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A B S T R A C T

The diverse roles of inhibition in neural circuits and other dynamical networks are receiving renewed interest.
Here, it is shown that increasing global inhibitory feedback leads to gradual rounding of first-order transition
between dynamical phases, turning it into second-order transition. The effect is initially observed in an
electronic model consisting of a bi-dimensional array of neon glow lamps, where global inhibition can be
simply introduced through a resistor in series with the supply voltage. The experimental findings are confirmed
using both an extended numerical model and a mean-field approximation, then replicated across different
models of neural dynamics, namely, the Wilson–Cowan model and a network of leaky integrate-and-fire
neurons. Across all these systems, a critical point is always found as a function of a pair of parameters
controlling local excitability and global inhibition strength, and a general explanation revealing the roles of
the shape of the activation function and voltage fluctuations versus the extinction time-scale is provided.
It is speculated that the brain could use global inhibition as a versatile means of shifting between first- and
second-order dynamics, addressing the conundrum regarding the coexistence in neural dynamics of phenomena
stemming from both. Some reflections regarding the comparison with other physical systems and the possible
physiological significance are offered, and a hypothetical setup for an optogenetics experiment on cultured
neurons is put forward.
1. Introduction

1.1. Inhibition and global inhibition in neural systems

The development of experimental neurophysiology and computa-
tional neuroscience has been permeated by the notion that sensorimo-
tor and cognitive functions in the brain rely primarily on excitatory
neurons, to the point of them being referred to as ‘‘principal neu-
rons’’ [1,2]. As the name implies, until recently interneurons have
generally been considered ancillary in-betweens providing a nonspe-
cific blanket of inhibition. Their function has largely been assumed to
consist of balancing activity around an optimal point allowing neural
coding and computation to take place [3]. This view originated partly
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from the lower prevalence of inhibitory neurons, on the order of 10%–
30% of the total depending on the region, and partly from the postulate,
largely refuted by recent results, that interneurons are phenotypically
less differentiated than excitatory neurons. It is now established that,
aside from their role in the excitation–inhibition balance, interneu-
rons are functionally specialized and enjoy considerable diversification
across cortical regions with specific architectural arrangements [4,5].
There is, therefore, an interest in further elucidating the structural and
functional aspects of inhibition.

According to current knowledge, inhibition in the brain primarily
involves three configurations [6]. First, feedback inhibition, which acts
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locally at the microcircuit level to provide a negative loop term, imple-
mented via direct interconnections between excitatory neurons, such
as pyramidal neurons, and the interneurons geometrically intertwined
with them. It mainly underpins the dynamical maintenance of the
excitation–inhibition balance supporting operation close to criticality,
with profound implications for information storage and processing [7,
8]. Second, lateral inhibition, consisting of a topographically patterned
feedback architecture at the mesoscale, wherein inhibition applies a
sharpening function to the neural receptive fields and supports pattern
formation. It plays a role in implementing perceptual processing and
higher functions, though its influence remains to be fully clarified [9].
Third, feedforward inhibition, which acts at the macroscopic level, for
example inter-hemispherically, wherein distant cortical regions inhibit
each other via projection connections. A well-studied example is the
antagonistic relationship between activation in the left and right motor
cortex [10].

In a testament to the diversification and complexity of inhibitory
neurons, a recent microscopy study revealed that a single interneuron
in the mouse visual thalamus possesses as many as 899 synaptic inputs
and 623 outputs, and its neurites span more than half of the visual
field [11]. This strikingly high in- and out-degrees for a single neuron
point to its involvement in gathering information about the overall
state of a pool of excitatory neurons, and distributing a form of global
inhibitory feedback (in short, global inhibition). In other words, while
inhibitory feedback may be calculated and delivered over small groups
of neurons, there is biological evidence that it is also implemented on
a considerably larger scale [12].

A well-studied example of global inhibition is that of head-direction
cells, which are neurons that fire selectively as a function of the heading
with respect to a landmark. As demonstrated both numerically and
experimentally, their dynamics are modeled by ring attractor networks,
where a localized bump of activity is sustained by the interplay between
local excitation and global inhibition [13–15]. Another domain in
which global inhibition plays a key role is the maintenance of sparse
representations, such as those encoding odors through glomerular acti-
vation in insects. In that context, it is implemented by interneurons that
act locally on principal cells but receive non-selective and ubiquitous
excitatory inputs; accordingly, inhibiting their action profoundly alters
the coding specificity [16,17]. A role in coding sparsification and
thus the maximization of information capacity has been demonstrated
more generally in computational neural models [18]. Global inhibition
has also been implicated in memory retrieval, wherein its strength
allows versatile control of the recall range within arbitrary graph
structures [19]. Moreover, in an apparent paradox, it can facilitate
signal amplification at the network level due to its influence on the
eigenspectrum [20].

1.2. Electronic model of the influence of global inhibition on transition order

In this paper, global inhibition is investigated from a further per-
spective, that is, its influence on the transitions between dynamical
regimes. While the study of neural activity across levels of scale from
the perspective of statistical physics has run through more than two
decades, there remain open questions regarding these transitions [21].
On the one hand, signatures of first-order transition are found in the
bistability and hysteresis exhibited behaviorally and neurophysiolog-
ically, which, for example, support short-term memory persistence,
attention and task performance, as well as the formation of perceptual
priors [22–25]. Bistability (more generally, multistability) and hystere-
sis are also a common observation in the intrinsic dynamics of brain
networks and in the interactions between neural activity and other
physiological systems [26,27]. On the other hand, substantial in-vivo
and in-vitro evidence from the spatiotemporal distribution of neural
activity suggests preferential operation in the vicinity of a critical
point, implying second-order transition. The scale-free distributions
2

of avalanche size and duration are a well-established experimental
fact and, albeit indirectly, credible signatures of (near) criticality have
also been obtained from macroscopic recordings of brain activity,
including haemodynamics and electroencephalography [28–31]. It has
been posited that criticality emerges through a self-organization process
and represents a fundamental feature of neural activity, in that it
optimizes the dynamical range, information capacity and transmission,
and ability to switch between learned patterns [32–36]. First- and
second-order transitions, therefore, seem to coexist in several aspects
and across levels of brain dynamics, underlying the presence of large
numbers of metastable states [37,38].

In the past, we proposed an elementary analog electronic circuit
based on gas discharge tubes (specifically, neon glow lamps), which
recapitulated this coexistence in the form of a hysteretic transition
between two dynamical regimes endowed with different intensities
of activity and levels of spatiotemporal order. In the proximity of
the spinodal line, precursors of critical behavior could be clearly ob-
served [39]. Later, closely similar effects were replicated in a network
of leaky integrate-and-fire neurons whose connections encoded learned
spatiotemporal patterns [40]. Throughout this paper, after a brief sum-
mary of the electronic model, we introduce a simple extension of the
circuit, consisting of introducing a single resistor which, via Ohm’s law,
effectively implements a form of global inhibition. The effect of this
feedback, namely to gradually shrink the hysteresis region, round and
eventually abolish the discontinuous transition, is demonstrated both
numerically and experimentally. A mean-field model is then used to
assert the generalizability of the findings, which is in turn demonstrated
in the context of the Wilson–Cowan model and a network of leaky
integrate-and-fire neurons. The possible physiological underpinnings
and broad implications are discussed, particularly regarding global in-
hibition as a possible versatile means for the brain to shift between first-
and second-order transition dynamics. Finally, a biological experiment
is proposed.

