integer representation, for input i,

O
approx
i is the approximate output integer representation, for input i, and

n is the number of input signals to the circuit.

Values reported in Fig. 12.6d are a direct consequence of the approximation.
They constitute the error threshold values of the AxIC, fixed by specification and
known at design time. Thus, after manufacturing, the produced AxIC must produce
outputs respecting the boundaries set by the error thresholds. The issues shown in
this section and the approaches to face them are generic and applicable to all kind
of combinational circuits, provided that a measure of their approximation error is
available and reproducible.

The following section illustrates a test flow—called Approximation-Aware (AxA)
test flow—to properly deal with the test of AxICs. The flow is composed of three
main steps: (i) AxA fault classification, (ii) AxA test pattern generation and (iii)
AxA test set application. Briefly, the fault classification divides faults producing
critical effects on the circuit behavior from those producing acceptable effects. The
test pattern generation produces test stimuli able to cover all the critical faults and,
at the same time, to leave acceptable faults undetected, as much as possible. Finally,
the test set application labels AxICs under test as critically faulty, acceptably
faulty, or fault-free. Only AxICs falling into the first group will be discarded, thus
minimizing over-testing (i.e., minimizing AxICs discarded due to acceptable faults).
Next subsections describe each AxA test step.

12.5.1 AxA Fault Classification

The first step of the AxA testing is the fault classification. It aims at separating
acceptable faults from critical ones. The outputs of this phase are two fault lists
(critical and acceptable). The part of detectable faults classified as acceptable
constitutes the expected Yield Increase (eYI) with respect to the conventional test.
The eYI is expressed as follows:

eYI = acceptable faults

total faults
, (12.5)
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The measure of the eYI is another outcome of the AxA fault classification. The
purpose of such a metric is to establish an upper bound to the achievable yield gain.
To turn eYI in an actual gain, we have to go through the other AxA testing phases,
discussed throughout this chapter.

The key aspect to consider in the fault classification is the AxICs’ output
deviation measure. As mentioned in the previous subsection, different error metrics
exist to measure AxIC output deviations [36]. In Table 12.2, in the left part we
report the error threshold value alterations caused by all possible Stuck-at faults in
the approximate FA (Fig. 12.6b). The fault list was generated with a commercial
tool [37] with the fault collapsing option active. We highlight in red solid-bordered
boxes the non-acceptable error values, i.e., higher than the respective thresholds,
shown in Fig. 12.6d. We use the notation SaX@N to indicate a “stuck-at-X affecting
the net N”, where X can be either the value 1 or 0 and N is the label of the net.
Please, refer to Fig. 12.6b for the net labels. By observing the table, we can firstly

Table 12.2 Error metric values in presence of different faults affecting the approximate circuit
in Fig. 12.6b, and fault coverage report for the exhaustive test set

Error metricsFault

WCE MAE MSE EP Test vectorsa

Fault-free 2 0.5 1 0.25 0 1 2 3 4 5 6 7

Sa1@a 2 1 1.5 0.75 X X X X

Sa0@a 1 0.5 0.5 0.5 X X X X

Sa1@b 2 1 1.5 0.75 X X X X

Sa0@b 1 0.5 0.5 0.5 X X X X

Sa1@c 1 0.5 0.5 0.5 X X X X

Sa0@c 2 1 1.5 0.75 X X X X

Sa1@d 3 0.75 1.5 0.5 X X X X

Sa0@d 2 1 1.5 0.75 X X X X

Sa1@e 2 0.75 1 0.625 X X X X

Sa0@e 3 1 2 0.625 X X X X

Sa1@h 2 0.75 1 0.625 X X X X

Sa0@h 3 1 2 0.625 X X X X

Sa1@f 2 0.5 1 0.25 X X

Sa1@g 2 1 2 0.5 X X

Sa1@i 2 1 2 0.5 X X X X X X

Sa0@i 2 1 2 0.5 X X

eYI(%) 81.25% 25% 37.5% 6.25%
a0=“000”, 1=“001”,. . ., 7=“111”

= critical effect, = beneficial effect
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remark that not all the metrics are impacted by the same faults. Furthermore, in
some particular cases, faults even reduce the observed error (green dash-bordered
boxes in Table 12.2).

The complexity of the classification task depends on the complexity of the
metric computation. For instance, in the example in Fig. 12.6, let us suppose that
the approximate circuit had a defect whose effect set the net h to 0 (Sa0@h). To
measure the impact on the different metrics described by Eqs. (12.1), (12.2), (12.3),
and (12.4) different procedures are required. To find out that the WCE threshold
is not respected, it is only necessary to find a single input stimulus generating an
erroneous output having WCE > 2, e.g., input 7 (111) that should give 3 rather than
0 (3 − 0 = 3 > 2). Conversely, to find out that the thresholds for MAE MSE and
EP are not respected either, we should test all the possible input stimuli to observe
the outcome and then calculate a mean to obtain the final results. More in general,
for the WCE we have to demonstrate the existence or nonexistence of a single input
vector whose application leads the circuit to produce an out-of-bounds error. This
task is well achieved by Satisfiability solvers (SAT) or by using ATPG for integrated
circuits. By using the previously mentioned auxiliary miter module, SAT solvers or
ATPGs can fairly easily manage the problem. Conversely, to measure the impact of a
fault on metrics based on average calculation, simulation approaches are preferred.
When the complexity of the circuit does not allow using an exhaustive analysis,
a random or workload-dependent subset of input is used to estimate the measure.
SAT solvers counting the number of satisfiable assignments exist but they suffer of
scalability issues.

Figure 12.7 sketches the necessary modules to obtain a classification similar to
the one in Table 12.2: the original (precise) circuit, the AxIC under test, and the
miter module that performs the evaluation on the circuit outputs with respect to the
chosen error metric(s). The final output reports an erroneous condition when the
AxIC produce output values outside the error metric bounds. Thus, when the AxIC

S

S

Fig. 12.7 Approximation-Aware (AxA) fault classification concept
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is fault-free, no erroneous conditions are reported. The underlying idea is masking
acceptable fault effects by using a filter (implemented by the miter). In this way,
only critical faults generate an error condition at the output of the miter. Hence,
the conventional test approaches mentioned at the beginning of the chapter can be
used to classify the AxIC possible faults. In particular, for the WCE metric—and
for all the metrics for which only a punctual condition must be demonstrated—
a conventional ATPG approach (or a SAT-based one) can be used: given a fault,
the procedure proves whether an input stimuli generating an error condition at the
output of the miter exists or not and classifies the fault accordingly. For MAE,
MSE, and EP—and for all the metrics requiring the calculation of a mean—fault
injection and input simulation can be used: given a fault, it is injected in the AxIC,
a set of input stimuli (exhaustive, random or workload-dependent) is simulated and
the metric is calculated in the miter considering all the results. More details on
the approaches are reported in [28, 31, 34]. Finally, it is worth mentioning that the
above-discussed miter is never manufactured. It is only used in simulation to classify
the AxIC faults.

12.5.2 AxA Test Pattern Generation

The second step of the AxA testing is the test pattern generation. Historically, a lot
of effort has been spent in providing test generation methodologies achieving higher
Fault Coverage (FC) for conventional integrated circuits. In the context of AxICs,
test patterns must cover all critical faults and as few as possible acceptable ones.
Respecting both these conditions is crucial to discard AxICs affected by critical
defects and, at the same time, to avoid discarding those affected by acceptable
defects. To achieve this goal, it is necessary to find, among the input vectors, the
smallest subset covering all the critical faults and minimizing the acceptable fault
coverage. Therefore, the concept of Fault Coverage (FC), defined in Sect. 12.2.3
Definition 12.1, needs to be divided into acceptable FC and critical FC, as defined
below:

acceptable FC = acceptable faults detected

total acceptable faults
(12.6)

critical FC = critical faults detected

total critical faults
(12.7)

Naturally, for conventional approaches a good test set aims at detecting as much
faults as possible without considering their classification. Conversely, in the AxIC
case, an ideal test set should achieve 100% critical FC and 0% acceptable FC. If
no effort is spent toward achieving the second condition, a still-good AxIC affected
by an acceptable fault will be rejected during the test phase. The phenomenon due
to which a good product is considered as faulty by the test process is commonly



12 Testing 367

referred to as over-testing. If not properly managed. If not properly managed, the
over-testing will eventually cause some yield reduction.

Let us refer again to our example. The right part of Table 12.2 reports the
input stimuli detecting (i.e., sensitizing and propagating to outputs) each possible
Stuck-at fault for the AxIC in Fig. 12.6b. Firstly, let us assume that the fault
classification is performed by using the EP metric (threshold = 0.25). Table 12.2
shows that all the faults lead the error to be critical, except for Sa1@f, that leaves
it to 0.25. Therefore, vectors 4 and 7 must be avoided, since they are the only ones
detecting that fault. An example of test set achieving 100% critical FC and 0%
acceptable FC is {2,3,5}. However, it is not always possible to find a suitable test set
satisfying these conditions. For example, let us consider that the fault classification
is performed by using the WCE metric (threshold = 2). In Table 12.2 we can
observe that three faults lead the error to be critical, i.e., Sa1@d, Sa0@e, and
Sa0@h increase the WCE to 3. Both vectors 4 and 7 independently detect the three
faults. However, both vectors detect also five acceptable faults (38% acceptable FC).
Moreover, there is no input vector combinations achieving 100% critical FC and
0% acceptable FC all at once. A further analysis highlights that vector 4 covers four
acceptable faults leaving the WCE to 2 and one lowering it to 1, while vector 7
covers three acceptable faults lowering the WCE to 1. Therefore, this consideration
would lead to the selection of vector 4 over vector 7 to avoid detecting too much
faulty conditions that actually improve (i.e., lower) the WCE. In conclusion, it is not
always possible to achieve 0% acceptable FC and 100% critical FC at all at once.
As a consequence, an ideal AxA test pattern generation approach should produce a
test set achieving 100% critical FC and an acceptable FC as close as possible to 0%.
Unfortunately, conventional ATPG algorithms are not designed to produce test set
with such particular properties.

One way to achieve an improved test set (i.e., with 100% critical FC and low
acceptable FC) is to develop an exploration methodology to find, among the input
vectors, the smallest subset covering all the critical faults and minimizing the
acceptable FC. Such a methodology, sketched in Fig. 12.8, measures both critical
and acceptable FCs of the AxIC input vector set and formulates and resolves an
Integer Linear Programming (ILP) optimization problem to find the smallest subset
achieving 100% critical FC and minimizing the acceptable FC. The ILP solution
is the final ax-aware test set. More in details, firstly a (sub)set S of the AxIC
input vector set is generated. Then, fault simulation is used, taking as input S,
the AxIC and the two fault lists (critical and acceptable) generated in the AxA
fault classification phase. The output of the fault simulation is a fault coverage
(FC) report which records, for each fault, all the input vectors in S covering it, as
shown in Table 12.2. Finally, an optimization problem is formulated, by using the
fault coverage report and the fault lists. This leads to a system of linear inequalities
whose solution will be the final ax-aware test set, i.e., the smallest subset V ⊂ S
which minimizes the acceptable FC and achieves 100% critical FC. IfS corresponds
to the exhaustive input set of the AxIC, the output solution will be the globally
optimal one (i.e., the best possible vector combination). When S is a subset of
the exhaustive vector set, the ILP solution will be locally optimal (i.e., the best
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Fig. 12.8 Approximation-Aware (AxA) test generation methodology

combination, among vectors in S). This approach is independent of the specific fault
classification technique and of the error metrics and thresholds. Indeed, as long as
a fault classification is correctly produced, the methodology is applicable. Further
details on the approach and its mathematical basis are available in [32]. Although the
methodology guarantees finding an optimal test set, the ideal outcomes (i.e., 100%
covered critical faults and 0% covered acceptable faults) cannot be guaranteed, due
to the structure of the AxIC. Therefore, further efforts must be spent in the test
application phase, as shown in the next subsection.

12.5.3 AxA Test Set Application

To push further the test outcomes, the third step of AxA testing, the test pattern
application, comes into play. In the conventional test set application phase, observ-
ing a circuit response different from the expected one always leads to reject the
circuit. On the contrary, in AxA testing, whether the erroneous response is due to
an acceptable fault or to a critical fault must be taken into account. The test must
reject the AxIC only if a critical fault caused the error. As shown in the previous
subsection, often it is not possible to avoid detecting acceptable faults. Thus, the
main solution is to verify, after the test application, whether the detected fault was
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acceptable or not. Another metric is used to evaluate the effect of the AxA testing
procedures on the yield, the Yield Increase Loss (YIL), defined below:

YIL = acceptable faults detected

total faults
(12.8)

It describes the value of the yield increase not achieved due to the detection of
acceptable faults. The YIL is in the range [0, eYI]. By considering Eqs. (12.5)
and (12.8), we can observe that the YIL can be expressed also as follows:

YIL = acceptable FC · eYI (12.9)

This means that the acceptable FC metric represents the part of the possible yield
increase (eYI) that is not actually achieved, due to the detection of acceptable faults.
Therefore, if acceptable FC = 0 then YIL = 0 (i.e., maximum yield increase). On
the contrary, if acceptable FC = 1 then YIL = eYI, thus the achieved yield increase
is null.

We need a methodology able to observe the circuit’s responses and distinguish
between the detection of an acceptable fault (i.e., the test passes) and a critical one
(i.e., the AxIC is rejected). Let us observe Table 12.3, which reports the output

Table 12.3 Values of the AxIC in Fig. 12.6b when the input vectors are applied in presence of
the faults

Input vector 0 1 2 3 4 5 6 7 Classification

Output Precise 0 1 1 2 1 2 2 3

Fault-free 0 1 1 0 1 2 2 1
WCE (2)

Sa1@a 1 0 1 0 2 1 2 1 acceptable

Sa0@a 0 1 0 1 1 2 1 2 acceptable

Sa1@b 1 1 0 0 2 2 1 1 acceptable

Sa0@b 0 0 1 1 1 1 2 2 acceptable

Sa1@c 1 1 1 1 2 2 2 2 acceptable

Sa0@c 0 0 0 0 1 1 1 1 acceptable

Sa1@d 1 1 1 1 0 2 2 0 critical

Sa0@d 0 0 0 0 1 3 3 1 acceptable

Sa1@e 1 0 0 1 1 2 2 1 acceptable

Sa0@e 0 1 1 0 0 3 3 0 critical

Sa1@h 1 1 1 1 1 3 3 1 acceptable

Sa0@h 0 0 0 0 0 2 2 0 critical

Sa1@f 0 1 1 0 3 2 2 3 acceptable

Sa1@g 0 3 3 0 1 2 2 1 acceptable

Sa1@i 2 3 3 2 3 2 2 3 acceptable

Sa0@i 0 1 1 0 1 0 0 1 acceptable

bold = output value obtained when an input vector (column) detects a fault (row)
= value produced by the test set (input vector 4) when detecting a fault
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integer values of the AxIC in Fig. 12.6b, obtained in presence of the different faults.
For each fault, we report also its classification according to the WCE metric. In
bold are reported the value observed when a particular vector (column) detects
the presence of a particular fault (row), i.e., there is a difference between the
expected output (fault-free) and the obtained output. In particular, we highlight with
blue solid-bordered boxes the faulty values obtained by applying the vector 4. In
Sect. 12.5.2, we observed that vector 4 is a good solution to achieve 100% critical
FC for the AxIC in Fig. 12.6b. Unfortunately, it also achieves 38% acceptable FC
(5 acceptable faults over 13). This means losing a part of the possible yield gain,
meaning YIL = 5

16 = 31.25%.
However, by looking at the critical values produced by applying vector 4 (i.e.,

in presence of Sa1@d, Sa0e, Sa0@h), we can notice that they are different from
the values produced when an acceptable fault is present (Sa1@a, Sa1@b, Sa1@c,
Sa1@f, Sa1@i). Therefore, if we observe an unexpected value when applying vector
4, depending on its value we can understand whether it is due to an acceptable or to
a critical fault. This, in turn, avoids rejecting circuits due to acceptable faults, i.e., it
reduces the YIL to 0%.

Starting from this observation, we can build a test application methodology
to further improve the test results. The well-known signature analysis concept—
successfully applied to built-in self-test (BIST) architectures in the seventies [38]
and still used in modern BIST architectures—can be applied in this context. The
conventional signature analysis approach compacts test responses of a fault-free
circuit into a golden signature (i.e., the reference behavior). In the test phase, the
test responses of the circuit under test are compacted together into a signature (i.e.,
the actual behavior). Hence, the latter is compared with the golden one. If the two
signatures are identical, the circuit under test is considered fault-free; otherwise, a
malfunction is detected.

This concept can be applied to AxIC test, as depicted in Fig. 12.9. It is divided
in two phases, as follows:

1. At design time (left branch in Fig. 12.9), we perform a fault simulation by
using test patterns and the AxIC’s faults. For each fault, we compact simulation
responses into a signature. We obtain acceptable and critical signatures. We
remove from acceptable signatures those overlapping with critical ones (if any).
We add the golden signature (i.e., fault-free) and end up having an ax-aware
signature set.

2. At test time (right branch in Fig. 12.9), manufactured AxIC test responses are
compacted into a signature. The latter is compared with the ones in the ax-
aware signature set. If there is at least one match, then the AxIC is considered
acceptable. Otherwise, the circuit is rejected.

The discussed approach can be used for external test, i.e., test are applied by using
an Automatic Test Equipment (ATE) and it can be also adapted to a BIST context.
With this approach, results close to the ideal ones are achieved. Further details are
available in [33].
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Fig. 12.9 Approximation-Aware (AxA) test application methodology

12.6 In-Field Applications: DNN as Case Study

Approximate Computing techniques have been positively introduced thanks to the
intrinsic resilience of many applications [4]; as a collateral resiliency effect, it has
been stated that a resilient application is able to provide good enough outputs
(i.e., acceptable) despite of the presence of hardware faults. The previous section
described in detail how to characterize the impact of hardware faults on a given
approximate circuit resorting to well established metrics, i.e., WCE, MAE, MSE,
and EP. In this section, we intend to discuss the usage of the same fault impact
characterization, but at application level instead of component/circuit level. Indeed,
presented metrics may not be valid at application level and thus new application-
dependent metrics and even characterization methods have to be defined. To support
the investigation, we resort to a Deep Neural Network (DNN) as case study. The
target DNN is the LeNet-5 [39] used as classifier for handwritten digit recognition
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task. We resort to the MNSIT database of training and validation. The end-goal is
to characterize the impact of permanent faults affecting the LeNet through fault
injection campaigns. The characterization is done on an original version of the
DNN, i.e., without any approximation, and on approximate versions of the same
DNN.

12.6.1 DNN Data Type Approximation

Chapter 15 presented several approximation techniques for the development of
approximate neural networks. In this section, we exploit the reduction of the
precision and data type for weight and activation’s values. More in details, we intend
to use custom floating-point and fixed-point representations with different precision
(i.e., bit-width) at inference time. To explore DNNs data type approximation
we leverage the darknet open source DNN framework [40]. Implemented in C
language, the library allows end-to-end deployment of neural network architectures
in a very simple way. It further supplies a very simple environment where several
configurations of DNNs, including CNNs, can be executed either to perform training
or inference tasks. We modified darknet framework to (i) approximate the DNN and
(ii) inject Stuck-at Faults at inference time. The targets of injections are the DNN
weights. The description of how injection is implemented is out the scope of this
chapter, the reader can found all details in [41].

Originally, the darknet framework leverages on 32 floating-point data types only.
We thus modified the darknet source code to allow data type conversions. All
the conversions between the standard 32 floating-point and custom data types
have been carried out by integrating two open source libraries into the darknet
framework: the libfixmath library [42] for managing fixed-point and the FloatX
library.

Figure 12.10 represents our custom data type defined as following:

• N defines the data bit-width;
• i sets the dynamic and the precision of the data type depending on data

representation:

– Floating-Point: i is the mantissa width, N − 1− i is the exponent width;
– Fixed-Point: i is the fractional width, N − 1− i is the integer width.

Figure 12.11 sketches the scenario in which the fault injection campaign is
executed. The first step allows to determine the Accuracy Loss due to approxi-

Fig. 12.10 Custom data type

… …

0N-1 i
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Fig. 12.11 Fault injection scenario

mation. Starting from the trained DNN with the 32 bit floating-point data types,
called Golden Standard, the network is approximated using custom data type
representation, called Golden Custom. The inference outputs are then compared
to determine the Accuracy Loss induced by the approximation. Once the Golden
Custom network has been built, the fault injection campaign is carried out on this
DNN, and the inference outputs are compared with the faulty free “Golden Custom”
inference to first assess the accuracy loss due to fault injection. Eventually, the same
outputs are compared with “Golden Standard” ones to assess the inner resiliency
due to the approximation.

The final purpose of customizing a DNN, i.e., by approximating it, aims at
replacing the Standard DNN in edge/resource limited devices. Thus, it is crucial
to assess the faults impact on the Custom DNN with respect to the standard DNN.
On the other hand, it is also possible to apply the custom-data type to DNN before
training. In this case, the reference DNN to compare the faults impact to be assessed
is the Custom DNN itself.

To classify the faults impact, we will define the following application-dependent
outcome:

• Masked: no difference is observed from the faulty DNN and the golden one.
• Observed: a difference is observed from the faulty DNN and the golden one.

Depending on how much the results diverge, we further classify these as:

– Good: the confidence score of the top ranked is higher with respect to the
golden DNN. In other words, the faulty DNN provides a better inference than
the golden one;

– Accept: the confidence score of the top ranked element is reduced by less than
5% with respect to the golden DNN;
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– Warning: the confidence score of the top ranked element is reduced by more
than 5% with respect to the golden DNN;

– Data Corruption: the top-1 prediction is different. In other words, the faulty
DNN makes a wrong inference.

It can be easy seen that the above classification is slightly different than the one of
Sect. 12.5.1. This is mainly because of the need of considering the final application
outputs, and the fact that in some cases the faults impact lead to an improvement
of the output quality. The latter point is specific to the case of DNNs. Indeed, a
DNN can be considered as an approximation of a given function (in our case a
classifier). The approximation is implemented by determining the parameters (i.e.,
weights) values through the training. Since the training cannot be exhaustive, it is
still possible that a different weights values’ distribution provides better results. As
mentioned before, in the provided experiments, we target the DNN weights, so, the
faults impact can be seen as a modification of weights values that may improve the
output accuracy. For the sake of clarity, we can also classify faults as proposed in
Sect. 12.5.1 for further comparison:

• Acceptable Faults: Masked
⋃

Observed
⋃

Accept
• Critical Faults: Warning

⋃
Data Corruption

It is important to specify that “Warning” can or cannot be considered as Critical
Faults depending on a user threshold.

12.6.1.1 Experiments

For running the experiments, the MNIST database [43], a well-known dataset used
to evaluate the accuracy of new emerging models, has been selected. The dataset
includes 60,000 images for training and 10,000 for test/validation of the model,
encoded in 28 × 28 grayscale pixels. Since we are focusing on the inference phase
and on the response of the network in a faulty scenario, a set of pre-trained weights
has been adopted. The set comes from the darknet website, and defines all the
weights as 32-bit floating-point.

To carefully select the custom data type representation, we first analyze the
LeNet-5 weight values distribution. All the values are in the range -0.6 to 0.6 with
the most of them around zero. From this analysis, we simply deduce that the data
type does not need a high dynamic range while a high precision is preferred. We
thus select the custom data types reported in Table 12.4.

Two data types are used: the fixed and floating-point with different bit-width.
Moreover, we computed the accuracy loss of the network resulting from the
adoption of custom data types weights. As highlighted in Table 12.4, five different
scenarios have been analyzed. The second column of the table reports the data type
used in each campaign, while the third column reports the bit-width of the weights.
The fourth column shows the amount of bits allocated to encode the different part
of the number, i.e., sign, exponent, and fractional part in the case of floating-point
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Table 12.4 LeNet-5 data type accuracy loss [%]

Scenario Data type Bit-width Bit encoding [%] Accuracy loss

FP32 Floating-point 32 1 sign, 8 exponent, 23 fractional Ref.

FP16 Floating-point 16 1 sign, 5 exponent, 10 fractional 0%

FP8 Floating-point 8 1 sign, 4 exponent, 3 fractional 0.02%

FxP32 Fixed-point 32 1 integer, 31 fractional 0%

FxP16 Fixed-point 16 1 integer, 15 fractional 0%

FxP8 Fixed-point 8 1 integer, 7 fractional 0.04%

representations, and integer and fractional part in the case of fixed-point. To compute
the accuracy of the network in the different scenarios, the inference of all the
images belonging to the validation set of the MNIST database (10,000 images) have
been run on LeNet-5, without injecting any faults, i.e., in a golden scenario. The
results show that only when reducing the bit-width to 8 bits the network exhibits an
appreciable level of accuracy loss. In details, for the network with weights encoded
by using 8-bit floating-point variables (FP8) the accuracy loss was 0.02%, while
it was 0.04% when the weights were encoded by using 8-bit fixed-point variables
(FxP8).

We evaluated the faults impact by using as reference the Standard 32 bit floating-
point DNN (see Fig. 12.11), and considering the whole set of workloads (10,000
images). This is useful in the case where a designer wants to approximate the DNN
(i.e., change its data type and/or bit-width) after that it has been trained.

To discuss the results, we refer to the classification presented in Sect. 12.6.1.
In particular, we want to evaluate the safety of the different DNN versions, when
subject to faults. Therefore, we consider faults in the Accept, Warning, and Data
Corruption classes as events reducing the DNN safety; these classes include the
faults defined before as Critical Faults. The sum of these contributions is referred
to as Safety Decrease. Conversely, we consider the faults in the Masked and Good
classes as events either leaving the safety of the DNN unaltered or improving it. The
sum of these contributions is referred to as Safety Increase.

Results are shown in Table 12.5 where each row corresponds to one of the DNN
variants (FP32-FP16-FP8-FxP32-FxP16-FxP8 defined in Table 12.4). Each column
corresponds to a faulty behavior class as described in Sect. 12.6.1.

We can firstly note a different resilience to faults depending on the data type.
More in detail, the safety decreasing effect is lower for fixed-point than for
floating-point, comparing the same bit-width. As representative of this fact, let
us discuss scenarios with FP32 and FxP32 (32-bit DNNs): the safety increasing
(decreasing) effect varies from 69% (31%) of the floating-point version (scenario
FP32) to 74% (26%) of the fixed-point version (scenario FxP8). This corresponds
to a difference of 5%. The average difference between floating- and fixed-point
versions with respect to safety increasing/decreasing effect over the three variants
(32- 16- 8- bits) is 10.64%. This can be seen by comparing the scenarios FP32
with FxP32, FP16 with FxP16, and FP8 with FxP8, in terms of the average safety
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increase/decrease effect variation (columns 7 and 8). In general terms, the safety
decreasing effect is critical only in few cases. In fact, the percentage of Data
Corruption is always lower than 3.42% for all variants. In particular, fixed-point
variants have a very small percentage of critical faults, always lower than 0.46%.
Moreover, the increasing contribution of Good faults to the safety turns out to be
significant, especially for 16- and 8-bit versions. As an example, in the scenario
FxP8, we observed a safety increasing effect for 52.21% of the cases, with a 52.18%
of Good faults.

Furthermore, also the bit-width plays an important role for the reliability: the
lower the bit-width the lower the resilience. Therefore, a designer who wants to
use a more efficient version of the DNN (reduced memory footprint) has to be aware
that it would also be less resilient than the original DNN (FP32). However, it is worth
also remarking that using fixed-point data representation, instead of the floating-
point counterpart, provides the better results in terms of trade-off between resilience
and efficiency. This is reported in the last two columns of Table 12.5 where the
difference in Safety and Memory footprint is reported considering the FP32 DNN as
the reference. For instance, we may compare scenarios FP8 and FxP8 (8-bit DNNs,
1 bit for integer and 7 bit for fractional): we observed a safety loss compared with the
FP32 DNN of 37% in the floating-point version (FP8) and only of 16% in the fixed-
point version (FxP8). Therefore, choosing the DNN in the scenario FxP8 allows
the designer to compact the memory footprint by a 4x factor while reducing the
safety only by 16%. By looking more closely, the occurrence of critical faults in
scenario FxP8 even decreases from 1.32% of FP32 to 0.45%, while in the case of
the floating-point scenario (FP8) it increases to 3.41%. Additionally, for scenario
FxP32 (32-bit fixed-point DNN), it has been observed that the DNN achieves 5%
improved safety with respect to the FP32 scenario for the same memory footprint.
Thus, simply changing the DNN data type to fixed-point improves its resiliency.

12.6.1.2 Discussion

The above results have been obtained resorting to fault injection campaigns that
are highly time consuming because of the huge number of faults that have to be
considered. To reduce the number of faults, we consider the layers on the LeNet-
5 that perform arithmetic computations involving the trained weights, i.e., the
two Convolutional and the two Fully Connected layers. Indeed, we consider the
resilience of the DNN against faults affecting the memory, where the weights are
stored.

Table 12.6 provides details about the configuration as well as the fault list of each
layer. The first two rows (labeled “Layer” and “Detail”) of the table present the
target layers; the third one (“Connections”) specifies the amount of their connection
weights. The number of possible faults is computed as the multiplication between
the connections number (“Connections”) and the weight size (“Bit-width”).

As the rows “#Faults” point out, the overall number of possible faults is very
high and this reflects in a non-manageable fault injection campaign execution time.
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Table 12.6 LeNet-5 fault list for injection campaigns

Layer L0 L2 L4 L6

Detail Convolutional Convolutional Fully connected Fully connected

Connections 2400 51,200 3,211,264 10,240

Scenarios
FP32, FxP32

Bit-width 32 32 32 32

#Faults 76,800 1,638,400 102,760,448 327,680

#Injections 13,678 16,474 16,638 15,837

Scenarios
FP16, FxP16

Bit-width 16 16 16 16

#Faults 38,400 819,200 51,380,224 163,840

#Injections 11,610 16,310 16,636 15,107

Scenarios
FP8, FxP8

Bit-width 8 8 8 8

#Faults 19,200 409,600 25,690,112 8,1920

#Injections 8,915 15,991 16,630 13,831

Thus, in order to reduce the fault injection execution time, we can randomly select
a subset of faults. To obtain statistically significant results with an error margin of
1% and a confidence level of 99%, an average of 15.6k fault injections have to be
considered for 32-bit scenarios (FP32 and FxP32), 15k for 16-bit scenarios (FP16
and FxP16), and 13.8k for 8-bit scenarios (FP8 and FxP8). The precise numbers are
given in the rows of Table 12.6 labeled “#Injections” and they have been computed
by using the approach presented in [44]. In details, we resorted to the following
formula:

f ault_injections = N

1+ e2 × N−1
t2×0.25

(12.10)

where N is the total number of fault locations (i.e., row #Faults of Table 12.6), e is
the desired error margin (1%), and t depends on the desired confidence level (t=2.58
corresponds to 99% confidence level [44]). Equation (12.10) has an horizontal
asymptotic value (N → ∞) equal to 16,641, thus limiting the number of fault
injections necessary to achieve an evaluation with an error margin of 1% and a
confidence level of 99%. Moreover, it is worth underlining that the injections are
performed by randomly selecting the bit to inject among all the bits of all the
connection weights.

Despite the fact that we used Eq. (12.10), it is quite clear that for bigger DNNs
the faults number can literally explode. In the next subsection we thus propose a
novel method to avoid the need of carrying out fault injection campaign on the
whole DNN.
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12.6.2 Probabilistic Approach

In the previous section, we showed how we could investigate the fault effect within
the system under analysis using fault injection techniques and quantify the deviation
with respect to the expected results. In the literature, several other fault injection
approaches exist [45]. The common drawback of existing techniques is the high cost
of fault injection campaigns in terms of time. We conclude this chapter by presenting
a stochastic approach to predict the impact of faults on a DNN’s accuracy. The
proposed approach builds a Bayesian model of the neural network and, by analyzing
the network using the Bayesian inference theory, estimates the neural network’s
error distribution.

The idea is to first model the DNN topology as a Bayesian Network (BN). In
BN, the nodes represent random variables, each defined over a set of states, while
edges model the conditional relationships. Figure 12.12b shows a simple NN neuron
having two inputs and processing the results using a sigmoid activation function.
The neuron can be modeled based on the data flow, having inputs, weights, and
biases as data sources, which feed a set of multiplications and sums to produce
a final result that is the input of the activation function. Figure 12.12 reports the
transformation into a BN model, having the data and the operators play as nodes
and the edges modeling the flow between nodes of the network.

Figure 12.12 includes three color classes of nodes: the black ones represent the
input of the node, the green ones represent weights and biases, and the yellow
ones are the intermediate nodes representing the mathematical operation required
within the neuron. It is easy to notice how the graph in Fig. 12.12 has all yellow
nodes depicting the multiplications, sums, and sigmoid function response, with the
edges showing the data flow. The color distinction is necessary to handle the neuron

Fig. 12.12 Two input neuron Bayesian Network example. (a) Neuron with sigmoid activation
function. (b) Neuron’s Bayesian network model
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behavior in Bayesian Theory terms properly. In fact, every single node must be a
random variable to be compliant with the Bayesian Theory. To define the states
representing the behavior of every type of node in the neuron model, we propose a
classification approach to the tricky point of DNN faults impact assessment because
not all deviations of the output lead to an inference error. The classification flows
what already published in [46–48]. We classify the data associated with the node,
i.e., the value of an input or weight or the result of multiplication, with the possibility
of representing three different error’s states:

• Masked (M), when the value is error-free regardless of the HW fault;
• Acceptable (A), when the introduced error remains under a user-defined thresh-

old (α);
• Critical (C), when the introduced error rises above the threshold, making the

value not acceptable.

The use of a user-define threshold allows to support a flexible evaluation, which
can be adapted to the specific problem. The data error (ỹ), easily evaluable by
difference with the faulty free one, reflect the classification using Eq. (12.11):

Class(ỹ) =

⎧
⎪⎪⎨

⎪⎪⎩

M (Masked) if εy = 0

A (Acceptable) if εy ≤ α

C (Critical) if εy > α

(12.11)

Resorting to the classification in Eq. (12.11), the model can include the necessary
set of Conditional Probability Tables (CPTs) that should describe each node’s
probabilistic behavior, i.e., express every node’s probability belonging to each
of these classes, eventually conditioned to the inputs states. Figure 12.13 shows
how the classification translates in terms of information. The reported two tables
demonstrate the two types of CPT associated with a node of the BN. The first one
(the CPT associated with X2) displays how black and green nodes of the network
are probabilistically characterized: three probabilities define the distribution of
all possible faulty values among the three classes. This table is easily computed
following an enumeration approach.

Since εy depends on the actual value, we already know that in a DNN this value is
fixed for weights and biases or is distribution-based for inputs. Therefore, for every
single value, we can compute the probability of having ỹ in M, A, or C, from all
possible faults (f ∈ F ), as in Eq. (12.12).

P(ỹ is M) = P(εy |f = 0) =
∑
∀F→εy |f )=0 1

#F

P(ỹ is A) = P(εy |f ) ≤ α) =
∑
∀k→εy |f≤α 1

#F

P(ỹ is C) = P(εy |f ) > α) =
∑
∀k→εy |f >α 1

#F

(12.12)
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Fig. 12.13 Bayesian conditional probability tables meaning example

This evaluation perfectly stands for all fixed values, while for distributed values,
the evaluation has to spawn over all possible values in the distribution (or a
statistically significant subset). The second CPT in Fig. 12.13 refers to the operators,
i.e., operations and functions, case (the CPT associated with the multiplication (∗)).
When the random variable depends on other random variables, i.e., its parents, those
probabilities are defined for each possible combination of states of its parents [46].
In the BN model, all operations and functions (yellow nodes) are always nodes that
depend on the states of their input to produce the output. In our example, we have
two operations, i.e., sum and multiplication, and one function, i.e., the sigmoid (S(x)

in Eq. (12.13)).

S(x) = 1

1+ e−x
(12.13)

Since the input error can be either masked or amplified, depending on how the
operation handles the inputs, the operations and function characterization determine
how this propagation occurs. In general, the manipulation done by an operator may
change the way the results of the application distribute among the three accuracy
classes (M, A, or C). It is also crucial to understand that those probabilities are
independent of the probability expressed by the input states. In the sense that they
reflect the probability of the node being in a particular state knowing that its parents
express a specific combination of states (as in Fig. 12.13 the P(∗ = A) expresses
the probability of the output of the multiplication to be an acceptable value knowing
that X2 value belongs to Masked and w2 value to Acceptable).