2. Experiments on a bidimensional array of neon lamps

2.1. Apparatus and data acquisition

Neon glow lamps (in brief, neon lamps), consist of sealed glass
vessels containing a neon-argon mixture and two cylindrical electrodes.
Despite their inconspicuous appearance, the richness of their physics
is readily observable through their tendency to spontaneously flicker
in complex temporal patterns. On the one hand, their behavior is
strongly hysteretic, as the voltage required to initiate the discharge is
markedly higher than the one needed to maintain it, mainly due to the
influence of the ionization state of the gas. On the other hand, in the
vicinity of the striking and extinction voltages, the corresponding tran-
sitions, referred to as breakdown and recovery, are stochastic according
to markedly voltage-dependent probabilities. Additional non-idealities
include long-term memory due to the residual ionization even after
extinction, aging, eventually polarization, and light sensitivity [41].
While now largely relegated as inexpensive line voltage indicators,
these devices once played a notable role in the design of oscillators
and even logic circuits, and their importance as a non-linear circuit
element is demonstrated in the early observations by van der Pol of
chaotic behavior [42].

As detailed in Ref. [39], inspired by these properties, by the
Pearson–Anson oscillator [43] and its derivatives including capacitively-
coupled loops that give rise to sequential flashing, a bi-dimensional
array was designed. Each unit consists of a lamp with one terminal
connected to a global node A (typically, towards a positive voltage) via
a resistor of value 𝑅 and the other terminal connected to another global
node B (typically, towards ground). All intermediate terminals between
the lamps and resistors are interconnected via capacitors of value 𝐶
arranged as a grid according to Von Neumann neighborhood (Fig. 1a).
An important difference with respect to Ref. [39] is that in this study
periodic boundary conditions are implemented in the connections of
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both rows and columns, so that, for instance, element (1, 1) is coupled
to (1, 32) and (32, 1). This removes effects related to the distance from
the boundary, which amplify the dependence of the observations on the
system size. Throughout this paper, particular emphasis is placed on
considering this entire circuit as a self-contained two-terminal device,
referred to as X1, showing a strikingly complex voltage-current-time
dependence.

The apparatus, consisting of a 32 × 32 array, was realized using
lamps type NE-2C or equivalent, assembled on a printed circuit board
and enclosed in a black polyurethane shield to attenuate ambient
light and prevent optical cross-talk between adjacent nodes (Fig. 2a).
For these lamps, the typical breakdown and recovery voltages are,
respectively, on the order of 𝑣B ≈ 76 V and 𝑣R ≈ 61 V; however, these
are sensitive to aging and polarization effects. The value of the resistors
was set to 𝑅 = 2.2 MΩ and that of the capacitors was set to 𝐶 = 220 nF,
giving a characteristic time constant of 𝜏 = 𝑅𝐶 = 0.48 s. For specific
experiments, the system size was reduced by removing all the resistors
and capacitors in contiguous rows of the array. The apparatus was
housed in a sealed dark chamber at a temperature around 21 ◦C.

In Ref. [39], the spontaneous behavior of this system as a func-
tion of the externally-applied DC voltage 𝑉s was initially investigated.
Throughout this paper, the focus is on the influence of an additional
resistor of value 𝑅0 globally connected in series to the voltage source.
Via Ohm’s law, this component provides an instantaneous feedback
mechanism reducing by 𝑅0𝑖(𝑡) the voltage across X1 as a function
of the current 𝑖(𝑡) flowing through it. A dedicated circuit providing
the adjustable DC voltage, allowing changing 𝑅0 and measuring the
time course of 𝑖(𝑡) was designed (Fig. 1b). The voltage set-point was
emitted by a digital to analog converter U1, filtered by a low-pass filter
comprising R1 and C2, and entered into a feedback amplifier U2, which
provided the control signal for a step-up converter U3 through resistors
R2 and R3. The voltage 𝑉s was in turn filtered through a capacitor C1
and applied to the device X1, which was connected to the ground via
a small resistor R4 and a variable resistor R5, adjusted to realize the
value 𝑅0. The current 𝑖(𝑡) was read out through the voltage drop across
R4 via an instrumentation amplifier U4, and finally digitized using an
oscilloscope X2.

These circuits were realized on a separate plugboard (Fig. 2b),
connected via a BNC cable to the array board and to an external
fixed ±15 V power supply, and carrying a microcontroller board type
Arduino Nano as interface to the computer controlling the experiment.
The digital to analog converter U1, driven by said microcontroller, had
a resolution of 16 bits, type MAX541 or equivalent, whereas R1 and C2
had values 15 kΩ and 1 μF, respectively. The amplifier U2, type TL072
or equivalent, was connected to R2 and R3, having values 270 kΩ and
1 kΩ. The converter U3, type A02P-5A or equivalent, powered by a type
7805 or equivalent linear regulator, had its output connected to four
2.2 μF ceramic capacitors in parallel, represented by C1. The current-
sensing resistor R4 had value 10 Ω, and the potential drop across it
was amplified by a gain of 365 by the instrumentation amplifier U4,
type AD620 or equivalent, before being digitized at 8 bit, 100 kSa/s
by the oscilloscope X2. The variable resistor R5, iteratively adjusted
to the required values of 𝑅0, was implemented firstly with a digital
potentiometer, type AD7376A10 or equivalent, then replaced with
a manually-adjusted trimmer to reduce parasitic effects. Additional
circuits for overvoltage protection, health monitoring, and controllable
polarity inversion were provided but are omitted for brevity. The
duration of each recording was set to 5 s. All time-series data have been
publicly released and are downloadable from Ref. [44]. For specific
recordings, the activity within X1 was also optically observed using a
CMOS camera having a frame rate of 25 Hz.

2.2. Effects of series resistance and system size

While performing a first voltage cycle applying series resistance
𝑅 = 0 Ω, in steps of 𝛿𝑉 = 0.05 V for 5 s each, a marked hysteresis
3

0 s
Fig. 1. Circuit diagrams of the experimental apparatus. (a) Internal structure of the
32 × 32 bidimensional array of neon lamps with periodic conditions, observed as a two-
terminal device X1 (three-node subset shown for convenience). (b) Simplified schematic
of the driving and readout electronics, denoting the applied voltage 𝑉s, global series
resistance 𝑅0 and measured current 𝑖.

Fig. 2. Physical implementation. (a) Bidimensional array of neon lamps including the
optical shield. (b) Realization of the supporting circuits on a plugboard.

effect was noticeable, with a sharp transition to a high-rate state,
and a more gradual decay of activity as the voltage was decreased
(Fig. 3a). Integrating the area of the loop from the bottom, the voltages
corresponding to the upward and downward transitions at the level
corresponding to half of the total area were calculated. These were
𝑣up = 69.95 V and 𝑣down = 68.85 V, corresponding to a hysteresis in
the effect of the control voltage of 𝛥𝑉s = 1.1 V. Due to multiple factors
including the probabilistic nature of the transitions and the generation
within the array of voltages higher than 𝑉s, generally 𝑣up and 𝑣down
do not coincide with 𝑣B and 𝑣R; in other words, the ignition–extinction
hysteresis exhibited by each lamp is a physically different phenomenon
compared by the bistability in the collective activity. Owing to the
different rates of increase and decay of the activity, the loop appeared
pinched at the top-right; the frequency at the pinching point was em-
pirically determined as the highest rate for which 𝑓down − 𝑓up > 10 Hz,
giving 𝑓p = 320.6 Hz. The system behavior was similar to that observed
in Ref. [39], wherein the focus was on critical phenomena occurring
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Fig. 3. Experiments on the effect of the global series resistance 𝑅0. (a) Overall event
rate 𝑓all as a function of the applied voltage 𝑉s during closed loops for different
settings of 𝑅0. (b) and (c) Corresponding Fano factor 𝐹 and coefficient of variation
𝜎∕𝜇 (increasing voltage, smoothing applied). (d) Loop area 𝐴 and maximum Fano factor
max(𝐹 ) as a function of 𝑅0.

Fig. 4. Experiments on the effect of the system size in terms of the number of rows
𝑛rows. (a) Overall event rate 𝑓all as a function of the applied voltage 𝑉s during closed
loops for different settings of 𝑛rows. (b) Overall and individual event rates max(𝑓all) and
max(𝑓node) corresponding to the pinch point of the loops, as a function of 𝑛rows.

in the vicinity of the transition from low-rate activity, referred to as
phase I, to high-rate activity, referred to as phase II, corresponding to
𝑓p. The small discrepancy in 𝑣up and 𝑣down was plausibly down to aging
of the lamps due to the time span of several years between the two
experiments.

As the series resistance was increased, the maximum rate remained
relatively unaltered up to 𝑅0 = 1 kΩ, then decreased rapidly, with 𝑓p =
{320.6, 318.2, 310.5, 265.6, 152.4, 66.3} Hz for 𝑅0 = {0, 0.5, 1, 2, 4, 8} kΩ.
Furthermore, the morphology of the loop gradually changed. The tran-
sition to high rate became less sharp, with the rate around 𝑣up ± 0.1 V
steadily decreasing, even for the first three settings of 𝑅0, across which
𝑓p remained relatively unaltered, with 𝛥𝑓all∕𝛥𝑉s = {552.0, 357.7, 287.0,
176.3, 104.7, 53.0} Hz∕V. This rounding brought the increasing and de-
creasing trends closer, contributing to a gradually reduced loop area,
with 𝐴 = {261.2, 268.2, 226.3, 163.8, 152.4, 66.3} V Hz; eventually, for
𝑅0 = 8 kΩ, the trends overlapped substantially, leaving only a small
fraction of the initial loop area and largely removing the disconti-
nuities hallmarking the first-order phase transition observed in the
initial study of this system. Accordingly, the width of the loop at
the height corresponding to half-area consistently shrank, with 𝛥𝑉s =
{1.1, 1.15, 1.05, 0.85, 0.6, 0.6} V.

To tentatively address the question of whether the first-order tran-
sition observed in the absence of series resistance (i.e., 𝑅 = 0 Ω)
4
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changed into a second-order transition, or simply faded into a contin-
uous change, signatures of criticality were searched for by calculating
the Fano factor. Given event counts 𝑛𝑘 over time bins 𝑘 = 1⋯ 𝑛bins of
width 𝛿bin, it is defined as

𝐹 =
⟨𝑛2𝑘⟩ − ⟨𝑛𝑘⟩2

⟨𝑛𝑘⟩
. (1)

Initially introduced in nuclear physics as a statistical measure of the
ionization produced by charged particles [45], this measure has become
widely used, particularly in neuroscience [21,46,47], as a proxy indi-
cator of the divergence of fluctuations anticipated close to the critical
point. If the event count is extracted from a Poissonian distribution
𝑃 (𝑛) = 𝜇𝑛

𝑛! 𝑒
−𝜇 , where 𝜇 = 𝜌(𝑡)𝛿bin and 𝜌(𝑡) is constant over time,

then 𝐹 = 1. For temporally clustered events such as avalanches, the
overdispersion reflects into 𝐹 > 1.

Following Ref. [39], let 𝑛bins = 20, corresponding to a width of 𝛿bin =
0.25 s, well within the scaling region previously observed; to enhance
the accuracy of determining 𝐹 for relatively short time series, the stan-
dard deviation 𝜎 and mean 𝜇 of the event counts were independently
determined 10 times, shifting the bin positions by the corresponding
fractions, and the resulting values of 𝐹 were averaged. As expected,
while in phase I at voltages well below the transition, the activity was
essentially Poissonian, with 𝐹 ≈ 1. In the vicinity of the transition phase
I→II, signatures of criticality emerged and could be seen in the form of a
peak in 𝐹 as a function of 𝑉s (Fig. 3b). For higher voltages, within phase
II, the activity was highly ordered, which reflected in 𝐹 ≈ 0. However,
the peak value of the Fano factor, rather than increasing as would
be expected when approaching the critical point, gradually decreased
for increasing 𝑅0, with max(𝐹 ) = {3.44, 2.97, 1.77, 2.17, 1.72, 1.29}. Anal-
ogous results, not reported for brevity, were obtained for the other
settings of the bin width considered in Ref. [39]. The trend closely fol-
lowed the shrinkage of the loop area (Fig. 3d). Crucially, this situation
should not be interpreted as evidence for the absence of a second-order
transition, and these interim results are specifically reported to warn
about this fact. As will be clarified by the numerical results presented
in the Section 3, the issue is that there is a fundamental difference in
time-scale between the transition precursors, studied in Ref. [39] and
which result in the peak of the Fano factor with increasing 𝑉s, and the
dynamics in the vicinity of the critical point. In the latter case, the
increased autocorrelation time implies the need for substantially longer
bin sizes to capture the very slow fluctuations in the event rate, which
would not be compatible with experimental observation using the
present apparatus due to the resulting time series length and practical
factors such as the long-term stability of the setup. For completeness, as
a further measure of regularity, the coefficient of variation in the inter-
event intervals 𝛿𝑡𝑖 was calculated as 𝜎(𝛿𝑡𝑖)∕𝜇(𝛿𝑡𝑖). The corresponding
peak values max(𝜎(𝛿𝑡𝑖)∕𝜇(𝛿𝑡𝑖)) = {1.74, 1.53, 1.34, 1.58, 1.48, 1.24} did not
show a clear trend as a function of 𝑅0 (Fig. 3c).

Observing the decrease in rate as a function of series resistance,
the question arises of whether similar effects could be obtained by
reducing the system size. For practical reasons, reducing the number
of array columns was problematic, so this was investigated by re-
moving nodes through disconnecting entire rows, resulting in 𝑛rows =
{32, 24, 16, 8, 4, 2}. The corresponding rate gradually decreased, with
𝑓p = {320.6, 265.6, 205.7, 128.2, 95.1, 97.6} Hz (Fig. 4a). Notably, when
normalizing the rate by the number of nodes, a more than three-fold
increase was observed, indicating that the individual flashing frequency
became higher, which could be viewed as an attempt to ‘‘compensate’’
the reduced system size (Fig. 4b). While reducing 𝑛rows, the morphology
of the loop also changed, however, intriguingly, the hysteresis effect
become more, rather than less evident (Fig. 4a). Accordingly, the
reduction in the area appeared less marked compared to the effect of
𝑅0, with 𝐴 = {261.2, 271.1, 270.7, 215.8, 152.7, 200.6} V Hz and the width
of the loop at the height corresponding to half-area increased rather
than decreased, with 𝛥𝑉s = {1.1, 1.35, 1.75, 2.15, 1.9, 2.5} V. The peak
value of the Fano factor featured no discernible trend, with max(𝐹 ) =
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Fig. 5. Representative snippets of current 𝑖(𝑡) waveform recordings for (a) applied
voltage 𝑉s = 69.7 V and series resistance 𝑅0 = 0 Ω, (b) 𝑉s = 70.2 V and 𝑅0 = 0 Ω, (c)
𝑉s = 70.2 V and 𝑅0 = 4 kΩ. Orange circles denote the detected events.

{3.44, 5.04, 2.96, 3.93, 4.74, 5.5}. In this experiment, the effect of reducing
the system size was, therefore, different compared to the influence of
increasing the global series resistance 𝑅0. However, as demonstrated
by the numerical results in the Section 3, the effect becomes analogous
if all units in the array are assumed to be identical.

2.3. Qualitative aspects

Additional information about the influence of the global series
resistance 𝑅0 could be obtained by considering qualitative aspects of
the spatiotemporal dynamics. In the case of 𝑅0 = 0 Ω, while in phase I
for 𝑉s = 69.7 V, the system generated clearly distinct peaks of current
absorption, characterized by a sharp increase, followed by a plateau
and an exponential decrease; the events only partially overlapped in
their exponential tails, resulting in the reading spending the majority
of time around 𝑖 ≈ 0 mA (Fig. 5a). By contrast, in phase II for 𝑉s =
70.2 V, the rate of event generation was considerably higher, resulting
in substantial overlap of adjacent events; accordingly, the reading spent
the majority of time around 𝑖 ≈ 1.75 mA, effectively representing a
saturation current, and the events were detectable as drops from this
level (Fig. 5b). For sufficiently large settings of the series resistance,
e.g. 𝑅0 = 4 kΩ, in phase I for 𝑉s = 70.2 V, the morphology of each
spike appeared modified, as the exponential decay started immediately
after the initial increase (Fig. 5c).