All the yellow nodes’ CPTs have been evaluated through simulations, one per
type. In detail, we characterize the operator’s output when we feed as input values
corresponding to the three error classes. In order to produce those CPTs, we devise
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Table 12.7 Prediction
average error

Prediction Classes (avg. error)

α M A C

1 0.0477 0.0477 0.0000

0.1 0.0675 0.0030 0.0705

0.0001 0.0845 0.0049 0.0893

a computational task that characterizes a library of faulty operators quantifying the
error introduced by the occurrence of a fault. The most important message here is
that this operator characterization has to be done only one time for each operator
for each α threshold that we might need to evaluate. The consequence is that even
if the target DNN has thousands of neurons, we need to work on a single operator.

After the model is built, it is time to use the Bayesian theory to evaluate it. The
Bayesian inference allows the analysis of the model to predict the approximation at
the output of the DNN [49]. We compute the posterior probability of the leaves of
the network to be in one of the three error classes defined in Eq. (12.11) to have the
necessary prediction. We used a publicly available BN library and engine [50] to
implement the Bayesian inference.

To demonstrate the modeling’s prediction capability when applied to DNNs, we
compared the iterative exploration against the BN model. The comparison covers
different α values. This process requires generating the CPT tables of all operators
for each α, and then use them on the BN modeled only once (by replacing the CPTs).
The experimental setup works under the hypothesis of having the faults appearing
into the weights and biases memory; thus, the weights and biases distribution have
been computed and assigned to the proper nodes of the CPT. Table 12.7 shows the
three classifications for all three α used.

Reported results confirm the reliability of the BN prediction, showing a maxi-
mum percentage point error of 5.42pp. The variability in the absolute error reflects
the data dependency of the multiplication. Nonetheless, since the outcome comes
from a non-linear function such as the sigmoid, it is interesting to notice that
we could adequately model it using the BN. Moreover, having the three alpha
expressing a considerable variation in the quality tolerance, the absolute errors
confirm the BN prediction’s precision with respect to a whole fault injection
campaign.

12.7 Conclusions

This chapter presented an overview of different approaches to handle the design,
verification, testing, and in-field operation of approximate computing systems. The
presented solutions are not exhaustive and new publications and approaches will
appear while the field becomes mature. The chapter leverages on the experience
of the authors to overview the major challenges that still represent a barrier to
transform this interesting research field into real solutions ready to the market.
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Chapter 13
Approximate Computing for Fault
Tolerance Mechanisms for Safety-Critical
Applications

Gennaro S. Rodrigues, Fernanda L. Kastensmidt, and Alberto Bosio

13.1 Introduction

Today’s computing is a true continuum that ranges from consumer-level IoT objects
or smartphones to Safety- and Mission-critical systems such as space, civil avionics,
or autonomous vehicles running crucial tasks, often with human lives at stake. In this
context, reliability and safety of computing systems are thus key challenges for the
whole information and communication technology and must be guaranteed. The
concepts are deeply intertwined. Reliability describes a characteristic of the system
itself by defining the probability of a system not being subjected to failures. Safety is
more focused on the interaction with the environment, and therefore on its usage, in
order to assure that even in the presence of such failures, the system will not generate
any dangerous outcomes. Both are negatively affected by faults mainly caused
by physical manufacturing imperfections, environmental perturbations, and aging-
related phenomena. Faults affecting hardware components (e.g., microprocessor,
memory, . . .) are then propagated through the software executed by the computing
system and can induce failures such as information loss, wrong behavior, up to
complete system unavailability, with a direct effect both in terms of reliability (i.e.,
assurance of the system to execute correctly its tasks) and safety (i.e., the absence
of dangerous behavior in presence of faults).

Safety-critical systems such as aerospace and avionics applications are often
exposed to space radiation. Indeed, even systems that operate at ground level can
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be subject to space radiation [1], and some of those are also categorized as safety-
critical systems (e.g., self-driven cars and their collision avoidance algorithms).

Radiation effects in semiconductor devices vary from data disruptions to perma-
nent damage. The state of a memory cell, register, latch, or any part of the circuit
that holds data can be changed by a radiation event. Radiation events might cause
soft or hard errors. Soft errors are the primary concern for commercial applications
[2] and occur when this radiation event is strong enough to change the data state
without permanently damaging the system [3], manifesting as many types of errors.
In software applications, those errors can be categorized into two major groups:
SDCs (silent data corruption) and FIs (functional interruption) [4]. An SDC occurs
when the application finishes properly, but its output differs from the expected gold
output. FIs are considered when the application hangs or terminates unexpectedly.
Hard errors are permanent damages to the system and are often related to dose-rate
radiation effects (i.e., associated with the accumulation of radiation and its impacts
on the behavior of the transistor).

The new transistor technologies’ reduction of the dimensions and operation
thresholds have improved their energy consumption and performance. Their sen-
sitivity to radiation, however, is often not a concern for the industry that focuses
their efforts on higher transistor density and functionality at low cost. Indeed, the
reduction of the transistor sizes on new technologies can now lead to radiation-
induced faults, that would otherwise occur on space environments, to occur at
ground level [5]. Although those fault-induction-related issues are not a significant
concern for the traditional consumer, which can accept sparse little errors, they are
indeed a severe concern for safety-critical systems.

The traditional hardware manufacturers are not motivated to develop new
radiation hardened technologies because of their high development cost and,
consequently, low-profit margin due to limited production volume [1]. On the other
hand, the safety-critical industry is also often not interested in radiation hardened
hardware, which is expensive and does not provide the same performance as the
state-of-the-art hardware devices. This is the reason why the industry has turned
to COTS (commercial off-the-shelf) embedded processors and systems-on-a-chip
(SoC) combined with fault tolerance techniques [6]. COTS is typically low cost,
very flexible, and low power consumption. For example, we can cite the Zynq-7000
All Programmable SoC [7] as a COTS system composed of two ARM processor
cores and a field programmable gate array (FPGA) that is capable of serving a
wide range of safety-critical applications, such as avionics communications, missile
control, and smart ammunition control systems.

They do not provide, however, inherent fault tolerance (apart from traditionally
methods such as memory error correction codes, which alone does not provide
all the required reliability level for safety-critical systems), and therefore specific
hardware- and software-based fault tolerance must be integrated. Fault tolerance can
be applied at the hardware level by duplicating or triplicating an entire component
and adding voters and checkers that verify the consistency of the processed data.
Those techniques, however, introduce a prohibitive area and power overhead.
Software-based fault tolerance does not need extra hardware and is widely presented
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and discussed in the literature [8, 9]. In that case, redundancy is applied at the task
level and executed in single or multiple processing cores. Although software-based
techniques may present no hardware area overhead, they pay the cost on execution
time and memory footprint, as well as power consumption (as a consequence of
those). One example of a fault tolerance mechanism that can be applied to both
hardware and software is duplication with comparison (DWC), which duplicates the
application and implements a checker to compare any discrepancy between the data
generated by the two independent executions. DWC is capable of finding errors, but
not to correct them. A third execution would be needed to tolerate the error, making
a vote for the correct data.

Approximate computing has emerged as a computing paradigm capable of
achieving good performances on execution time and energy consumption, as well
as inherent reliability. However, it pays the price in terms of precision loss and has
to consider “good enough” results as acceptable (i.e., near the expected traditional
computation output). Using approximate computing on safety-critical systems could
improve their performances while also making them inherently more reliable.
However, it can be conflicting with some of the safety-critical systems requirements,
such as accuracy. Concerning fault tolerance, approximate computing can mask a
higher number of errors by relaxing data precision requirements. On systems that
do not need high accuracy or quality, the approximation can be used because the
small errors it introduces are not big enough to be considered a problem. Besides,
the execution time reduction attained by approximate computing can improve an
application reliability by reducing its exposure time: it is evident that an application
that executes faster will be subject to less radiation, and therefore less to radiation-
induced faults. SoCs arise as perfect implementation platforms for approximate
computing.

Industry-leading companies offer SoC presenting both an FPGA logic layer (PL)
and an embedded processor as a processing system (PS). Approximate computing
projects can profit from the hardware-software co-design made available from
COTS systems to implement any level of approximation, or as means of co-
processing.

This chapter investigates the use of approximate computing on safety-critical
systems. The approximate computing paradigm can be used to achieve several
fundamental requirements of embedded safety-critical systems, such as low power
consumption and high performance. Those, however, are achieved at the cost of
precision and accuracy, which are serious concerns regarding critical applications.
Another significant point of interest is reliability: approximation methods shall
be able to tolerate errors or at least support traditional fault tolerance techniques.
Therefore, it is essential to study not only the improvements approximate computing
can bring to a project, but also its costs, and how it affects the dependability of those
projects.

Approximation is presented in this work applied both at the hardware and
software level. On hardware projects, the techniques are implemented in hardware
description language (HDL) with and without the aid of high-level synthesis. In a
first analysis, the implementation cost and precision loss of approximation methods
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are assessed. Then, they are subject to fault tolerance analysis by fault injection
experiments. Those experiments are intended to evaluate both the approximation
fault tolerance by itself and the efficacy of traditional fault tolerance mechanisms
when applied to an approximate application.

The fault injections are performed in four different methodologies: fault injection
emulation, fault injection simulation, and laser and heavy-ion radiation experiments.
Each one of those methodologies serves better for a specific evaluation purpose. The
fault injection emulation on programmable hardware, for example, can be used to
evaluate the behavior of the design under a situation of cumulative faults, in an
effort to find out on which point (given the number of accumulated injected faults)
the design begins to present errors. It can also be used to perform exhaustive studies
on programmable hardware, to find out which bits of the bitstream used to program
the FPGA are critical (i.e., a bit-flip on this bit will provoke errors). On the other
hand, fault injection simulation can be used to inject faults on the register file of the
processor to analyze which are the most critical registers and how faults affecting
the register file propagate to become errors in a given context.

The chapter is organized as follows. The Sect. 13.2 presents the source of external
perturbation leading to errors in the hardware, the way of model it and how to
evaluate their impact on the system. Section 13.3 presents state of the art techniques
about fault-tolerant techniques. Section 13.4 presents the use of approximation to
implement low-cost fault tolerance techniques. Conclusions are drawn in Sect. 13.5.

13.2 External Perturbation

Radiation can affect electronics devices in multiple ways. Single event effects (SEE)
are non-cumulative and caused by single events that trigger transient upsets also
called Soft Errors. Total ionizing dose (TID) and displacement damage (DD) are
cumulative, which means their effects get worse over time as the system is exposed
to radiation. Notice that not all radiation effects are ionizing. DD is caused by the
kinetic energy of particles. TID and DD lead to permanently damage electronic
devices, their effect is also called Hard Error.

The rate at which soft errors occur in a system is called Soft Error Rate
(SER). SER is caused in semiconductor devices mainly because of three sources of
radiation: alpha particles, high-energy cosmic rays, and low-energy cosmic rays [1].
An ion traveling through a silicon substrate loses energy, generating one electron-
hole pair for each 3.6 eV lost. The linear energy transfer (LET) of an ion defines how
much it can interfere with the proper device operation. It depends not only on the
mass and energy of the particle but also on the material it is traveling in (represented
in units of MeVcm2/mg).

When radiation particles transfer enough energy into the silicon of circuits, they
generate transient upsets. Upsets are manifested as bit-flips fault in any part of the
circuit that holds data, causing errors [1, 10]. In microprocessors, bit-flips can occur
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in all registers and memories of the processor. Bit-flips induced by SEE can lead to
following error classification:

• Single Event Upset (SEU): as soft errors are commonly referred to. Those are
non-permanent errors affecting one single bit of one word of data.

• Multiple Bit Upset (MBU): occurs when the radiation event has energy high
enough to flip multiple bits on a single word. This can be especially problematic
for memory circuits that make use of error correction codes, compromising those
that cover and mask only one bit [11].

• Multiple Cell Upset (MCU): occurs when the radiation event has energy high
enough to affect multiple bits on different localities. The difference between and
MBU and an MCU is that the latter consists of bit-flips affecting various parts of
a system (e.g., different memory words), while the former consists of multiple
bit-flips in a single word [12].

• Single Event Transient (SET): considered when transient upsets occur in the
combinational logic part of the circuit. If propagated and latched into memory
elements, those can lead to soft errors [13].

Errors induced by SEE can pass by unperceived, or be corrected (i.e., masked)
by a fault tolerance mechanism. When the system misbehaves, and this is noticed
by the user or propagated to another part of the system that, in its turn, shows a
problematic external behavior, we say that a failure happened. Taking the example
of a fault affecting the memory circuit, the definition of the events would be the
following: the bit-flip on the memory data is a fault, the error is the impact it has in
the data being stored in the word where the fault was raised, and the failure would
be the malfunction of the software that could, for example, use this data as a control
variable of a loop, causing the application to never finish its execution. Notice that
the fault could have happened in an unused word of memory, causing no errors.
Similarly, the error could have been overwritten by a store instruction shortly before
happening, and never turn into a failure.

13.2.1 Error Analysis

The reliability of a system to radiation-induced soft errors can be measured in
many different ways, depending on the available data and experiments performed.
Reliability is today mostly quantified through fault injection campaigns. During
each campaign, the system is forced to behave as faulty (i.e., a fault is injected
in the system itself) in order to observe the impact on the application outputs. The
most widely adopted fault injection methods can be mainly classified as:

• Physical Fault Injection is based on the realization of controlled experiments to
evaluate the system behavior in the presence of artificial faults. Hardware-based
fault injection technique allows injecting physical faults (e.g., bit-flip fault, stuck
at fault) in the target hardware system. It uses either a manufactured system



392 G. S. Rodrigues et al.

prototype or an implementation of the system on an FPGA board. Commonly
used physical fault injection methods are: pin-level injection [14], heavy-ion
radiation, power or electromagnetic disturbances [15], and non-destructive laser
fault injection [16]. Physical fault injection techniques closely imitate real fault
situations and they can access locations that are not easy to access by other
techniques, by providing accurate evaluation of the system reliability. However,
they introduce a high risk to damage the system under test and they are extremely
expensive and applicable only after the physical chip is available.

• Simulation-based fault injection resorts to a hardware model of the computing
system. The fault injection in the hardware models can be performed either
at run-time or at compile-time, and the hardware model of the system can be
described either at circuit level [17] or at micro-architectural level [18]. In the
first case, the results of the fault simulation will be very accurate but they require
much higher execution time.

Some of the most used metrics for reliability and fault tolerance of safety-critical
systems under radiation are the mean work to failure (MWTF) [19], the cross-
section, and failure in time (FIT) [1], alongside with the already discussed SER
(soft error rate). The cross-section (σ ) is defined as the area of the device that is
sensitive to radiation, with (13.1). A larger cross-section means that a particle that
hits the device is more likely to produce a failure. Thus, a design of smaller area
(such as an approximate one) will typically present a smaller cross-section. The FIT
is commonly as a means to express SER and is equivalent to one failure in 109 hours
of device operation. MWTF is particularly interesting for this works discussing
because it presents a correlation between performance and the fault tolerance of
a technique, and is presented in (13.2).

σ = number of errors/failures

fluence of particles
(13.1)

MWT F = amount of work completed

number of errors encountered
(13.2)

When analyzing data from simulation experiments, the error occurrence is often
presented as a simple percentage. In this type of analysis, faults are injected into the
system, and it is often possible to trace the types of errors and their origin. Thus, it is
easy to calculate the percentage of faults that caused errors (and failures) and their
types. When analyzing fault tolerance techniques, especially those implemented on
embedded software, metrics like cross-section might not be the most appropriate (in
fact, using this type of metric would need an adaptation, because there is no particle
fluence in this type of experiment). In those cases, data might be better presented
merely as the reduction of the percentage of faults capable of inducing failures.
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13.3 Fault Tolerance Techniques

Faults caused by radiation on electronic devices can become errors that need to be
treated before evolving into failures. The more usual way of doing it on complex
systems is with fault tolerance techniques implemented in programmable hardware
or embedded software [20, 21]. Fault-tolerant devices are usually expansive, there-
fore the industry tends to turn to in-house developed fault tolerance techniques.
Those techniques shall be able to detect errors and masking (or correcting) them
when possible.

Figure 13.1 classifies fault tolerance techniques in three major groups concerning
their capability. A fault tolerance technique shall be able to detect errors. What it
does with this information, however, may vary. For some systems, fault detection
is enough. Nevertheless, safety-critical systems often call for error masking or
correction. The difference between an error masking and correction is that masking
an error consists of keeping the system safe and hiding the error from the end-user
(or the rest of a more complex system). An excellent example of this type of fault
tolerance technique is triple modular redundancy (TMR) [22], which avoids the use
of an erroneous data value, outputting a correct one. Correcting an error is a much
harder and complex task, and from a system point of view, the impact would be the
same as masking it. As an example, the lockstep technique [23] finds an error and
rolls all the system execution back to a safe-state before the error happened, and then
resumes the system execution with the hopes that the error has forever vanished.

The literature presents an enormous set of techniques implemented in soft-
ware to protect applications against hardware errors. Those are called software-
implemented hardware fault tolerance (SIHFT) techniques [24], and achieve pro-

Fig. 13.1 Fault tolerance techniques classification
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tection with function redundancy and variables replication. An example of this
type of technique is EDDI (error detection by duplicated instructions) [25]. EDDI
detects faults by comparing two different executions of the program, mapping all
numbers on the original computation to new values, and applying transformations
to the program so that it can be backward comparable with the original calculation.
Techniques like HETA [26] and S-SETA [27] detect control-flow faults and put
the system in a fail-safe state. The CFT-tool [28] is capable of combining these
techniques to detect both SDCs and functional interruption (FI) errors. CFT-tool
inserts the fault tolerance methods directly on the Assembly level code of the
program to be protected (after the compilation). Nevertheless, and it can present
some limitations for complex applications and those which are supposed to run
on top of operating system. Techniques called application-based fault tolerance
(ABFT) encode the used data, profiting from unique application characteristics [29].
ABFT shall be specifically designed for the application under protection. Therefore,
it is not scalable to a high range of applications and tends to be costly in design. Both
SIHFT and ABFT come with the cost of execution time overhead.

Redundancy methods such as triple modular redundancy (TMR) and duplication
with comparison (DWC) are employed in a multitude of systems, both to provide
error detection and masking. TMR can be implemented bot to protect a hardware
module [30] or software code [31]. It consists of triplicating the hardware (or
software code) and voting the output of the redundancies: if at least two results
match, it is considered the correct output. When TMR is used on hardware, it
mainly implies area and power overhead. When it is applied to software, it mostly
provokes execution time overhead. DWC techniques are only capable of detecting
errors, but can implement re-execution methods to provide error masking. This
way, an error can be detected and mitigated before becoming a failure. DWC
techniques have an overhead of two times the execution time of the original
application for pure redundancy and three times when applying re-execution for
error masking. N-version programming (NVP) [32] is a programming strategy that
consists of developing a number of different (but equivalent) algorithms from the
same specification. With this method, designers hope to achieve fault tolerance via
code redundancy (voting the results from each one), expecting that two different
programmers independently generating code would not produce software that is
susceptible to the same errors.

Cyclic redundancy check (CRC) [33] is commonly used on network and storage
systems to detect errors affecting the stored data. This error checking method is
broadly used on network systems because it is easy to implement on hardware and
perfect to detect burst errors, as well as those caused by noises in the transmission.
A multitude of CRC designs is proposed in the literature, but it consists of check
values based on the calculations of polynomials, that shall be re-calculated to verify
if the check value remains the same. If it is not, there is an error in the data. CRC
can be used as a first step for error correction. Error correction codes (ECC) [34]
is also presented in the literature in various forms. Hamming ECC, for instance,
is extensively used to protect NAND flash memories against errors. This method
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provides the correction of one error and the detection of up to two errors (with no
correction possible in this case).

13.3.1 Approximate Fault Tolerance

In most of the cited works, fault tolerance approaches are proposed to deal with
the errors. Nevertheless, a plethora of safety-critical applications may not need it.
As stated in [35], real-time systems have to deal with data freshness requirements,
which defines the time interval on which data is considered valid. For instance, an
automatic navigation system may have an error during its execution, but because
its data freshness has a minuscule time interval, the error will soon disappear as
the algorithm keeps its execution generating a new value. Because of that, an error
correction procedure is not always necessary. However, the system shall be aware of
the error to put itself in a fail-safe mode. Indeed, in some cases, it is better to warn
the user about the error and let him decide how to handle it. Such is the case of some
errors that might affect an airplane system, for example. Trying to correct an error
in an airplane can cause the system to overwrite the pilot’s demands and cause a
catastrophe. In those cases, it is often better to warn the pilot that certain data is not
to be trusted or alert for a malfunction and let him deal with the situation in the most
suitable manner. This type of situation calls for an error detection system (without
the masking capability). In those cases, the values of the redundant re-computations
are only used for comparison and error checking. That is where a designer may
profit from approximate computing.

Approximation itself implies the idea of inherent error tolerance. On approximate
systems, a specified error tolerance has to be considered, but that is not the same
error definition used when discussing radiation effects and safety-critical systems.
Approximation errors are caused by the system itself and manifested as quality
or accuracy degradation. Also, when dealing with approximation, the decision of
whether an error caused a failure or not is a matter of definition related to what
would be considered a “correct” application output, which is often hard to be
defined. Taking, for instance, the example of image outputs, the correctness of the
output is tied to an image quality definition, which is different from one human
being to another because of biological reasons. This accuracy relaxation from the
approximate system can, however, be used in favor of fault tolerance on safety-
critical systems: a system that accepts some accuracy degradation can ignore errors
in memory that have a low impact on the data value, for example. Also, the reduction
of the complexity, achieved by approximation, can help to reduce the system’s
susceptibility to faults (e.g., by reducing the critical area of a hardware circuit).

On safety-critical systems, however, the definition of error is related to the
occurrence of a fault. In this scope, the approximation can be used in two manners.
First, it can be used to improve the application execution time, energy consumption,
and even reliability. Secondly, approximate computing can also be used to reduce
the costs of fault tolerance techniques. The impact of using approximation on those
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two levels, however, is different. As already discussed, the approximation of the
application directly impacts its accuracy, and therefore reliability. Approximating
fault tolerance techniques may, however, be developed in such a way to avoid
affecting the accuracy of the application, or affecting it only up to the acceptable
level that is defined by its quality (or accuracy) requirements.

TMR is one of the most traditional fault tolerance techniques presented by
the literature. Approximate TMR (ATMR) [36] is based on implementing each
redundancy task with a different architecture or algorithm to provide the capability
of masking multiple errors. When applied to hardware designs, ATMR has been
presented as a way to achieve fault coverage almost as good as traditional TMR
but avoiding the huge area overhead that it costs [37]. Designers might accept a
lower fault coverage if the area overhead of the project is to drop significantly.
Also, a smaller hardware area implies higher fault tolerance due to the reduction
of the critical area. Therefore ATMR might be, in some cases, not only less
costly but also more reliable than traditional TMR. In traditional TMR, at least
two redundancies need to have the same correct value at a given time so that the
correct output can be voted. Using approximations on TMR is not trivial, because
of the errors caused by the accuracy loss: even in the absence of a fault, two
TMR redundancies of different accuracies will present different outputs. At [38],
the authors present an ATMR approach that guarantees that the result of at least
two redundancy circuits will always be the same (at the absence of a fault). The
idea is using different forms of approximation on each redundancy so that two of
them will not be affected by approximation errors at the same time, and the ATMR
will be able to mask that error. The authors present their approximation method
and prove mathematically that the errors introduced by the approximation will not
harm the normal behavior of the ATMR. They also propose a full ATMR (FATMR)
approach where all the three circuits are approximations (instead of having one
non-approximate circuit and two approximations). This ATMR technique can also
be used alongside tools that generate the best possible approximate functions with
genetic algorithms [39]. The evolutionary algorithm is capable of generating the
best combination of approximate functions possible for a given system. However,
the ATMR and FATMR methodologies are still limited by their mathematical and
theoretical constraints.

Most of the approximation techniques presented in the literature are application-
specific. Therefore, it is very hard or impossible to apply the same approximation
technique to any possible design or code. Knowing all the possible approximation
methods and which type of design is a better fit for each of them is barely
impossible work. Also, some approximation methods are applicable to multiple
types of applications and hardware designs. Therefore the designer should test all of
them before deciding for the one with better performance. All that would demand
design time that most developers cannot afford. This work tries to solve those issues
by presenting easy-to-implement approximation methods that can be applied both
to programmable hardware and embedded software. Approximate fault tolerance
techniques are also proposed by applied those methods to traditional TMR.
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13.4 Approximate Triple Modular Redundancy (ATMR)

Given the proposed approximate computing methods, we believe that some of them
can be used to improve traditional fault tolerance methods. The most classical
fault tolerance method presented in the literature is TMR, as already discussed.
Therefore, to evaluate how approximate computing can improve fault tolerance
methods in different parts of the computing stack, two approximate TMR (ATMR)
techniques are proposed: one based on hardware implementation and another based
on software.

Fault tolerance techniques often introduce a high execution time or hardware
area overhead. Such is the case of TMR, which costs an overhead of at least
200%. This section proposes an ATMR method to deal with that issue without
highly compromising fault tolerance. Differently from [38, 39] and [37], the ATMRs
presented in this section deal with the concept of approximation intensity, where a
function can be more (or less) accurate, having a direct impact on the method fault
coverage, the final answer accuracy and the application execution time.

13.4.1 Hardware ATMR Based on Data Precision
Approximation

The ATMR benefits from the data precision approximation to generate redundancies
that are less accurate than the classical ones, but smaller in area [40]. This ATMR
is expected to achieve fault tolerance near to the traditional ones, but with less
area overhead. The ATMR is applied to simple codes (two matrix multiplication
algorithms). This is intended to evaluate how the studied type of approximation
affects data operations its effects on hardware. Using a sophisticated code could
mask that information. The fault tolerance of the proposed technique is assessed
with fault injection on the FPGA configuration memory. Details about the fault
injection are out the scope of this chapter the reader can found all details in [41].

In previous chapters has been proved that the proposed data precision reduction
approximation saves resources. This indicates that the proposed approximation can
be used to provide an ATMR design with a lower area overhead. If that turns
to be true, it may even be possible to improve general use designs, achieving
better performance and resources usage, as well as fault tolerance (given the lower
hardware area).

Listing 13.4.1 presents a pseudo-C code that summarizes the ATMR implemen-
tation. Vivado HLS is used to synthetize hardware design as explained in [40, 41].
Some less important parts of the code are left out for simplification purposes.
The ATMR is implemented as three operations, in different functions at the C
code, so that Vivado HLS is forced to implement specific hardware for each one
of them. Otherwise, it could re-use hardware, which is not desired for the TMR
implementation. The voter is implemented as a single independent function and
consists of Boolean operations that perform a bitwise check between three values.
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ATMR Pseudo-C Code Using 24-bit Variables for Vivado HLS

#include <ap_fixed.h>
typedef ap_fixed<32,9> tsize_32;
typedef ap_fixed<24,7> tsize_24;

void main(tsize_32 input_A[2][2], tsize_32 input_B[2][2],
tsize_32 output[2][2])
{

tsize_24 result1[2][2], result2[2][2], result3[2][2];
result1 = matrixMult1(matrixA, matrixB);
result2 = matrixMult2(matrixA, matrixB);
result3 = matrixMult3(matrixA, matrixB);
output = bitwiseVoter(result1, result2, result3);

}

Between the matrix multipliers and the voter, converters may or may not be
needed: depending on the sizes of the data in use. That is because the voter cannot
vote values of different bit-sizes. Converters may also be needed inside the matrix
multipliers functions implementation, in case that the input matrices are of different
sizes from the ones used in the ATMR redundancies. At the Listing 13.4.1 code,
for example, the ATMR uses 24-bit variables. Therefore, additional hardware will
be implemented by Vivado HLS to handle the conversion from 32-bit (size of the
inputs) to 24-bit variables. Each of the ATMR redundancies can be implemented
with different data sizes. The data bit-sizes will affect the final result accuracy and
hardware usage. Typically, if a specific data bit-size is applied to two redundancies,
it will define the overall accuracy (because of the bitwise voter). However, a designer
may choose different approaches to profit from the hardware cost improvement
without losing precision (e.g., comparing the values considering an acceptable
difference threshold and taking the output from the best accuracy redundancy
as the final result). The conversions between different data sizes and types are
handled by Vivado HLS. A simple cast from a different data size in the C code
is enough. A more complex and probably less costly conversion could be designed,
but this type of improvement is not studied. This is also the case of the ATMR
voter implementation: it is left for Vivado HLS to transform the code in hardware
implementation, and possible improvements are not in the scope of this work.

Six ATMR designs were implemented, varying the data precision of the opera-
tions. A non-approximate TMR version is also presented (with the three modules
work with 32-bit data). The designs are named following the data precision of
each redundancy module to simplify the results analysis. For example, the ATMR
design called “32-24-16” is composed of a module with 32-bit, one with a 24-bit
and another with 16-bit precision data and operations. Those ATMR designs were
applied to two matrix multiplication algorithms, one with matrices of size 3× 3 and
other of size 2× 2.
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13.4.1.1 Accuracy Assessment

Figure 13.2 presents the inaccuracy generated by the use of approximation for
each ATMR applied to the matrix multiplication operation. The data is shown in
percentages and log scale. The inaccuracy value is obtained by comparing the output
values of the ATMR with the one that gives better accuracy (which is the 32-bit data
size multiplication due to its higher bit-size). From Fig. 13.2, it is clear that the use
of fewer representation bits impacts the accuracy. As expected, if a data bit-size is
applied to two different ATMR modules, it determines the inaccuracy. This is due to
the ATMR voter applied to the output, which ends up considering the results from
this data precision as the final one because of that behavior, using a 24-24-24 ATMR
design results in the same output accuracy as a 32-24-24 one, but with lower area
usage. Another interesting outcome is the inaccuracy data for the 32-24-16 ATMR
design. In this case, the inaccuracy seems to hover between the ones from the three
modules.

The inaccuracy, however, is usually not high. Even in the worst case, the
inaccuracy is of less than 0.04%, which means the result is more than 99.96%
correct. However, the increase in inaccuracy from one design to another may be
a warning for more complex systems. If the inaccuracy for a complex system
applying the proposed method would be significant for a 32-24-24 ATMR case,
it could be considered unacceptable for the 32-16-16 one (or any situation with two
modules employing 16-bit data). The ATMR variants presenting two 16-bit size
modules are two orders of magnitude more inaccurate. The inaccuracy of the 3× 3

Fig. 13.2 Inaccuracy for each ATMR by data precision design applied to a 2 × 2 matrix
multiplication. Source: [40]
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matrix multiplication design follows the same trend observed for the 2 × 2 matrix
multiplication and therefore is not presented.

13.4.1.2 Area Usage Assessment

Table 13.1 presents the FPGA area consumption of each ATMR design for the
2 × 2 and 3 × 3 matrix multiplication operation. FPGA resources are presented as
DSP48E, FF, and LUT. DSP48E is a digital signal processing logic element included
FPGA device families (e.g., Xilinx). It can be used to implement different kinds of
arithmetic operations, including a multiply-accumulator and multiply-adder. The
FF is Flip-Flop element, while LUT stands for look up table used to implement a
given Boolean function. Data shows that approximation saves DSP usage. The FF
usage can be explained by the needed converters between the matrix multiplication
operations and the voter function. The LUT area follows almost the same trend
of the DSPs, decreasing with the precision reduction. The variation at the LUT
usage can also be explained by the needed converters. The DSP usage for the 32-
32-32 TMR design was considerably high, taking into consideration that the FPGA
used in this work contains 220 DSPs. This fact highlights the importance of the
approximation method presented in this work.

The first 3× 3 matrix multiplication TMR design is bold to highlight the number
of DSPs used. The FPGA used in this work contains 220 DSPs, while the 32-32-32
TMR design for the 3 × 3 matrix multiplication would require 324 DSPs (bold text

Table 13.1 Area usage and performance latency of the ATMR by data reduction designs for 2× 2
and 3× 3 matrix multiplications

Benchmarks Area Max latency

TMR design Matrices size DSP48E FF LUT Target clock: 10 ns

32-32-32 2×2 96 1985 888 9

3×3 324(*) 7560 3541 15
32-24-24 2×2 64 1859 761 9

3×3 216 6543 2964 14

32-24-16 2×2 56 1763 595 9

3×3 189 5735 2138 14

32-16-16 2×2 48 1759 945 9

3×3 162 4576 1368 14

24-24-24 2×2 48 1815 1609 8

3×3 162 5649 2673 12

24-16-16 2×2 32 1841 1305 6

3×3 108 3653 1165 11

16-16-16 2×2 24 1032 689 6

3×3 81 2257 346 9

Source: [40]
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in Table 13.1). Therefore, this design could not be implemented on this hardware,
needing a more expensive one. With the proposed approximation, however, the
implementation of an ATMR-protected 3× 3 matrix multiplication is now possible.
All the 3× 3 matrix multiplication ATMR designs fit in the FPGA.

Comparing the data from Fig. 13.2 and Table 13.1, it is clear how the data
precision reduction method is capable of reducing the area usage of the design with
low effect on accuracy. The 2-24-16 ATMR design is capable of reducing the DSP
usage to almost half of the 32-32-32 TMR design while introducing an inaccuracy of
only 0.0004%. Another excellent example of the proposed approximation method
efficiency is the results for the 16-16-16 ATMR design. It was able to reduce the
DSP usage to a fourth and the FF usage in half while maintaining an accuracy of
more than 99.96% comparing with the 32-32-32 design. From Sect. 13.4.1.1 it is
known that the 32-16-16, 24-16-16, and 16-16-16 ATMR designs have all the same
accuracy. However, it is clear from Table 13.1 that the 16-16-16 ATMR design is a
better choice not only because of the area usage but also due to its lower latency.

13.4.1.3 Random Accumulated Fault Injection

This section presents the results for the randomly injected accumulated faults. In this
experiment, bit-flips caused by ionizing radiation are emulated by injecting faults
randomly in the FPGA resources. These bit-flips are accumulated over time, as
would happen if the system were under ionizing radiation. As described in previous
section, approximation leads to always have a difference between the hardware
modules. This acceptable difference between values is henceforth called acceptance
threshold (ε). This means that if the difference between the ATMR and the golden
output value is equal or higher than ε the output will be considered as an SDC, in
other words the ATMR was not able to mask the error(s).

Figure 13.3 depicts results of fault injection on all the ATMR configurations for
a threshold ε = 0.01. The graph presents in the y−axis the reliability of the system
and, in the x−axis, the number of faults accumulated on that point. The reliability is
defined as the inverse of the occurrence of errors at a given number of accumulated
injected faults (e.g., if the reliability at the point is of 0.9 it means that 10% of
the observed errors occurred with that number of accumulated injected faults or
less). As expected, the ATMR configuration with three redundancies with 16-bit
data is the one more reliable. It is clear that its curve is well detached from the other
ones. Another expected result is the lower reliability of the full precision ATMR
configuration (32-32-32) due to its larger area. However, the 32-32-32 curve is very
similar to the 32-24-16 curve.

Figure 13.4 presents the results for the randomly injected accumulated faults on
all the ATMR configurations for an ε = 1. That is a very high acceptance threshold,
that would only be acceptable on real case scenarios where accuracy is not a strong
concern. The ATMR configuration with the highest reliability is again the one with
three redundancies with 16-bit data. It is evident the difference between the two
extremes of data precision. Nevertheless, the middle-term configurations seem to
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Fig. 13.3 Reliability for each ATMR configuration for an acceptance threshold of 0.01. Source:
[40]

Fig. 13.4 Reliability for each ATMR configuration for an acceptance threshold of 1. Source: [40]
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have similar reliabilities. It is also evident by comparing Figs. 13.3 and 13.4 that the
behavior of the reliability curve is the same. However, the number of errors (number
of events, on each figure legend) has dropped considerably.

The 32-32-32 ATMR configuration arises as to the worst one in terms of
reliability for ε = 1, distancing itself from the other curves. The fact that the 32-24-
16 configuration is no more as bad as the 32-32-32 one indicates that this ATMR
implementation is terrible when dealing with low-ε errors (Fig. 13.3), but is able to
handle higher ones (Fig. 13.4). This is because this variable of the benchmark has to
deal with the low precision of the 16-bit variables and the higher area of the 32- and
24-bit ones. Because the 32-24-16 configuration does not have two redundancies
with the same precision, the 16-bit redundancy has a negative effect on accuracy
without significant improvement on the fault tolerance with the area reduction.

13.4.1.4 Exhaustive Fault Injection

Table 13.2 presents the results from the exhaustive fault injections. Because of how
the random fault injection works, not all the injected faults affect the FGPA area
occupied by the ATMR design. It is thus interesting to focus the analysis only
on the area really used by the design. Therefore, the table presents the number of
essential bits (which are the ones used by the ATMR design) and critical bits (the
ones that caused errors when flipped) of the ATMR. The last column of the table
presents the variation of the number of critical bits in relation to the 32-32-32 TMR
configuration.

As expected due to the previous observations, the 16-16-16 ATMR design is the
one with the lowest number of critical bits. That is reflected in its high reliability
concerning the other configurations. It is interesting to notice, however, that this
ATMR configuration has a high percentage of critical bits in relation to essential
bits. It indicates that a design of a smaller area tends to be more reliable, even if
a higher percentage of this design is critical. This idea is also backed by the fact

Table 13.2 Exhaustive onboard fault injection emulation results for a 2× 2 matrix multiplication

TMR design Essential bits Critical bits Critical bits variationa

32-32-32 540,454 7126 0%

32-24-24 355,164 3296 −53.47%

32-24-16 299,456 4016 −43.64%

32-16-16 228,122 4178 −41.36%

24-24-24 305,093 6343 −10.98%

24-16-16 165,172 3724 −47.74%

16-16-16 88,253 1764 −75.24%
a In relation to the 32-32-32 TMR design
Source: [40]
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that the 32-32-32 and 32-24-16 ATMR configurations are the ones with the worst
reliability (as presented at Sect. 13.4.1.3) and also a high number of critical bits.

The 24-24-24 ATMR configuration is the one with the second highest number
of critical bits (being the 32-32-32 the one with the highest). Given this fact, it
could be expected that it would also be the one with the second worst reliability.
That, however, is not the case. Both Figs. 13.3 and 13.4 show that the 24-24-24
configuration is actually between the worse and the best ones, which proves that
the precision and accuracy of the design also play a significant role in the system
reliability.

13.4.2 Software ATMR Based on Successive Approximation

Successive approximation algorithms are numerical calculations for which an exact,
straightforward solution is not computationally achievable. Those algorithms are
iteration-based and get closer to an acceptable result on every iteration. In this
section we use Newton-Raphson method as case study of successive approximation.
The Newton-Raphson method is an algorithm used to find the roots of a function. It
calculates the intersection of the tangent line of the function in an initial guess point
x0 with the x-axis. It is calculated iteratively, as stated in (13.3), until it reaches a
sufficient approximation or maximum number of iterations is reached.

xn+1 = xn − f (xn)

f ′(xn)
(13.3)

The unique behavior of successive approximation algorithms arises as an oppor-
tunity to improve traditional redundancy fault tolerance methods. The number of
iterations of a successive approximation algorithm impacts not only the accuracy of
the output but also its execution time. When applying a TMR method to a successive
approximation algorithm, there is no need to have three tasks with high accuracy.
Because only one of the outputs will be taken as the final “correct” one, the others
can have a lower accuracy (i.e., fewer iterations). Tasks with lower accuracy and
execution time cause less overhead [42].

Figure 13.5 presents the proposed ATMR method. In the figure, R1’ and R2’ are
redundant tasks of R0 with fewer iterations, while R1 and R2 are hard copies of R0.
The overhead of a TMR consists of the extra execution time it costs. Unfortunately,
the overhead of the checker (represented at the figure by the CKR box) is constant.
However, reducing the execution time of the tasks, the overhead of the TMR can be
lowered. Because R1’ and R2’ execute faster than R1 and R2, the ATMR presents a
speedup in relation to the TMR.

Table 13.3 presents five different ATMR configurations applied to the Newton-
Raphson algorithm running in a single ARM Cortex-A9 processor with data cache
enabled. This algorithm is an excellent example of successive approximation used
to calculate the roots of a function. The example reported in Table 13.3 is not related
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Fig. 13.5 Diagram of the proposed ATMR method. Source: [42]

Table 13.3 Execution time overheads of ATMR configurations applied to the Newton-Raphson
algorithm

ATMR configuration Execution time overhead (factor) Execution time [ms]

71-71-71 3.09 963.268

71-71-37 2.48 771.479

71-71-14 2.22 690.381

71-37-37 1.86 579.986

71-37-14 1.60 496.237

71-14-14 1.33 414.201

Source: [41]

to a specific application. The reader has therefore to be aware of the fact that,
depending on the application, the root computation can be more or less complex
thus requiring more or less iterations.

The execution time overhead is presented at the table as a factor and is calculated
in relation to a single execution of the Newton-Raphson algorithm with 71 iterations.
The execution time on the last column is the total execution time of that ATMR
configuration. The benchmarks are named following the number of iterations of
each ATMR task (N0-N1-N2, being Nn the number of iterations of the n-th ATMR
task). For example, the ATMR configuration called “71-37-14” is composed of
one task with 71 iterations, one with 37 iterations and another with 14 iterations.
Each ATMR task may have a different number of iterations, but the algorithm
remains the same. The number of iterations of each task differs because they start at
different starting points and have different stop conditions. As the table shows, the
configurations with tasks that contain fewer iterations presented a lower execution
time overhead.

The checker plays a critical role in the ATMR method. In a traditional TMR,
the checker would make a bitwise comparison between the three outputs, changing
every bit that is different from the other two to the same value. However, with
approximate computing, the checker needs to be more complex. The value of
the three outputs may be different even in the absence of errors, because of the
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varying accuracy of each ATMR task. To deal with this issue, the ATMR checker is
programmed to generate as system output a midterm between the three output values
of the redundant tasks. However, this imply that the ATMR output is approximated
as well. We have to consider a threshold of acceptable difference between the ATMR
output value and the expected golden value (i.e., without any approximation). The
acceptable difference is computed at design time (i.e., eventually it depends on the
user requirements). If the ATMR checker output value differs from the golden value
inside this threshold limit, the ATMR is considered to have masked the error. In
the other cases, we consider that the fault has not been masked. This acceptance
threshold might be different for each application or system and impacts the ATMR
error masking performance.

Another way of providing approximate computing in software is through vari-
able data size reduction. When working with embedded software, data precision
reduction is imposed by software variables that are subject to predefined types.
Programming new data types in software is possible, but implies on a large execution
overhead, given that all the operations that would otherwise be native to the
hardware in use now have to be software-processed. For this reason, we will use float
(32-bit, single-precision) and double (64-bit, double-precision) variables. Because
those two types of variables are capable of achieving different accuracies, they
are expected to influence the behavior of the successive approximation method.
Changing the variable type for a more precise one can, for example, reduce the
accuracy difference between more and less precise ATMR tasks, or make the
successive approximation algorithm converge faster.

13.4.2.1 Evaluation

Figures 13.6, 13.7 and 13.8 present the “Error Distribution” of the ATMR tasks
(i.e., the number of ATMR tasks with errors) applied to the single-precision version
of the Newton-Raphson algorithm. They, respectively, present data for ≈0%, 2%
and 5% difference thresholds between the outputs of the tasks and the golden value.
The≈0% data presented actually stands for a difference of 0.000013%, which is the
difference between the values from the 71- and the 14-iterations executions (without
errors). It is written as ≈0% for simplification, and because it is the maximum
difference that will always be present due to the usage of approximation in this
application. Data is presented in percentage and calculated concerning the number
of the executions that had any difference between the ATMR output and the expected
golden value. For example, at Fig. 13.6 the white bar on the graphs (called “1 of 3”)
presents the percentage of the ATMR executions showing an error in one of the three
tasks (i.e., R0, R1’, and R2’), considering a ≈0% difference threshold between the
outputs of the tasks and the golden value. To gather this data, the output of each task
is compared to the golden value and checked for errors.

Figure 13.6 shows that a considerable amount of errors are not masked by the
ATMR (because most cases presented two or more tasks with errors represented by
the gray and black bars). This result is expected because of the natural variation of
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Fig. 13.6 Number of ATMR tasks with errors for a ≈0% difference threshold between the tasks
outputs and golden value, on the single-precision version of the Newton-Raphson algorithm.
Source: [41]

Fig. 13.7 Number of ATMR tasks with errors for a 2% difference threshold between the tasks
outputs and golden value, on the single-precision version of the Newton-Raphson algorithm.
Source: [41]



408 G. S. Rodrigues et al.

Fig. 13.8 Number of ATMR tasks with errors for a 5% difference threshold between the tasks
outputs and golden value, on the single-precision version of the Newton-Raphson algorithm.
Source: [41]

approximate computing algorithms outputs. When using single-precision, the 71-
71-14 ATMR is the one with the highest percentage of errors affecting three out of
three tasks. Two factors can explain it. First, the 14-iterations task is the one most
susceptible to faults. Secondly, the 71-iterations task is the one with higher execution
time. A higher execution time means more exposition to faults (because the laser
pulse frequency is constant for all benchmarks). Those two factors contribute to a
very inefficient ATMR configuration.

At Figs. 13.7 and 13.8, the “Vanished” bars represent the amount of errors that are
no more present when the difference threshold increased (respectively, from ≈0%
to 2% and from ≈0% to 5%). Figure 13.7 shows that increasing the acceptable
difference threshold between the outputs and the golden value not only masks some
errors but also decreases the number of erroneous tasks. This same behavior is also
observed in Fig. 13.8, where the difference threshold increased to 5%. Comparing
the data from Figs. 13.7 and 13.8 it becomes evident that the amount of vanished
errors cease to increase at a certain point. It indicates that there may be an optimal
difference threshold point, capable of providing good fault tolerance while not
compromising too much the output accuracy.

Figures 13.9, 13.10 and 13.11 present the error distribution of the ATMR
tasks applied to the double-precision version of the Newton-Raphson algorithm,
respectively, presenting data for ≈0%, 2% and 5% difference thresholds between
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Fig. 13.9 Number of ATMR tasks with errors for a ≈0% difference threshold between the tasks
outputs and golden value, on the double-precision version of the Newton-Raphson algorithm.
Source: [41]

Fig. 13.10 Number of ATMR tasks with errors for a 2% difference threshold between the tasks
outputs and golden value, on the double-precision version of the Newton-Raphson algorithm.
Source: [41]
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Fig. 13.11 Number of ATMR tasks with errors for a 5% difference threshold between the tasks
outputs and golden value, on the double-precision version of the Newton-Raphson algorithm.
Source: [41]

the outputs of the tasks and the golden value. Once again, the “Vanished” bars at
Figs. 13.10 and 13.11 present the amount of errors that are no more present when
the difference threshold increased. Comparing Figs. 13.9 and 13.6, using double-
precision variables makes a≈0% difference threshold ATMR even less appropriate.
The number of executions with errors affecting two and three tasks is more relevant
in that case. However, increasing the difference threshold between the outputs and
the golden value highly increases the fault masking capability of the technique.
Figure 13.10 shows that a 2% threshold is enough to provide a good fault masking.
Figure 13.11 shows that increasing the threshold to 5% does not improve the fault
masking performance very much in comparison with a 2% threshold.

Table 13.4 presents the percentage of masked errors for three thresholds of
difference between the ATMR voted values and the golden value. Differently from
the data shown at Figs. 13.6, 13.7, 13.8, 13.9, 13.10 and 13.11, this now concerns the
value voted by the ATMR, not the outputs from the tasks. As discussed before, the
more iterations successive approximation algorithms have, the more fault-tolerant
we expect it to be. However, some unexpected results are present. Such is the
case of the 71-14-14 ATMR configuration, due to its high performance both for
the single and double-precision implementations. Because more iterations usually
mean more fault tolerance, this is non-intuitive. Nevertheless, it can be explained
by the execution time of this benchmark. It is the one with the lowest overhead
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Table 13.4 Error masking for each ATMR configuration variating thresholds

Single-precision Double-precision

ATMR config. ≈0% Thres. 2% Thres. 5% Thres. ≈0% Thres. 2% Thres. 5% Thres.

71-71-71 17.37 76.02 97.90 9.30 87.30 87.35

71-71-37 66.80 91.06 94.72 34.68 88.36 88.36

71-71-14 14.84 66.06 66.06 4.29 98.73 98.73

71-37-37 8.82 82.56 89.19 30.09 92.19 94.62

71-37-14 40.03 90.83 91.31 27.67 80.45 80.45

71-14-14 33.82 94.97 94.97 31.88 99.96 99.98

Source: [41]

(Table 13.3), being subject to fewer fault injections than the others. Literature shows
that a high execution time implies in low fault tolerance, once the system is exposed
to more faults, particularly on radioactive environments [19, 43].

Table 13.4 shows that by increasing the threshold, the ATMR was capable of
masking many more faults. Even a small difference threshold of 2% is enough
to make some configurations mask more than 90% of the errors. The ATMR
configuration capable of masking most errors with single-precision with a high
threshold is the 71-71-71. However, this configuration performs very poorly for a
small threshold. This is probably due to the fact that this is the configuration with
the highest execution time and therefore is subject to more faults per execution.
In this case, increasing the number of iterations would, instead of improving the
fault tolerance (by making the output converge), make it worse (because of the high
execution time). The 71-14-14 configuration is the best one at double-precision, and
it reaches a good error masking even for a 2% difference threshold. The double-
precision implementations have worse performance than the single-precision ones
for the≈ 0% acceptable difference threshold. Nevertheless, increasing the threshold
increases the error masking faster than it did on the single-precision cases.

13.5 Conclusion

This chapter presented the use of approximate computing for safety- and mission-
critical systems. We first discussed the main source of external perturbation
impacting the hardware and leading to errors. Such errors can be easily modelled
and analyzed through fault injection campaign. Several fault tolerance techniques
exist to increase the reliability of systems and among them we focused on those
leveraging approximate computing. The presented ATMR technique shown a lower
cost while maintaining reliability requirements.

One of the problems of approximate computing is that it is often not of easy
implementation. Finding the best approximation method for a given algorithm is
very consuming work. Future works in this topic is the development of a framework
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that can help software engineers to approximate their codes with minimal efforts.
It is evident by the results presented that combining two or more approximation
methods imply a multitude of different effects on system reliability. A designer
might then ask himself, which is the optimal configuration between all possible
approximation strategies that would achieve the best relation between cost and per-
formance. Evolutionary algorithms could be used to test possible combinations of
approximation configurations to find this optimal point between cost, performance,
and reliability.
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Chapter 14
Approximate Computing for Scientific
Applications

Hartwig Anzt, Marc Casas, A. Cristiano I. Malossi, Enrique S. Quintana-Ortí,
Florian Scheidegger, and Sicong Zhuang

14.1 Introduction

This chapter illustrates the performance advantages that can be obtained from
exploiting approximate computing techniques in the solution of scientific applica-
tions connected to linear algebra and deep learning. For the linear algebra case,
we address the solution of sparse linear systems via iterative methods, giving
experimental evidence of how approximate computing can help to reduce the
dominant cost factor, in general due to memory access, for Jacobi solvers, Krylov
subspace methods as well as simple block-Jacobi preconditioners.

In addition, this chapter proposes a technique to reduce the training cost of Deep
Neural Networks by decreasing data movement across heterogeneous architectures
composed of several GPUs and multicore CPU devices. In particular, this chapter
proposes an algorithm to dynamically adapt the data representation format of
network weights during training. This algorithm drives a compression procedure
that reduces network parameters size before sending them over the parallel system.
We run an exhaustive evaluation campaign considering several up-to-date deep
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neural network models and two high-end architectures composed of multiple GPUs
and CPU multicore chips. Our solution reaches average performance improvements
from 6.18% up to 11.91%.

14.2 Linear Algebra

Fundamental linear algebra problems –such as linear systems, eigenvalue problems,
numerical rank-related computations, and least-squares problems, among others–
lie at the heart of a myriad scientific applications, and sophisticated methods for
the solution of these problems are a fundamental pillar of the Computational
Sciences [1, 2].

Large-scale linear algebra problems represent a large fraction of the total
cost-to-solution in many of these scientific applications. In order to tackle these
expensive computations, during the past decades high-performance computing
(HPC) techniques, including parallel algorithms, have been compiled into highly
optimized math libraries that aim to squeeze up to the last drop of performance
from the “latest” computer architecture of the moment [3].

LAPACK (Linear Algebra PACKage) [4] and BLAS (Basic Linear Algebra
Subprograms) [5] are two well-known examples of standard interfaces for numerical
dense linear algebra operations, with a considerable number of HPC realizations
being available from companies as well as independent developer teams for a
large variety of computer architectures. Although sparse linear algebra operations
are even more commonly encountered in scientific applications than their dense
counterparts, their standardization, unfortunately, lags far behind. As a result, the
number of HPC libraries for the solution of sparse linear algebra problems is much
scarcer.

In this section, we review a collection of Approximate Computing (AC) tech-
niques that have been successfully applied in the iterative solution of sparse linear
systems. These AC techniques propose some sort of “manipulation” of the floating
point values that contain the problem data in order to compress them (with or
without information loss). The ultimate goal is to reduce the data traffic between
the memory and the processor registers/floating point units, in order to improve
the performance (and reduce energy consumption) of the sparse linear algebra
kernels, while maintaining the convergence rate of the iterative solver, resulting
in the acceleration on current computer technologies. This is achieved under the
reasonable assumption that, for sparse linear algebra kernels, the runtime (and
energy cost) of accessing data in memory correlates with the number of bits
employed by the precision format [6].

At this point, we note the following:

• This section does not aim to provide a complete survey on AC applied to (the
iterative solution of sparse) linear systems. Instead, our goal is to provide a short
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review of existing techniques as well as their underlying ideas and concepts, and
illustrate their practical benefits.

• Some of the AC techniques described in the following subsections can be easily
assembled using fundamental building blocks for sparse linear algebra, with a
few already being integrated into modern HPC libraries such as Ginkgo [7].

• Also, many of the following AC techniques are not exclusive of the specific
sparse linear algebra methods described next. Indeed, we expect they carry over
to other dense and sparse linear algebra operations and even to other problems
beyond the scope of linear algebra.

• Finally, there exist some orthogonal compression techniques that, for example,
reduce the storage needed to maintain the indexing information for a sparse
matrix; see, e.g., [8]. While these schemes also aim to reduce the data movement,
strictly speaking, they cannot be considered to be AC techniques.

The rest of this section on Linear Algebra for Scientific Computing problems
is structured as follows. In Sect. 14.2.1, we provide a brief review of computer
data representation formats in connection with the iterative solution of sparse linear
systems via Krylov subspace methods enhanced with preconditioners. Then, in the
next three subsections, we discuss AC in the context of iterative solvers, initially via
the discussion of several relevant principles, in Sect. 14.2.2; and then through the
application of these AC principles in order to accelerate the execution of iterative
solvers on parallel computers, in Sects. 14.2.4 and 14.2.5. The section is closed with
a short summary in Sect. 14.2.6.

14.2.1 Overview of Sparse Linear Systems and Iterative Solvers

14.2.1.1 Representation of Data

Consider the linear system

Ax = b, (14.1)

where the n × n system coefficient matrix A is sparse; b is the right-hand side
vector, consisting of n elements; and x is the sought-after solution vector, also with n

entries. The main property of a sparse linear system matrix is that most of the entries
of the coefficient matrix are zero. Even though the distinction between “dense” and
“sparse” is blurry, a good reference threshold is usually that the amount of memory
needed to store the matrix data can be reduced by moving from the convention
of storing all matrix entries to a (more compact) sparse storage where some zero
entries are not kept explicitly. The general motivation behind the adoption of sparse
storage structures is to reduce the memory footprint by explicitly maintaining only
a subset of the matrix entries (including all nonzero elements) along with the
location information for these entries. The most intuitive example is the coordinate
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(COO) format, which stores only the nonzero elements along with their respective
coordinates. This results in a data structure that consists of a floating point array
for the nonzero values and two integer arrays containing the row/column indices.
Obviously, this COO format does not require the nonzero values to be organized in
any specific order and allows for an easy modification of the matrix contents (for
example, adding or removing nonzero entries). However, the performance of sparse
matrix kernels operating on COO data structures often benefits from the nonzero
values being ordered row-wise with increasing column indices. If a COO structure
is so re-organized, the memory footprint can be further reduced by replacing the
explicit row-indexing with a row pointer array indicating the start of each row.
The resulting “compressed sparse row” (CSR) format is widely adopted as a data
exchange layout. However, it lacks the flexibility of the COO format in terms of
changing the nonzero matrix pattern and presents a more complex identification of
the coordinates of a specific matrix entry. In general, both COO and CSR keep
explicitly only the nonzero elements, but they can also maintain zero elements.
The latter option obviously introduces some storage overhead, but may bring some
advantages for algorithms acting on the sparse data structures. For example, the
ELLPACK (ELL) format explicitly stores some zero elements so that the same
number of elements reside in each matrix row. For balanced matrices where each
matrix row contains about the same number of nonzero elements, the overhead
of this padding is small, but if a sparse matrix contains a row with many nonzero
elements, the overhead grows dramatically. While being counter-intuitive, padding
can reduce the memory footprint for balanced problems, as it removes the need for
maintaining any row index information. The goal of the ELL format, though, is not
reducing the memory footprint but accelerating the execution of fundamental linear
algebra kernels, such as the matrix-vector product, operating on ELL data structures
in data-parallel (SIMD) fashion [9].

The other major components involved in the solution of sparse linear systems
are dense vectors, which are usually maintained as a collection of floating point
numbers consecutively stored in memory.

For most applications, the numeric values (including the sparse matrix entries)
are represented in either IEEE (64-bit) double precision or IEEE (32-bit) single
precision. In this standard representation of real (or complex) values, each floating
point number is stored as a three-tuple of bits: sign (1 bit), exponent, and significand.
The number of bits in the exponent determines the range of the representable space
while the amount of bits in the significand dictates the accuracy (granularity) of
the representation. The IEEE formats [10] represent well-accepted compromises
between data range and accuracy, with high-performance support in the hardware,
though some applications may benefit from different trade-offs. The indexing
information is usually maintained in (32-bit) signed/unsigned integers.

The previous discussion of storage formats for sparse matrices and representation
of floating point data is relevant because it exposes that the amount of indexing
information which needs to be maintained in order to represent a sparse matrix is
non-negligible. For example, the COO format maintains both a row index and a
column index for each nonzero value of the matrix. If the floating point numeric
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values are stored in double precision (64 bits) and the indexing integers using
the standard datatype (32 bits), the indices represent an overhead of 100%. In
the popular CSR format, for each nonzero value there is an associated index
representing the column position of that value, yielding an approximate overhead
of 50%. (Indeed, the CSR format requires an additional integer array to mark the
beginning/end of each row, increasing the overhead above that figure, especially for
matrices with a small number of nonzeros per row.) Knowing the overhead that the
indexing data represents provides a more informed perspective of the benefits that
can be obtained by compressing only the floating point values.

14.2.1.2 Iterative Solvers and Preconditioners

Direct solvers for linear systems of equations apply a fixed number of matrix trans-
formations after which the solution is readily available. Conversely, iterative solvers
generate a sequence of solution approximations which successively approach the
actual solution. In the latter case, the rate at which the accuracy of the approximation
is improved depends on the type of iterative solver and the numerical condition of
the linear system [1]. Krylov Subspace Methods (e.g., GMRES, CG, BiCG, etc.), or
KSMs, are some of the most efficient iterative solvers and approximate the solution
of a linear system in a subspace of increasing dimension [11].

The condition number of the linear system correlates to the ratio between the
largest and the smallest eigenvalues. By modifying the matrix eigenvalues, for
example, by multiplying both sides of the linear system of equations with another
matrix M , the convergence of the iterative method can be accelerated. Particularly,
for an identity coefficient matrix, the iterative method converges instantaneously,
and the solution is readily available. Unfortunately, turning an arbitrary matrix A

into the identity matrix requires multiplying with the inverse matrix M = A−1,
and computing the inverse of a matrix is prohibitively expensive (except for trivial
cases). An alternative is given by computing an approximation of the matrix inverse
(M ≈ A−1). In this context, the “preconditioner” is an operator that approximates
the inverse of the system matrix. An efficient preconditioner for iterative solvers
aims to balance an effective reduction of the condition number of the linear system
(i.e., providing a fair approximation for the matrix inverse) with a low computational
cost of generating the preconditioner operator.

A very basic, yet efficient preconditioner is the Jacobi preconditioner which
scales the (entries of the) rows of the coefficient matrix by the inverse of the corre-
sponding diagonal entry. The Jacobi preconditioner is appealing as it is inexpensive
and can be generated and applied in row-parallel fashion, thus introducing negligible
overhead to the iterative solver. The block-Jacobi generalizes the idea of diagonal
scaling to extract the diagonal blocks from the coefficient matrix, and composes the
preconditioner from the collection of inverted diagonal blocks.
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14.2.2 Approximate Computing for Iterative Linear System
Solvers

The AC techniques that we review in the following sections leverage one or more of
the following five relevant properties:

P1. Arithmetic is cheap, but memory accesses are expensive.
In current computers, the memory access time is a few orders of magnitude
more expensive than the processing (i.e., arithmetic) cost [12, 13].

P2. Iterative solvers for sparse linear systems are mostly composed of memory-
bound operations.
This type of methods perform a small number of floating point operations
(flops) per memory access. A clear example is the sparse matrix-vector product
(SpMV), a key kernel present in both stationary solvers and KSMs, which
concentrates a significant part of the total cost. The SpMV roughly requires
three memory accesses in order to perform two flops. Thus, together with P1,
this property dictates the memory-bound nature of these methods.
In practice, the irregular sparsity structure of the coefficient matrix dictates an
irregular access pattern to the memory, further constraining the throughput of
this type of solvers.

P3. Data storage can be decoupled from the arithmetic (processor) format.
Current processors support arithmetic in IEEE single, double and, in some
cases, (16-bit) half-precision (SP, DP, and HP, respectively). The current
convention “couples” the storage format with the arithmetic so that the values
are stored in memory using the same exact format as they are operated in the
processor. The main advantage is that no transformation is necessary when a
value is retrieved from memory into a processor register (or sent back from the
processor register to memory), avoiding the conversion overhead. However,
given P1, the cost of these transformations can easily become negligible for
memory-bound operations.

P4. Iterative solvers usually produce a sequence of vectors which gradually
approximate the solution of the system.
In other words, the initial solution can be far (very distinct) from the real one,
but as the iteration converges, the successive approximations get closer to (i.e.,
they have more digits in common with) the real solution.

P5. Preconditioners only provide a rough approximation of the inverse of the
coefficient matrix.
The best preconditioner for the linear system Ax = b is given by the explicit
inverse M = A−1. However, computing the inverse is even more expensive
than directly solving the problem. In practice, a rough approximation of A−1

often yields a sufficiently good preconditioner.
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14.2.3 Mixed Precision Iterative Refinement

14.2.3.1 Overview

Iterative refinement is a well-known technique that follows a “residual-correction”
approach. In the case of linear systems, starting from an approximate solution
to the problem, the idea is to compute the error of this initial solution (in the
form of a residual), solve a linear system for the error, and then update the initial
approximate solution (residual correction). Provided (i) the solution for the error
equation is cheap to compute, and (ii) this solve is performed to some accuracy,
iterative refinement yields an efficient approach that progressively approximates the
correct solution [14].

One way to satisfy the previous two conditions, (i) and (ii), consists in combining
iterative refinement with reduced precision arithmetic. In particular, starting from an
initial solution guess x{k}, with k = 0, mixed precision iterative refinement (MPIR)
can be formulated as the following 4-step procedure:

1. Compute the residual r{k} := b − Ax{k} (full precision).
2. Solve the linear system Ay{k} = r{k} for y{k} (reduced precision).
3. Update the solution x{k+1} := x{k} + y{k} (full precision).
4. k = k + 1; go back to step 1 until necessary.

MPIR can be applied independently of the type of linear solver employed in step 2.
For example, one can leverage there either a direct (factorization-based) method
or an iterative solver. The potential advantage of MPIR comes from exploiting the
low cost of solving the system in step 2 in reduced precision. For direct methods,
the costly part lies in the factorization of A, which can be performed in reduced
precision. In this type of method, in general, the arithmetic cost can be as relevant
as the memory accesses. In contrast, in the case of iterative solvers, the cost comes
from reading the sparse matrix from memory; see properties P1–P2.

14.2.3.2 Discussion

MPIR has been exploited in the context of direct (dense) solvers in [15–17] and for
iterative (sparse) solvers in [18, 19], among others.

More recently, the introduction of hardware support for HP in many recent
architectures, motivated by the urge to accelerate deep learning models, has also
conditioned the specialization of MPIR for the solution of linear systems. For
example, in [20] the authors propose to leverage the tensor cores in NVIDIA GPUs
to accelerate the direct solution of linear systems using three distinct precision
formats.

MIPR can be viewed as an AC technique because it computes the solution to a
system with low precision (inner solver), which provides an “approximate” solution
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to that system. This is then used to improve the approximation of the solution to the
target system in full precision (iterative outer solver).

14.2.4 Adaptive Precision in Stationary Solvers

MPIR combines two (or more) distinct types of precision in different parts of an
algorithm. However, this strategy of mixing precision formats does not really exploit
the principle stated in P4 (iterative solvers gradually approximate the solution).
This particular property poses the interesting question of whether we could start the
iteration with a low precision format, to store an initial approximation that is still
far from the actual solution, and gradually increase the accuracy of the format as
the iteration converges. One problem of this idea is how to detect that the accuracy
of the floating point arithmetic needs to be increased. Note that this has to be done
during the iteration and, therefore, the detection overhead has to be low (compared
with the cost of the iteration). A related problem is at which granularity the precision
variations should operate.

Fortunately, stationary solvers, such as the Jacobi relaxation method reviewed
next, exhibit a key property that solves the first problem stated in the previous
paragraph. In addition, they are simple algorithms, which helps to address the
second problem.

14.2.4.1 Overview of the Jacobi Relaxation Method

Given an initial solution guess x{0}, the Jacobi relaxation method [11] applies a
component-wise relaxation to update, at each iteration k, the individual components
of the approximate solution x{k} as follows:

x{k} :=D−1
(
b − (A−D)x{k−1}) = D−1b+Gx{k−1}, k=1, 2, . . . (14.2)

Here D is an n× n diagonal matrix that contains only the diagonal entries of A [11].
From the numerical perspective, the Jacobi relaxation iteration converges if the
spectral radius of the iteration matrix G is smaller than one [11].

The contraction property of the Jacobi relaxation method states that, for any
component i ∈ [1, n] of the approximate solution vectors, at any two consecutive
iterations, there exists a scalar θi , with 0 < θi < 1, such that
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Furthermore, due to the linear convergence rate of the Jacobi relaxation iteration,
the ratios
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remain constant up to convergence, say c
{2}
i = c

{3}
i = c

{4}
i = . . . = ci .

14.2.4.2 AC in the Jacobi Relaxation Method

The key to an adaptive-precision formulation of the Jacobi relaxation method is
that a deviation in the component-wise convergence rate from ci is an indicator the
approximation has converged for this component in the current precision. Therefore,
the length of the significand has to be extended.

In practice, rounding effects can produce differences between the observed and
theoretical linear convergence rates. To account for these, the test to detect a
deviation should integrate a tolerance-based criterion based on a threshold value,
say δ̃. The condition to decide whether an extension of the significand is necessary
can then be based on a test such as
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where, to avoid stagnation, we set

δ̃ := δ · (ci − 1) (14.6)

for some user-defined 0 < δ < 1. For a detailed discussion of the adaptive-precision
formulation of the Jacobi relaxation method, see [21].

14.2.4.3 Practical Implementation: Flexible Format and CPMS

A practical important aspect when implementing the adaptive-precision Jacobi
relaxation method is how to combine the theory underlying the method with the
actual formats for storing and operating with floating point data that are supported in
current hardware. A straight-forward possibility is to limit the number formats used
in the Jacobi relaxation method to those defined by IEEE, for example, for 32-bit
and 64-bit numbers. The clear advantage of this option is that there exists efficient
hardware support for these formats in virtually all types of computer architectures,
from multicore processors to graphics processing units (GPUs). The problem though
is twofold: (1) this option constrains the number of different precisions that can
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be exploited in the algorithm; and (2) we need to maintain several copies of the
data, one per number format, or perform an on-the-fly format conversion every time
the data is retrieved from memory. In [22, 23], the authors propose a “modular
precision ecosystem” that stores the floating point numbers in flexible accuracy
formats without replicating the information.

In particular, the “customized precision format based on mantissa (significand)
segmentation (CPMS)”, originally introduced in [22], decomposes the significand
of the standard IEEE floating point formats into two or more segments enabling
a partial access to the information. For that purpose, the format to maintain the
numbers in memory is completely decoupled from the arithmetic format used in
the floating point units. Thus, instead of using the IEEE floating point formats in
the memory operations, the significand is split into several segments which are
stored separately. This allows reading the part of the significand (together with the
sign and the full exponent) that the Jacobi relaxation method requires during the
iteration. One additional feature of this approach is that the number of exponent
bits remains unchanged with respect to the length of this information in DP, which
virtually eliminates the danger of overflow and underflow, as segmentation cannot
turn a valid number into “NaN” or “infinity.”

In practice, the CPMS technique decouples the data storage from the arithmetic
format, as stated in P3, in order to materialize the potential benefits from exploiting
P1–P2 in the context of an iterative solver (and, therefore, a method that satis-
fies P4).

14.2.4.4 Experimental Evaluation

In this subsection, we provide some practical evidence of the benefits that can be
attained when gradually incrementing the precision format in the iterative solution
of linear systems via stationary solvers. For that purpose, we consider a simple
problem obtained from a finite difference discretization of a Laplace equation using
a mesh of 100×100 elements. The following experiment was performed on a single
server equipped with an AMD Radeon 7 GPU with 16 GB of HBM2 memory. This
particular accelerator can deliver a memory bandwidth of 1024 GB/s, 3.36 TFLOPS
(1012 floating point operations per second) for FP64, and 13.44 TFLOPS for FP32.

The heat maps in Fig. 14.1 illustrate the performance of the Jacobi AC-variant
with incremental precision, using a 2-segment realization of CPMS, relative to that
of the conventional FP64-based implementation of the same method. Note that the
test is carried out for a variety of nonzero entries per row (x-axis) and tolerance
threshold for the stopping criterion (y-axis). The values in the tables highlighted
in white correspond to speed ups and, therefore, show performance gains for the
AC-variant while those in black indicate a slowdown. In general, the AC-variant
of the stationary solver benefits from lower stopping thresholds and larger numbers
of elements per row. Furthermore, the advantages are more visible when the sparse
matrix is stored in the ELLPACK format instead of CSR. Concretely, for the former
layout, we can observe a speed up of up to 27% while the highest speed up in the last
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Fig. 14.1 Acceleration of the adaptive precision Jacobi in a 2-segment realization for a sparse
matrix stored in CSR format (left) and ELLPACK format (right), respectively

case is only 14%. Higher performance advantages for the Jacobi AC-variant were
observed on NVIDIA GPUs in [24].

14.2.4.5 Discussion

In this section, we have reviewed a practical approach to exploit P3–P4 in the
context of a Jacobi relaxation method for the iterative solution of sparse linear
systems. We close the section by noting that the same idea can be applied to other
stationary methods (Gauss-Seidel, Successive Overrelaxation Method, etc.) [11] as
well as to stencil computations. The same principles can also yield highly parallel,
approximate sparse triangular solvers in order to realize incomplete factorization
preconditioners [21]. Finally, a close approach is applicable to the acceleration of
the PageRank algorithm for web information retrieval [25].