The further elucidate this effect, the time-locked response of the cur-
rent in the neighborhood of each event was calculated. In the absence
of series resistance, i.e. 𝑅0 = 0 Ω, and with full system size, i.e. 𝑛rows =
32, each event consisted of a rapid increase from 𝑖(𝛥𝑡) ≈ 0 mA to
𝑖(𝛥𝑡) ≈ 1.75 mA within 𝛥𝑡 ≈ 0.07 ms, followed by a plateau lasting
≈ 1 ms with minimal voltage drop, and finally an exponential decay.
For voltages below 𝑉s = 70 V, for which transition to phase II occurred,
the exponential decay rate remained clearly insensitive to the voltage,
with 𝜆 = {0.41, 0.4, 0.4, 0.39} ms−1 for 𝑉s = {69, 69.25, 69.5, 69.75} V
(Fig. 6a).

The situation appeared markedly different as regards the effect of
the global series resistance 𝑅0, charted considering the voltage 𝑉s = 𝑣t
corresponding to the largest positive first derivative 𝑓 ′

all = max
(

𝑓 ′
all

)

;

this setting was not critical, and similar results would be obtained for
other values in phase I with sufficient events. For 𝑅0 = {0, 0.5, 1} kΩ,
the plateau at 𝑖(𝛥𝑡) ≈ 1.75 mA remained essentially unaltered. For
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𝑅0 = 2 kΩ, it was reduced down to ≈ 0.5 ms, and for 𝑅0 = {4, 8} kΩ,
Fig. 6. Recorded time-locked averaged current 𝑖(𝛥𝑡) waveforms, whereby 𝛿𝑡 = 0
corresponds to event onset. (a) As a function of the applied voltage 𝑉s, for series
resistance 𝑅0 = 0 Ω and system size 𝑛rows = 32. (b) As a function of 𝑅0, for 𝑉s = 𝑣t
corresponding to 𝑓 ′

all = max
(

𝑓 ′
all
)

and 𝑛rows = 32. (c) As a function of 𝑛rows, for 𝑉s = 𝑣t
and 𝑅0 = 0 Ω.

it disappeared, with the exponential decay starting immediately after
an initial peak, which reached, respectively 𝑖 = {1.76, 1.28} mA. The
exponential decay rate dropped markedly over the span of 𝑅0, with
𝜆 = {0.38, 0.36, 0.35, 0.31, 0.26, 0.19} ms−1 (Fig. 6b). These changes were
a consequence of the feedback mechanism realized by the series resis-
tor, which instantaneously reduced the applied voltage following an
increase in current. In particular, the shallower response with higher
values of 𝑅0 attenuated the amount of spatiotemporal variance pro-
vided to the array by each event, as will be explicitly represented
by decreasing values of the variance ‘‘quantum’’ parameter 𝜖 in the
mean-field model introduced in Section 4.

The effect of the system size 𝑛rows, again charted considering the
voltage 𝑉s = 𝑣t, appeared notably similar to that of the global se-
ries resistance 𝑅0. For 𝑛rows = {32, 24, 16}, the plateau at 𝑖(𝛥𝑡) ≈
1.75 mA remained largely unaltered; by contrast, for 𝑛rows = {8, 4, 2},
it disappeared, and the exponential decay started immediately after
an initial peak, which reached 𝑖 = {1.64, 0.97, 0.59} mA. The exponen-
tial decay rate markedly dropped over the span of 𝑛rows, with 𝜆 =
{0.38, 0.34, 0.28, 0.22, 0.18, 0.17} ms−1 (Fig. 6c). These changes reflected
the observation that the light flashes tended to be weaker when the
system size was decreased. Overall, these results revealed that, even
though at the level of the hysteresis loop the influences of the series
resistance and system size were different, at the underlying level of the
dynamics of individual events their effects were indeed similar, in line
with the simulations reported in Section 3.

While so far the behavior of the apparatus was considered through
its voltage-current response as if it were a two-terminal non-linear
device X1, that is, a black box, additional insight could be obtained by
observing its internal dynamics, in particular, the spatial distribution of
the event rate (Fig. 7). In the absence of the series resistor, i.e. 𝑅0 = 0 Ω,
during a voltage cycle in steps of 𝛿𝑉s = 0.05 V for 5 s each, the
fraction of active nodes 𝑝, intended as those having 𝑓node(𝑖, 𝑗) > 0,
approached unity, with 𝑝 = {0.50, 0.92, 0.98, 0.99, 0.98, 0.94, 0.87, 0.67}
for 𝑉s = {68.3, 68.85, 69.4, 69.95, 69.5, 68.95, 68.4, 67.85} V. For the higher
values of series resistance, the situation was substantially different: at
𝑅0 = 8 kΩ, the fraction of active nodes was 𝑝 = {0.00, 0.22, 0.30, 0.37,
0.33, 0.25, 0.16, 0.00}. In other words, increasing the series resistance
had not only the influence of reducing the event rate of each node
but also had the spatial effect of entirely obliterating large portions
of the array. Notably, while in the case of 𝑅0 = 0 Ω for low voltages
the inactive nodes were scattered homogeneously across the array,
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Fig. 7. Individual event rate 𝑓node maps from video recordings, shown as a function of the applied voltage 𝑉s and series resistance 𝑅0 = 0 Ω. Inactive nodes (𝑓node = 0 Hz) omitted
and left blank.
for 𝑅0 = 8 kΩ at all voltages, large contiguous regions of the array
were entirely inactive. Evidently, this was related to the presence
of spatial heterogeneities in the array, essentially a form of ‘‘frozen
variance’’, stemming from the heterogeneities in the values of the
resistances, capacitances and breakdown voltages, on the order of
1–10%. Interestingly, the active nodes tended to be grouped together
into a large cluster, the shape and location of which changed with the
applied voltage. The gradual drop in number of active sites due to the
growth of these inactive regions was particularly well-evident at volt-
ages close to 𝑣up = 68.85 V and 𝑣down = 68.4 V, with, respectively, 𝑝 =
{0.92, 0.86, 0.78, 0.60, 0.38, 0.22} and 𝑝 = {0.87, 0.71, 0.62, 0.41, 0.27, 0.16}.
The gradual growth and merging of these inactive regions with increas-
ing resistance appeared reminiscent of a nucleation-like effect, which,
while generally associated with first-order transitions, ensued for large
resistor values [48].

2.4. Commentary

To summarize, these experiments demonstrated that the additional
resistor connected in series to the voltage supply, thus implementing a
global negative feedback, fundamentally altered the qualitative features
of the transition between the two phases of the system. In the absence
of this resistor, the transition was discontinuous and exhibited consid-
erable hysteresis, and was thus of the first-order type. As the value of
this resistor was elevated, the discontinuity gradually disappeared, with
a shrinkage of the hysteresis region and a rounding of the disconti-
nuity, leading to a continuous effect plausibly reflecting second-order
transition. As discussed in Section 6, these findings are reminiscent of
recent results on the shifting in a continuum between first- and second-
order phase transition observed in brain dynamics [25]. Throughout the
following sections, the nature of this effect is revealed, first using an
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extended numerical model, and then via a suitable mean-field approx-
imation. A detailed analysis of the further effects that were observed,
especially nucleation, and of the influence of unit heterogeneity, while
necessary for a complete understanding of these experiments, is left for
others to pursue.