14.2.5 Adaptive Precision in the Preconditioner

Although the Jacobi relaxation method is a simple and highly parallel algorithm,
the class of linear systems where it can be applied is strongly constrained, and its
convergence to the solution is, in general, slow. In comparison, on the one hand
KSMs are also based on SpMV and they present a degree of parallelism similar
to that of stationary methods (except for the presence in KSMs of synchronization
points in the form of “dot” products); on the other hand, they are applicable to
a much wider spectrum of problems, and their convergence can be considerably
accelerated via the integration of some type of preconditioner. Unfortunately, KSMs
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do not satisfy the contraction property and, therefore, it does not seem possible to
formulate an AC technique that adjusts the precision of the approximate solution
during the iteration.

In this section, we describe how to introduce adaptive precision in the calculation
and application of the preconditioner instead of the “basic” iteration of KSMs.
This technique is actually independent of the type of KSM and it can also be
assembled with other non-KSM iterative solvers that benefit from the integration of
a preconditioner. The principle this AC technique exploits is that the preconditioner
itself is an approximation of the matrix inverse, which does not need to be computed
to high accuracy; see property P5. This “lower accuracy” can be used to discard
small elements during the computation of the preconditioner and/or to employ lower
accuracy in the calculation/storage of the preconditioner entries.

14.2.5.1 Overview of Block-Jacobi Preconditioning

A block-Jacobi preconditioners can be formulated from a splitting of the coefficient
matrix into

A = L+M + U, (14.7)

where the preconditioner is given by the block-diagonal n× n matrix

M = diag(D1,D2, . . . , Dm). (14.8)

Here, Di is an mi×mi block that contains the corresponding entries on the diagonal
blocks of A, with

∑m
i=1 mi = n, while L and U (of the same dimensions as

A) comprise the elements of the coefficient matrix below and above those of M ,
respectively. The block-Jacobi preconditioner is well-defined if all the diagonal
blocks Di are nonsingular, and this preconditioning scheme is particularly effective
if the block structure of the Jacobi preconditioner matches a block structure that is
inherently present in the system matrix A.

In case the block-inverse matrix

M−1 = diag(D−1
1 ,D−1

2 , . . . , D−1
m ) = diag(E1, E2, . . . , Em) (14.9)

is explicitly computed, before the iteration process of the KSM commences, the
preconditioner can be efficiently applied within the KSM iteration in terms of a
dense matrix-vector multiplication (GeMV) per inverse block Ei . Thus, the iteration
for the preconditioned KSM remains a memory-bound process, as so is the GeMV
kernel, independently of the block size mi .
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14.2.5.2 AC in Block-Jacobi Preconditioning

The use of customized precisions in the block-Jacobi preconditioner has to take into
account its numerical effects in order to ensure that the quality of the preconditioner
is not diminished and convergence rate of the iteration is maintained. Exploiting
the independence of the Jacobi blocks, this implies that there exist certain limits
to relaxing the memory precision format: (1) the regularity of the block must be
preserved; and (2) the data range of the values must be covered by the precision
format. The first requirement has implications on the length of the significand
and the exponent, while the second requirement primarily has implications on the
exponent only.

Precisely, in order to preserve the regularity of the block-Jacobi preconditioner,
each block Ei can be stored in a certain precision, HP, SP, or DP, depending on its
condition number, as follows [26]:

⎧
⎪⎪⎨

⎪⎪⎩

HP if τL
h < κ1(Di) ≤ τU

h ,

SP if τL
s < κ1(Di) ≤ τU

s , and

DP otherwise.

(14.10)

Here, κ1(Di) = κ1(Ei) = ‖Di‖1‖D−1
i ‖1 = ‖Di‖1‖Ei‖1, and the thresholds τ are

set as τL
h = 0 and τU

h = τL
s . Note, however, that this scheme refers to the storage

precision. During the iteration, every time the block Ei (with entries stored in the
corresponding format as determined by the thresholds in (14.10)) is recovered from
memory, its contents are transformed into DP values prior to the application of the
block as part of a GeMV; see property P3.

The practical choice of τ is related to the accuracy level that the preconditioner
should preserve. In particular, in order to ensure an accuracy a for the preconditioner
a storage format with round-off error u can be considered valid for a block D if
κ(D) ≤ a/u. Furthermore, the value τ for this format is computed as τ = a/u.

14.2.5.3 Practical Implementation: Flexible Format and CPEN

As was already introduced for the Jacobi relaxation method, the number formats
that can be used to maintain the floating point values in memory does not need
to be restricted to those defined by IEEE [10]. Instead, we can be rather flexible
when storing the data, utilizing any number of bits to store a floating point number,
and dividing these bits between significand and exponent in almost any manner.
For performance reasons though, the number of bits per floating-number should
be an integer multiple of a byte. The split of this resource between significand
and exponent bits should balance representation granularity (bits in the significand)
versus range (bits in the exponent), while ensuring that enough bits are dedicated to
the later in order to avoid overflows.
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When these ideas are applied blockwise to a block-Jacobi preconditioner, it is
possible to customize the storage format even further. In particular, the “customized
precision format with exponent normalization (CPEN)” in [24] advocates for
normalizing the exponents of all the numbers in a block with respect to a certain
baseline or reference value (for example, that of the smallest exponent in the block),
and then minimize the number of bits dedicated to the exponents in this block by
representing only the difference with respect to the baseline.

The exploitation of CPEN requires an initial clustering step that splits the original
dataset into subsets (clusters) containing values of similar magnitude. Interestingly,
many real linear systems problems inherently consist of clusters that accumulate
values of similar magnitude. The consequence is that, in the context of block-Jacobi
preconditioning, the exponents of the numbers contained in the preconditioner
blocks exhibit a compact distribution of the range.

The bits that are saved with CPEN can then be dedicated to obtain a more
compact representation of the block contents (just compression) or, alternatively,
to enlarge the bits dedicated to the significand (AC). The latter option presents the
appealing property of allowing to fit more significand bits into a 16-bit or 32-bit
block. In consequence, more Jacobi blocks can use 16-bit or 32-bit storage without
impacting the blocks’ regularity. This technique exploits P1–P3 and P5.

14.2.5.4 Experimental Evaluation

In this subsection we assess the benefits attained by a realization of the BiCGSTAB
solver [11] enhanced with the adaptive precision block-Jacobi preconditioner
relative to the BiCGSTAB solver with the full precision variant of block-Jacobi.
For this evaluation, we consider a subset of nonsymmetric matrices with at least
106 nonzeros from the SuiteSparse matrix collection for which a BiCGSTAB solver
needs at least 100 iterations to converge. The experiment was run using one node
of the Summit supercomputer at Oak Ridge National Laboratory, containing two
22-core IBM POWER9 CPUs with 256 GB of RAM and 6 NVIDIA TESLA V100
(SXM2 form factor) GPUs with 16 GB of HBM2 memory. For our experiments, we
use only a single NVIDIA V100 GPU with a peak double precision performance of
7.8 TFlop/s and a theoretical peak memory bandwidth of 900 GB/s. The BiCGSTAB
solver available in the Ginkgo library was employed.

The outcome of this experiment is reported in Fig. 14.2. The black and gray
dots on top of the two plots in that figure represent whether BiCGSTAB (without
a preconditioner), BiCGSTAB+(full precision) block-Jacobi and block-Jacobi and
BiCGSTAB+adaptive block-Jacobi converged for that matrix. The absence of a dot
means that the method not converge. The red dots represent the relative number
of iterations, while the green dots the relative time of adaptive precision block-
Jacobi compared with the full precision variant. A value greater than 1 thus means
that the adaptive precision variant outperforms the full precision block-Jacobi for
that specific problem. The adaptive precision preserves 1 digit (top) or two digits
(bottom) of the full precision block-Jacobi preconditioner. In more detail, we ran
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Fig. 14.2 Benefits of a BiCGSTAB solver enhanced with an adaptive precision block-Jacobi
preconditioner relative to a realization that includes a conventional full precision preconditioner
in the same method

two parameter settings where the automatic precision detection procedure was
adapted to assign precisions such that either 1 or 2 decimal digits are preserved when
applying the preconditioner. This reflects the assumption that the preconditioner
provides 1 and 2 digits of accuracy, respectively.

The results from this experiment show that the BiCGSTAB solver enhanced with
any of the precision-variants converged for all problems (black and gray dots on
top of the plot). Furthermore, the benefit of adaptive precision is highly dependent
on the problem case, in particular, on the conditioning of the diagonal blocks of
the preconditioner. This is natural as when most of the blocks are well-conditioned,
the majority of the preconditioner can be stored in lower precision, reducing the
memory access cost, while for problems with ill-conditioned blocks, there is no
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difference between the two variants, since all blocks need to be stored in full
precision in order to preserve the quality of the preconditioner. On average, for
those cases with well-conditioned blocks, we observe performance gains that vary
between 10 and 30%.

14.2.5.5 Discussion

There exist several efforts to introduce mixed precision and/or AC in the computa-
tion of preconditioners. For example, the Jacobi relaxation method presented earlier
can be leveraged to realize a sparse triangular solver that computes an incomplete
factorization preconditioner [21].

Alternatively, there are some previous efforts that combine a preconditioner
stored in SP in memory with a solver that operates in DP [27, 28]. (Note that the
adaptive-precision preconditioner discussed in this section generalizes these ideas to
include any reduced precision customized format for the preconditioner, including
HP, SP as particular cases.)

Related to this, Carson et al. [29] suggest the use of an incomplete factorization
preconditioner computed in lower precision inside an iterative F-GMRES frame-
work and the authors even extend this approach by cascading multiple formats of
decreasing precision [30].

14.2.6 Summary

This section provided practical and strong evidence of the benefits that software
AC techniques yield in the iterative solution of sparse linear systems arising in
scientific applications. Concretely, (1) we re-visited MIPR as a general technique for
operating with mixed precision formats; (2) we discussed the theory and practical
aspects on how to gradually increase precision as a stationary solver converges to
the solution of the linear system; and (3) we presented the adoption of customized
formats to accommodate the different accuracy levels required by a block-Jacobi
preconditioner that is leveraged in the solution of a linear system via a KSM.

Finally, we remark that some of the software AC techniques that were exposed
in this section are not exclusive of linear algebra. Instead, we expect that, with some
effort, they can be extended to other domains. An straight-forward example appears
in graphs algorithms and from there big data applications, by taking advantage of the
connection between graphs and basic sparse linear algebra kernels such as SpMV.
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14.3 Deep Learning

The use of Deep Neural Networks (DNNs) is becoming ubiquitous in areas like
computer vision (e.g., image recognition and object detection) [31, 32], speech
recognition [33], language translation [34], and many more [35]. DNNs provide
very competitive pattern detection capabilities and, more specifically, Convolutional
Neural Networks (CNNs) classify very large image sets with remarkable accu-
racy [36]. Indeed, DNNs already play a very significant role in the large production
systems of major IT companies and research centers, which has in turn driven
the development of advanced software frameworks for the deep learning area [37]
as well as DNN-specific hardware accelerators [38, 39]. As an example, deep
learning solutions are being coupled with physical computational models for solving
pattern classification problems in the context of large-scale climate simulations [40].
Despite all these accomplishments, deep learning models still suffer from several
fundamental problems: the neural network topology is determined through a long
and iterative empirical process, the training procedure has a huge cost in terms
of time and computational resources, and the inference process of large network
models incurs considerable latency to produce an output, which is not acceptable in
domains requiring real-time responses like autonomous driving.

The DNN training process typically relies on the backpropagation proce-
dure [41], which requires solving an optimization problem aimed at discovering the
values of network weights that better fit the training data. A possible way to carry
out the backpropagation process is the Gradient Descent (GD) method [42], which
aims at fitting the weights to the training data by considering, at each iteration,
the steepest descent direction in terms of an error function. A popular variant of
the GD procedure is the Stochastic Gradient Descent (SGD) method [43], which
computes the gradient against several randomly chosen samples at each iteration.
Today’s common practice to train DNNs is to split the data set into several subsets,
called batches, and let each iteration of SGD to compute a descent direction or
gradient that contains contributions of all the samples belonging to the same batch.
SGD converges faster than GD since it updates network parameters at the end of
each batch once all samples are processed.

To tackle the large amount of Floating Point computations required to train a
DNN, GPUs are usually employed [44]. They exploit the large amount of data-level
parallelism of deep learning workloads. Although GPUs and other hardware acceler-
ators have been successfully employed to boost the training process, data exchanges
involving different accelerators may incur significant performance penalties.

Section 14.3.1 focuses on the use of adaptive precision for accelerating training
of classical CNN architectures, including a method to reduce cost of host-to-
device memory transfer operations. Section 14.3.2 discusses model optimization
and architecture search in presence of constraints for edge devices applications.
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14.3.1 Multiprecision and Approximate Computing in Deep
Learning

We describe and evaluate a method to accelerate the training of DNNs by reducing
the cost of data transfers across heterogeneous high-end architectures integrating
multiple GPUs. By relying on DNNs tolerance to data representation formats
smaller than the commonly used 32-bit Floating Point (FP) standard [45, 46], this
section describes how to dynamically adapt the size of data sent to GPU devices
without hurting the quality of the training process. Our solution is designed to
efficiently use the incoming bandwidth of the GPU accelerators. It relies on an
adaptive scheme that dynamically adapts the data representation format required
by each DNN layer and compresses network parameters before sending them over
the parallel system. This scheme enables DNNs training to progress in a similar rate
as if the 32-bit FP format was used. This section makes the following contributions:

• Adaptive Weight Precision (AWP) algorithm, which dynamically adapts the
numerical representation of DNN weights during training. AWP relies on DNNs’
tolerance for reduced data representation formats. It defines the appropriated data
representation format per each network layer during training without hurting
network accuracy.

• Approximate Data Transfer (ADT) procedure to compress DNN’s weights
according to the decisions made by the AWP algorithm. ADT relies on both
thread- and SIMD-level parallelism and is compatible with architectures like
IBM’s POWER or x86. ADT is able to compress large sets of weights with
minimal overhead, which enables the large performance benefits of our approach.

• It evaluates the combination of ADT and AWP, which call A2DTWP, on two
high-end systems: The first is composed of two x86 Haswell multicore devices
plus four Tesla GK210 GPU accelerators and the second system integrates two
POWER9 chips and four NVIDIA Volta V100 GPUs. Our evaluation considers
the Alexnet [31], the VGG [47] and the Resnet [48] network models applied
to the ImageNet ILSVRC-2012 dataset [49]. Our experiments report average
performance benefits of 6.18 and 11.91% on the x86 and the POWER systems,
respectively. Our solution does not reduce the quality of the training process since
networks final accuracy is the same as if they had been trained with the 32-bit
Floating Point format.

Many proposals describe how data representation formats smaller than the 32-
bit Floating Point IEEE standard can be applied to deep learning workloads without
harming their accuracy [45, 50, 51]. This section presents the first approach that uses
reduced data formats to minimize data movement during DNN training. This section
is particularly relevant from the high-performance computing perspective since it
proposes a methodology to accelerate DNNs training in heterogeneous high-end
systems, which are extensively used to run deep learning workloads [44].

This section is structured as follows: Sect. 14.3.1.1 motivates our propos-
als. Section 14.3.1.3 describes the Adaptive Weight Precision algorithm (AWP).
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Section 14.3.1.4 details the Approximate Data Transfer (ADT) procedure. Sec-
tion 14.3.1.8 explains the experimental setup of this section. Section 14.3.1.9
describes the experiments we conduct to evaluate AWP and ADT on three state-of-
the-art neural networks. Section 14.3.1.2 describes the most relevant related work.
Finally, Sect. 14.3.3 summarizes the main conclusions of this section.

14.3.1.1 Training Deep Neural Networks on Multi-GPU Environments

DNNs training process typically requires applying backpropagation [41], which
involves solving a large optimization problem. In this context, the Stochastic
Gradient Descent (SGD) algorithm [43], which computes the gradient of the cost
function of an artificial neural network with respect to its weights, is commonly
applied. Each iteration of SGD processes a set of tens or hundreds of samples
called batch. When applying the SGD algorithm, the value of the gradient is updated
by combining the contributions of all samples contained within a single batch. By
organizing the training samples into batches and just updating the gradient values at
the end of each batch, a largely parallel procedure is obtained since all samples in
each batch can be processed in an independent way.

The use of heterogeneous nodes composed of multicore CPU and GPU devices is
becoming prominent to train DNNs due to the large amount of data-level parallelism
that such process involves [44]. At the beginning of each iteration, network weights
are updated in the multicore CPU device and sent to the GPUs. The different
samples of the batch that correspond to the current iteration are distributed across
the GPUs and processed in a parallel way. Processing each sample requires running
several times highly parallel numerical kernels like the GEneral Matrix-Matrix
(GEMM) multiplication, which fit very well with GPUs architecture. Once all
samples are processed, their respective contributions to the gradient are sent back
to the multicore CPU device, which uses them to update the gradient and readjust
the values of the weights [52]. A new set of weights is then sent to the GPUs and a
new batch of samples is processed. This process is repeated until the neural network
provides satisfactory results with respect to some test data.

This sequence of data exchanges involving different GPUs requires large band-
width capacity and may constitute a fundamental performance bottleneck. Sec-
tion 14.3.1.9 provides a performance profile of the training process and shows how
data transfers to the GPU require a very significant amount of time. In this context,
our approach consists in reducing as much as possible the amount of data sent to the
GPUs every time a batch of samples is processed. This is achieved by reducing
the number of bits required to represent each network weight. While previous
approaches exploit reduced data formats to speed up arithmetic and reduce memory
requirements [51], we improve performance by compressing data before sending
them across multi-GPU systems. The ADT procedure carries out the compression
process. To drive data compression we use the AWP algorithm, which defines data
representation requirements per each network layer. Combining both ADT and AWP
produces a significant performance gain, which is reported by Sect. 14.3.1.9.
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14.3.1.2 Existing Approaches

A rich body of literature exists describing the effects of using data representation
formats smaller than the 32-bit Floating Point standard while training neural
networks. Previous work provides theoretical analysis on the ability to learn under
limited-precision scenarios of simple networks [53]. In recent years, researchers
have shown that low precision arithmetic is well suited for deep neural networks
training [54–56], particularly when combined with stochastic rounding [45]. New
data representation formats targeting dynamic and low accuracy opportunities for
deep learning have been proposed [46]. While these approaches have a very large
potential for reducing DNNs training costs, they do not target the data movement
problem and, as such, they are orthogonal to the approach presented by this section.

There is a methodology for training deep neural models using 16-bit FP numbers
without modifying hyperparameters or losing network accuracy [51]. This previous
approach avoids losing accuracy by keeping a 32-bit copy of weights, scaling
the loss function to preserve small gradient updates, and using 16-bit arithmetic
that accumulates into single-precision registers. This previous approach exploits
the tolerance of DNN to data representation formats smaller than the 32-bit FP
standard, as our proposal does. However, our goal is fundamentally different since
we reduce data motion in the context of heterogeneous high-end architectures while
this previous approach aims at reducing the computing and storage costs of DNN
training. This approach can be combined with A2DTWP by decompressing network
weights to half-precision to reduce GPU computing time. This reduction would
increase the impact of data motion in the overall performance, which implies that
the benefits of A2DTWP could be even larger.

There are several proposals aimed at improving the Stochastic Gradient Descent
(SGD) method like the Asynchronous SGD [52] and its variants [57, 58]. Other
approaches [59, 60] exploit model parallelism instead of data-level parallelism to
orchestrate large-scale parallel executions of deep learning workloads. If the dif-
ferent parallel instances of this model-level parallel scheme had different precision
requirements, it would be possible to apply approaches close to the ones we present
in this section.

Some previous approaches reduce networks storage and energy requirements
to run inference on mobile devices [61]. While these approaches achieve very
large storage reductions, they target inference on embedded systems with limited
hardware resources. Other approaches achieve large gradient compression ratios in
the context of distributed training in mobile devices [62]. These approaches achieve
very remarkable speed ups in low network bandwidth environments and are applied
to scenarios that require frequent and costly allreduce communications. While they
are very valuable in the mobile computing arena, the scope of these approaches is
not high-performance computing.

Several approaches target synchronization costs of SGD gradient updates in the
context of parallel executions. They either quantize gradients to ternary levels {−1,
0, 1} to reduce the overhead of gradient synchronization [63], or they propose a
family of algorithms allowing for lossy compression of gradients called Quantized
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SGD (QSGD) [64]. Techniques based on sparsifying gradient updates by removing
the smallest gradients by absolute value [65] can also reduce SGD synchronization
costs. While these approaches apply techniques based on small data representation
formats to reduce the synchronization costs of SGD gradient updates, A2DTWP
targets the cost of sending DNNs weights to the GPU accelerators. Therefore, these
approaches are orthogonal to A2DTWP and can be combined with it to reduce as
much as possible training communication cost. In particular, techniques targeting
synchronization costs of SGD gradient updates can be used to reduce GPU to CPU
data transfer overhead while A2DTWP targets CPU to GPU communication cost.
Therefore, the combination of A2DTWP with techniques targeting synchronization
costs of SGD gradient updates would reduce both CPU to GPU and GPU to CPU
communication overhead.

To the best of our knowledge, A2DTWP is the first approach able to accelerate
the training of deep neural networks in multi-GPU high-end systems by reducing
data motion. A2DTWP combines the use of an algorithm to dynamically change
DNNs weights data representation format during training with a highly tuned
data compression and decompression procedure. Our solution successfully reduces
data motion and achieves a significant performance improvement on cutting-edge
high-end systems. While there are previous proposals exploiting mixed precision
scenarios to accelerate training, they are orthogonal to our approach as they speed up
arithmetic and reduce memory footprint. Importantly, our proposal can be combined
with these previous approaches to obtain a highly optimized training method that
minimizes data transfers and accelerates arithmetic in the context of multi-GPU
systems.

14.3.1.3 The Adaptive Weight Precision (AWP) Algorithm

The Adaptive Weight Precision (AWP) algorithm relies on the tolerance of DNNs
to data representation formats smaller than the 32-bit Floating Point standard.
Indeed, previous work indicates that, unlike scientific codes focused on solving
partial differential equations or large linear systems, neural networks do not always
require 32-bit representation during training [45, 50]. Even more, adding stochastic
noise to certain variables during the learning phase improves DNNs accuracy [66–
68]. Nevertheless, when facing unknown scenarios in terms of new workloads or
parameter settings, the data representation requirements of DNNs are non-trivial
to be determined and, to make things more complicated, they may change as the
training phase progresses.

The AWP algorithm dynamically determines data representation requirements
per each network layer by monitoring the evolution of the l2-norm of the weights.
AWP identifies the number of bits that are needed to represent DNNs weights
and guarantees the progress of the training process. AWP assigns the same data
representation format to all weights belonging to a certain network layer. The
training starts with a relatively small data representation that is independently
increased for each layer.
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Algorithm 3 Adaptive weight precision (AWP) algorithm
1: BitsPerLayer := [B0, B1, . . . , BNumLayers ] � List storing the number of bits corresponding to the

data representation of each layer
2: IntervalCounter := [0, 0, . . ., 0] � List storing the number of times the relative change rate fails to

meet the threshold per layer
3: for batch := 0 . . . NumBatches do
4: Apply backpropagation to batch
5: for layer := 0 . . . NumLayers do

6: δ := (|Wbatch,layer |−|Wbatch−1,layer |)
|Wbatch−1,layer |

7: if δ < T then
8: IntervalCounterlayer += 1
9: end if

10: if IntervalCounterlayer == INTERVAL then
11: BitsPerLayerlayer += N
12: IntervalCounterlayer := 0
13: end if
14: end for
15: end for

Algorithm 3 displays a pseudo-code description of AWP. Once the backpropa-
gation process has been applied to a given batch, AWP iterates over all network
layers. The algorithm computes per each batch and network layer the l2-norm of
all its weights’ values and derives the relative change rate δ of the l2-norm with
regard to the previously processed batch. For the batch i, the change rate is defined
as δi = (|Wi |− |Wi−1|)/|Wi−1|, where Wi is the vector of weights of a certain layer
while batch i is processed. Every time the change rate is below a given threshold T
for a certain layer, the algorithm accounts for it by increasing the IntervalCounter

parameter. The algorithm increases N bits of precision if the change rate is below T
during a certain number of batches defined by the parameter INTERVAL and sets the
IntervalCounter parameter of the corresponding layer to zero. Section 14.3.1.9
describes how we determine the values of parameters T, INTERVAL, and N.

14.3.1.4 The Approximate Data Transfer (ADT) Procedure

The Approximate Data Transfer (ADT) procedure compresses network’s weights
before they are transferred to the GPUs. In the context of DNNs training on
heterogeneous multi-GPU nodes, CPU multicore devices are typically responsible
for orchestrating the parallel run and updating DNN parameters. Once the process
of a batch starts, the updated parameters including the weights W are sent to each
GPU. If the set of parameters does not fit in GPUs’ main memory, they are sent
on several phases as the different GPUs need them. The different samples of each
batch are evenly distributed across all GPUs. Therefore, each GPU computes its
contribution to the gradient �W by processing its corresponding set of samples.
The CPU multicore device subsequently gathers all contributions to the gradient
and combines them to update the weights W ← W − μ( 1

n

∑n
i �Wi), where μ is

the learning rate.
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Data movement involving different GPU devices increases as the network
topology becomes more complex or the number of training samples grows, which
can saturate the system bandwidth and become a major performance bottleneck.
The proposed technique mitigates this issue by compressing network weights before
they are sent to the GPU devices. The AWP algorithm described in Sect. 14.3.1.3
determines, for all weights belonging to a particular network layer, the number
of bits to send. In this context, to efficiently compress and decompress network
weights, ADT uses of two procedures that constitute its fundamental building
blocks. These procedures are complementary and applied either before or after data
transfers to GPU devices.

• Bitpack compresses the weights discarding the less significant bits on the CPU
side;

• Bitunpack converts the weights back to the IEEE-754 32-bit Floating Point
format on the GPUs.

Figure 14.3 provides an example including a multicore CPU and two GPU
devices to describe the way both Bitpack and Bitunpack procedures operate. All
neural network parameters (weights and biases) are updated at the CPU level, which
is where the Bitpack procedure takes place. We do not apply the Bitpack procedure
to the network biases since we do not observe any significant performance benefit
from compressing them. Since each output neuron requires just one bias parameter,
the total number of them is significantly smaller than the total number of weights.
At the beginning of each SGD iteration the compressed weights are sent to each
GPU together with the biases and the corresponding training samples. Each GPU

CPU

GPU 2
Update

Variables

BitPack
Model

BitUnpack

Loss

Gradient
Contribu�on

Model

BitUnpack

Weights BiasesBiases

GPU 1
Gradient

Loss

Gradient
Contribu�on

Fig. 14.3 The ADt on a 2-GPU system. Variables include: weights which go through the ADt
procedure and biases which are sent directly to the GPUs to build the network model together with
the unpacked weights
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uncompresses the weights, builds the neural network model, and, finally, computes
its specific contribution to the gradient. These contributions are sent to the CPU,
which gathers all of them, computes the gradient and updates network parameters.

The Bitpack operation runs on CPU multicore devices. To boost Bitpack we use
OpenMP [69] and Single Instruction Multiple Data (SIMD) intrinsics. OpenMP is
used to run Bitpack on several threads. The use of SIMD instructions allows Bitpack
to operate at the SIMD register level, which avoids incurring large performance
penalties in the process of producing the reduced-size weights. We implement
two versions of Bitpack. One version uses Intel’s AVX2 [70] instruction set and
the other one relies on AltiVec [71]. Bitpack can be implemented on top of any
SIMD instruction set architecture supporting simple byte shuffling instructions at
the register level. The Bitunpack procedure runs on the GPUs.

It can be trivially parallelized since each weight is mapped to a single 32-
bit FP variable, which means that GPUs can process a large amount of weights
simultaneously and efficiently build the DNN model. In fact, Bitunpack incurs
negligible overhead as Sect. 14.3.1.9 shows.

ADT manipulates the internal representation of network weights by discarding
some bits. We use the standard 32-bit IEEE-754 single-precision Floating Point
format [72] (1 bit sign, 8 bits exponent and 23 bits mantissa) for all the computation
routines. The Bitpack method considers network weights as 32-bit words where
rounding to N bits means discarding the lowest 32−N bits.

Algorithm 4 High-level pseudo-code version of bitpack
1: W � Array of 32-bit Floating Point values containing weights
2: Pw � Array containing the reduced precision weights
3: RoundTo � Number of bytes to keep per weight
4: POffset := 0 � Indicates the current size (in bytes) of Pw
5: for weight in W do
6: Pw[POffset : POffset+RoundTo] := weight[0 : RoundTo] � Copy most significant

RoundTo bytes to Pw
7: POffset := POffset + RoundTo
8: end for

14.3.1.5 Bitpack

A high-level version of the Bitpack procedure in terms of pseudo-code is illustrated
by Algorithm 4. The algorithm requires a couple of arrays: the input array W , which
contains all the weights of a certain network layer, and an output array Pw, which
stores the compressed versions of these weights. The algorithm goes through the
entire W input array, per each weight, copies the most significant RoundT o bytes
to the output array Pw. Our Bitpack implementation manipulates data at the byte
granularity. We do not observe significant performance benefits when operating
at finer granularity in the experiments we run. The AWP algorithm described in
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Sect. 14.3.1.3 determines the data representation format per each network layer. The
number of bits of the chosen format is rounded to the nearest number of bytes that
retains all of its information (e.g., if AWP provides the value 14, RoundT o will
be set to 2 bytes). The Pw array is sent to the GPUs once the Bitpack procedure
finishes compressing network weights.

Deep networks usually contain tens or even hundreds of millions of weights [31,
47, 73], which makes any trivial implementation of Algorithm 4 not applicable
in practice. We mitigate compression costs by observing that Algorithm 4 is
trivially parallel since processing one weight just requires the RoundT o parameter.
Algorithm 5 shows how to parallelize the Bitpack procedure by using OpenMP
threads. Each thread takes care of a certain portion of the array storing network
weights.

Algorithm 5 Bitpack with OpenMP
1: W � Array of 32-bit Floating Point values containing weights
2: Pw � Array containing the reduced precision weights
3: RoundTo � Number of bytes to keep per weight
4: NumThreads � Number of OpenMP threads
5: #pragma omp parallel for
6: for weight in W do
7: POffset := Corresponding position in Pw
8: Pw[POffset : POffset+RoundTo] := weight[0 : RoundTo] � Copy the most

significant RoundTo bytes to Pw
9: end for

14.3.1.6 Single Instruction Multiple Data Bitpack

Since all weights within one layer are processed in the same way by the Bitpack
procedure, we can leverage Single Instruction Multiple Data (SIMD) instructions
to vectorize it. Most state-of-the-art architectures implement SIMD instruction set:
IBM’s AltiVec [71], Intel’s Advanced Vector Extensions (AVX) [70], and ARM’s
Neon [74]. In our experiments we use Intel’s AVX2 [70], which implements a
set of SIMD instructions operating over 256-bit registers, and IBM’s AltiVec
instruction set [71], which has SIMD instructions operating over 128-bit registers.
Section 14.3.1.8 describes the specific details of our evaluation considering both
x86 and POWER architectures.

Figure 14.4 shows the byte-level operations of SIMD-based Bitpack applied
to eight 32-bit weights and implemented with AVX2. The RoundTo parameter is
set to 3, which implies discarding the last 8 bits of each weight since the target
data representation is 24-bit long. First, eight 32-bit Floating Point weights are
loaded to a 256-bit register. In the next step, we use _mm256_shuffle_epi8 to shuffle
the least significant eight bits of each weight to the least significant bits of their
respective 128-bit lane (see the grey area of Fig. 14.4 Step 2) and pack the rest of
the bits together. Afterwards we use _mm256_permutevar8x32_epi32 to do the same



440 H. Anzt et al.

Step 1: Load 8 32-bit weights into a 256-bit AVX2 register.
(_mm256_loadu_si256)

037111519232731

Step 2: Pack weights on the 2 128-bit lanes. (_mm256_shuffle_epi8)

03691215192213 82 52

Step 3: Pack the 8 weights together by rearranging 32-bit across
128-lanes. (_mm256_permutevar8x32_epi32)

0761 31 01192213 82 52

Step 4: Store the most significant 24 bytes (192 bits) of data into the target
array. (_mm256_maskstore_epi32)

Fig. 14.4 Bitpack implemented with AVX2, RoundTo=3

operation across the two 128-bit lanes. Finally, we use _mm256_maskstore_epi32 to
just store the resulting 192 bits to the target array. Not all AVX2 instructions operate
over the entire 256-bit register. Instead, many of them conceive the register as two
128-bit lanes and operate on them separately. This is the reason why we cannot carry
out Steps 2 and 3 by using a single AVX2 instruction.

Algorithm 6 Bitpack with OpenMP + AVX2
1: W � Array of 32-bit Floating Point values containing weights
2: Pw � Array containing the reduced precision weights
3: RoundTo � Number of bytes to keep per weight
4: #pragma omp parallel for
5: for weights in W do
6: _mm256_loadu_si256 � Load 8 32-bit weights
7: _mm256_shuffle_epi8 � Compress at each 128-bit lane
8: _mm256_permutevar8x32_epi32 � Shuffle the compressed weights into the most

significant bits
9: _mm256_maskstore_epi32 � Store compressed weights to the target array

10: end for

Algorithm 6 summarizes our implementation of the Bitpack procedure with
AVX2. It exploits two-level parallelism: first, the input array of weights is distributed
across several threads. Second, within each thread, the compression of each eight
32-bit weights subset is performed at the register level by means of byte shuffling
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Algorithm 7 Bitunpack on GPU
1: Pw � Array containing compressed weights
2: W � Array of 32-bit Floating Point values containing weights
3: RoundTo � The number of bytes that are going to be kept
4: for UnitId := 0 . . . NumUnit do
5: Distribute W and Pw across all the computation units in the GPU
6: POffset := 0
7: for weight in W do
8: weight := Pw[POffset : POffset+RoundTo]* (4 - RoundTo) * 8
9: POffset := POffset + RoundTo

10: end for
11: end for

instructions. This sophisticated procedure exploiting parallelism at both thread and
SIMD register levels uses all the available hardware and avoids costly memory
accesses.

14.3.1.7 Bitunpack

Once data in reduced-size format reaches the target GPU, the Bitunpack procedure
immediately restores them into their original IEEE-754 32-bit Floating Point format.
We display pseudo-code describing this process in Algorithm 7. Bitunpack reads the
reduced-sized weights from array Pw and assigns additional bits to them. Bitunpack
gives zero values to these additional bits. We distribute the Bitunpack process across
the whole GPU, which enables an extremely parallel scheme exploiting GPUs
manycore architecture.

The Bitunpack routine is developed using CUDA [75]. Our code runs in parallel
on N CUDA threads and the CUDA runtime handles the dynamic mapping between
threads and the underlying GPU compute units. Since each thread involved in the
parallel run targets a different portion of the Pw array, our Bitunpack procedure
exposes a large amount of parallelism able to exploit the large number of compute
units integrated into high-end GPU devices.

14.3.1.8 Experimental Setup

The experimental setup considers a large image dataset, three state-of-the-art neural
network models, and two high-end platforms. The following sections describe all
these elements in detail.

Image Dataset We consider the ImageNet ILSVRC-2012 dataset [49]. The orig-
inal ImageNet dataset includes three sets of images of 1000 classes each: training
set (1.3 million images), validation set (50,000 images) and testing set (100,000
images). Considering 1000 classes makes the training process around 170 hours
long, which is prohibitively expensive for large experimental campaign considering
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different network models, batch sizes and hardware platforms. To reduce the
execution time of our experiments we consider a subset of 200 classes for both the
training and the validation dataset, which keeps the training time under manageable
margins. We refer to the 200 and 1000 classes datasets as ImageNet200 and
ImageNet1000, respectively. Since it is a common practice [47], we evaluate the
ability of a certain network in properly dealing with the ImageNet ILSVRC-2012
dataset in terms of the top-5 validation error computed over the validation set.

DNNModels and Training Parameters We apply the AWP algorithm along with
the ADT procedure on three state-of-the-art DNN models: a modified version of
Alexnet [31] with an extra fully connected layer of size 4096, the configuration A
of the VGG model [47] and the Resnet network [48]. All hidden layers are equipped
with a Rectified Linear Units (ReLU) [31]. The exact configurations of the three
neural networks are shown in Table 14.1. The Alexnet model is composed of 5

Table 14.1 Neural network configurations: the convolutional layer parameters are denoted as
“conv<receptive field size>-<number of channels>”. The ReLU activation function is not shown
for brevity. The building blocks of Resnet and the number of times they are applied are shown in a
single cell

Alexnet VGG Resnet-34

input(224x224 RGB image)

conv11-64 conv3-64 conv7-64

maxpool

conv5-192 conv3-128
conv3-64

conv3-64

x3

maxpool

conv3-384
conv3-256

conv3-256

conv3-128

conv3-128

x4

maxpool

conv3-384
conv3-512

conv3-512

conv3-256

conv3-256

x6

maxpool

conv3-256
conv3-512

conv3-512

conv3-512

conv3-512

x3

maxpool avgpool

FC-4096

FC-4096

FC-4096
FC-4096

FC-200

softmax
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convolutional layers and 4 fully connected ones, VGG contains 8 convolutional
layers and 3 fully connected ones, and Resnet is composed of 33 convolutional
layers and a single fully connected one.

We use momentum SGD [76] to guide the training process with momentum
set to 0.9. The training process is regularized by weight decay and the L2 penalty
multiplier is set to 5× 10−4. We apply a dropout regularization value of 0.5 to fully
connected layers. We initialize the weights using a zero-mean normal distribution
with variance 10−2. The biases are initialized to 0.1 for Alexnet and 0 for both VGG
and Resnet networks. For the Alexnet and VGG models we consider training batch
sizes of 64, 32, and 16. To train the largest network we consider, Resnet, we consider
batch sizes of 128, 64 and 32. The 16 batch size incurs in a prohibitively expensive
training process for Resnet and, therefore, we do not use it in our experimental
campaign.

For Alexnet we set the initial learning rate to 10−2 for the 64 batch size and
decrease it by factors of 2 and 4 for the 32 and 16 batch sizes, respectively. In
the case of VGG we set the initial learning rate to 10−2 for the 64, 32, and 16
batch sizes, as in the state-of-the-art [47]. In the case of Resnet the learning rate
is 10−2 for the batch size of 32 and 0.1 for the rest. For all network models we
apply exponential decay to the learning rate throughout the whole training process
in a way the learning rate decays every 30 batches by a factor of 0.16, as previous
work suggests [73]. For Resnet we obtain better results by adapting precision at the
Resnet building blocks level [48] instead of doing so in a per layer basis.

Implementation Our code is written in Python on top of Google Tensorflow [37].
Tensorflow is a data-flow and graph-based numerical library where the actual com-
putation is carried out according to a computational graph constructed beforehand.
The computational graph defines the order and the type of computations that are
going to take place. It supports NVIDIA’s NCCL library.

To enable the use of both Bitpack and Bitunpack routines, we integrate them
into Tensorflow using its C++ API. Tensorflow executes the two routines before
sending the weights from the CPU to the GPU and right after receiving the
weights on the GPU side, respectively. The Bitpack routine is implemented using
the OpenMP 4.0 programming model. There are two versions of this routine
using either Intel’s AVX2 or AltiVec instructions, as explained in Sect. 14.3.1.4.
Bitunpack is implemented using CUDA 8.0 and CUDA 10.0, respectively, on the
two platforms [75].

Hardware Platforms We conduct our experiments on two clusters featuring the
x86 and POWER architectures. The x86 machine is composed of two 8-core Intel
Xeon ®E5-2630 v3 (Haswell) at 2.4 GHz and a 20 MB L3 shared cache memory
each. It is also equipped with two Nvidia Tesla K80 accelerators, each of which
hosts two Tesla GK210 GPUs. It has 128 GB of main memory, distributed in 8
DIMMs of 16 GB DDR4 @ 2133 MHz. The 16-core CPU and the four GPUs are
connected via a PCIe 3.0 x8 8GT/s. The operating system is RedHat Linux 6.7.
Overall, the peak performance of the two 8-core sockets plus the four Tesla GK210
GPUs is 6.44 TFlop/s.
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The POWER machine is composed of two 20-core IBM POWER9 8335-GTG
at 3.00 GHz. It contains four NVIDIA Volta V100 GPUs. Each node has 512 GB
of main memory, distributed in 16 DIMMS of 32 GB @ 2666 MHz. The GPUs are
connected to the CPU devices via a NVIDIA NVLink 2.0 interconnection [77]. The
operating system is RedHat Linux 7.4. The peak performance of the two 20-core
sockets plus the four V100 GPUs is 28.85 TFlop/s.

14.3.1.9 Evaluation

In this section we evaluate the capacity of the AWP algorithm and the ADT
procedure to accelerate DNNs training. We show how our proposals are able to
accelerate the training phase of relevant DNN models without reducing the accuracy
of the network.

Methodology Our experimental campaign considers batch sizes of 64, 32, and 16
for the Alexnet and VGG models and 128, 64 and 32 for the Resnet network. For
each model and batch size, the baseline run uses the 32-bit Floating Point precision
for the whole training. The data representation formats we consider to transfer
weights from the CPU to the GPU are: 8-bit (1 bit for sign, 7 bits for exponent),
16-bit (1 bit for sign, 8 for exponent, 7 for mantissa), 24-bit (1 bit for sign, 8-bits for
exponent and 15 bits for mantissa) and 32-bits (1 bit for sign, 8 bits for exponent and
23 bits for mantissa). We train the network models with dynamic data representation
by applying the AWP algorithm along with the ADT procedure. We denote this
approach combining ADT and AWP as A2DTWP. For each DNN and batch size, we
select the data representation format that first reaches the 35, 25, and 15% accuracy
thresholds for Resnet, Alexnet, and VGG, respectively, and we denote this approach
as oracle. For the case of the oracle approach, data compression is done via ADT.
The closer A2DTWP is to oracle, the better is the AWP algorithm in identifying the
best data representation format.

During training we sample data in terms of elapse time and validation error every
4000 batches. The total number of training batches corresponding to the whole
ImageNet200 dataset are 16020, 8010, 4005, and 2002 for batch sizes 16, 32, 64,
and 128, respectively. The values of AWP parameters T , INT ERV AL, and N

are determined in the following way: In the case of T we monitor the execution
of several epochs until we observe a drop in the validation error. We then measure
the average change, considering all layers, of weights’ l2-norm during this short
monitoring period. The obtained values of T are −5 × 10−2, −2 × 10−3 and
−2 × 10−5 for Alexnet, VGG and Resnet, respectively. We set the INT ERV AL

parameter to 4000 for both AlexNet and VGG and 2000 for Resnet. These values
correspond to a single batch (for the ImageNet200 dataset and batch sizes 64 and
128) and avoid premature precision switching due to numerical fluctuations. We set
N to 8 since the smallest granularity of our approach is 1 byte. AWP initially applies
8-bit precision to all layers. We use ImageNet200 to generate Figs. 14.5, 14.6,
and 14.7. Figure 14.8 uses ImageNet1000.
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Fig. 14.5 Alexnet training considering 32 and 16 batch sizes. The two upper plots show the
top-5 validation error evolution of baseline, oracle and A2DTWP. The two bottom plots provide
information on the performance improvement of oracle and A2DTWP against baseline during the
training process. Experiments run on the x86 system

Evaluation on Alexnet The evaluation considering the Alexnet model on the x86
system is shown in Fig. 14.5, which plots detailed results considering batch sizes of
32 and 16, and Fig. 14.7, which shows the total execution time of the oracle and
A2DTWP policies normalized to the baseline for the 64, 32, and 16 batch sizes on
both the x86 and the POWER systems. The two top plots of Fig. 14.5 depict how
the validation error of the baseline, oracle, and A2DTWP policies evolves over time
for the 32 and the 16 batch sizes until the 25% accuracy is reached. The two bottom
plots provide information regarding the performance improvement of both oracle
and A2DTWP over the 32-bit baseline with regard to a certain validation error.
Such performance improvement is computed by looking at the time required by
the oracle and A2DTWP techniques to reach a certain validation error with respect
to the baseline.

It can be observed in the upper left-hand side plot of Fig. 14.5 how the oracle
and the A2DTWP approaches are 10.82 and 6.61% faster than the baseline,
respectively, to reach the 25% top-5 validation error when using a 32 batch size.
The upper right-hand side plot shows results considering a 16 batch size. The
improvements achieved by the oracle and A2DTWP approaches are 11.52 and
10.66%, respectively. This demonstrates the efficiency of the ADT procedure in
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Fig. 14.6 VGG training considering 64 and 32 batch sizes. The two upper plots show the top-
5 validation error evolution of baseline, oracle and A2DTWP. The two bottom figures provide
information on the performance improvement of oracle and A2DTWP against baseline during the
training process. Experiments run on the x86 system

compressing and decompressing the network weights without undermining the
performance benefits obtained from sending less data from the CPU device to the
GPU. It also demonstrates the capacity of AWP to quickly identify the best data
representation format per layer.

The two bottom plots of Fig. 14.5 provide information on performance improve-
ment of oracle and A2DTWP over the baseline during the training process. For
the 32 batch size, oracle reaches a peak improvement of 24.11% when the 90%
validation error is reached and steadily declines from that point although it keeps a
significant improvement of 10.82% over the baseline once the 25% top-5 validation
error is reached. A2DTWP falls in-between the baseline and the oracle and keeps its
improvement above 7.03% until it reaches the 27% top-5 validation error. Once
it reaches the 25% validation error A2DTWP is 6.51% faster than the baseline.
In conclusion, the A2DTWP policy is able to provide performance improvements
that are close to the ones achieved by the best possible accuracy. For the 16 batch
size, the performance benefits of the oracle policy reach a 41.64% peak at the
94% validation error point. The A2DTWP policy reaches its maximum performance
benefit, 34.21%, when the validation error is 97%. At the 25% validation error
point, the oracle and the A2DTWP policies reach 13.00 and 10.75% performance



14 Approximate Computing for Scientific Applications 447

Ale
xne

t-B
S16

Ale
xne

t-B
S32

Ale
xne

t-B
S64

VG
G-B

S16

VG
G-B

S32

VG
G-B

S64

Res
net

-BS
32

Res
net

-BS
64

Res
net

-BS
128

Ave
rag

e

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

E
la
p
se

T
im

e

Baseline A2DTWP Oracle

Ale
xne

t-B
S16

Ale
xne

t-B
S32

Ale
xne

t-B
S64

VG
G-B

S16

VG
G-B

S32

VG
G-B

S64

Res
net

-BS
32

Res
net

-BS
64

Res
net

-BS
128

Ave
rag

e

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

E
la
p
se

T
im

e

Baseline A2DTWP Oracle

Fig. 14.7 Normalized execution times of the A2DTWP and the oracle policies with respect to the
baseline. Results obtained on the x86 system appear in the upper plot while the evaluation on the
POWER system appears at the bottom

improvement, respectively. Overall, results considering the Alexnet network for
batch sizes 32 and 16 confirm that A2DTWP, which combines both the AWP
algorithm and the ADT procedure, successfully delivers very similar performance
benefits to the best possible accuracy.

Figure 14.7 shows the normalized execution time of the oracle and A2DTWP
policies with respect to the 32-bit FP baseline on the x86 and the POWER systems.
The top chart reports performance improvements of 10.75, 6.51, and 0.59% for
batch sizes 16, 32, and 64 in the case of Alexnet running on the x86 system. For
the 64 batch size, the marginal gains of A2DTWP over the baseline are due the poor
performance of the 8-bits format employed by A2DTWP at the beginning of the
training process. This format does not contribute to reduce the validation error for
the 64 batch case, which makes the A2DTWP policy to fall behind the baseline at
the very beginning of the training process. Although A2DTWP eventually increases
its accuracy and surpasses the baseline, it does not provide the same significant
performance gains for Alexnet as the ones observed for batch sizes 16 and 32.
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A2DTWP performance improvements on the POWER system in the case of
Alexnet are 18.61, 14.25, and 10.01% with respect to the baseline for batch sizes
16, 32, and 64, respectively. The POWER system achieves larger performance
improvements than x86 since the Bitpack procedure can be further parallelized over
the 40 cores of the POWER9 multicore chips than the 16 cores available in the
Haswell multicore devices of the x86 system. This mitigates the costs of weights’
compression and thus provides larger performance improvements.

Evaluation on VGG Figure 14.6 shows results for batch sizes 64 and 32 when
using the VGG architecture on the x86 system. The upper figures display the
temporal evolution of the validation error until the 15% top-5 validation error is
reached. Like in Alexnet, both the A2DTWP and the oracle policies outperform the
baseline. In the case of batch size 64, both oracle and A2DTWP display a similar
evolution in terms of validation error, which translates to very close performance
improvement over the baseline. They maintain an overall improvement of over
13.00% against the baseline during most of their training. The A2DTWP technique
outperforms the baseline by 12.88% when reaches 15% of top-5 validation error
while the oracle policy achieves the same improvement. For batch size 32 the final
improvement achieved by A2DTWP over the baseline is 5.02%. This improvement
is not as large as the one achieved for the 64 batch size since the AWP algorithm does
not identify a numerical precision able to beat the baseline until the 57% validation
error is reached, as it can be seen in the bottom right-hand side plot of Fig. 14.6.

Figure 14.7 shows the normalized execution time of A2DTWP and oracle with
respect to the baseline for VGG considering batch sizes of 16, 32 and 64 on the
x86 and POWER systems. When applied to the VGG model on the x86 system,
A2DTWP outperforms the 32-bit Floating Point baseline by 12.88, 5.02, and
7.31% for batch sizes 64, 32, and 16, respectively. Despite the already described
issues suffered by the A2DTWP technique when applied to the 32 batch size, this
approach achieves very remarkable performance improvements over the baseline in
all considered scenarios.

The performance improvements observed when trying VGG on the POWER
system are even higher. A2DTWP outperforms the baseline by 28.21, 20.19, and
11.13% when using the 16, 32, and 64 batch sizes, respectively. The performance
improvement achieved on the POWER system are larger than the ones observed for
x86 since the Bitpack procedure can be parallelized over 40 cores when running on
the POWER system. We observe the same behavior for Alexnet.

Evaluation on Resnet We display the normalized execution time of the A2DTWP
and the oracle policies when applied to the Resnet model using batch sizes of 128,
64 and 32 in Fig. 14.7. In the case of Resnet we do not show detailed plots describing
the evolution of the validation error during training because its behavior is very close
to some previously displayed scenarios like VGG. On the x86 system, A2DTWP
beats the 32-bit Floating Point baseline by 4.94, 4.39, and 3.11% for batch sizes of
128, 64, and 32, respectively, once a top-5 validation error of 30% is reached. The
relatively low performance improvement achieved in the case of 32 batch size is due
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to a late identification of a competitive numerical precision, as it happens in the case
of VGG and batch size 32.

The performance gains on the POWER system display a similar trend as the
ones achieved on x86. While they show the same low improvement for the 32 batch
size, 2.12%, A2DTWP achieves 6.92 and 11.54% performance gains for batch sizes
64 and 128, respectively. A2DTWP achieves the largest performance improvement
with respect to the 32-bit baseline when run on the POWER system due to the same
reasons as Alexnet and VGG.

Average Performance Improvement The average performance improvement of
A2DTWP over the baseline considering the Alexnet, VGG and Resnet models reach
6.18 and 11.91% on the x86 and the POWER systems, respectively. As we explain
in previous sections, A2DTWP obtains larger improvements on the POWER system
than on x86 since the ADT procedure can be further parallelized over the 40 cores
of the POWER9 multicore devices. In contrast, the two Haswell devices of the x86
system offer just 16 cores for ADT.

The combination of the AWP algorithm and the ADT procedure properly adapts
the precision of each network layer and compresses the corresponding weights with
a minimal overhead. The large performance improvement obtained while training
deep networks on two high-end systems demonstrate the effectiveness of A2DTWP.

Performance Profile of A2DT WP This section provides a detailed performance
profile describing the effects of applying A2DT WP when training the VGG
network model with batch size 64 on the x86 and POWER systems described in
Sect. 14.3.1.8. To highlight these effects we also show a performance profile of
applying 32-bit Floating Point format during training. The main kernels involved in
the training process and their corresponding average execution time in milliseconds
are shown in Tables 14.2 and 14.3. Each kernel can be invoked multiple times
by different network layers and it can be overlapped with other operations while
processing a batch. Tables 14.2 and 14.3 display for all kernels the average execution
time of their occurrences within a batch when run on the x96 and the POWER
systems, respectively (Table 14.4).

Results appearing in Table 14.2 show how time spent transferring data from the
CPU to the GPU accelerators when applying A2DT WP on the x86 system, 52.27
ms, is significantly smaller than the cost of performing the same operation when
using the 32-bit configuration, 153.93 ms. This constitutes a 2.94x execution time
reduction that compensates the cost of the operations involved in the ADT routine,
Bitpack and Bitunpack, and in the AWP algorithm, the l2-norm computation. On
POWER we observe a similar reduction of 3.20x in the time spent transferring data
from the CPU to the GPUs when applying A2DT WP . These reductions in terms of
CPU to GPU data transfer time are due to a close to 3x reduction in terms of weights
size enabled by A2DT WP . The average execution time of operations where the
A2DT WP technique plays no role remains very similar for the 32-bit Floating Point
baseline and A2DT WP in both systems, as expected. Tables 14.2 and 14.3 indicate
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Table 14.2 Performance
profiles of both the
A2DT WP and the 32-bit
floating point approaches
expressed in milliseconds on
the x86 system. We consider
the VGG network model with
batch size 64

32-bit FP A2DT WP

Data transfer CPU→GPU 153.93 52.27

Data transfer GPU→CPU 68.51 73.55

Convolution 128.72 126.13

Fully connected 33.51 34.17

Gradient update 54.39 52.86

AWP (l2-norm) N/A 3.88

ADT (Bitpack) N/A 19.71

ADT (Bitunpack) N/A 4.51

Table 14.3 Performance
profiles of both the
A2DT WP and the 32-bit
Floating Point approaches
expressed in milliseconds on
the POWER system. We
consider the VGG network
model with batch size 64

32-bit FP A2DT WP

Data transfer CPU→GPU 39.12 12.21

Data transfer GPU→CPU 17.34 17.87

Convolution 69.78 71.21

Fully connected 12.66 13.51

Gradient update 41.29 42.98

AWP (l2-norm) N/A 0.93

ADT (Bitpack) N/A 10.51

ADT (Bitunpack) N/A 1.11

that performance gains achieved by A2DT WP are due to data motion reductions,
which validates the usefulness of A2DT WP .

Tables 14.2 and 14.3 also display the overhead associated with AWP and ADT
in terms of milliseconds. The AWP algorithm spends most of its runtime computing
the l2-norm of the weights, which takes a total of 3.88 ms within a batch on the
x86 system. On POWER, the cost of computing the l2-norm of the weights is 0.93
ms. The other operations carried out by AWP have a negligible overhead. The two
fundamental procedures of ADT are the Bitpack and Bitunpack routines, which
take 19.71 and 4.51 ms to run within a single batch on the x86 system. For the case
of POWER, Bitpack and Bitunpack take 10.51 and 1.11 ms, respectively. Overall,
measurements displayed at Table 14.2 indicate that AWP and ADT constitute 1.05
and 6.60% of the total batch execution time, respectively, on x86. On the POWER
system, AWP and ADT constitute 0.54 and 6.82% of the total batch execution time
according to Table 14.3. Figures 14.5, 14.6, and 14.7 account for this overhead in
the results they display.

Experiments with ImageNet1000 We run experiments considering Ima-
geNet1000 to confirm they display the same trends as executions with ImageNet200.
Network parameters are the same as the ones described in Sect. 14.3.1.8. AWP

parameters are the ones described in Sect. 14.3.1.9. The experimental setup of
the evaluation considering ImageNet1000 is the same as the one we use for
ImageNet200. We consider batch sizes that produce the fastest 32-bit FP training
for each one of the network models: 64, 64, and 128 for Alexnet, VGG, and Resnet,
respectively.
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Fig. 14.8 Normalized execution time of A2DTWP with respect to baseline considering the
Imagenet1000 data set. Training for Alexnet, VGG, and Resnet considers up to 20, 8, and 16
epochs, respectively

Figure 14.8 displays results corresponding to the experimental campaign with
ImageNet1000 on the x86 system. In the x-axis we display different epoch counts
for each one of the three models: 4, 8, 12, 16, and 20 epochs for Alexnet; 2, 4,
6, and 8 for VGG; and 4, 8, 12, and 16 epochs for Resnet. The y-axis displays
the normalized elapsed time of A2DTWP with respect to the 32-bit Floating Point
baseline per each model and epoch count. For the case of Alexnet with batch size 64,
A2DTWP is slightly faster than the baseline as it displays a normalized execution
time of 0.995, 0.992, 0.992, 0.996, and 0.990 after 4, 8, 12, 16, and 20 epochs,
respectively. Figure 14.7 also reports small gains for the case of Alexnet with batch
size 64, which confirms that experiments with ImageNet1000 show very similar
trends as the evaluation with ImageNet200. When applying A2DTWP to VGG with
64 batch size, it displays a normalized execution time of 0.907, 0.920, 0.936, and
0.932 with respect to the baseline after running 2, 4, 6, and 8 training epochs,
respectively. For the Resnet example, we observe normalized execution times of
0.765, 0.770, 0.778, and 0.777 for A2DTWP after 4, 8, 12, and 16 training epochs,
respectively, which constitutes a significant performance improvement.

In terms of validation error, both A2DTWP and baseline display very similar top-
5 values at the end of each epoch. For example, for the case of VGG, the Floating
Point 32-bit baseline approach displays a validation error of 88.04% after 2 training
epochs while A2DTWP achieves a validation error of 89.97% for the same epoch
count, that is, an absolute difference of 1.93%. After 4, 6, and 8 training epochs
absolute distances of top-5 validation errors between A2DTWP and baseline are
3.09, 0.47, and 0.71%, respectively. Top-5 validation error keeps decreasing in an
analogous way for both baseline and A2DTWP as training goes over more epochs,
although A2DTWP is significantly faster. Our evaluation indicates that A2DTWP
can effectively accelerate training while achieving the same validation error as the
32-bit FP baseline when considering ImageNet1000.
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14.3.2 Constrained Architecture Search on HPC Systems for
IoT Deployment

Designing an economically viable artificial intelligence system has become a
formidable challenge in view of the increasing number of published methods, data,
models, newly available deep learning frameworks as well as the hype surrounding
special-purpose hardware accelerators as they become commercially available.

The availability of large-scale datasets with known ground truths [78–89] and
the widespread commercial availability of computational performance—usually
achieved with graphic-processing units (GPUs)—has driven the current growth of
interest in deep learning and the emergence of related new businesses. Smart homes
[90], smart grids [91], and smart cities [92] trigger a natural demand for the Internet
of Things (IoT), which are products designed to be low in cost and feature low
energy consumption and fast reaction times due to the inherent constraints given by
final applications that typically demand autonomy with long battery lifetimes or fast
real-time operation. Experts estimate that there will be some 30 billion IoT devices
in use by 2020 [93], many of which serve applications that benefit from artificial
intelligence deployment.

In this context, we propose an automatic way to design deep learning models
that satisfy user-defined constraints specifically tailored to match typical IoT
requirements, such as inference latency bounds. Additionally, our approach is
designed in a modular manner that allows future adaptations and specialization
for novel network topology extensions to different IoT devices and lower precision
contexts.

Section 14.3.2.1 presents low-level transprecision implementations and how
they are modularly integrated into PyTorch [94], a commonly used deep learning
framework. Section 14.3.2.2 demonstrates how transprecision computing delivers
trade-offs that outperform traditional models. Those models do not only outperform
a fixed baseline model, but they offer substantially improved quality over an
individual synthesized regular model which meets the same constraints in terms
of memory footprint.

14.3.2.1 Transprecision Emulation Framework with PyTorch

We base our transprecision studies on floatx [95], an efficient C++ header-only
library. As opposed to other software packages that implement variable precision,
such as the GNU MPFR [96] library,1 floatx is designed to focus on reduced data
types. Relying on back-end implementations that have a fixed upper precision turns
the library performant due to native support of arithmetic operations. We denote
with Tw,t the IEEE 754 [97] conform numeric representation of storage width

1 Available at http://www.mpfr.org/ (version 4.0.1, February 2018).

http://www.mpfr.org/
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1 + w + t . Floatx implements reduced precision floating point formats Tw,t that
are coherent with the IEEE 754 standard [97]. It defines the storage encoding,
special cases (Nan, Inf), and rounding behavior of arithmetic operations. A number
v = (−1)s ∗ 2e ∗ m is represented by a sign s, an exponent e and the significand
m. The exponent field width w limits the dynamic range, and the trailing significant
field width t determines the precision. Standard formats [97] half, float, and double
correspond to T5,10, T8,23, and T11,52 respectively. We used round to nearest with a
ties to even policy throughout. Casts are implicitly well-defined through IEEE 754
representation and rounding rules.

We integrate floatx modularly into PyTorch [94] to enable large-scale numerical
studies. We define a model as directed acyclic graph (DAG) as M = (V ,E)

where V is the set of nodes defining the kernels and E is the set of edges that
defines the flow of tensor data between kernels. Each vertex v ∈ V defines a
kernel operation that is characterized by a list of inputs, internal trainable weights,
and an output. Typical kernels are element-wise activation functions, elementary
operations (such as addition, subtraction, element-wise multiplication, . . .), dense
layers (resulting in matrix multiply between input and weights), and convolutional
layers, reshaping, shuffling, indexing, cropping, merging, and stacking operations
among more specialized kernels used in recent models. Next, we define the
quantization operator Qw,t (.) as element-wise casting values to a reduced precision
type Tw,t with w exponent bits and t mantissa bits implemented by floatx. The
quantization operator is applied to data in the natively stored format and the output
is returned in the native format, namely in the floating point 32-bit standard format.
This modular approach allows injecting quantization at arbitrary points in the model
to perform numerical studies.

Similar to reference work [98], we define the extrinsic approach of applying
quantization to full tensors at input and output level of operations. The extrinsic
approach covers studying transprecision to compress model weights and activations.
To that end, our experiments are based on utility source code that traverses any
computational graph and introduces a parameterized input quantization step for
each input of all kernels of the model. We decide to simultaneously study weight
and activation compression.

We use a predefined list of 30 well-established network architectures as presented
in Table 14.4. We study the accuracy of all models on CIFAR10 [82] depending on
the reduced number formats. We explore the global effect of the number format
where one single data type is applied to the entire model. We evaluated a full grid
search over 184 floatx configurations for all model topologies. Each configuration
corresponds to the reduced precision data type of format Tw,t consisting of w ∈
[1, 8] exponent bits and t ∈ [1, 23] mantissa bits. Globally applying the same
precision configuration enables us to explore the full solution space with a brute-
force approach. The knowledge of the full behavior allows to directly answer
optimization problems optimally. We evaluated all transprecision configurations,
on all models, on all 10,000 validation samples of the CIFAR10 [82] image
classification dataset.
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Table 14.4 Established reference network architectures

Family Variant Max batch size Instances

ResNet 18, 34, 50, 101, 152 1024–128 5

PreActResNet 18, 34, 50, 101, 152 1024–128 5

ResNeXt29 2x64d, 4x64d, 32x4d 256–64 3

DenseNet 121, 161, 169, 201 256–128 4

LeNet – 1024 1

GoogLeNet – 256 1

MobileNet – 1024 1

MobileNetv2 – 512 1

PNASNet Type A, Type B 1024, 512 2

DPN 26, 92 512, 128 2

SENet18 – 1024 1

VGG 11, 13, 16, 19 1024 4

Total 30

Optimal configurations are selected from the full grid search based on satisfying
the quality constraint q(Tw,t ) ≥ Q. We define the requested quality Q relative
to the obtained accuracy of the full precision model operating with IEEE 754
32-bit formats as Q := Qf loat − �Q. We measure quality as top1 accuracy
which corresponds to the total amount of correctly classified images out the 10,000
validation samples. Figure 14.9 shows the configurations of the optimal number
formats for the different quality constraints. All results are achieved with a medium-
sized exponent field in the range of 4 to 6-bit. The mantissa width ranges between 5
and 10-bit to achieve equivalent results as in the reference. That range is reduced
down to 1 to 6-bits if quality degenerations up to 5% points are allowed. The
strictest constraint of zero-quality-loss—that requires to classifying all out of the
10,000 samples as in the full precision case—is satisfied by reduced transprecision
formats. On average 12.4-bits are enough to obtain fully accurate results. The
weaker the constraints, the more aggressive reductions are achievable. The bit-width
can be further reduced to 8.8 and 8.1-bit if one, and up to 5% points of quality
reductions are allowed. The results demonstrate that findings generalize well among
the variation of network topologies.

14.3.2.2 Constrained Search and Performance Characterization for IoT

Compression, quantization, and pruning techniques reduce heavy computational
needs based on the inherent error resilience of deep neural networks [99]. Mobile
nets [100] or low-rank expansions [101] change the topology into layers that
require fewer weights and reduce workloads. Quantization studies the effect of
using reduced precision floating point or fixed-point formats [98, 102], whereas
compression attempts to reduce the binary footprint of activation and weight maps
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Fig. 14.9 Data type configurations for different quality constraints of the considered reference
models. Too low and too high exponent field widths are not required. Allowing for larger quality
margins against the reference allows to further reduce the mantissa field. (a) �Q = 0.000%. (b)
�Q < 0.01%. (c) �Q < 0.1%. (d) �Q < 1%. (e) �Q < 2%. (f) �Q < 5%
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[103]. Pruning approaches avoid computation by enforcing sparsity [104]. We
extensively use the developed integration of floatx into PyTorch as detailed in
Sect. 14.3.2.1, to assess data format-specific aspects of networks. The novelty of
our work is that we jointly evaluate network topologies in combination with reduced
precision.

Narrow-Space NAS as Alternative Automated architecture search has the poten-
tial to discover better models [105–112]. We recently proposed a narrow-space
search that takes constraints into account [113]. In contrast to solving a joint
optimization problem in one step, our proposed union of narrow-space searches
takes a modular approach that separates the search process of finding architectures
that strictly satisfy constraints from the training of candidate networks. That way,
we can analyze 10,000 architectures with no training cost and select only a small
subset of suitable candidates for training.

Our constraint neural network search (NAS) uses configurable random laws to
bias the synthesized model to focus around a property of interest. We skew the
probability density function of the number of parameters of generated networks
to be concentrated around a given constraint. We manually design random laws
by defining lower and upper bounds of uniform distributions to generate models
of interest. However, since this manual process requires a human-in-the-loop to
adjust structural design choices, we used the tournament selection variant of genetic
algorithms [114] that automatically adjusts the random laws of valid configurations.
Calibration data maps design goals for inference time on a low-cost IoT device to
analytical properties of the model, i.e., the number of parameters.

We used the constraint NAS to generate over 3000 regular models covering
the design space over multiple orders of magnitude. For each regular model, we
applied a global full grid search over all 184 configurations number formats Tw,t

with w ∈ [1, 8] and t ∈ [1, 23]. Quantization is applied to all model parameters and
all activation maps. Henceforth, the memory footprint is proportionally improved
relative to obtainable gains stemming from modifications of the number formats.
Our study allows for evaluating reduced precision accounting for opportunity
costs. Quantization effects caused by reduced number formats lower the accuracy
simultaneously with the memory footprint. Henceforth, for fairness, we take the
NAS generated, regular model with reduced memory footprint to compare regular
against transprecision models that meet the same strict constraint. That way, we
conclude that all reduced precision models outperform, with a wide margin, regular
models that fit into the same memory footprint.

Results and Trade-Offs To study transprecision computing, we ran full design-
space explorations on the well-established CIFAR-10 [82] classification task and
compared our results with those obtained with established reference models.
Figure 14.10 shows the tradeoff between model size and accuracy, including
manually and automatically generated results of the aggregate search spaces. The
Pareto optimal front follows a smooth curve that saturates towards the best accuracy
obtainable for large models. The number of parameters is logarithmic and the
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Fig. 14.10 Results of our architecture search compared with reference models. Each dot repre-
sents a model according to its size and the obtained accuracy on the CIFAR-10 validation set. Our
search finds results over five orders of magnitude and, in particular, finds various models that are
much smaller than out-of-the box models. In the restricted IoT domain, our search delivers models
that outperform the reference with a wide margin for fixed constraints

accuracy scales linearly. Even very small models with fewer than 1000 parameters
can achieve accuracies of greater than 45%. The accuracy increase per decade
of added parameters is on the order of 30, 15, 3, and < 2% points and then
decreases very quickly. This effect allows us to construct models having several
orders of magnitude fewer parameters. It also provides economically interesting
solutions for IoT devices that are powerful enough to process data in real-time.
We compare our results with three sources of reference models: (a) traditional
reference models, (b) ProbeNets [115] that are designed to be small and fast and
(c) models designed to run on the parallel ultra-low power (PULP) platform [116].
Traditional models include 30 reference topologies including variants of VGG
[117], ResNets [118], GoogleNet [119], MobileNets [120] dual-path nets (DPNs)
[121], and DenseNets [122], where most of them (28/30) exceed 1 M parameters.
ProbeNets were originally introduced to characterize the classification difficulty and
are considerably smaller by design [115]. They act as reference points for manually
designed networks that cover the relevant lower tail in terms of parameters. In
the IoT-relevant domain (<10 M parameters), our search outperforms all the listed
reference models.
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The top three fronts in Fig. 14.10 show the results of our precision analysis.
For each trained model, we evaluated the effect of running models with all
configurations of type Tw,t and plot the Pareto optimal front. We considered three
cases: (1) running all models with half-precision, (2) running all models with the
type T43 , which is the best choice for types that are 8 bits long, and (3) running
each model with its individual best tradeoff type Tw,t . We demonstrate empirically
that reduced precision pushes the Pareto optimal front. Under a given memory
constraint, accuracy improves by more than 7% points for half and by another 1%
points or more for the model individual format.

14.3.3 Conclusion

This section proposes A2DT WP , which reduces data movement across heteroge-
neous environments composed of several GPUs and multicore CPU devices in the
context of deep learning workloads. The A2DT WP framework is composed of the
AWP algorithm and the ADT procedure. AWP is able to dynamically define the
weights data representation format during training. AWP is effective without any
deterioration on the learning capacity of the neural network. To transform AWP
decisions into real performance gains, we introduce the ADT procedure, which
efficiently compresses network’s weights before sending them to the GPUs. This
procedure exploits both thread- and SIMD-level parallelism. By combining AWP
with ADT we are able to achieve a significant performance gain when training
network models such as Alexnet, VGG, or Resnet. Our experimental campaign
considers different batch sizes and two different multi-GPU high-end systems.

This section is the first in proposing a solution that relies on reduced numeric data
formats to mitigate the cost of sending DNNs weights to different hardware devices
during training. While our evaluation targets heterogeneous high-end systems
composed of several GPUs and CPU multicore devices, techniques presented by
this section are easily generalizable to any context involving several hardware accel-
erators exchanging large amounts of data. Taking into account the prevalence of
deep learning-specific accelerators in large production systems [39], the techniques
described by this section are applicable to a wide range of scenarios involving
different kinds of accelerators.

Trademarks

IBM is trademark of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be trade-
marks of IBM or other companies.



14 Approximate Computing for Scientific Applications 459

References

1. Golub, G., & Loan, C. V. (1996). Matrix computations, 3rd edn. Baltimore: The Johns
Hopkins University Press.

2. Demmel, J. W. (1997). Applied numerical linear algebra. Philadelphia: SIAM.
3. Dongarra, J. J., Duff, I. S., Sorensen, D. C., & van der Vorst, H. A. (1998). Numerical

linear algebra for high-performance computers. Philadelphia, PA: Society for Industrial and
Applied Mathematics.

4. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammarling,
S., Demmel, J., Bischof, C., & Sorensen, D. (1990). Lapack: a portable linear algebra library
for high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, Supercomputing’90, (Los Alamitos, CA, USA) (pp. 2–11). Piscataway: IEEE
Computer Society Press.

5. Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux,
M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., & Whaley, R. C.
(2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on
Mathematical Software, 28, 135–151 (2002)

6. Horowitz, M. (2014). Computing’s energy problem (and what we can do about it). In 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)
(pp. 10–14).

7. Ginkgo. (2019). https://ginkgo-project.github.io
8. Buluç, A., Williams, S., Oliker, L., & Demmel, J. (2011). Reduced-bandwidth multithreaded

algorithms for sparse matrix-vector multiplication. In 36th IEEE International Parallel &
Distributed Processing Symposium IPDPS (pp. 721–733).