3. Extended numerical model of the array of neon lamps

3.1. Model specification

To gain further insight into the mechanisms underlying the observed
phenomena, and to ensure they did not arise spuriously due to non-
ideal behavior of the experimental apparatus, extensive simulations of
an event-based model were conducted. The model, initially introduced
in Ref. [39], consists, as the experimental setup in Section 2, of a
32 × 32 square bidimensional array comprising 𝑁 = 𝐿2 units, indexed
with 𝑘 = 1…𝑁 . Let the neon lamps be represented as independent and
identical binary units, which can be either in ‘‘off’’ or ‘‘on’’ state; this is
a reasonable first-order approximation of their physical behavior [41].
Each lamp functions as an open circuit having zero conductance 𝜎𝑘 = 0
while in the ‘‘off’’ state, and as a positive DC source of a voltage 𝐹𝑘 = 𝐹
with a finite conductance 𝜎𝑘 = 𝜎 while in the ‘‘on’’ state. As in Section 2,
let two given nodes 𝑖 and 𝑗 be connected via a capacitor 𝐶𝑖𝑗 = 𝐶
if they are first neighbors on the array according to Von Neumann
neighborhood and closed boundary conditions, with 𝐶𝑖𝑗 = 0 otherwise.

Let us consider the same node circuit as in Fig. 1a. Then,

𝑖(R)
𝑘 (𝑡) =

𝑣0(𝑡) − 𝑣𝑘(𝑡)
𝑅

(2)

denotes the currents flowing through the 𝑘th node resistors having
value 𝑅, where 𝑣0(𝑡) is the voltage at the point of connection between
the global series resistance 𝑅0 and said node resistors, and

𝑖(L)(𝑡) = 𝛥 𝜎 (𝑣 (𝑡) − 𝐹 ) (3)
𝑘 𝑘 𝑘 𝑘
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denotes the currents through the 𝑘th lamps, where 𝛥𝑘 = {0, 1} depends
on the state (‘‘off’’ or ‘‘on’’) of the same. Therefore, 𝑖(C)

𝑘 (𝑡) = 𝑖(R)
𝑘 (𝑡)−𝑖(L)

𝑘 (𝑡)
is the overall current flowing out through the capacitors from the 𝑘th
node to its four neighbors.

In the absence of changes in the lamp states, the node potentials
𝑣𝑘(𝑡) evolve continuously according to the 𝑁 equations

d
d𝑡

∑

𝑗
𝐶𝑖𝑗

[

𝑣𝑖(𝑡) − 𝑣𝑗 (𝑡)
]

= 𝑖(C)
𝑖 (𝑡). (4)

Via Kirchhoff’s current law, the following equations hold,
∑

𝑘
𝑖(R)
𝑘 (𝑡) =

∑

𝑘

𝑣0(𝑡) − 𝑣𝑘(𝑡)
𝑅

= 𝑖0(𝑡), (5a)

∑

𝑘
𝑖(L)
𝑘 (𝑡) =

∑

𝑘
𝛥𝑘𝜎𝑘(𝑣𝑘(𝑡) − 𝐹 ) = 𝑖0(𝑡), (5b)

where 𝑖0(𝑡) = [𝑉s − 𝑣0(𝑡)]∕𝑅0 is the current flowing through the global
series resistor having value 𝑅0, which implements the inhibitory feed-
back as discussed above. For the avoidance of confusion, here 𝑖0(𝑡)
corresponds to 𝑖(𝑡) in Section 2, examples of which are plotted in Fig. 5.
Given that the 𝑁 equations (Eq. (4)) are mutually linearly dependent,
one can choose any 𝑁 − 1 of them, so that, alongside the other two
equations (Eq. (5)), they form a set of equations for the 𝑁 +1 variables
𝑣0(𝑡), 𝑣1(𝑡),… , 𝑣𝑁 (𝑡), that can be integrated during the time intervals
when the lamp states do not change.

When the state of one lamp changes, and therefore some 𝛥𝑘 switches
from 0 to 1 or vice-versa, the potential 𝑣0(𝑡) exhibits a discontinuity
𝛥𝑣0, and all the 𝑁 potentials 𝑣1(𝑡),… , 𝑣𝑁 (𝑡) have the same discontinuity
𝛥𝑣1 = ⋯ = 𝛥𝑣𝑁 . Such discontinuities can be computed from the
equations (Eq. (5)), and it should be borne in mind that ∑

𝑘 𝑖
(C)(𝑡) =

0. The switching is modeled as a stochastic event occurring with
a rate depending exponentially on the potential across each lamp;
namely, the transition from ‘‘off’’ to ‘‘on’’ takes place with a rate 𝜆𝑘 =
𝜌on exp

(

𝑣𝑘(𝑡)−𝑉on
𝐷on

)

, whereas that from ‘‘on’’ to ‘‘off’’ takes place with

a rate �̄�𝑘 = 𝜌off exp
(

𝑉off−𝑣𝑘(𝑡)
𝐷off

)

(n.b., 𝑉on and 𝑉off here correspond to

𝑉B and 𝑉R in Section 2, but are indicated differently to emphasize that
they are not experimental measurements but parameters of an idealized
model).

In keeping with Ref. [39] and with the experimental setup in
Section 2, the parameters were set as follows: node resistor value 𝑅 =
2 MΩ, coupling capacitance 𝐶 = 220 nF, lamp equivalent conductance
𝜎−1 = 2.7 kΩ and series DC voltage 𝐹 = 55 V, transition rates 𝜌on =
𝜌off = 1 ms−1, characteristic breakdown and recovery voltages 𝑉on =
76.2 V and 𝑉off = 61.3 V, with corresponding scaling coefficients 𝐷on =
𝐷off = 0.4 V. It is important to underline a fundamental difference with
respect to the experimental case, namely, that all units were assumed
to be identical across the nodes. The size of the square array was
varied between 𝐿 = 20 and 𝐿 = 32 (in the absence of experimental
constraints, unlike in Section 2, here the extent of both dimensions of
the array was varied conjointly), and the global resistance was swept
over 𝑅0 ∈ [0, 8] kΩ.

To realize the event-related simulation, the following steps were
iterated:

– For each unit, the time 𝑡𝑘 > 𝑡 of the next transition was drawn
from a Poissonian distribution 𝑃 (𝑡𝑘) = 𝜆𝑘𝑒−𝜆𝑘(𝑡𝑘−𝑡), separately
for the transitions to the ‘‘on’’ and ‘‘off’’ states according to the
corresponding rates 𝜆𝑘 and �̄�𝑘;

– The next event-related time step 𝑡next = min(𝑡𝑘) was therefore
determined;

– All the potentials 𝑣0(𝑡),… , 𝑣𝑁 (𝑡) were integrated until 𝑡 = 𝑡next, in
steps of maximum 𝛿𝑡 = 10−5 s;

– Finally, the lamp states were updated.
7

Fig. 8. Simulations of the array of neon lamps on the effect of the global series
resistance 𝑅0 and square array size 𝐿. (a) Overall event rate 𝑓all as a function of the
applied voltage 𝑉s during hysteresis loops for different settings of 𝑅0. (b) Corresponding
Fano factor 𝐹 (increasing voltage, averaging applied over 12 runs). (c) Overall event
rate 𝑓all as a function of the applied voltage 𝑉s during closed loops for different settings
of 𝐿. (d) Corresponding Fano factor 𝐹 .