9. Bell, N., & Garland, M. (2008). Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004.

10. I. S. Commitee. (2000). IEEE standard for modeling and simulation (m&s) high level
architecture (HLA) - framework and rules. IEEE Std. 1516–2000 (pp. i–22).

11. Saad, Y. (2003). Iterative methods for sparse linear systems, 2nd edn. Philadelphia: SIAM.
12. Wulf, W. A., & McKee, S. A. (1995). Hitting the memory wall: Implications of the obvious.

SIGARCH Computer Architecture News, 23, 20–24.
13. Molka, D., Hackenberg, D., Schöne, R., & Müller, M. S. (2010). Characterizing the

energy consumption of data transfers and arithmetic operations on x86–64 processors. In
International Green Computing Conference 2010, Chicago, IL, USA, 15–18 August 2010
(pp. 123–133).

14. Higham, N. J. (2002). Accuracy and stability of numerical algorithms, 2nd edn. Philadelphia:
SIAM.

15. Buttari, A., Dongarra, J. J., Langou, J., Langou, J., Luszczek, P., & Kurzak, J. (2007).
Mixed precision iterative refinement techniques for the solution of dense linear systems.
International Journal of High Performance Computing Applications, 21(4), 457–486.

16. Baboulin, M., Buttari, A., Dongarra, J. J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.,
& Tomov, S. (2009). Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications, 180(12), 2526–2533.

17. Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., & Quintana-Ortí, E. S. (2008). Solving
dense linear systems on graphics processors. In E. Luque, T. Margalef, & D. Benítez (Eds.),
Euro-Par 2008 – Parallel Processing (pp. 739–748). Berlin: Springer.

18. Strzodka, R., & Göddeke, D. (2006). Pipelined mixed precision algorithms on FPGAs for fast
and accurate PDE solvers from low precision components. In IEEE Proceedings on Field–
Programmable Custom Computing Machines (FCCM 2006). Piscataway: IEEE Computer
Society Press.

19. Anzt, H., Heuveline, V., & Rocker, B. (2010). Mixed precision error correction methods for
linear systems Convergence analysis based on Krylov subspace methods. In K. Jonasson (Ed.)
PARA 2010, Part II, LNCS 7134 (pp. 237–248). Heidelberg: Springer.

https://ginkgo-project.github.io


460 H. Anzt et al.

20. Haidar, A., Tomov, S., Dongarra, J., & Higham, N. J. (2018). Harnessing GPU tensor cores for
fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage, and
Analysis, SC’18, (Piscataway, NJ, USA) (pp. 47:1–47:11). Piscataway: IEEE Press.

21. Anzt, H., Dongarra, J., & Quintana-Ortí, E. S. (2015). Adaptive precision solvers for
sparse linear systems. In Proceedings of the 3rd International Workshop on Energy Efficient
Supercomputing, E2SC’15, (New York, NY, USA) (pp. 2:1–2:10). New York: ACM.

22. Grützmacher, T., & Anzt, H. (2019). A modular precision format for decoupling arithmetic
format and storage format. In G. Mencagli, D. B. Heras, V. Cardellini, E. Casalicchio,
E. Jeannot, F. Wolf, A. Salis, C. Schifanella, R. R. Manumachu, L. Ricci, M. Beccuti,
L. Antonelli, J. D. Garcia Sanchez, & S. L. Scott (Eds.), Euro-Par 2018: Parallel Processing
Workshops (pp. 434–443). Cham: Springer.

23. Grützmacher, T., Cojean, T., Flegar, G., Göbel, F., & Anzt, H. (2019). A customized precision
format based on mantissa segmentation for accelerating sparse linear algebra. Concurrency
and Computation: Practice and Experience, 32(2), e5418. e5418 cpe.5418.

24. Anzt, H., Flegar, G., Grützmacher, T., & Quintana-Ortí, E. S. (2019). Toward a modular
precision ecosystem for high-performance computing. The International Journal of High
Performance Computing Applications, 33(6), 1069–1078.

25. Grützmacher, T., Anzt, H., Scheidegger, F., & Quintana-Ortí, E. S. (2018). High-performance
GPU implementation of PageRank with reduced precision based on mantissa segmentation.
In 2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and Algorithms
(IA3) (pp. 61–68).

26. Anzt, H., Dongarra, J., Flegar, G., Higham, N. J., & Quintana-Ortí, E. S. (2019). Adaptive pre-
cision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency
and Computation: Practice and Experience, 31(6), 1–12.

27. Tadano, H., & Sakurai, T. (2008). On single precision preconditioners for krylov subspace
iterative methods. In I. Lirkov, S. Margenov, & J. Waśniewski (Eds.), Large-Scale Scientific
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Chapter 15
Approximations in Deep Learning

Etienne Dupuis, Silviu Filip, Olivier Sentieys, David Novo, Ian O’Connor,
and Alberto Bosio

15.1 Introduction

Deep Neural Networks (DNNs) [1], and in particular, Convolutional Neural Net-
works (CNNs), are currently one of the most intensively and widely used predictive
models in the field of machine learning. CNNs have been shown to give very good
results for many complex tasks such as object recognition in images/videos, drug
discovery, natural language processing, autonomous driving, and playing complex
games [2–5].

Despite these benefits, the computational workload involved in CNNs is often
out of reach for low-power embedded devices and/or is still very costly when ran
on datacenter-style Component-Off-The-Shelf (COTS) hardware platforms. To give
an example, the amazing performance of AlphaGo [5] required 4 to 6 weeks of
training executed on 2000 CPUs and 250 GPUs for a total of about 600 kW of power
consumption (while the human brain of a Go player requires about 20 W), which
translates to over 2 TJ of energy consumption. Thus, a lot of research effort from
both industrials and academics has been concentrated on defining/designing custom
hardware platforms supporting these types of algorithms, to improve performance
and/or energy efficiency [6–8].
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CNNs show inherent resilience to insignificant errors due to their iterative
nature and the underlying learning process. Therefore, an intrinsic tolerance to
inexact computation is clear, and using the AxC paradigm to improve power and
speed characteristics is, therefore, relevant [9]. Indeed, CNNs mesh well with
AxC techniques, especially with fixed-point arithmetic or low-precision floating-
point implementations (it has been shown that even binary or ternary weights and
arithmetic can be used), which moreover expose large fine-grain parallelism. They
are therefore ideally suited for hardware acceleration using Field Programmable
Gate Arrays (FPGAs) and/or Application-Specific Integrated Circuit (ASIC) imple-
mentations, as acknowledged by the large body of work on this topic. Although
accelerators have demonstrated significant performance/energy gains compared to
GPU/CPU implementations, they still require further efficiency to address future
performance requirements [10].

The goal of this chapter is to present an up-to-date view of the state-of-the-
art solutions applying AxC techniques to CNNs for both inference and training
phases. It is structured as follows: Sect. 15.2 presents the background & context of
using DNNs, the main focus of the chapter. Section 15.3 overviews AxC methods
found in the literature that improve deep neural network inference performance.
Approximation techniques for improving the training part of neural network design,
which accounts for the majority of computing time and resources, are presented
in Sect. 15.4. Section 15.5 discusses DNN accelerator research and the dedicated
approximation methods, whereas Sect. 15.6 presents incumbent directions for AxC
research in DL. Section 15.7 concludes the chapter.

15.2 Background

Artificial intelligence (AI) is a broad field of study focused on replicating or
simulating the intelligence of living beings (human or not). It encompasses various
methods and techniques. These range from design space exploration methods like
ant colony optimization that focuses on finding increasingly efficient paths through
simple random exploration and reward-based reinforcement, to more complex
approaches such as genetic algorithms that evolve a population towards a hopefully
optimized solution by iteratively picking the best candidates and mutating them.
In the last couple of decades, Machine Learning (ML) algorithms have gained
the most traction, producing effective predictions/answers based on some trained
behavior/model.

15.2.1 Context: From AI to DNNs

The ML subset of AI is focused on algorithms able to improve themselves through
seeing already labeled input-output sample pairs and constructing models that



15 Approximations in Deep Learning 469

attempt to match the expected outputs to this given data. An example is email
filtering, deciding whether or not an email is spam based on its provenance,
recipients, object, and other (meta)data. Generally, a model for this task is trained
(i.e., it learns) on a set of already labeled set of spam email data (the training data
set) until it reaches the desired behavior (the expected response) with sufficient
accuracy. It is then used with unseen data in the hope that it will still prove to be
accurate (i.e., generalize well). Evaluation of this generalization ability is frequently
done on a so-called test or validation data set, different from the training data.

While email filtering can seem like a simple task, there are a plethora of use
cases of varying difficulty where ML modeling is used, ranging from security
(e.g., in fraud detection) and business data analysis (e.g., churn rate measurement)
to computer vision, self-driving technologies, and other complex tasks. The model
inputs can be both raw data or high-level features (for instance, statistical aggregates
of multiple input data samples) or other complex features that are task-dependent
(e.g., the presence of a horizontal line in an image). It is the task of the model to
interpret this data and construct useful responses. Among the many tasks suitable
for ML one can mention classification, regression, and semantic segmentation.

Traditionally, high-level features needed by a model were derived following
a feature extraction step that was often performed by a human, requiring expert
knowledge of relevant information. More recently, however, through the rise of
DNNs in the ML ecosystem of approaches, this step can be performed automatically,
the model is trained to discover relevant features, thus avoiding both the need for
human expertise and the induced biases that might result from this.

Artificial neural networks are based on the notion that the computation performed
by a neuron is centered around a weighted sum of its input values. This is shown
in Fig. 15.1a, where multiple inputs {xk}nk=1 are summed (scaled with weights
{wki}nk=1) together with an optional bias term bi . The neuron output yi is determined
by the application of a nonlinear activation function f to this weighted sum. There
are many activation functions used in practice, but among the most common are
f (x) = ReLU(x) := max{0, x} and f (x) = tanh(x) := (ex − e−x)/(ex + e−x).

Such neurons are grouped together to form layers. The present chapter is focused
on feedforward networks, where the outputs of a layer are then used as inputs for
subsequent layers.1 This is exemplified in Fig. 15.1b. The inputs and outputs of a
layer are also known as input and output activations, respectively. When discussing
visual data, they are also known as input and output feature maps. The first and last
layer in the network are generally known as the input and output layer, respectively.
In between them, there is a number of intermediate layers, called hidden layers. The
main characteristic of DL and DNNs is that the number of hidden layers can grow
quite large, from two layers up to even one thousand.

1 There are classes of recurrent neural networks that allow outputs of a layer to be connected to
inputs of previous layers. While they are not discussed here any further, they are frequently used
to process sequential data (e.g., speech, text).
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Fig. 15.1 A basic DNN example and the associated terminology (adapted from [11, Figure 1.3]).
(a) Artificial neuron. (b) Simple neural network example

The process of using an artificial neural network with a set of given parameters
(e.g., weights and bias terms) is called inference. For the neural network to be useful,
its inference output has to match as closely as possible an expected/ideal output.
This is measured through a loss function � that compares how far the resulting output
on (subsets of) the training and test data sets is to the expected output. Thus, the goal
of training a neural network is to find/learn a set of parameters that minimizes the
average loss over a large training set.

To train a network, its weights (wij ) are usually updated using a form of
Stochastic Gradient Descent (SGD) iterative optimization process. This means that
weight is updated by a scaled version of the partial derivative of the loss function �

with respect to the weight. In the most basic form, at iteration t , the weight update
formula is given by:

wt
ij = wt−1

ij − α
∂�

∂wt−1
ij

, (15.1)

where α is called the learning rate.2 The partial derivatives of � can be computed
efficiently through a process called backpropagation [12]. It is effectively an
application of the chain rule from calculus, and it works by passing values backward
through the network to compute how � is affected by each weight. At each layer, the

2 The deep learning optimization literature describes many ways how to perform the parameter
updates and how to choose the learning rate.
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Fig. 15.2 A backpropagation example through a neural network (adapted from [11, Figure 1.6]).
(a) Compute the gradient of the loss relative to the layer inputs ( ∂�

∂xi
=∑

j wij
∂�
∂yj

). (b) Compute

the gradient of the loss relative to the weights ( ∂�
∂wij

= ∂�
∂yj

xi )

procedure is twofold and is exemplified in Fig. 15.2. To backpropagate through a
layer: (a) compute the gradient of the loss with respect to the weights, ∂�/∂wij ,
from the layer inputs (i.e., the forward activations xi) and the gradients of the loss
relative to the layer outputs, ∂�/∂yj ; and (b) compute the gradient of the loss relative
to the layer inputs, ∂�/∂xi , from the layer weights, wij , and the gradients of the loss
relative to the layer outputs, ∂�/∂yj .

Computing the gradients of the loss function � over the entire dataset is generally
much too complicated in practice, which is why the loss is usually taken only on a
(small) subset, called a mini-batch, of the training data. The use of batches allows
taking advantage of single instruction multiple data (SIMD)-like parallelism on
modern GPUs while keeping the complexity of gradient computation manageable.
A complete iteration of the training process is called an epoch and requires passing
through all of the mini-batches, applying (15.1) for each one of the corresponding
average losses �. Training is carried out for several epochs until convergence to an
appropriate solution is reached.

Both inference and training amount in most part to the same type of computations
(i.e., matrix/vector additions and multiplications). There are important differences,
however. For one, as the previous paragraph suggests, training is much more
expensive, since apart from passing through the entire training data multiple
times, it also requires that intermediate outputs and partial derivatives be stored
when performing backpropagation. Secondly, due to the gradient update rule, the
precision requirements for training are generally higher than for inference, thus also
affecting performance. The effect is that the inference quantization techniques that
will be discussed in this chapter are not usually directly applicable to training as
well.
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15.2.2 Deep Learning Landscape

While artificial neural networks have a long history dating as far back as the
1940s, practical applications using digital neurons did not arrive until the late
1980s, when the LeNet-5 [13, 14] network architecture was used for hand-written
digit recognition. It is only in the early 2010s, however, with the synergy of
three major factors, that artificial neural network models have started to take off,
under the names deep learning and deep neural networks. These factors are: (1)
the availability of large and labeled datasets that are needed to train complex
models; (2) the advance in computational power of units such as GPUs that allow
DNN training to be executed in reasonable time (days or weeks instead of years);
(3) development of new algorithmic techniques (e.g., the Adam gradient descent
optimization algorithm [15]) that enable improved accuracy at a larger scale.

The importance of large and comprehensive datasets cannot be overstated. If
not careful, a small training dataset used in conjunction with a complex DNN can
easily lead to overfitting (i.e., the model matches the training data extremely well
but does not generalize to unseen data accurately). For computer vision, arguably
the most popular dataset in recent years has been ImageNet [16], a collection of one
million high-resolution images that are generally associated with the ILSVRC [17]
image recognition contest that uses 1000 labeled categories. Smaller datasets such
as MNIST [18] and CIFAR [19] have also been used extensively in DNN research
for inference and training acceleration.

Apart from the data, the choice of model (network architecture and associated
parameters) is also crucial in the success of a DL approach. In what follows
(Sect. 15.2.3), our focus is on CNN models suited to process visual data.

The current surge of interest in DL is also facilitated by the availability of tools
and frameworks that allow for the easy prototyping and design of DNN models.
Prominent examples include Tensorflow [20] and Pytorch [21]. The open-source
nature of these alternatives offers the possibility to design extensions that can be
leveraged throughout a model’s life-cycle (from initial prototype to deployment).

Depending on the intended use of DNN models, they can be found in different
environments with various computing power and energy consumption characteris-
tics. At one end of the spectrum there are edge devices characterized by low-power
and limited computational capabilities, while at the other end power-hungry cloud
devices with a high-performance computing profile are dominant.

15.2.3 Convolutional Neural Networks

The most basic layer in a feedforward network is the Fully Connected (FC) or dense
layer. It is characterized by the fact that each neuron in the layer is connected to
all the neurons in the previous layer. FC layers are parameterized by the number of
neurons they contain. An example is shown in Fig. 15.1, which only has FC layers.
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Fig. 15.3 Expanded view of a typical 2D CONV layer inside a CNN

While the expressive power of networks using only FC layers is impressive,
it comes at the cost of a very large number of connections (and hence network
parameters), making them hard to train and easily prone to overfitting. This is why
other types of structured layers, with fewer parameters, but which are more efficient
for certain tasks, have been explored. In the case of visual data, this has led to the
development of CNNs, a staple of DL today.

The main elements that have led to the introduction of CNNs are Convolutional
(CONV) layers, composed of high-dimensional convolutions that allow extraction
of shift-invariant features from the input. An example is Fig. 15.3, showing a
traditional 2D CONV layer. In this context, the input activation is structured as a
3D set of input feature maps, with input width (Win), input height (Hin) and input
channel (Cin) dimensions. The weights of the layer are structured as a 3D filter, with
kernel width (Wker), kernel height (Hker) and input channel (Cin) dimensions. For
each input channel, the corresponding input feature map is transformed through a
2D convolution with the appropriate kernel in the filter. The convolution results at
each point are summed across all the input channels to generate the output partial
sums. The results of these partial sums comprise one output feature map with output
width (Wout) and output height (Hout) dimensions. Several 2D filters can be stacked
together to generate additional output channels, denoted with Cout in this case.

Depending on the size of 2D kernels and their count, the output feature maps
can be large and deep, motivating the use of pooling (i.e., subsampling) layers that
reduce the scale of feature maps. Pooling is similar to convolution, with a kernel
sliding over the input matrix, but instead of performing matrix multiplication, an
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Fig. 15.4 A visual representation of LeNet-5 (adapted from [14, Fig. 2]), an early example of a
CNN that promoted the subsequent development of Deep Learning. It contains the main layers that
are usually found in CNNs: convolutional, pooling, and fully connected

aggregation operation function is applied. The most common such operations are
taking the maximum element or the average. A visual example of a simple CNN
mixing in all these layers is given in Fig. 15.4.

Another frequently used layer is Batch Normalization [22] (BN). It contains two
trainable parameters that are used to re-center and re-scale the distribution of the
values of a feature map, to improve training performance. While there are also more
recent and complicated layers, such as depth-wise convolutions [23] or Inception
modules [24], their specifics are not important for the rest of this chapter.

15.2.4 Performance and Energy Profiles of Recent Models

To gauge the complexity of current DNN models, there is a need for a set of metrics
that allow for a fair comparison between models. In this study, the metrics used are
(1) the model accuracy over a validation dataset, (2) the total number of weights in
the model, and (3) the number of FLOating-Point operations (FLOPs) necessary to
carry out one complete inference. Accuracy is measured in terms of the frequently
used top-1 and top-5 percentages (i.e., the proportion of correct predictions on the
labeled validation dataset and the probability that the correct result is among the
top five predictions). The number of weights allows estimating the total memory
storage requirements for the model, whereas the FLOP count hints at the required
computing power needed to execute the model at a certain frequency.

Table 15.1 shows a comparison using these metrics on some popular DNNs for
image classification on the ImageNet dataset (adapted from [29]). For a long time,
the only metric of interest was the network accuracy, resulting in models that were
costly to train and operate. The cost of training and inference became so large at
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Table 15.1 Recent evolution of DNNs for image classification on the ImageNet dataset

Model name AlexNet [25]
GoogLeNet
[24]

ResNet-
50 [26]

MobileNet
V2 [27]

EfficientNet
B1 [28]

Year 2012 2014 2016 2018 2019

Top-1 accuracy 57.2% 69.8% 76.2% 72.0% 79.1%

Top-5 accuracy 84.7% 93.3% 92.97% 90.6% 94.4%

Number of weights 62M 6.4M 26M 3.5M 7.8M

FLOPs 1.5B 2B 4.1B 0.3B 0.7B

Table 15.2 Estimated cost of training recent NLP models in terms of power, time, and CO2
emissions.

Model Hardware Power (W) Hours CO2e (lbs)

Transformerbase [31] P100×8 1415.78 12 26

Transformerbig [31] P100×8 1515.43 84 192

ELMo [32] P100×3 517.66 336 262

BERTbase [33] V100×64 12041.51 79 1438

BERTbase [33] TPUv2×64 – 96 –

NAS [34] P100×8 1515.43 274.12 626.155

NAS [34] TPUv2×1 – 32.623 –

GTP-2 [35] TPUv2×32 – 168 –

one point that there is now an open engineering consortium called MLCommons3

that benchmarks DL models and fosters innovation in the field. Thus, there is an
increasing interest for faster, lighter, and overall more efficient models that are
compatible with edge device resource constraints and operate more efficiently in the
cloud. The last two columns in Table 15.1 reflect this, with newer network models
achieving competitive accuracy with less memory and a smaller FLOP count.

Some examples of the scale at which modern DNN training costs stand for recent
NLP models are given in Table 15.2 (adapted from [30, Table 3]) and showcase the
significant resources needed for training the state-of-the-art models.

The need for efficient DL computations coupled with the resilience of DNNs to
approximation (due to the stochastic nature of training methods and a high level of
inner redundancy [36]) has paved the way for the development of a large number of
approximation methods, a part of which are described in the rest of this chapter.

15.3 Approximation for Inference

DNN inference is a very computation-intensive task, having large memory and
computation power requirements. For example, inference on a single image using
the original ResNet34 [37] model requires 3.6 billion FLOPs and storing 22

3 https://mlcommons.org/en/.

https://mlcommons.org/en/
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Fig. 15.5 Different types of
approximation techniques for
DNN inference

million weights plus temporary feature maps. While the execution of such tasks
has moved from traditional CPUs having a latency-oriented design to more parallel
hardware like GPUs or even custom ASICs/FPGAs, inference is still a costly
task, and thus susceptible to benefit from performance improvements when using
approximate computing. Consequently, this section describes AxC methods found
in the literature that improve deep neural network inference performance.

One can distinguish three different classes of methods (see Fig. 15.5), usable
in isolation or combined, to approximate DNN inference. The first one, structure
refinement transformations, includes the methods that modify the computational
structure (i.e., the network layers and their parameters) of the input model. Some
notable examples include knowledge distillation [38, 39] which uses the model as a
teacher to help train smaller students models or compact architectures [23, 40] where
layers are transformed into more hardware friendly ones. The second class, data-
oriented refinement transformations, focuses on optimizing the finite precision
data representation(s) of the model while maintaining the initial computational
structure intact. Notable examples are pruning [41, 42] (i.e., setting less important
parameters to zero to increase sparsity) and quantization [43, 44] (i.e., changing the
types of the parameters and intermediate results to more efficient representations).
While network structure refinement substantially changes the network structure,
data type refinement does not, giving the possibility to emulate the inference of
the approximated network in the original structure to measure its accuracy loss.

The third class of approaches relies on operator refinement transformations
which modify the arithmetic operators used inside the CNN implementation
(e.g., addition and multiplication) to further improve energy efficiency. Such
methods are not discussed any further here since they mainly depend on the
hardware implementation of the CNN. More details on the approximate operators
that fall in this class can be found in Chaps. 3 and 4.

In the rest of this section, data-oriented refinement methods are covered. Specif-
ically, Sect. 15.3.1 gives an overview of various quantization methods, Sect. 15.3.2
discusses weight sharing approaches, whereas pruning is analyzed in Sect. 15.3.3.
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15.3.1 Quantization

Full precision DNNs usually rely on 32-bit floating-point values for representing
parameters. For standard backpropagation-based training, using high precision
weights makes sense since the gradient update rule generally modifies these
weights by a small factor of the corresponding gradient terms. While full pre-
cision float32 DNNs offer excellent result quality, they can generally be
compressed and accelerated using lower precision arithmetic with minimal or no
loss in the accuracy. Methods for addressing data quantization in DNNs are varied,
ranging from simple binary and ternary networks to larger fixed-point and custom
floating-point formats. This section gives an overview of the main ones.

Analysis of existing approaches relies on various aspects, such as (1) what parts
of the network are being quantized, (2) homogeneity/heterogeneity of the number
formats used inside the layers, (3) the type of representations being used, and (4)
how and when is quantization performed (during or after the network has been
trained).

What to Quantize The most obvious quantization targets are the network param-
eters (e.g., weights and biases). Reducing the number of bits used to represent
them primarily brings a memory footprint reduction for on-device storage of the
network. Latency improvements are potentially achievable with binary, ternary, and
bit-shift (i.e., power of two values) quantized parameters [45–47]. More generally,
if faster execution times are to be obtained, activation function inputs and outputs
also need to be quantized. An example is [48], which proposes an efficient 8-bit
integer quantization scheme for both weights and activations. Additionally, one can
quantize the weight and activation gradients used during backpropagation (see, for
instance, [43, 49]) to accelerate training, an aspect discussed in Sect. 15.4.

When and How to Perform Quantization There are two established ways
quantization can be performed for efficient inference and a third, emerging method.

The first among the established approaches is Quantization-Aware Training
(QAT). The idea is to use a network parameter update procedure for several epochs
(starting from scratch or after a baseline float32 training method is run) to
adjust parameters in the quantization format(s) such that generalization accuracy
is hopefully kept the same or is at worst minimally degraded. Much research has
focused on such fine-tuning methods (see, for instance, [43, 44, 47, 48, 50, 51]),
mainly because they achieve good results, especially for extremely low-precision
formats (i.e., binary and ternary encodings).

While training is a powerful approach to compensate for a model’s accuracy
drop due to quantization, it is not always applicable in real-world scenarios (e.g.,
for online learning) since it is costly, time-consuming and generally requires a full-
size training dataset. This can be a problem when the data is proprietary, privacy,
and regulatory issues are in effect (e.g., medical data that cannot be uploaded to
the cloud for remote processing), or when using pre-trained off-the-shelf models
for which data is no longer available. As such, there has been a push for faster Tost-
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Training Quantization (PTQ) methods without any fine-tuning. It has been observed
that for down to 8-bit word lengths, PTQ results are close to full precision ones for
several models [52] (e.g., AlexNet, VGG, and ResNet), but it becomes significantly
more difficult to maintain accuracy when targeting lower precision formats. Work
focused on PQT includes [52–56].

A possible issue with QAT and PQT methods is that both generate networks that
are sensitive to how quantization is carried out (e.g., the target word length). As
such, there has been recent work [57, 58] on methods for robust quantization that
provide intrinsic tolerance of the model to a large family of quantization formats
and policies by directly specifying it in the training loss function. Such approaches
are interesting for battery-powered edge devices, where depending on the state of
charge, a network model capable of operating effectively at various quantization
levels would be highly beneficial.

Granularity of Applying a Quantization Format Initially, quantization
approaches were homogeneous, with one word length being used for the entire
network. This is the case for early works on binary [59] and ternary [46] weight
networks, for instance. Such approaches can suffer from significant accuracy loss
since different layers tend to have different sensitivities to quantization levels/noise.
Subsequent work has focused more on a heterogeneous, layer-wise optimization of
the quantization format [53, 60–64].

There have been various metrics proposed to estimate the overall effect of
a fixed-point quantization format inside a layer on the overall accuracy of the
network. One example is [65], which uses a Signal to Quantization Noise Ratio
(SQNR) to empirically measure how suitable a fixed-point format is. The approach
in [60] generalizes the work from [65] using an adversarial noise to formulate the
quantization error. Another adaptive quantization method is [66], which uses the
loss function gradient to determine an error margin for each parameter such as to not
degrade accuracy and assign a precision accordingly. Recent work [63, 64, 67] also
proposes using second-order information (Hessian-based) to gauge the sensitivity
of each layer. From an Information Theory perspective, [68] uses the entropy
of weights and activations as a saliency indicator to set fixed-point quantization
levels at each layer. Another popular statistical sensitivity measure is based on the
Kullback-Leibler divergence, which is used to measure layer sensitivity in [53, 62]
and is a core component for fine-tuning low-precision integer weights in NVIDIA’s
TensorRT inference acceleration library.

On a different granularity level, [69] proposes looking at the distribution of
weight values over the entire network to aggressively quantize weights in dense
regions and more gently those in sparse ones. Compared to float32 baselines,
such an approach can achieve under 1% accuracy loss for large networks (ResNet-
152 & DenseNet-101) with a 4-bit format in the dense areas and a 16 bit one for the
sparse regions (< 1% of parameters).

Quantization Formats There have been various representations used to quantize
deep neural networks. At the extreme, there are Binary Neural Networks (BNNs),
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where weights and activations are stored with one of two possible values. If a
{0, 1} (or equivalently a {−1,+1}) encoding is used, then multiplications can
be implemented efficiently using XNOR gates, making BNNs compelling on
FPGA and ASIC targets, but also for emerging computing paradigms such as
neuromorphic [70] or in-memory computing [71].

Among the first investigations of binary networks is BinaryConnect [59], which
maintains a full precision copy of the weights to be updated during backpropagation,
but are binarized for inference. Activations are kept in full precision, meaning full
precision accumulations are still required during the forward propagation. The effect
of binary activations is considered in [45, 47, 72]. These early papers are the basis
for most subsequent research on BNNs.

The XNOR-Net approach [47] expands on the initial BNN ideas by proposing a
model where a gain term is added to the network at the level of each dot product
in the convolutional layers. Computed from statistics of weights and activations
before binarization, the gain was a way to improve the accuracy of BNNs on the
ImageNet dataset. Such gain terms are nevertheless costly to compute in practice,
which is why later work modified their use. For instance, [43] proposes gain terms
that are only based on the non-binarized weights of the network, meaning that
they never need to be recomputed after training. Additionally, [73] also advocates
binarizing fully connected layers by adding neuron-specific scaling factors, further
improving compression without a drastic decrease in the accuracy. A generalization
of the BNN concept to multiple binary bases used for quantizing weights and
activations is presented in [74], further reducing the accuracy gap between full
precision and binary architectures, at the expense of a higher computational cost
(compared to previous BNN methods). Changes to the backpropagation process in
BNN training [75] can also be effective for limiting accuracy loss.

Ternary neural networks offer a better representation of the (pseudo) normal
distribution of weights that is frequently observed after training. For instance, [76]
achieved good results on small networks with weights quantized to {−1, 0,+1} and
3-bit fixed-point activations. For greater flexibility, [46] proposes using a threshold
α for picking the ternary weights (−1 if w < −α, 0 if |w| < α and +1 if w � α),
while keeping activations in full precision. This is further expanded in [77], which
uses ternary weights from a set {−αn, 0,+αp}, where αn and αp are learnable
parameters. By also quantizing activations to 8-bits and adding residual edges to
branches in the architecture that are sensitive to quantization, [78] offers comparable
accuracy results to float32 for a ResNet-101 model on the ImageNet dataset,
with no additional low-precision (re)training. In a more aggressive compression
strategy, [79] proposes the use of ternary activations {−1, 0,+1} and binary scalable
weights {−α,+α}.

Extremely low-bit-width networks like the ones just presented are susceptible
to non-negligible accuracy loss, which is why there has been work focusing on
non-binary integer and fixed-point-based quantization. Among the early proponents
of integer quantization, there is [43], which extends the idea of BNNs to arbitrary
word lengths for weights, activations, and gradients. For fixed-point arithmetic, [65]
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explored the use of various bit-width combinations (4, 8, and 16 bits) of weights
and activations. Notable results with integer arithmetic are presented in [48], which
showcases how 8-bit integer quantization on ARM CPUs can achieve near-identical
accuracy compared to baseline float32 models based on MobileNet architectures
for classification and detection tasks, but with improved on-device latency. Good
quantization results with 4-bit weights and activations are presented in [52] by
combining three complementary methods for minimizing quantization error at the
tensor level. Heterogeneous/mixed-precision quantization approaches also heavily
focus on integer/fixed-point formats [53, 61–64].

One problem with low-precision integer/fixed-point formats is that they have
limited dynamic range, which might make them inappropriate, especially for
networks used in Natural Language Processing (NLP) tasks, where weights tend
to have values that are more than 10× larger than the largest magnitude values
found in popular CNNs [80, Fig. 1]. While not that widespread, there has been some
work looking into low-precision floating-point quantization for CNN inference. For
instance, [81] explores the use of up to 8-bit (scaled) floating-point formats for
weight and activation quantization in classification networks such as GoogLeNet,
ResNet, and MobileNet, without any accuracy degradation. More recently, [82, 83]
show how an 8-bit floating-point quantization format (4-bit mantissa and 3-bit
exponent) can be used in FPGA-based accelerators for deep CNN inference,
without any retraining. Another approach [80] consists of an adaptive floating-point
quantization method, where the exponent range of quantized values is dynamically
shifted at each network layer (through changing the bias term of the exponent),
yielding competitive results on NLP networks and tasks.

At a coarser level, it is also possible to improve dynamic range by shar-
ing the exponent between parameters, storing only the mantissa and one copy
of the exponent. This is the so-called Block Floating-Point (BFP) format. For
instance, [84] propose using BFP with an 8-bit mantissa for weight storage, showing
negligible to no accuracy loss on CNN workloads (VGG16, ResNet-18, ResNet-50,
and GoogLeNet-based networks). On the FPGA side of things, [85] showcases a
BFP-based CNN accelerator design that uses 16-bit activations and 8-bit weights,
reducing memory requirements compared to a float32 baseline without any
retraining/fine-tuning. Another way to increase the dynamic range is to employ
a logarithmic representation, which also allows multiplications to be replaced with
simple binary shift operations. For instance, [86] shows that a log representation can
achieve higher classification accuracy than fixed-point formats operating at the same
word length. 8-bit log floating-point quantization was also shown [87] to perform
close to baseline float32 values with several CNN classification networks.

A summary of these aforementioned formats (minus the binary and ternary
encoding that generally require just 1 or 2 bits to represent) is given in Fig. 15.6.

Looking at the value distribution of the data (weights and activations) is a
good way to explore what number formats and/or encodings are better suited for
a particular network model. Uniform precision was the go-to alternative for a long
time, but more recent work is concentrated around non-uniform quantization. This
is because the actual distributions of trained weights tend to follow bell-shaped
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Fig. 15.6 Diagrams for bit representations of various numerical formats discussed in the context
of DL quantization in this chapter. Red, green, and blue shading are used to represent mantissa (M),
exponent (E), and sign (S) bits, respectively. In (a), the 16-bit IEEE 754 float16 floating-point
format is shown (corresponding to (−1)S × 2E−15 × 1.M2 for normalized values), with 1 sign bit,
5 exponent bits, and 10 mantissa bits. (b) illustrates a 16-bit signed integer format. By choosing
a fixed splitting point for integer (I ) and fractional (F ) parts in the mantissa (M := I.F ), it can
also serve as a representation for a fixed-point format (namely to (−1)S × I2.F2). Additionally, (b)
can represent a form of logarithmic number system (see, for instance, [88]), with the encoded value
being (−1)S × 2M = (−1)S × 2I.F . Part (c) exemplifies a block floating-point format, namely the
flex16+5 format [89] with a 15-bit mantissa and 5-bit shared exponent

curves. In this direction, [90] focuses on balancing the quantization values based
on the distribution of the data. The quantizer can also be trained alongside the
model [51, 91] and it is also possible to use reinforcement learning [62] and meta
learning [92] approaches to determine good choices for the quantizer.

Choosing Quantized Values There are various methods for quantizing data,
ranging from simple heuristics like those used to convert network weights into
binary values depending on their sign [59] or projecting real-valued parameters to
(one of) the closest discrete points [48], to loss functions that regularize the network
and force parameters into quantized states upon the convergence of the training
algorithm [93].

One notable approach is [44], which incrementally quantizes network weights to
power of two terms. The set of non-quantized weights is progressively shrunk during
retraining, with their values being updated to counter any accuracy loss induced by
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quantization. Knowledge distillation can also be a valid way to pick quantization
values [94, 95].

It is also possible to cast this task as a mathematical optimization problem.
For instance, [65] converts pre-trained weights to fixed-point values by looking
at their signal-to-noise ratio as an optimization metric. In [82], the mean square
error of the quantized data with respect to the original data is used to choose
the precise 8-bit floating-point quantization format (mantissa and exponent size)
and corresponding values. In more involved approaches, the Alternating Direction
Method of Multipliers (ADMM) can be used to optimize the quantized values with
low-precision formats [96, 97]. Regularization terms and parameters that emphasize
quantized solutions are also available. The work of [93] looks at using mean squared
quantization error regularization to drive weights to quantized values and how �2
regularization can lead to sparse weight designs. Regularization also is an effective
approach for doing robust quantization [57, 58].