3.2. Hysteresis loops

A hysteresis loop of the supply voltage 𝑉s was performed, starting
from 𝑉s = 70 V and reaching 𝑉s = 75 V in 50 s (0.1 V∕s), then
returning to the starting value over the same amount of time, while
recording for each time bin of 𝛿bin = 0.1 s the event count, defined
as the number of instantaneous transitions from the ‘‘off’’ to the ‘‘on’’
state. Groups of 10 consecutive time bins were thereafter pooled for
calculating the average and variance of the event counts, in turn
yielding the instantaneous rate, plotted in Fig. 8a. For 𝑅0 = 0 Ω,
the model showed a pronounced hysteresis effect, with 𝑣up = 71.9 V
and 𝑣down = 70.8 V, corresponding to a hysteresis in the effect of the
control voltage of 𝛥𝑉s = 1.1 V. Increasing the value of 𝑅0 reduced
and eventually suppressed the hysteresis effect. For 𝑅0 = 2 kΩ, 𝑣up =
72.4 V and 𝑣down = 72.2 V, yielding 𝛥𝑉s = 0.2 V. For 𝑅0 = 4 kΩ, the
hysteresis was no longer appreciable. While these results replicate the
main features of the physical measurements, an important discrepancy
was found in that the maximum rate, rather than decreasing, increased
with the resistance value, namely, 𝑓all = {710, 1020, 2800} Hz for the
three values under consideration, hinting at some limitation of the
model.

As in the experimental case, the question whether the vanishing
of the discontinuous transition is marked by the presence of a critical
point arises. To make a first attempt at addressing it, the Fano factor
𝐹 , introduced in Eq. (1), is plotted in Fig. 8b (only over the first 50 s
during which the supply voltage increases, as in Fig. 3b). As discussed
in Section 2, it is expected that in presence of a critical point the Fano
factor exhibits a peak, diverging with the size of the system, but no sign
of such a divergence was observed [21,45–47]. More trivially, the peaks
shown in Fig. 8b for 𝑅0 = 0 Ω and 4 kΩ reflect the sharp discontinuity
observed in the rate (i.e., transition during the observation window),
but neither the large fluctuations that would produce a broader peak
nor a maximum as a function of 𝑅0 were observed. As shown below,
this was due to the substantial autocorrelation time of the system in the
vicinity of the critical point. Consequently, to successfully measure an
increase of the Fano factor, it is necessary to average the event count
and its fluctuations over very long time bins, on the order of tens of
seconds. It is important to underline that this is fundamentally different
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from the situation of the avalanche precursors observed as the spinodal
line is approached [39]. Observing the increase in Fano factor in the
vicinity of the critical point is only possible under an extremely slow
change of the external potential or while measuring the fluctuations in
the stationary state.

Finally, the influence of the array size 𝐿 can be addressed, similarly
as done for the experimental system, but considering a square array
of size 𝑁 = 𝐿2. As said, for 𝐿 = 32, the model showed a clear
hysteresis effect, with 𝑣up = 71.9 V and 𝑣down = 70.8 V, corresponding
to a hysteresis in the effect of the control voltage of 𝛥𝑉s = 1.1 V.
Decreasing the value of 𝐿 reduced and eventually suppressed the
hysteresis effect. For 𝐿 = 24, 𝑣up = 72.3 V and 𝑣down = 71.8 V, yielding
𝛥𝑉s = 0.5 V. For 𝐿 = 20, the hysteresis was no longer appreciable.
In other words, while the influence of the resistor value 𝑅0 was, on
the whole, similar to the experimental observations, the effect of the
system size was different; for brevity, elucidating this discrepancy is
left for future work, but it appears plausibly related to the fact that
in the experimental system 𝑉on and 𝑉off were far from homogeneous,
therefore embedding a form of ‘‘frozen variance’’, and may additionally
have been influenced by memory effects [41]. In fact, insofar as the
voltage fluctuations introduced in the array by individual events were
concerned, also in the experimental system the effects of the resistor
value 𝑅0 and of the system size 𝐿 were closely similar (Fig. 6b vs. 6c).

3.3. Static averages and critical point

In Fig. 9a, the region of the plane given by the parameters 𝑅0
and 𝑉s over which the system displays bistability is shown. For each
setting of 𝑅0 and 𝑉s, it is expected that one of the two states will be
preferred statistically when the dynamics are stationary. Therefore, by
considering slower and slower hysteresis loops, the bistability region
should shrink, in virtue of the fact that the system transitions earlier to
the more stable state. In the limit of static averages, the region collapses
into a line of discontinuous transition [47].

The first question to consider is, again, whether this line ends with a
critical point, that is, a point where the correlations and fluctuations of
the system diverge. To finally address this question in an appropriate
setting, the system dynamics were simulated at a fixed value of the
external potential. Let us first consider the autocorrelation time of the
rate, which is determined based on the integral of the normalized
autocorrelation function. The simulation can be segmented into time
bins having a width of 𝛿bin = 100 ms, and the rate 𝜌(𝑡) can be measured
as the event count divided by 𝛿bin. One can then calculate

𝐶(𝑡) =
⟨𝜌(𝑡′)𝜌(𝑡′ + 𝑡)⟩ − ⟨𝜌(𝑡′)⟩2

⟨𝜌(𝑡′)2⟩ − ⟨𝜌(𝑡′)⟩2
, (6)

where the average ⟨⋯⟩ is determined on the running time 𝑡′. The
function 𝐶(𝑡) starts from 𝐶(0) = 1 and decays to zero for long times.
As shown in Fig. 9b, the time needed to decay to zero is maximized
at the point where the two curves marking the limits of the bistability
region meet, hinting at the presence of a critical point.

The Fano factor of the event count, introduced in Eq. (1), can be
considered next, bearing in mind that it is strictly connected with
the integral autocorrelation time of the rate. As previously indicated,
if the number of events is extracted from a Poissonian distribution
𝑃 (𝑛) = 𝜇𝑛

𝑛! 𝑒
−𝜇 , where 𝜇 = 𝜌(𝑡)𝛿bin and 𝜌(𝑡) is constant over time, then

the 𝐹 = 1. If, however, 𝜌(𝑡) changes with an autocorrelation time 𝜏𝜌,
then for 𝛿bin ≫ 𝜏𝜌 one instead has

𝐹 = ⟨𝜌(𝑡)⟩−1 ∫

∞

−∞

[

⟨𝜌(𝑡)𝜌(𝑡 + 𝑡′)⟩ − ⟨𝜌(𝑡)⟩2
]

d𝑡′. (7)

where, the process being assumed stationary, the average ⟨⋯⟩ is in-
dependent of 𝑡. Therefore, in the presence of overdispersed dynamics,
increasing the time bin 𝛿bin, one observes an increase of the Fano factor,
until it reaches an asymptotic value given by Eq. (7) [21,45–47].

For the system under consideration, the largest autocorrelation time
observed was about 10 s, so that the Fano factor would be expected to
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Fig. 9. Simulations under static 𝑉s voltage conditions. (a) Phase diagram of the model:
the red and blue lines denote, respectively, the upper and lower pseudo-spinodals,
between which a region of bistability is found. (b) Autocorrelation decay of the event
rate for different values of 𝑅0 and 𝑉s. The slowest decay (longest autocorrelation time)
is found at the critical point. (c) Fano factor of the number of events as a function
of the global series resistance 𝑅0 and the supply voltage 𝑉s. The peak at the value
𝑅0 ≈ 2.5 kΩ, 𝑉s ≈ 72.5 V corresponds to the critical point. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

reach the asymptotic value for 𝛿bin ≥ 10 s. In Fig. 9c, the Fano factor
computed over a bin width 𝛿bin = 25 s is charted as a function of 𝑉s
and 𝑅0. A sharp peak can be seen around 𝑉s = 72.5 V and 𝑅0 = 2.5 kΩ;
this corresponds to the point where the two lines of Fig. 9a meet, with
the small discrepancy being due to finite-time effects. It can therefore
be concluded that the line of first-order transition ends with a bona
fide critical point, where both the autocorrelation time and the Fano
factor of the rate diverge. This explicitly shows that increasing the value
of the global series resistance 𝑅0 leads to a change from a first- to a
second-order phase transition.

The second question pertains to the mechanism by means of which
the increase in the global series resistance 𝑅0 eventually suppresses
the discontinuous transition, that can be probed through considering
several quantities measured at fixed values of the supply voltage 𝑉s.
Towards this end, simulations lasting until 𝑡max = 200–500 s were
performed, discarding the first 30 s to 200 s for to ensure thermalization
(depending on the average rate, it takes between 2 and 16 min of CPU
time to simulate 1 s of the dynamics using optimized code written in C
language). The average event rate is charted in Fig. 10a, and it can be
seen that it rapidly grows with the supply voltage 𝑉s until it reaches
a maximum where a plateau, or even a slow decrease, begins. The
height of the plateau depends strongly on the global series resistance
𝑅0, increasing sharply as its value becomes larger than 2 kΩ.

This unexpected behavior of the model can be explained by consid-
ering the average fraction of time during which at least one lamp is in
the ‘‘on’’ state, referred to as 𝑓on (not to be confused with a frequency),
as shown in Fig. 10b. It can be seen that, for sufficiently small values of
𝑅0, the interval over which the rate grows corresponds to 𝑓on ≈ 0, while
the phase in which the rate remains constant or decreases corresponds
to 𝑓on ≈ 1. Indeed, the overall event rate is controlled by the slowest
between the rate of switching ‘‘on’’ and the rate of switching ‘‘off’’ of
the lamps. When 𝑓on is near zero (one), the switching ‘‘on’’ (‘‘off’’) rate
is the slowest one. In the first case, the rate increases with the external
potential, while in the second it decreases, because the switching-off
rate decreases with the potential across the lamp.

Another important aspect to consider is the mean and variance of
the lamp potentials, charted in Fig. 10c. In the phase characterized by
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Fig. 10. Additional analyses on the simulated array of neon lamps. (a) Average event
rate as a function of the supply voltage 𝑉s for different values of 𝑅0. (b) Fraction of
time during which a lamp is in the ‘‘on’’ state. (c) Average and standard deviation of
the lamp potentials. (d) Time-locked averaged current waveforms, for different values
of 𝑅0.

𝑓on ≈ 0, the mean potential is practically equal to 𝑉s, and the variance
is negligibly small. By contrast, when 𝑓on ≈ 1, the mean potential
drops below 𝑉s, by a voltage that grows with 𝑅0, ranging from ≈5 V
for 𝑅0 = 0 Ω to ≈10 V for 𝑅0 = 2 kΩ, while the variance grows. This
effect is also directly connected with the fraction of time 𝑓on that a
lamp dwells in the ‘‘on’’ state. It has to be considered that, when a lamp
is in the ‘‘off’’ state, the current flowing through the resistance 𝑅 has
the result of making the potential 𝑣𝑘(𝑡) relax towards that of the global
node 𝑣0(𝑡); conversely, while when a lamp is ‘‘on’’, this effect is largely
counteracted by the current flowing through the lamp, that pulls the
value of 𝑣𝑘(𝑡) towards the ‘‘ground’’ potential 𝐹 . As a result, during the
intervals of time while all the lamps are in the ‘‘off’’ state, the variance
of the potentials 𝑣𝑘 is reduced, whereas when one or more of the lamps
are ‘‘on’’, the variance grows. Therefore, when 𝑓on ≈ 0, the variance is
nearly zero, while for 𝑓on ≈ 1, it grows until it reaches a dynamical
equilibrium, determined by the fact that the lamps with the highest
potential are more like to transition to the ‘‘on’’ state, therefore, their
potential tends to decrease.

The last ingredient to consider is the reason why the global re-
sistance has the effect of pushing forward the potential at which the
system enters the phase with 𝑓on ≈ 1 as also visible, albeit less
markedly, for the experimental recordings in Fig. 3b. This is connected
with the duration of the ‘‘on’’ state, which can be assessed by charting
the shape of the current flowing through the circuit after the switching
‘‘on’’ of a lamp, as shown in Fig. 10d. For low values of 𝑅0, the potential
reached by the lamps that switch ‘‘on’’ is relatively high: consequently,
the lamp remains for a long time in the ‘‘on’’ state, giving time for the
variance of the potentials to increase. On the other hand, when 𝑅0 is
large, the potential reached by the lamp is lower, therefore, the time
that it remains in the ‘‘on’’ state is shorter, and the variance of the
potentials remains contained. As shown in Fig. 6b, also this effect was
clearly visible in the experimental recordings. Therefore, for increasing
𝑅0, the systems preferentially dwells in the state with low variance and
𝑓on ≈ 0 over a large span of supply voltages 𝑉s.

3.4. Spatio-temporal correlations

The amount of time that a lamp spends in the ‘‘on’’ state has
important consequences also for the spatiotemporal correlations in the
9

Fig. 11. Spatiotemporal correlations in the simulated array of neon lamps, given, (a)
𝑅0 = 0 Ω, (b) 𝑅0 = 2 kΩ, and (c) 𝑅0 = 4 kΩ, respectively. The supply voltage was
adjusted towards an average event rate per node of ≈14 Hz, yielding 𝑉s = 71.6 V for (a),
𝑉s = 71.7 V for (b) and (c). Time expressed in milliseconds. (d) Temporal correlations
for the same 𝑅0 and supply voltages.

system. When a lamp fires, that is, generates an event by switching
‘‘on’’, its potential becomes lower than the average, therefore, the
probability that it fires again shortly afterwards is low, realizing a sort
of refractoriness. It is noteworthy that refractoriness, a fundamental
property of biological neurons, here emerges spontaneously as a func-
tion of the dynamics of the voltages in the array [1]. This can be
appreciated in Fig. 11a–c, assuming the system is sufficiently isotropic
and charting the correlation 𝐺(𝑟, 𝑡), that is given by

𝐺(𝒓, 𝑡) = ⟨𝜌(𝒓′ + 𝒓, 𝑡′ + 𝑡)𝜌(𝒓′, 𝑡′)⟩ − ⟨𝜌(𝒓′, 𝑡′)⟩2, (8)

where 𝜌(𝒓′, 𝑡′) is the rate at position 𝒓′ and time 𝑡′, and the average ⟨⋯⟩

is done on the position 𝒓′ and the times 𝑡′. As in the case of temporal
correlations, rates are computed over time bins of width 𝛿bin = 100 ms.
This correlation measures the excess probability (with respect to the
mean value) that a lamp fires at time 𝑡 and distance 𝑟 from the origin,
given that a lamp has fired in the origin at time 0. This probability
tends to be lower near the origin, and becomes flat only when the time
separation is sufficiently large. However, for large values of 𝑅0, this
effect is suppressed, so that the correlations drop practically to zero for
𝑅0 = 8 kΩ. This effect is due to the average time that a lamp dwells in
the ‘‘on’’ state, which is lower for higher values of 𝑅0, as can be seen
from Fig. 10d; consequently, the potential of the lamp has less time to
deviate from the average. The same effect can be seen in the temporal
correlations 𝐶(𝑡) = 2𝜋 ∫ 𝑟𝐺(𝑟, 𝑡) d𝑟, charted in Fig. 11d, that is, the
excess probability that a lamp fires at time 𝑡, given that a lamp has fired
at time 0, which becomes practically zero as the global series resistance
𝑅0 increases. In other words, the effect of increasing 𝑅0 was primarily
to dissolve the finite-range spatiotemporal correlations initially present
in the bistability region, while at the same time their spatial integral is
maximized at the critical point.

3.5. Model with adjusted parameter settings

Given the model parameter settings considered thus far, the event
rate reaches a maximum when increasing the external potential then
starts decreasing, as can be seen in Fig. 8, due to the fact that when
𝑓on ≈ 1 the rate is controlled to the switching ‘‘off’’ of the lamp, and
this decreases with the potential according to 𝜌off exp

(

𝑉off−𝑣𝑘(𝑡)
𝐷off

)

. In the

experimental system, this behavior was not observed. If the value of
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𝐷off is increased compared to the initial setting from Ref. [39], which
merely represents an arbitrary choice, the switching ‘‘off’’ rate depends
less on the potential of the lamp, and one can expect that this will,
in turn, prevent the decrease of the rate upon increasing the external
potential.