15.3.2 Weight Sharing

Weight sharing compresses the network by assigning shared values to parameters.
This transforms plain weight data storage into a reduced number of shared values in
a dedicated memory, together with the indices of these values in the weight matrix.

Figure 15.7 shows an example. The first matrix corresponds to a 5 × 5 convo-
lutional kernel (filter) with values computed during training. The matrix contains
N = 25 values ranging from 0 to 20. Each value can be represented using B = 5
bits, resulting in a total size of N ·B = 25 · 5 = 125 bits. There are 5 shared values,
namely “a,” “b,” “c,” “d,” and “e,” replacing the 25 original values, as shown in the
second matrix.

Accordingly, the size of an element in the weight matrix can be reduced from B

to log2(K) bits, with K being the number of different shared values. The size of the
stored data then becomes N · log2(K)+K · B, instead of N · B.

Fig. 15.7 Weight sharing techniques allow network compression by storing indices instead of
values
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Fig. 15.8 Distribution of the weights composing the first layer of a trained ResNet50V2 [26],
original (top), with only 8 (middle) and 16 (bottom) shared values

Depending on the number of shared values used, the distribution of the weights
inside a layer will change. An example of this before and after weight sharing (with
8 and 16 shared values) can be found in Fig. 15.8.

Weight sharing approaches can be classified by the method used to group weights
together and by the granularity level it is applied at. Each of these aspects will be
explained in some detail in the following paragraphs.

Grouping Methods One of the first approaches involving weight sharing that
showed it can be a viable option for compressing neural networks is Hashed-
Nets [98]. The weights of the network in this setting are randomly grouped into hash
buckets sharing the same value. These shared values are then trained and updated
using backpropagation. The authors test their approach on the MNIST dataset with
two custom fully connected networks with 3 and 5 layers.

However, instead of applying random grouping before the network even sees any
data, it is also possible to approximate an already-trained network by determining
groups based on weight values. In this vein, DeepCompression [99] uses the K-
means algorithm to iteratively group the weights in a network in a global 3-step
compression approach involving network pruning, weight sharing, and parameter
encoding. The K-means algorithm is used to cluster similar values together,
followed by an iterative retraining phase. Different initialization options for the
shared values are considered, with experiments showing that uniform initialization
over the entire range of weight values works best. Applied to the AlexNet and VGG
architectures on the ImageNet dataset, the compression algorithm achieves 35× and
49× compression, respectively, with negligible accuracy loss.
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The most common way of doing K-means clustering is through the Lloyd
algorithm [100], which uses mean square error minimization to solve the clustering.
However, this clustering approach does not imply performance loss minimization
when taking into account quantization as well. The use of mean square error
minimization does not necessarily lead to high accuracy during inference, even
when uniform initialization of the clusters is used, as suggested with DeepCom-
pression [99]. Because of this, [101] proposes to use Hessian-weighted K-means
clustering to minimize accuracy loss. The approach consists of replacing the mean
square error with the distortion of the Hessian matrix (second-order derivative) of
the loss function. With this change, it can achieve a higher compression rate than
DeepCompression, but with similar accuracy loss.

It is also possible to consider weight distribution when performing clustering.
For instance, [102] proposes a clustering method based on weight entropy, using
importance (magnitude) and frequency of the weights to group them. Thus, frequent
non-zero (low importance) values are grouped, as well as rarer, but higher magnitude
(high importance) values.

During the iterative process of training weights, clustering them, and training
them again, previously clustered weights will sometimes diverge from the shared
values at retraining time, making convergence to a good network model difficult.
This is why, rather than applying iterative clustering and retraining, [103] proposes
the Deep-K-means approach that adds a regularization term in the training objective
function, enforcing weights to stay clustered during training. After training is
finished, the K-means algorithm is used to group the obtained weight values.

Other clustering algorithms can also be used. One main issue with using the K-
means algorithm in this context is that it targets multi-dimensional data, whereas
weights clustering is a 1-D problem. One example of approach using another
clustering algorithm is DP-Net [104], which is based on a dynamic programming
clustering algorithm that enables weight sharing in constant time, reducing the
clustering complexity compared to the K-means algorithm.

Weight Sharing Granularity The weights of a network can be shared at different
levels of granularity, as shown in Fig. 15.9. While this can be done for the entire
network, as initially proposed in HashedNets [98], each layer has a different weight
distribution, covering a different range. Hence, sharing values for the whole network
usually does not offer good enough representation power to limit accuracy loss.

On the other hand, sharing the values at the layer level offers a better repre-
sentation of the original network, as shown with Deep Compression [99]. Such an
approach also allows different levels of compression to be used for each layer. The
first and last layers are generally more sensitive to compression and require a higher
number of shared values to keep accuracy loss acceptable. It is even possible to
target a smaller scope, like sharing values at the level of a (convolutional) kernel—
but then of course the compression rate will be much lower.

While reducing the scope allows a better representation of the initial weight
distribution, thus keeping accuracy loss low, it is possible to improve compression
performance. For example, Deep-K-means [103] shares values at a level that is
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Fig. 15.9 The various scopes of applying weight sharing

optimal for the very efficient row-stationary dataflow used in DNN hardware
accelerators.

Even if weight sharing leads to good compression rates, it does not enable
inference acceleration by itself. This can be achieved if inputs are also discretized,
reducing the number of combination operations and allowing the use of a pre-
computed look-up table multiplier. This approach is used in LookNN [105], which
applies K-means to the input feature map to achieve a nonlinear quantization
whereas the remaining feature maps are quantized in the traditional linear way.

Values can also be shared at a smaller level, as in Q-CNN [106]. Here, layers
are decomposed into sub-vectors, which are then clustered using the K-means
algorithm. Sharing vectors like this reduces the number of possibilities when
performing products. This enables the layer response to be approximated using
product pre-computation with a look-up table.

15.3.3 Network Sparsification (Pruning)

DNNs tend to be more complex as their accuracy rate improves and this complexity
usually carries with it the fact that the network is over-parameterized. On the other
hand, it has been argued for a long time [41] that structure is more important than
density in neural networks, with sparse models having the ability to generalize up
to as well as their dense counterparts. Removing model parameters has the direct
effect of reducing the size of the model, but it can also be used for speeding up
the inference process by reducing the number of computations. Depending on the
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objective, different parts of the network can be more interesting to prune than others.
For instance, fully connected layers usually concentrate most of the network weights
in a CNN and should be targeted for high compression. Convolutional layers,
however, contain fewer model parameters but account for most of the computations.
Since they generate the majority of data movement in the model, they should be
targeted when model performance and energy efficiency are important.

Pruning methods can be classified by how they are applied to the network, the
granularity of the pruning, and finally the saliency determination approach. All these
criteria are discussed in the following paragraphs.

Target Regions The loss in accuracy incurred by removing parameters can be
recovered by retraining the remaining parameters using the initial training dataset if
it is still available. This pruning process can be performed at different steps of the
network life-cycle, either prior, during, or after training the model.

It has been shown that some parts of DNNs are more resilient to approximation
than others. As such, pruning each layer at the same rate is not very efficient for
accuracy. But at the same time, choosing the optimal sparsity level for the whole
network is a complicated task. For example, [107] proposes to heuristically optimize
the pruning ratio of each layer using reinforcement learning.

Similar to pruning weights, feature maps can also be pruned during the forward
pass of the network. This process is called dynamic sparsity and is used in many
accelerators to avoid zero or near-zero computations [108, 109]. Such approaches
require dedicated architectures, but since the focus is only on data type refinement
methods for this survey, they will not be discussed further.

Pruning Granularity Depending on the pruning objective (compression or per-
formance), one can choose to focus on weight removal at various sparsity levels
(Fig. 15.10). For instance, even though removing an entire structure (e.g., a convo-
lution kernel) allows reducing the computational complexity of the model, and thus,
improving performance, it also has the effect of inducing a higher accuracy loss.

Fig. 15.10 Different granularities of pruning in a 4-dimensional weight tensor for DNN inference
(adapted from [110, Figure 1])
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The lowest pruning level is at the weight level, the goal being that of removing
the individual parameters with the lowest saliency [41, 99]. Although this generally
results in the lowest accuracy loss, it does not systematically offer latency or energy
improvements because sparse tensor computations are quite difficult to accelerate.
Its main purpose is therefore to compress the network in memory.

To accelerate computations, a regular sparsity pattern is usually required. This is
called structured pruning and aims at removing (spatially close) groups of weights
so that network inference can be simplified. To achieve this, [111] iteratively
reorders pruned weights to prune larger structures, whereas [112] uses different
pruning strategies depending on the hardware, optimizing for the full utilization
of available SIMD units.

As previously hinted, it is also possible to remove convolution kernels, thus
simplifying the processing of pruned convolutional kernels. An example is [113],
which progressively removes convolutional kernels through greedy-based fine-
tuning. The method is applied to transfer learning applications, resulting in a 2×
speedup on ImageNet-class CNNs.

Another interesting structure amenable for removal is a channel. Once channels
are removed, one can remove the corresponding filters that take these channels
as input. The filters producing these channels in the previous layer can also be
removed [114]. A representative approach is [115] which removes channels based
on importance, resulting in a 2−5× speedup on multiple ImageNet-class CNNs with
under 1% accuracy loss. In subsequent work, [107] proposes to pick the pruning
ratio of each layer using reinforcement learning.

Weight Saliency Determination Removing part(s) of the network usually requires
knowing which regions are least important for ensuring network accuracy. This
is called saliency determination and it can be conducted using different methods,
as described next. A simple way is to use heuristics like weight magnitude or
examining the �1/�2 norm of a group of weights, whereas more recent work
employs optimization algorithms to address the trade-offs between accuracy loss
and compression/acceleration.

The earliest methods removed small magnitude weights because they tend to
have the least impact on accuracy [41, 116]. They work iteratively by fine-tuning
unpruned weights to recover lost accuracy [99]. It has been shown recently that one
can also remove redundant connections in FC layers since for weights having the
same value, only one needs to be kept [117]. If accuracy is degraded too much during
the pruning process, some methods can be used post-pruning to restore certain
weights and improve accuracy [118, 119]. For convolutional layer filter removal,
it is possible to rank filters based on their �1 norm and prune the lowest ranking
filters of each layer [120]. Instead of ranking filters at the layer level, one can
also do it at a global, network-wide level by first doing a layer-wise filter ordering
using �2 norms and then computing affine mappings that enable inter-layer filter
rankings [121, 122]. Such global approaches lead to a Pareto set of approximated
networks that offer various trade-offs between performance and accuracy.
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In [113], the authors also consider a Taylor expansion criterion that approximates
accuracy degradation due to feature map removal. This is done using activation
and gradient values already computed during a regular training iteration. Other
approaches use weight gradients to compute saliency. For instance, [123] proposes
a sequential two-step process where (1) gradient-based information is used to grow
the network (adding “dormant” connections and neurons that are deemed important
for accuracy) and (2) regular magnitude-based pruning of weights and connections.

Another method to identify representative structures inside a network is [115],
which uses a two-step process involving Least Absolute Shrinkage and Selection
Operator (LASSO) regression for channel selection and then a least squares-based
reconstruction approach of subsequent feature maps in the network.

It is also possible to state the problem of selecting which parts of the network
to remove as an optimization problem. One example is [114], which relies on
the correlation between feature maps of the current layer and the next one to
determine the importance of filters. In another approach [124], the optimization
problem features the model’s energy efficiency as an objective. It is based on an
energy estimation methodology capable of approximating both the power of MAC
operations and data access (which is more complicated to compute, depending on
the data reuse technique). The resulting iterative process involves local fine-tuning
to recover accuracy loss in a layer before moving on to subsequent layers.

By formulating weight pruning as a non-convex optimization problem, it is
possible to address it using an ADMM approach [125]. Using the desired sparsity
level as a constraint to be satisfied and the loss of the network as the objective to
minimize, ADMM can be used in a two-step process. Since convergence can be
quite slow, the target error is increased to accelerate convergence and the resulting
accuracy loss is compensated by network retraining. The method can also be
extended to address high sparsity target problems, by introducing a more progressive
algorithm using partial weight pruning with a moderate pruning rate [126].

Another idea is to encourage weights to group around zero using regularization.
The closer weights are to zero, the less accuracy loss will be induced by removing
them. For example, [127, 128] used group LASSO [129] regularization to obtain
structured sparsity, with the same factor being applied to all the weight groups.
In [130], �1 regularization is applied to the scaling factor of batch normalization lay-
ers to identify important channels. Different regularization factors can be assigned
to different groups, such as in [131], where �2 regularization is used to transfer the
model’s representational capacity to a fraction of its filters. An incremental approach
for choosing these factors can also be used [132]. In [133], feature map channels are
gradually zeroed during training using a dynamic regularization factor (whose value
depends on the current compression ratio in the network), allowing safe removal of
corresponding filters without a significant drop in the accuracy.

Another recent approach to optimize pruning is through architecture search.
Usually, pruning methods target a fully trained network and recover any accuracy
loss using fine-tuning because it is hard to train a sparse network. Recently, however,
the idea that a classic network contains sub-networks that, trained from scratch, can
perform as well as the original network but with fewer parameters and computation,
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was introduced [42]. This idea was also explored in [134], which claims that directly
training (using some form of random initialization) a model found at the end of a
classic three-step pruning process (training, pruning, and fine-tuning) can perform
as well, if not better, in fewer training steps. The issue is that, in the beginning,
none of these studies provided a method for finding an efficient smaller architecture
without doing full model training beforehand. This is starting to change, with [135]
proposing to use a bee colony exploration algorithm to find an appropriate DNN
pruning scheme. It is also possible to reduce the fine-tuning cost by using an external
network trained to predict weights of a certain network structure, facilitating a fast
exploration of various possible architectures [136].

15.4 Approximation for Training

The state-of-the-art models used in deep learning applications require a considerable
hardware infrastructure to be designed properly. There are various challenges
related to computing, storage, network/communication, as well as memory capacity
and bandwidth that can potentially hinder the scalability of current solutions to
future models and applications. This is most visible during the training part of
neural network design, which accounts for the majority of the computing time and
resources.

Accelerating training at the arithmetic level has thus become a hot research
topic, but early work in this direction did not necessarily translate to a wide
adoption and availability of low/mixed-precision training hardware. For example,
BinaryConnect [59] introduced a CNN training methodology with binary (+1
and −1) weights, with all other operations and data structures (e.g., tensors) in
full float32 precision. This binarization was soon extended to include activa-
tions [72], followed by experiments with quantization levels of 2, 4 and 6 bits for
weights and activations [137], but with backpropagation gradients still computed
and stored in full precision. Binarization for all tensor operations, including
gradient computations, is considered in XNOR-Net [47]. While ensuring impressive
efficiency gains, these approaches lead to non-trivial accuracy loss for larger CNN
models that have since been introduced and adopted in practice.

To manage accuracy loss, DoReFaNet [43] uses different quantization bit-widths
for weights, activations, and gradients, but still incurs some accuracy loss and
requires exploring different bit-width configurations on a per-network basis, which
can be impractical for large models. The approach introduced in [138] improves on
previous accuracy results by doubling or tripling the number of inputs and outputs
of layers in popular CNN models, but again requires that gradients be computed
and stored in full precision and does not achieve the same accuracy as the baseline
non-quantized trained model.

Studies with fixed-point arithmetic on DNNs have also been conducted since the
early 1990s [139–142] and more recently [143] has shown that a 16-bit fixed-point
representation coupled with stochastic rounding can be used to train CNNs on the
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MNIST and CIFAR-10 datasets without accuracy loss. Nevertheless, it is unlikely
that this approach would work on larger CNNs trained on larger datasets.

There have also been several proposals for quantizing recurrent neural network
(RNN) training. For instance, in [144], training for quantized versions of gated
recurrent units and long short-term memory cells with few bits for weights and
activations are investigated, with a slight loss in accuracy with respect to base
full precision models. A different approach [145] evaluates binary, ternary and
exponential quantization for weights used in various RNN models trained for speech
recognition and language modeling. Similar to the CNN-centered methods evoked
so far, however, all these approaches use full precision gradients, and therefore do
not improve computation cost during backpropagation.

15.4.1 Mixed-Precision Training Approaches

The most widespread approach to increase performance and efficiency of DNN
training at the arithmetic level is through the use of mixed precision.

On the commercial side, NVIDIA has offered the possibility to do low-precision
training since the Pascal architecture in 2016 and mixed-precision training (combin-
ing float16 and float32 arithmetic) has really taken off with the subsequent
introduction of TensorCore units in their Volta and Turing architectures in 2017–
2018. TensorCores are, in essence, programmable 4 × 4 × 4 matrix-multiply-and-
accumulate units (performing the operation D = A × B + C, where A,B,C,

and D are 4 × 4 matrices, with A and B stored using float16 and C and D

being either float16 or float32 matrices). An execution of a large number
of such units provides a huge performance boost (several times when compared
to NVIDIA’s previous Pascal hardware) to convolution and matrix operations with
mixed-precision operands and results. Over at Google, their newer (from version V2
onward) Tensor Processing Units (TPUs) offer similar support for mixed-precision
training with the introduction of bfloat16, a 16-bit floating-point format that,
when compared to float16, trades in mantissa bits for exponent bits (a 5-bit
exponent and 10-bit mantissa for float16 versus an 8-bit exponent and 7-bit
mantissa for bfloat16). Intel and ARM are also adopting bfloat16 in their
push to offer AI-enhanced hardware, while AMD has introduced software support
for bfloat16 in recent versions of their ROCm platform. As of May 2020, the
Ampere architecture from NVIDIA also introduces bfloat16 operator support in
their third version of TensorCore units.

15.4.1.1 Mixed 16-32-Bit Precision Training

An important remark about backpropagation training that should guide the choice of
number formats is how the values contained within various quantities (activations,
gradients, and parameters) vary during successive training iterations. It is noted
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Fig. 15.11 Mixed-precision training iteration for a network layer (adapted from [147, Fig. 1])

in [146] that “activations, gradients and parameters have very different ranges,”
whereas “gradient ranges slowly diminish during training.” There is also the idea
that a higher numerical precision should be used when updating the parameters
than when using them during the back and forward propagation operations [146,
Sec. 6]. Recent accelerated training approaches (at the arithmetic level) follow these
observations.

An Approach for float16-Based Training Acceleration In [147], NVIDIA
TensorCores are used to perform mixed float16 and float32 operations during
each training iteration. The process is illustrated in Fig. 15.11: a full precision copy
of the weights is always stored and updated at each iteration, whereas the gradient
computations of the weights and activations are done using float16 quantizations
of the weights. The dot product and reduction (i.e., sums of elements across a
vector) operations are performed with a float32 accumulator (as is enabled by
TensorCores), which, according to [147], is needed in some cases to maintain the
same model accuracy as with a baseline float32 approach.

The main reason for using 32-bit values for the weight updates is that during
later iterations of training, the update gradients become too small to be used with
float16 addition, which will result in them getting clipped when wt , ε ∂�

∂wt and
adversely affect the final model accuracy. For float16, this happens when the
ratio between weight and update is larger than 2048.

A related issue when gradients become too small is that they might not be
accurately representable in float16, even though the dynamic range of the
weight/activation gradients at each layer is much smaller than the 240 range
associated with float16. This means that a scaling approach might be applicable.
This is indeed what is advocated in [147], where gradient values can be shifted
to float16-representable ranges by scaling the loss value computed during the
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Fig. 15.12 The loss scaling procedure for updating the master weights in mixed-precision training

forward pass, before performing backpropagation. By chain rule calculus during
backpropagation, all gradient values will then be scaled by the same amount. Weight
gradients will have to be unscaled back before weight update to ensure the same
update process as with float32 training. The entire procedure is summarized
in Fig. 15.12. Although not explored in [147], the scaling factor can be chosen
automatically: start with a very large scaling factor (e.g., 224), if gradient overflows
(with Inf or NaN) decrease the scale by a factor of 2 and skip the current update,
whereas if no overflow has occurred for some time (e.g., 2000 iterations), increase
the scale by a factor of 2.

The results presented in [147, Sec. 4] show that mixed-precision training is
a viable alternative (in the sense that it gives comparable results to baseline
float32 training) for various tasks such as image classification (with tests on
AlexNet, VGG-D, GoogLeNet (Inception v1), Inception v2 & v3, and ResNet50),
object detection, speech recognition, machine translation, language modeling and
Generative Adversarial Networks (GAN) generation.

In addition to the speed benefit that such a mixed-precision training approach
brings (which varies from 2× to 6× with respect to baseline training on the
experiments carried out in [147] on a Volta GPU), the memory consumption for
training is roughly halved, since the dominating quantities are the activations (due
to larger batch sizes and the fact that they need to be stored for reuse during
backpropagation), which are stored in float16.

Enabling bfloat16-based training methods It seems that the need for loss
scaling can be avoided if the float16 format and associated operations are
replaced with bfloat16 (this is shown in [148], where experiments with various
state-of-the-art networks in image classification, speech recognition, language
modeling, generative networks, and industrial recommendation systems show the
versatility of bfloat16-based training). This is due to the fact that bfloat16
has the same exponent range as float32 and the lower mantissa width does
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not adversely impact the final model accuracy. There are also additional hardware-
related benefits that come with the combination of bfloat16 and float32. Core
computational primitives such as FMA units can be built using 8-bit multipliers,
leading to a significant area and power savings while preserving the full dynamic
range of float32.

The appeal of using bfloat16 is that it also does not require any changes
to the training model (as designed for a baseline float32 approach). The
increasing (planned) hardware support from several vendors seems to suggest it
will soon be the de facto choice for performing DNN training, replacing the
aforementioned float16 approach. This statement is strengthened by the added
support of bfloat16 on NVIDIA’s Ampere GPU architecture.

Fixed-Point-Based Training Mixed-precision training approaches that are based
mostly on integer/fixed-point arithmetic has also been proposed recently. These
methods [89, 146, 149, 150] use during computation integer tensors with tensor-
wide shared exponents. The format explored in [146] has an 11-bit mantissa and
a 5-bit shared exponent, tested on custom maxout [151] networks for the MNIST,
CIFAR-10, and SVHN datasets. At each layer, every weight, bias, activation input
& output, gradient vectors, and matrices have different exponent values. These
exponents are updated based on a passive over/underflow detection policy which
is run periodically during training. Because it is just reacting to the presence of
overflows in the networks, it can potentially impede convergence of the training
process.

To address this problem, [89] proposes widening the dynamic fixed-point
format to a 16-bit mantissa and a 5-bit shared exponent, a format which they
call flexpoint (flex16+5). They also introduce a new algorithm (Autoflex)
for adjusting the shared exponents in an adaptive the way each time a tensor
is written to, using tensor-wide statistics gathered at previous iterations. This
essentially eliminates the appearance of overflow errors, leading to results on par
with baseline float32 training on AlexNet, ResNet-110 and Wasserstein GAN
models. Choosing the bit-widths that resulted in the flex16+5 format was done
such that the mantissa can encode most of the variability of values inside a tensor
during one training epoch and that for weight update operations there will be
sufficient mantissa overlap between tensors to ensure accurate computation (which
seems to eliminate the need for 32-bit master copies of the weights during the update
process).

The Flexpoint approach would require the presence of dedicated hardware for
it to truly show its effectiveness. That is why in [149] another dynamic fixed-point
representation that can leverage already existing general-purpose hardware (through
the use of existing integer operations) is presented. The mantissa is again 16-bit,
while the shared exponent is stored as an 8-bit integer. The matrix multiply and dot
product operations needed for the training procedure are done using 16-bit input
32-bit output integer FMAs, with some intermediate accumulations converted to
float32 in order to avoid overflows in long addition chains. Similar to [147],
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a float32 master copy of the weights is kept at each iteration for the update
process. Tests are carried out on Intel XeonPhi Knights-Mill hardware for several
CNN models (ResNet-50, GoogLeNet-v1, VGG-16, and AlexNet) on ImageNet,
showing an 1.8× speedup over baseline float32 training on the same platform.

While using tensors with shared exponents can lead to performance and effi-
ciency gains in the just discussed methods, [150] identifies three potential road-
blocks in their use for training acceleration: (1) whereas dot product operations
can be area-efficient with such formats, other operations might be less efficient; (2)
exponent sharing can lead to data loss if magnitudes are too large or too small,
making exponent selection critical; (3) data loss can happen if the tensor value
distributions are too wide to be captured by the allotted number of mantissa bits. To
address them, [150] proposes a hybrid approach, where all dot product operations
are performed with shared exponent formats, while other operations are kept in
floating-point. Since training operations are dominated by dot products, there will
be little overhead to using floating-point for the remaining operations.

By using tiling for matrix multiplications (with shared exponent at tile
level) and wider weight storage for the weight update process (similar to other
approaches), [150] can limit data loss when compared to baseline float32
training on a large range of tasks, with little silicon density penalty. Investigating
the design space, they find that the hybrid approach is most convenient for 24× 24
tile sizes, 8 to 12-bit mantissa and 16-bit size for weight storage.

15.4.1.2 Mixed 8-16-Bit Precision Training

While combined 16-32-bit training seems to be the most widespread approach
currently, for accelerating DNN training, there has also been work recently to push
the envelope further with 8-bit tensor datatypes and multiplication operators coupled
with 16-bit accumulators and weight updates [152, 153] (instead of the 16-32-bit
mix advocated in Sect. 15.4.1.1).

According to [152, Sec. 1], there are three main elements that can significantly
impact model test accuracy when using extremely low precision formats during
training: (a) all operands in a tensor matrix multiply operations (GEMMs and
convolutions) are in 8-bit formats (2% degradation over a baseline float32
training loop on ResNet18 with the ImageNet dataset), (b) GEMM accumulation
results reduced from 32 to 16 bits (while critical to reducing the area and power of
8-bit hardware, such a move also leads to significant degradation—1% with respect
to the same ResNet18 baseline) and (c) reducing weight updates from 32 to 16-bits
(high precision weight updates and gradients require expensive parameter copies
to be kept in memory, whereas reducing their precision can also lead to significant
degradation—1.7% with respect to the ResNet18 baseline).

To cope with these problems, [152] advocates the choice of a 5-bit exponent
and 2-bit mantissa floating-point format to represent weights, activations, errors,
and gradients in matrix multiply operations (forward, backward, and gradient),
coupled with a 6-bit exponent 9-bit mantissa format for all the accumulation results.
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These format choices are motivated by how data is distributed inside networks in
practice, with a focus on striking a balance between representation accuracy and
dynamic range. To optimize the accuracy of the accumulation, a blocked approach
(which is standard in high performance basic linear algebra routines) is used. The
multiplications are done in the 8-bit format, whereas the accumulation is done in
16-bits to more accurately model the result (i.e., try to avoid stagnation/swamping
from appearing: small xkyk terms cannot contribute to

∑n
k=1 xkyk in the floating-

point computation path).
Another way to improve on the overall accuracy of summation results is to use

stochastic rounding, which shows similar results to block accumulation (see [152,
Fig. 3]). In the context of deep learning, it seems that using stochastic rounding is
more natural for the weight update process (in the dot product AXPY operations)
since the weight gradient is accumulated into the weight over mini-batches during
several epochs (so not at once in a complete dot product operation!).

The precision settings for all the operations done during training are summarized
in Fig. 15.13. In terms of results, a large spectrum of neural networks for both
image classification and object recognition are used (AlexNet and ResNet 18 and
50 versions for the ImageNet and CIFAR10 datasets) with both SGD and ADAM-
based optimizers. A loss scaling approach similar to [147] is used to preserve the
dynamic range of back-propagated errors with small magnitude.

In both [147, 152], the hardware complexity of the floating-point computation
pipeline is dominated by the accumulator bandwidth (32 and 16 bit, respectively),
and in many cases, this size seems much too conservative. The follow-up work [154]
introduces an analytical method for predicting the precision requirements for partial
sum accumulation in the three GEMM accumulation units from Fig. 15.13. It
studies in what (precision/format) scenarios the variance of the accumulator units
is maintained when doing dot product computations in reduced precision.

One downside of all these aforementioned methods is that they require certain
knobs to be finely tuned (such as appropriate chunk-based accumulator design,
stochastic rounding techniques, loss scaling, and maintaining some layers of the

Fig. 15.13 Summary of the precision settings for (a) the GEMM operations during the forward
and backward passes in backpropagation and (b) the AXPY operations during a standard SGD
weight update process (adapted from [152, Fig. 2])
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Fig. 15.14 The low-precision training flow with the S2FP8 format, where the truncation function

T corresponds to T (X) = [
2−β

{
roundFP8(2β |X|α)

}]1/α
. The forward and backward GEMM

operations use only S2FP8 values, whereas the weight update step uses FP32 master weights
(adapted from [155, Fig. 4])

network in higher precision—in particular the first and last ones), necessitating
experimentation on a network-by-network basis. To eliminate the need for such
fine-tuning, [155] proposes a new, tensor level 8-bit floating-point format. Given
an N -element tensor X = {Xi}Ni=1, instead of encoding each element directly in an
8-bit floating-point format, X is stored using N 8-bit floating-point values {Yi}Ni=1
and two extra factors α and β that account for statistical information about X and
capture its dynamic range. This tensor format is called S2FP8 and its use in the
training procedure (for the forward and backward passes and the gradient update
computations) is summarized in Fig. 15.14.

Tests on the effectiveness of this approach (FP32 vs S2FP8) are performed
on residual networks of varying depths on the CIFAR10 and ImageNet datasets,
the Transformer network on an English-Vietnamese translation dataset and neural
collaborative filtering network architecture. The authors of [155] state that the
extra hardware complexity required to handle the conversion operations and the
management of the α, β parameters at each layer is small.

15.4.2 Low-Precision Training Algorithm Design

Section 15.4.1 reviewed how mixed-precision computation can be used to speed up
neural network training algorithm execution, with minimal or no loss to the final
test accuracy for the resulting model. Such methods are attractive because they do
not require any changes to the problem’s hyper-parameters (such as learning rate
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scheduling), making them potentially easy to use (for instance, the use of mixed-
precision training with NVIDIA GPUs is straightforward with the use of their
Automatic Mixed Precision (AMP) support for major deep learning frameworks).

An orthogonal and complementary direction is the development of learning
algorithms tailored for low-precision computation. One such approach is MuP-
PET [156], which advocates for an automatic intra epoch numerical precision
switch of training quantization and computation levels. It proposes a metric that
estimates how much information each new training step obtains for a given
quantization level, by quantifying the diversity of computed gradients across epochs.
This allows for a heuristic runtime policy that progressively increases the working
precision/format such that the final test accuracy is comparable to that of baseline
float32 training. The approach is designed to take advantage of the myriad
of numerical precisions that have started to appear in modern hardware (e.g.,
4 and 8-bit integer computations and 16-bit floating-point formats). For each
iteration/mini-batch and a working fixed-point precision q, a block floating-point
training scheme (similar to [89, 146, 149, 150]) with both values and scale factors
stored as q-bit integers and stochastic rounding for quantization is used. Similar to
most other mixed-precision approaches, a float32 master copy of the weights is
always kept in memory and updated at each iteration with the low-precision loss
function gradients computed most recently. To test this approach, five levels of
precision (8-, 12-, 14-, and 16-bit fixed-point formats and ultimately float32)
were used in [156] for training AlexNet, ResNet18/20, and GoogLeNet networks
with the CIFAR-10/100 and ImageNet datasets on an NVIDIA RTX 2080 Ti GPU.
A comparison with baseline float32 training shows a 1.25− 1.32× speedup for
MuPPET, whereas with respect to [147], it achieves a 1.23× speedup for AlexNet
and comparable performance for ResNet18 and GoogLeNet.

Following [157] “there is always a tradeoff with standard training algorithms: as
the number of bits is decreased, noise that limits statistical accuracy is increased.” To
limit the loss in statistical accuracy when doing low-precision training, they propose
HALP (High Accuracy Low Precision), a low-precision variant of stochastic
gradient descent which uses low precision for most of the time in its innermost
loop, while infrequently recentering the weight parameters with higher precision
in an outer loop to counteract the noise effect of low-precision quantization.
The idea of the algorithm is based on the Stochastic Variance Reduced Gradient
(SVRG) approach, introduced in [158], and a bit centering representation, where
each number is represented as the sum of a high precision offset term, modified
only infrequently, and a low-precision delta term, which is modified at each inner
iteration.

For strongly convex problems, the authors show that the HALP approach
can produce arbitrarily accurate solutions retaining the same linear asymptotic
convergence rate as SVRG in full precision. On non-convex problems (namely CNN
and LSTM neural network training), HALP (with a 16-bit low-precision format and
32-bit high precision one) is empirically shown to improve on low-precision variants
of SGD and SVRG and equals or outperforms full precision SVRG and SGD. It can
also be used to effectively fine-tune low-precision trained results as well, as the
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authors show on a ResNet18 model, closely matching the result obtained from de
facto SGD training in full precision. On ImageNet, such variance-reduced mixed-
precision training algorithms can obtain the state-of-the-art timing results [159].

A simpler approach for a low-precision training algorithm is SWALP (Stochastic
Weight Averaging in Low-Precision Training) [160]. It is based on the recent
Stochastic Weight Averaging (SWA) method [161]. SWA was introduced as an SGD
variant that shows improved generality in deep learning training. Low-precision
training on the other hand produces extra quantization noise and generally tends
to underperform when the learning rate is low. Averaging weights that have been
rounded both down and up during quantization can potentially reduce quantization
effects and is the reason why the authors of [160] propose that SWA can be
beneficial for low-precision training. The SWALP approach consists of quantizing in
low precision all numbers during training, including the gradient accumulator (and
potentially the velocity vector for momentum-based approaches). On a theoretical
level, the authors can show that SWALP can converge to an optimal solution for
quadratic objectives and a smaller noise ball than low-precision SGD for strongly
convex objective functions. Empirically, for non-convex objectives, an 8-bit SWALP
approach (with an 8-bit block floating-point format with 8-bit shared exponents) can
match full precision SGD baselines in DNN training tasks such as for VGG-16 and
Preactivation ResNet-164 on CIFAR-10/100 datasets.

15.5 Support for Approximation in DNN Accelerators

DNN models can be executed in different environments, ranging from high-
power data center servers to low-power edge devices. Within this large space,
there is an even wider one representing the different backends that can be used.
Backends are differentiated in terms of both software and hardware. The solutions
vary from general-purpose frameworks and computing units to application-specific
frameworks and computing units.

Like many applications, DNNs were initially executed on latency-oriented
CPUs, but ever since the start of the 2010s, there has been a major shift towards
parallel hardware. Examples include GPUs for performance-oriented scenarios and
microcontrollers for low-power devices. Still, due to their static and general-purpose
data path, General-Purpose Processors (GPPs) are not able to efficiently process
DNNs in all application scenarios, motivating the need for dedicated hardware
accelerators.

The first proposed hardware accelerators were ASICs [162–164], and they
achieved orders of magnitude improvements in energy efficiency compared to GPPs.
This gain nevertheless comes at the expense of flexibility, with the design cost being
very high. FPGAs, on the other hand, provide a good balance between flexibility,
design cost, and performance [165, 166].

Independently of the target (ASIC or FPGA), hardware accelerators adopt the
same strategy of maximizing data reuse, an element that has been extensively
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Fig. 15.15 Comparing the systolic arrays based architecture of the ASIC Google TPU [164] (top)
and the Processing Element (PE) of the FPGA grid-based Eyeriss [163] architecture (bottom)

studied by Chen et al. in [163]. The main architectures adopted by re-configurable
accelerators such as FPGAs is a dedicated grid of Processing Element (PE) [163],
while the main architecture adopted by ASICs are based on more generic systolic
arrays [164]. This is mainly because a systolic array is more flexible once designed
and can efficiently process matrix products, while a PE array requires tuning some
parameters for efficiently executing a DNN (like the number of PEs and the size
of the memory bus), making them more suitable for re-configurable accelerators. A
schematic view of the two approaches is given in Fig. 15.15.

Since DeepCompression [99] proved that approximation techniques can sig-
nificantly improve DNN processing efficiency with very small accuracy loss,
approximation for DNN acceleration has become quite popular, at the same time
posing new challenges for efficient processing. For example, accelerating a sparse
DNN (after application of pruning methods like those presented in Sect. 15.3.3)
requires adapting the dataflow to take advantage of the available sparsity, whereas
accelerating a reduced precision DNN (after application of quantization methods as
described in Sect. 15.3.1) requires implementing dedicated operators.

15.5.1 Architectures for Accelerating Inference

Almost, if not all, dedicated DNN hardware accelerators rely on reduced precision
computations. This is mainly because a 32-bit floating-point is not mandatory to
achieve high accuracy, and has a prohibitive computing cost. Most accelerators
use 16-bit or 8-bit representations, like [163]. Some accelerators are dedicated
to specific quantization formats, such as [167] that targets acceleration of fully-
binarized DNNs, or [168] for accelerating logarithmic representations.

Whereas reduced precision acceleration-based solutions mainly require changes
to the arithmetic operators, accelerating pruned DNNs with a sparse representation
requires changes to the dataflow. Lu et al. proposed to use the combination of
two structures representing the COOrdinates (COO) of the values and the values
as Compressed Sparse Rows (CSR) [169], and developed an accelerator to take
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advantage of these representations. It is also possible to take advantage of Feature
Map (FM) sparsity. Due to the use of ReLU activations, FMs contain a large number
of zeros which can be skipped during the next layer computation. CNVlutin [170]
explores this dynamic sparsity. It is also possible to accelerate structured sparse
DNNs with a dedicated dataflow like in [171].

DNNs with shared weights can also benefit from a dedicated dataflow. This was
studied in [172], which targets DNNs compressed using the DeepCompression [99]
three-step method. It introduces an efficient implementation of the sparse matrix-
vector multiplications with weight sharing that are central to the approach from [99].

15.5.2 Architectures for Accelerating Training

Accelerating DNN algorithms on hardware targets such as FPGAs faces many
challenges, including limited on-chip memory, external memory bandwidth, and
computational resources. Compared to the design of inference accelerators, on-chip
training is a less studied topic, but it is feasible [173].

An example is [174], which targets training acceleration for embedded Xilinx
Zynq All Programmable System on Chip (APSoC) devices. It essentially imple-
ments a version of the method introduced in [160] with predominantly 8-bit integer
arithmetic. The Arm-based processor on the device is used for 32-bit floating-
point weight updates, whereas the FPGA logic evaluates all the 8-bit integer matrix
multiplications needed during the backpropagation computation path. The overall
hardware platform is configured using a software-based High-Level Synthesis
(HLS) flow with Xilinx tools. On the Intel side of things, [175] has proposed a
Register-Transfer Level (RTL) compiler that performs SGD-based training on Intel
FPGAs for various CNNs with 16-bit fixed-point arithmetic.

15.6 Perspectives

Due to the rapid evolution of the field of deep learning, it is difficult to give an
accurate prediction of how to approximate computing techniques that will impact
DL acceleration in the future. This section presents an overview of three different
research directions that figure to grow in importance in the years to come.

15.6.1 Approximation for Attention-Based Architectures

While the focus of the previous sections is mostly directed at CNN-based models, in
recent years alternative structures such as Transformer attention architectures [31]
have led to the state-of-the-art accuracy results in NLP-based tasks (e.g., language
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modeling). Subsequent models, like BERT [33], RoBERTa [176] and GPT [177],
although impressive, have a large memory footprint, increased latency, and power
consumption that are prohibitive for efficient deployment on embedded edge
devices and even on data centers. Due to their expressive power, Transformer-based
models are also beginning to be adapted for other tasks, such as computer vision
applications [178, 179].

Their increasing usage is driving interest for efficient approximation methods
that specifically target Transformer models. While work in this direction is still in
its early stages, there are already some approaches based on quantization [180, 181],
knowledge distillation [182, 183], and pruning [184, 185].

15.6.2 Edge AI

One area where training acceleration with reduced precision and increased energy
efficiency is becoming important is incremental/lifelong learning scenarios on edge
devices (e.g., in autonomous driving, IoT, and robotics). Compared to a cloud-
based scenario, training locally avoids transferring data back and forth between data
centers and IoT devices, helping reduce communication and latency and improve
privacy.

Such on-chip training is feasible [173], but extremely challenging. The training
acceleration methods described in Sect. 15.4 usually cannot be applied directly to
this context and alternatives need to be considered.

A training framework specifically designed for such scenarios is E2-Train [186],
which proposes three complementary strategies: (a) stochastic mini-batch dropping
to eliminate what can be considered “unnecessary costs,” (b) input-dependent
selective layer update where a different subset of CNN layers are updated for every
mini-batch, and (c) predictive sign gradient descent, a variation of an extremely low-
precision SGD algorithm, signSGD [187]. Besides this approach, other algorithmic
& arithmetic-level methods have started to appear [188, 189]. It is expected that this
area of research will grow in importance in the years to come, with on-site learning
becoming paramount in certain application domains.

15.6.3 Analog In-Memory Computing

The recent explosive growth in highly data-centric applications related to DL has
motivated the appearance of analog in-memory computing solutions [190–194]
as alternatives to traditional von Neumann computing systems. Hereby important
computational tasks, such as vector-matrix multiplications, are performed in place
in the memory itself by exploiting the physical attributes of the memory devices
(e.g., Kirchhoff’s current summation law). Besides alleviating the costs in latency
and energy associated with data movement, in-memory computing also has the
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potential to significantly improve the computational time complexity by using large
crossbar memory arrays [195]. However, this comes at the expense of imprecision
in the mixed-signal computations and becomes a form of approximate computing.
For instance, the mapping of synaptic weights onto some of those memory devices
suffers from non-ideal analog storage in the form of stochastic distribution of
conductance values and temporal drifting. Accordingly, Joshi et al. [196] have
proposed a custom noise-injection training method to increase the robustness of the
resulting network to such non-idealities and achieve a software equivalent accuracy.
Given the game-changing advantages in computing efficiency of analog in-memory
computing, more work is expected on this nascent field in the future.

15.7 Conclusion

In this chapter, a comprehensive survey of approximation techniques applied to
Deep Learning is provided. These techniques target various improvements, some
geared towards the training of DNN models, others that focus on DNN inference.
Depending on the objective, various methods can be applied, whether for the
improvement (reduction) of memory requirements by using compression techniques
or for the reduction of the computational workload by using acceleration techniques.

Such a wide range of approximation techniques involves various implementation
changes, ideally resulting in a backend adaptation that maximizes the expected per-
formance improvement. These adaptations can be implemented at the software level
using dedicated frameworks and/or at the hardware level in dedicated accelerators.

To compare the various methods available, it is desirable to use the same input
DNN and workload, but this is not always feasible. This is mostly due to the large
range of DNN topologies that have appeared over the years: while some methods can
be applied almost automatically to multiple topologies, some require manual tuning
as the size of the search space increases exponentially with the DNN size. There
is also a wide range of workloads, from small “toy” datasets to more recent and
challenging large-scale datasets. Some methods cannot perform equally well in both
contexts. The difference in backend compatibility with the various approximation
methods also regularly involves manual tuning steps, which are hard to reproduce
and compare to other backends.

Most of the recent methods give very promising results and pave the way for
further research, by proving that approximations can be applied at various levels,
from the topology of the DNN, to the data value and type, and including the
backends-DNN codesign (hardware or software).
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Domain-specific quantization scheme, 83
DRAM refresh rate, 67, 155
Duplication with comparison (DWC), 389
Dynamic operand truncation, 63
Dynamic Power Management (DPM), 110
Dynamic Random Access Memory (DRAM),

155
alternative approaches, 68
critical data structures, 67
DIMM, 67
energy savings, 70
error behaviour, 67, 68
evaluation results, 68
HaRMony scheme, 69
HRM benefits, 67
inherent application error resiliency, 70
MCUs, 67
memory errors rate, 68
nominal circuit parameters, 67
power consumption, 67
Raspberry Pi 3, 69
reliability, 68
resilient/non-critical data, 67
SLIMpro, 67
virtualization software, 69
WER metric, 68, 69
X-Gene 2, 67, 68

Dynamic range unbiased multiplier (DRUM),
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Dynamic sensitivity analysis, 210
Dynamic Voltage and Frequency Scaling

(DVFS), 49, 109, 155

E
Earliest Deadline First (EDF), 291
Earliest Deadline First with Virtual Deadlines

(EDF-VD), 290
Early termination, 114–115
Easy-to-compute function, 96
ECC corrected errors, 51
Electrical characteristics, 82
Electronic Design Automation (EDA), 47
Elementary approximate arithmetic circuits, 81
EmETXe-i87M0 platform, 133

EMEURO, 120
Energy consumption, 12, 48

computing systems, 1, 2
manipulated data, 1
mobile broadband networks, 1
type of operations, 1

Energy cost, 2
Energy efficiency, 1
Energy-efficient gains, 49
Energy model parameters, 195
Energy objective construction

absolute energy model, 205–206
energy consumption, 205
relative energy model, 206–207
relative energy savings, 205

Energy-per-instruction costs, 47
Energy reduction opportunities, 137
Equally Segmented Adder (ESA), 157
Equivalent faults, 354
Error amplitude, 160
Error analysis, 270
Error analysis methods, 85

circuit simulation accuracy, 101–103
computational requirements, 100–101

Error characterization, 146
Error criterion, 122
Error detection and correction, 394–395
Error detection by duplicated instructions

(EDDI), 394
Error distance (ED), 148, 149
Error fitness function, 245
Error injection, 164
Error magnitude/error significance, 87
Error metrics, 85
Error model, 270
Error pattern, 158
Error probability, 89
Error-prone floating-point operands, 62
Error-prone instructions, dynamic prediction

approximation-based schemes, 56
bitwidth truncation, 56
carry propagation, 58
dynamic data-dependent sensitization, 56
LLPPU, 58
LLPs, 56
LSBs, 58
precision scaling-induced quality loss, 56
prediction units, 58
quality degradation, 57
SLPs, 58

Error propagation, 146
Error rate (ER), 35, 89, 149
Error resilience, 172
Error-resilient code, 44
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Error-resilient GPU applications, 55
Error-Tolerant Adder Type II (ETAII), 157
Error-tolerant applications, 46
Error variance, 159
E2-Train, 501
EvoApprox8b, 99
EvoApprox8b-Lite, 99
EvoApprox library, 99–100, 102
Evolutionary Algorithms (EAs), 396
Evolutionary computing-based framework, 47
Evolving Objects (EOs) framework, 246
Exhaustive approach, 189
Exhaustive functional simulations, 161–162
Expected Yield Increase (eYI), 363–366
Experimental analysis, 62
Expression and variable-to-constant

transformations, 224

F
Fail moderate, 148
Fail rare, 147
Fail small, 147
Fast error estimation, 271
Fast Fourier Transform (FFT), 230

additions/subtractions, 38
DIT, 38
energy peak, 39
energy per operation (pJ), 38
error-energy trade-off, 38
FxP outperforms FlP, 39
hardware performance estimation, 38

Fault coverage (FC), 366, 367
Fault injection, 356, 359, 373, 376–379
Fault masking, 410
Fault tolerance technique

approximate fault tolerance, 395–396
ATMR (see Approximate TMR (ATMR))
CFT-tool, 394
classification, 393
CRC, 394–395
devices, 393
DWC techniques, 394
EDDI, 394
NVP, 394
safety-critical systems, 393
SIHFT techniques, 393–394
TMR, 393

Fault-tolerant mechanisms, 3
FHEW (Fully Homomorphic Encryption

library), 335
Field programmable gate array (FPGA), 83,

388
Filtering block f, 111

Final optimization problem statement
candidate approximate instructions, 208
decision variables, 208
individual instruction, 208
kernel computation, 207
off-the-shelf ILP solver, 208
relative energy, 208
reliability factors, 208

Finite Impulse Response (FIR), 119, 220
Finite precision arithmetic, 171

C++-based fixed-point data-types, 154
commercial high-level tools, 154
custom floating-point data-types, 154
dynamic fixed-point data-type, 154
fixed-point simulation, 154
Matlab/Simulink, 154
SystemC fixed-point data-types, 154

FIP competitiveness, 36
FIP representation, real numbers

computations, 21
decimal arithmetic, 21
high dynamic range, 21
IEEE 754-2008, 21, 22
mantissa m, 21, 22
scaling factors, 21
sign bits, 21

First Order Mutator (FOM), 243
Fixed-point arithmetic, 146, 468, 479–480, 500
Fixed-point computation errors, 122
Fixed-point conversion process

aim, 12
cost function C(·), 18
energy consumption, 17
fractional part word-length determination,

20
implementation cost reduction, 17
integer and fractional part, 17
integer-part word-length determination,

18–20
optimization algorithm, 18
quality degradation, 18
word-length m, 17
word-length n, 18
word-length optimization, 17

Fixed-point data types, 40, 171
Fixed-point format conversion, 157
Fixed-point numbers, 12, 31
Fixed-point (FxP) representation

fixed-point value, 13
format propagation, 14–15
FWL, 13
IWL, 13
m and n, 13
overflow modes, 16–17
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Fixed-point (FxP) representation (cont.)
Q-format notation, 13
quantization process, 15–16
real numbers, 11
reduced-precision, 12
specification, 13
virtual BP, 13

Fixed-priority EDF (fpEDF), 291
FlexJava, 210
Floating-point adder, 30, 31
Floating-point arithmetic, 278, 446
Floating-Point Cores (FLOPOCO ), 26
Floating-point error magnitude, 30
Floating-point instructions, 47, 63
Floating-point multipliers, 31
Floating-point operations, 47
Floating-point operators

32-bit FlP multiplication energy, 24
classical hardware overheads, 23
FlP adder implementation, 22
FlP addition vs. integer addition, 23
FlP multiplication, 23
high control overhead, 22
integer multiplier, 23
Synopsys Design Compiler, 23

Floating-point (FlP) representation
addition and multiplication principle, 12
high-performance computing, 12
low-energy benefits, 12
low-precision, 24–25
operators, 22–24
potentially high dynamic range, 20
real numbers, 20–22
reduced-precision, 25–29
scaling factor, 11

Floating-point simulation, 170
FlP and FxP arithmetic operators, 36
FlP distance computation, 36
Formal analysis methods, 85
Formal error analysis

approximate arithmetic circuits, 87
average-case error analysis, 92
determination, 87
error metrics, 87–89
relaxed equivalence checking, 89–91
worst-case error analysis, 91–92

fpEDF-Virtual Deadline (fpEDF-VD), 291
FPGA architectures, 11
FPU design, 63
FPU re-execution, 55
Fractional motion vector compensation, 126
Fractional part word-length determination, 20
Full Adder (FA), 159
Functional approximation, 82

Functional interruption (FIs), 388
Functional simulation techniques, 152, 161
Function returning constant analysis, 199, 200
Fuzzy memoization, 119

G
Gate-level error characterization, 159
General-purpose low-energy processors, 40
General-purpose processing cores

abnormal behaviours, 51–52
behaviour formalization, 50
comprehensive characterization,
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design enhancements, 53
DVFS, 49
dynamic variation, 49
full energy saving potential, 50
full precision, 49
fully automated system-level framework,
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severity function, 50
standard IEEE 754, 49
static variation, 49
undervolting effects’ mitigation, 52–53
workloads, 49

Generic simulation-based framework,
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Genes, 226
Genetic algorithm (GA), 124, 231
Global scheduling technique

active low-criticality job, 298–300
fpEDF-VD, 295–296
high-criticality mode, 295
service preserving interval, 297–298
service preserving method, 296–297
service preserving policy, 300–301

GPU-based deep learning, 83
Gradient Descent (GD) method, 431
Granularity, 115
Graphic processing units (GPUs), 83, 270
Greedy algorithm, 165
Greedy Randomized Adaptive Search

Procedure (GRASP), 269
Groups of Frames (GOF), 135

H
Hadamard transforms, 191
Hard errors, 388
Hardware, 5
Hardware-based/software-based mitigation

approaches, 52
Hardware design, 40
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Hardware design guidelines
finer-grained voltage domains, 53
hardware detectors, 53
stronger error protection, 53

Hardware implementation cost, 19
Hardware security, 328, 330
Hardware Trojans, 329–330
HaRMony scheme, 69
Heartwall program, 64
H.264 encoding algorithm, 190
Heterogeneous architectures, 44, 415
Heuristic search strategies, 210
HEVC decoder use-case

algorithm classification, 125
block selection, 126–127
block transformations, 127–129
control-oriented data, 125
DCT-like process, 125
DF and SOA, 125
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energy consumption trade-off, 130
entropy decoder, 125
intra-/inter-frame type, 125
intra/inter mode selection, 125
intra-prediction, 125
power measurements, 129
signal-oriented data, 125

HEVC encoder use-case
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CT partitioning OSSE approximation, 135
CTUs, 130
decoder processing loop, 131
experimental set-up, 133
hybrid video encoder, 130
IM prediction OSSE approximation,
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intra encoding, 131, 132
OSSE algorithm identification and

classification, 134
OSSE combination, 137–139
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RDO step, 132
RMD, 132

HEVC intra-frame prediction, 131
HEVC legacy interpolation filters, 127
HEVC test Model (HM), 132
HEVC video codec

algorithmic level, 124
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use-case)
encoder use-case (see HEVC encoder

use-case)
Hierarchical analysis, 159–161

High Efficiency Video Coding (HEVC), 110
High-Level Synthesis (HLS), 26, 389, 500
High Order Mutator (HOM), 243
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416, 434
Homogeneous error magnitude, 30
Homomorphic encryption

approximate computing, 333
bootstrapping procedure, 333
construction, 333
description, 331–332
Gentry’s strategy, 333
limitation, 332
partially homomorphic, 332
potential, 332
RSA scheme, 332

Homomorphic Encryption for Arithmetic of
Approximate Numbers (HEAAN),
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Hybrid techniques, 170
Hyperparameters, 120

I
IDEA tool suite

Bellerophon, 245–246
Clang-Chimera, 241–244
code mutation, 244–245
lack of generic automation tools,

241
mutants, 241
space exploration example, 246–247
user-defined approximation methods, 241
walk-through

BAS12 algorithm, 248
Bellerophon, 248, 254–255
Clang-Chimera mutator (see Clang-

Chimera mutator)
DCT computation algorithm, 247, 248

Image filter implementation, 3
IM OSSE study, 138
Imprecise MC (IMC) system, 292–293
IM prediction OSSE approximation

approximation management, 136–137
coarse solution predictor design, 135–136
quality and cost evaluation, 137

Inexact arithmetic operators
BALL simulation, 152
bit-accurate simulations, 152
comparison, 153
floating-point simulation, 152
functional simulation, 152
ratio r, 153, 154
required time, 153
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In-field applications
collateral resiliency effect, 371
DNNs data type approximation (see DNNs

data type approximation)
Infinite Impulse Response (IIR), 166
Initial population, 247
In-loop filters, 126, 127
Instruction-level approximation granularity,

209
Instruction pipelining, 59
Instruction set architecture (ISA), 49
Instrumental Variable approach, 123
Integer Linear Programming (ILP), 367
Integer-part word-length determination

dynamic range, 18–19
IWL determination, 19–20
scaling operations, 18–20

Intel Running Average Power Limit (RAPL),
133

Intel’s Approximate Computing Toolkit
(iACT), 240–241

Interleaving perforation, 113, 186
Intermediate accuracy metric, 146, 171, 172
Intermediate language, 196–197
Internet-of-Things (IoT), 1, 349, 452

constrained search and performance
characterization, 454–458

Interval arithmetic (IA), 150, 165
Interval-based arithmetic

IA and AA, 165–167
MAA, 167–168

Interval-based metric, 150–151
Intra-mode prediction (IM), 134
Iterative refinement, 112, 114, 115, 216, 421

J
Jacobi preconditioner, 419
Jacobi relaxation method, 422–425
Jacobi solver, 415
JCT-VC H.264/AVC standard, 126
Joint reliability factor, 198

K
Kernel-level accuracy specifications, 183
K-means clustering algorithm

accuracy estimation, 35
accuracy target, 34
bidimensional sets, 33
distance computation function, 35
double-precision floating-point

computations, 33
energy estimation, 35

estimation-maximization process, 33
experimental results, 35–37
Gaussian distributions, 35
iterative distance computation, 35
multidimensional space, 32
set of clusters, 33
steps, 34
stopping conditions, 34, 36, 114
vector quantization, 32

Knapsack problem, 189
Kolmogorov–Smirnov hypothesis test, 239
Krylov subspace methods, 415, 417, 419

L
Labeled reliability, 198
LAPACK (Linear Algebra PACKage), 416
LAS (Basic Linear Algebra Subprograms), 416
Latin Hypercube Sampling technique, 239
Least significant bits (LSB), 44, 119, 158, 159,

262
LeNet-5, 371
LibTooling interface, 244
Lightweight technique, 118
Linear algebra

AC for iterative linear system solvers,
420

adaptive precision in stationary solvers (see
Adaptive precision)

fundamental linear algebra problems, 416
LAPACK and LAS, 416
large-scale linear algebra problems, 416
mixed precision iterative refinement

(MPIR), 421–422
sparse linear systems and iterative solvers

iterative solvers and preconditioners,
419

representation of data, 417–419
Linear energy transfer (LET), 390
Linear time-invariant (LTI) systems, 169, 262
LLP prediction unit (LLPPU), 58, 59
LLVM compiler framework, 186
Load Value Approximation (LVA), 217
Locking, 330–331
Long latency paths (LLPs), 56
Look-Up Tables (LUTs), 119, 163, 225
Loop computation, 113
Loop Perforation (LP), 112–113, 192, 216
Loop perforation transformation, 186
Loop performation, 324
Loop-simplify, 186
Low energy, 12, 24, 40, 67, 390
Low power, 388, 389, 467, 472, 498
Low-precision computations, 11, 12
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Low-precision floating-point arithmetic, 12
accuracy, 24, 25
artificial intelligence, 24
custom bias, 25
exponent, 24, 25
implicit bias, 25
low-energy benefits, 24
mantissa, 24

Low-precision training, 496–498
LSBs truncation, 56

M
Machine learning-based models, 221010
MapReduce algorithm, 115
Markov Chain Monte Carlo method, 226
Mathematical function approximation

iterative approaches, 121–122
mathematical libraries, 121
multivariate function, 123–124
polynomial approximation, 122–123
scientific computation, 121
table-based techniques, 122

Matrix-based mean ED determination, 159
Matrix-based method, 159
Maximal approximation error criterion, 124
Maximum Error Distance (maximum ED), 149
MC block approximation, 127
Mean Error Distance (mean ED), 157, 158,

160
Mean Square Error of the resulting cluster

Centroids (CMSE), 35
Mean Square Minimization method, 124
Mean work to failure (MWTF), 392
Memoization, 119–120
Memoization technique, 217
Memory Controller Units (MCUs), 67
Metering, 330–331
Microprocessors, 270
MIMO decoding, 116
Minifloat representation, 83
Minimum Mean Square Error (MMSE), 124
Minimum uniform wordlength, 265
Minimum wordlength set, 265
Miter, 89
Mitigation approaches

application and system crashes, 53
corrected errors first, 52
nothing abnormal, 52
SDCs alone, 52–53

Mixed-criticality (MC) system
IMC/VPMC systems

global scheduling technique (see Global
scheduling technique)

MC-DP-fair scheduling, 301–302
partitioned scheduling, 294

Mixed Integer Linear Programming (MILP),
265

Mixed precision iterative refinement (MPIR),
421–422

Mixed-precision training
mixed 8-16-bit precision training, 494–495
mixed 16-32-bit precision training,

490–494
Mobile devices, 349
Modified Interval/Affine Arithmetic

(MIA/MAA), 162
asymmetric distributions, 167
error magnitude, 167
error propagation method, 167
inexact operator, 168
range explosion, 168
storage explosion, 168
total error probability, 167

Modified Interval Arithmetic (MIA), 151
Monte-Carlo simulation, 112, 160, 161, 163
Most Probable Mode (MPM), 136
Most significant bit (MSB), 56, 119, 122, 159,
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Motion compensation (MC) filters, 118, 126
Motion estimation, 191
Multi-kernels system, 164
Multi Layer Perceptron (MLP), 120
Multi-objective optimization problem

constraints, 94
error metrics, 92
feasible solutions, 93
non-dominated solutions, 93, 94
objective functions, 93
optimization problem, 92
Pareto front, 93
suboptimal solutions, 93
worst-case error, 93

Multiple bit upset (MBU), 391
Multiple cell upset (MCU), 391
Multiple fault, 354
Multiple wordlength (MWL), 263
Multipliers, 46, 84
“Multiply and accumulate” (MAC), 81
Multivariate functions, 123–124
Mutants, 244

N
n-bit approximate additions, 46
2n-bit approximate multiplier, 97
N -bit floating-point, 30
Nearest Neighbor classifier, 116
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Near-threshold computing (NTC), 54
Negative-feedback control system, 192
Network architecture search, 453, 454
Network On Chips (NOCs), 236
Neural network approximation, 120
Neural processing unit (NPU), 120
Neuromorphic computing, 325
Newton-Raphson method, 404
Noise aggregation, 169
Noise gains, 267
Noise generation, 169
Noise propagation, 169
Non-determinism, 324
Non-deterministic AxC techniques, 325
Non-dominated solutions, 93, 94
Normalized energy reduction, 139
Number representations, 83
Numerical accuracy, 145
N-version programming (NVP), 394

O
Observability Don’t Care (ODC), 221
On-chip power consumption, 43
ON-set, 90
Operands, 45
Operand truncation, 45, 55–56
Operation and memory accuracy/reliability,

195
Operation transformations, 224
Operator characterization, 30
Operator refinement transformations, 476
Optimal non-uniform segmentation, 123
Optimization algorithms, 20
Optimization based on Search Space

Exploration (OSSE), 116, 117
Optimization constraint construction

configuration, 204
final constraint, 204
reliability expression, 204
validity checking, 204

Original (exact) circuit, 83
OSSE Classification Step, 134
OSSE combination, 138
Out-of-order (OoO), 62
Output abstraction, 179
Output quality estimation metric, 63
Overflow occurrence, 18
Overscaled supply voltage, 160

P
Parallel ultra-low power (PULP) platform, 457
Parameter adjustment, 118–119

Parents, 236
Pareto dominance relation, 85
Pareto front, 93, 94, 139
Pareto-optimal perforations, 190
Pareto optimal solutions, 93, 254
Pareto sets construction, 190
Partial products, 96
Partial product tree, 96
Passive side channel attacks

AxC, 327
in cryptography, 327
power analysis attacks, 326
security evaluation, 327
security threat, 326
self-adaptation circuits, 327
statistical tests and metrics, 327
timing attacks, 326

Path delays D(P ), 60
Path redistribution, voltage down-scaling

approximate-based strategies, 65
comparison between strategies, 62–65
LLPPU, 58
path shaping, 61–62
performance-centric design

implementation, 59
timing errors, 58
timing properties of pipelined designs,

59–60
timing wall phenomenon, 60–61

Path shaping, 61–62
Peak signal-to-noise ratio (PSNR), 88, 163,

190
Penalty fitness function, 245
Perceptual limitation, 4
Perforation space exploration, 188–190
Perturbation theory

fixed-point format conversion, 168
fixed-point systems, 168
noise aggregation, 169
noise propagation, 169
power expression, 169

PetaBricks framework, 118, 232
Physical fault injection, 391–392
Pipeline stage processes, 59
Point of failure (PoF), 60
Polynomial approximation, 122–123
Polynomial coefficients, 123
Post-silicon technique, 55
Power vs. emae trade-offs, 99
Pre-characterization phase, 162–163
Precision-scaling, 55–56, 216, 324
Precondition, analysis constructs, 203
Precondition generator analysis, 196
Primary Input (PI), 221
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Primary Output (PO), 221
Probabilistic analysis, 157–159
Probability density function (PDF), 19, 149
Probability error analysis methods, 85
Probability mass function (PMF), 146, 149
Problem-specific approximation methods

approximate adders, 95
approximate implementations, 94
approximate multiplier, 95–97
truncation, 94

Processing units, 44
Processor architecture, 2
Process variations, 51
Product of Reliability Factors, 198
Profiling-based optimization, 183

accuracy specification, 185
approximation knobs, 185
loop perforation transformation, 186–187
sensitivity profiling algorithm, 187–190
SpeedPress framework, 185
video encoder perforating, 190–192

Propagation/path sensitization, 356
Propagation process, 19
Pruning

granularity, 486–487
over-parameterized, 476, 485
target regions, 486
weight saliency determination, 487–489

PyTorch, 452, 453, 456, 472

Q
QEMUKVM hyper-visor, 69
QUAES (QUality assurance, Approximation,

Estimation, and search space
exploration), 229

Quality configurable circuits
8-bit and 16-bit, 87
2-bit multiplier, 86
definition, 85
error compensation support, 86
properties, 87
QCM, 86
Synopsys DC, 86

Quality configurable multiplier (QCM), 86
Quality degradation, 63, 115
Quality Evaluation Circuit (QEC), 222
Quality/latency-aware task graph scheduling

budgeting, 318
budgeting formulation, 317–318
Darknet deep learning framework, 318
deployment results, 319–320
distributed neural network applications,

319

intersection over union (IoU), 318
mapping heuristics, 316–317
mean average precision (mAP), 318
Network Delay Distribution (NDD), 313
quality model, 314–316
Raspberry Pi 3 devices, 318
scheduling formulation, 313–314
simulation results, 319
YOLOv2 object detection network, 319

Quality metric determination
analytical techniques, 163
simulation-based techniques

direct, 164
error injection, 164–165

Quality of service (QoS), 151, 239
Quantization

activation function inputs and outputs, 477
BFP format, 480
granularity level, 478
network parameters, 477
PTQ methods, 478
QAT, 477
quantized values, 481–482
ternary neural networks, 479
value distribution of the data, 481–482
XNOR-Net approach, 479

Quantization-Aware Training (QAT), 477
Quantization error, 157
Quantization error power estimation, 171

R
Random perforation, 187
Rate-Distortion (RD), 131
Rate-Distortion Optimization (RDO), 116,

134, 135
Rate-Energy space, 135
REACT framework, 164
Real-time scheduling

acceptance ratio vs. normalized utilization,
306

audio/video applications, 288
communication times, 287
evaluation, acceptance ratio, 306–307
evaluation of errors, 307–308
high-criticality task, 305–306
inherent error tolerance, 288
Internet of Things (IoT), 288
low-criticality task, 305–306
mixed-criticality settings, 287
mixed-criticality (MC) system, 289

DP (Deadline Partition)-Fair, 292
EDF-VD method, 293
global scheduling, 291



528 Index

Real-time scheduling (cont.)
high-criticality tasks, 289–290, 292,

293
low-criticality mode, 289–290, 292, 293
multiprocessor system, 289
partitioned scheduling, 290
Quality of Service (QoS), 292
uniprocessor scheduling, 290

network protocols, 288
optimization kernel, 302–303
single multiprocessor device, 288
software simulations, 305
system execution, 287
utilization slack estimation and

customization, 303–305
Recognition, Mining, and Synthesis (RMS)

applications, 349
Reduced Ordered Binary Decision Diagrams

(ROBDDs), 89, 90, 361
Reduced-precision arithmetic, 11
Reduced-precision floating-point arithmetic

AC_FLOAT, 26
16-bit addition/subtraction, 28, 29
32-bit FlP addition/subtraction, 29
CT_FLOAT, 26, 27
exponent, 26
FLOPOCO, 26–28
half-precision, 28
hardware performance comparison process,
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library, 26, 27
mantissa, 25, 26
properties, 27, 28
rounding modes, 26, 27
single-precision, 28
subnormals, 27
synthesizable C++ libraries AC Datatypes,
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VFLOAT, 26

Redundancy methods, 394
Redundant fault, 354
Reference design, 4
Reference implementation, 3
Register mapping, 200
Register transfer (RT), 83
Register-transfer level (RTL), 220, 353–354
Relative difference (RD), 101, 102
Relative energy model

ALU, 207
CPU, 207
cross-design parameters, 206
memory and cache, 207
multiple inputs, 207
system, 206

Relaxations, 237
Relaxed equivalence checking

analysis, 100
Boolean function, 90
CNF, 90
ROBDDs, 89
SAT, 90
worst-case error, 90

Reliability, 387, 389, 391, 401–404
Reliability constraint construction

constraint simplification
joint reliability factors ordering,

203
labeled reliabilities ordering, 203
subsumption property, 204

final precondition, 201–203
function, 198
initial postcondition, 199
precondition generator, 198

ALU/FPU operations, 199
array load/store, 201
bounded loops, 201
conditionals, 201
initialization and sequence, 198
scalar load/store, 199

Reliability factors, 198
Reliability predicates, 197–198
Reliability transformer relation, 198
Rely’s simplification procedure, 203
Representative approach, 55
Representative inputs, 190
Residual error symbol, 166
Return instruction, 199
Reverse engineering, 328–329
Reward fitness function, 245
Ripple carry adder (RCA), 58, 160
(Ring) Learning With Errors (RLWE) problem,

334
RoBA multiplier, 46
Rosa, 210
Rough Mode Decision (RMD), 132
Rounding-based approximate (RoBA), 96

S
Safety, 192, 387
Safety analysis, 178, 210
Safety constraints, 209
Safety-critical systems

as aerospace and avionics applications,
387–388

approximate computing, 388
error analysis, 391–392
external perturbation, 390–392
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fault injections, 389
fault tolerance technique, 393–396

Saliency determination, 487
SAO filter, 126
Satisfactory complexity-accuracy trade-off,

118
Satisfiability (SAT), 89, 90, 361, 365
Scalar store analysis, 200
Scaling operations, 19–20
Scheduling dependent tasks

approximations, task graph scheduling,
310–312

directed acyclic graphs (DAGs), 309
task graph system model, 309–310

Scientific applications
deep learning, 417 (see also Deep learning)
A2DTWP framework, 458
linear algebra, 417 (see also Linear algebra)

Search/autotuning algorithm, 189
Search space enumeration, 111
SECDEC ECC protection, 53
Segmentation, 122, 123
Segmented adders, 95
Selective dynamic loop perforation, 113
Self-tuning Approximation for Graphic

Engines (SAGE), 235–236
Sensitivity analysis, 210
Sensitivity profiling, 185
Sensitivity profiling algorithm

individual loops, 187–188
Pareto sets construction, 190
perforation space exploration, 188–190

Sensitivity profiling-based compilation,
182

Separate light-weight intelligent processor
(SLIMpro), 67

Sequence of operations, 19
Severity function, 50
Shift-and-add BKM algorithm, 121
Short latency paths (SLPs), 46
Signal Flow Graph (SFG), 169
Signal-oriented blocks, 128
Signal-to-noise ratio (SNR), 151
Signal-to-Quantization-Noise Ratio (SQNR),

167
Significance driven design methodology,

49
Silent data corruption (SDCs), 51, 54, 388
Simulated annealing (SA), 268
Simulation-based fault injection, 392
Simulation-based techniques, 146
Single event effects (SEE), 390, 391
Single event transient (SET), 391
Single event upset (SEU), 391

Skip-based approaches
discrete optimization algorithm, 116–117
early termination, 114–115
granularity levels, 111
limitation, 111
loop perforation, 112–114
scope, 111–112
task skipping, 115–116

Skip control configurations, 128
Skip control parameter, 128
“Skipping” instructions, 3
Smart Search Space Reduction (SSSR), 117
Smooth operators, 270
“Smooth” severity, 50
Soft error rate (SER), 390, 391
Soft errors, 388
Software, 5
Software-centric compilation, 209
Software layer, 6
Software-only techniques, 324
Software-oriented techniques, 97
Soundness, 208
Special storage modules, 55
Speculative adders, 95
Speculative Carry Selection Adder (SCSA),

157
SRAM

adaptive technique, 66
approximations, 66
architectural schemes, 66
3D raytracer application, 66
error-correction capabilities, 66
error-pattern transformation scheme, 66
high-order bits, 66
microprocessors’ energy efficiency, 66
output quality degradation, 66
power consumption, 66
supply voltage, 65
voltage noise elimination, 67
worst-case behaviour, 67

SRAM array failures, 51
SRAM supply voltage, 45
SSSR techniques, 117
Standard deviation, 161
Standard deviation of the error, 149
Static timing analysis (STA), 59
Static truncation, 63
Statistical error model, 156
Statistically Certified Approximate Logic

Synthesis (SCALS), 225–226
Statistically oriented error metrics, 88
Statistical metrics, 148–149
Statistical parameters, 170
Stochastic computing (SC), 323, 325
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