A modified model was therefore considered, setting 𝐷off = 25 V
instead of 𝐷off = 0.4 V. Moreover, to make the order of magnitude
of the rate more similar to the experimental one, the capacitances
were increased and the rates were decreased, setting 𝐶𝑖𝑗 = 1.3 μF,
𝜌on = 0.167 ms−1, and 𝜌off = 0.333 ms−1. The rate during a hysteresis
plot is shown in Fig. 12a, and is closer to the experimental results, see
Fig. 3. In Fig. 12b,c and d, the spatiotemporal and temporal correlations
are charted as a function of the global series resistance 𝑅0, showing the
same decrease with 𝑅0 as observed with the initial parameter settings,
thus reassuring about the generality of the findings.

3.6. Commentary

To summarize, these simulations using an extended numerical model
of the array of neon lamps first of all confirmed that the effect of
the additional global resistor was not due to a non-ideality of the
experimental apparatus. The observations could be largely replicated
through an event-driven simulation, integrating the continuous evolu-
tion of the potentials over the array of capacitors in between stochastic
flashing events, which were generated according to simple exponential
voltage-dependent rates. Notably, these simulations also confirmed that
the effect was observable under the assumption of identical nodes.
Furthermore, thanks to the ability to perform simulations over long
time-periods under static conditions, it was possible to observe that
there is an extended region of bistability which, as a function of both
the supply voltage and the global series resistor, eventually shrinks
into the critical point. Therefore, it was proven that the additional
resistor can lead to a shift from first- to second-order transition in the
system dynamics. These simulations also revealed that the requirements
for observing the divergence of the Fano factor are fundamentally
different between the situation where the spinodal line is approached
and transition precursors are observed, and the situation where the true
critical point of the system is approached: in the latter case, the auto-
correlation time becomes very long, posing demanding requirements
on the bin size which hindered experimental measurement. No less
importantly, it was possible to precisely explain why the additional
resistor exerts the observed influence on the transition order. The effect
could eventually be ascribed to the average fraction of time that a
lamp spends in the ‘‘on’’ state, which directly impacts the amount
of variance that is generated. For increasing resistance values, the
spatiotemporal correlations initially characterizing the dynamics in the
bistability region are quickly washed out, only to reappear and diverge
in the vicinity of the critical point.

4. A mean-field approximation

4.1. Model formulation

Having demonstrated experimentally and through an extended nu-
merical model the effect of the global series resistance 𝑅0, a mean-field
model that recapitulates the behavior of the system shall now be
introduced. As further detailed in Section 5, this serves particularly as a
stepping stone towards neural mass models, such as the Wilson–Cowan
model. Let us consider a set of 𝑁 units (lamps), having potentials 𝑣𝑘(𝑡)
at a time 𝑡, with 𝑘 = 1,… , 𝑁 , and let 𝑚(𝑡) be the instantaneous value
of the spatial standard deviation across the node potentials, namely

𝑚(𝑡) =
√

⟨𝑣𝑘(𝑡)2⟩ − ⟨𝑣𝑘(𝑡)⟩2, (9)

where ⟨⋯⟩ denotes the average over the 𝑁 lamps at time 𝑡. Denoting
with 𝜌(𝑡)𝛿𝑡 the probability that an event (transition of a lamp to the
‘‘on’’ state) takes place during the time interval [𝑡, 𝑡+𝛿𝑡], as a first-order
10
Fig. 12. Additional analyses on the simulated array of neon lamps with adjusted
parameters. (a) Average event rate as a function of the supply voltage 𝑉s for different
values of 𝑅0. (b,c) Spatiotemporal correlations for 𝑅0 = 0 Ω and 𝑅0 = 32 kΩ,
respectively. The supply voltage was adjusted towards an average event rate per node
of ≈ 2.3 Hz, yielding 𝑉s = 71.65 V for (a), 𝑉s = 71.7 V for (b) and (c) Time expressed
in milliseconds. (d) Temporal correlations for the same 𝑅0 and supply voltages.

approximation one can assume that the instantaneous rate 𝜌(𝑡) (not to
be confused with the transition rates 𝜌on and 𝜌off in the Section 3) is
given by

𝜌(𝑡) = 𝑓
(

𝑉s + 𝑚(𝑡)
)

, (10)

where 𝑉s denotes the external supply voltage applied to the system
through 𝑅0 as shown in Fig. 1a, and 𝑓 (𝑣) ≥ 0 represents an activation
function. The rationale of Eq. (10) is that the overall rate is, to a large
extent, determined by the lamps that experience the largest voltage,
which is, in turn, on the order of the mean plus the standard deviation.
Here, the mean voltage is assumed to be 𝑉s, which is true when all
the lamps are in the ‘‘off’’ state. Also, based on the results from the
extended model in Section 3, the probability that two lamps are in the
‘‘on’’ state at the same time is being neglected, so that an event can be
generated only when all the lamps are off and the mean value of the
potentials is 𝑉s.

Furthermore, let us assume that each event makes the standard
deviation 𝑚(𝑡) grow by a fixed ‘‘quantum’’ 𝜖, and that 𝑚(𝑡) relaxes back
to zero exponentially with a characteristic time 𝜏, giving

𝑚(𝑡) = 𝜖 ∫

𝑡

−∞
𝑒−(𝑡−𝑡

′)∕𝜏
∑

𝑘
𝛿(𝑡′ − 𝑡𝑘)d𝑡′ = 𝜖

∑

𝑘
𝑒−(𝑡−𝑡𝑘)∕𝜏 , (11)

where 𝑡𝑘 are the event times, and 𝛿(𝑥) is Dirac’s delta function. Under
quasi-stationary conditions, that is when 𝜌(𝑡) ≈ 𝜌∗, and assuming that
𝜌∗𝜏 ≫ 1, the standard deviation shall fluctuate with 𝑚(𝑡) ≈ 𝑚∗ = 𝜏𝜖𝜌∗,
leading to the self-consistent equation

𝜌∗ = 𝑓 (𝑉s + 𝜏𝜖𝜌∗). (12)

The solutions 𝜌∗, that is, the fixed points of Eq. (12), correspond the
possible stationary states of the system.

It follows that the shape of 𝑓 (𝑣) is of paramount importance because
it determines whether the system can have simultaneously more than
one fixed point or not. Accordingly, it needs to feature a change of
convexity at some value of the argument, so that the first derivative
is not monotone. Indeed, the solutions of Eq. (12) correspond to zeros
of the function 𝐹 (𝜌) = 𝑓 (𝑉s + 𝜏𝜖𝜌) − 𝜌 (not to be confused with the
Fano factor 𝐹 ). As will be shown in the next subsection, if at the
solution 𝐹 ′(𝜌) < 0, the fixed point is stable in the sense that the
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𝑚

Fig. 13. Calculations based on the mean-field model. (a) The function 𝑓 (𝑣) for different
values of 𝑉s and 𝜖. (b) Region in the plane of 𝜖 and 𝑉s where two stable fixed
points exist. The red and blue lines denote, respectively, the upper and lower spinodal,
between which a region of bistability is found. The dashed lines represent the values
corresponding to the hysteresis loops in panels c and d. (c) and (d) Hysteresis loops
for 𝜖 = 125 mV and 𝜖 = 80 mV (critical value), respectively. (e) and (f) Corresponding
Hysteresis loops for 𝜏 = 10 s, 𝜖 = 1.25 mV and 𝜖 = 0.8 mV (critical value), respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

dynamics fluctuate around the fixed point, whereas the solutions with
𝐹 ′(𝜌) > 0 correspond to unstable fixed points. To exhibit two stable
fixed points, the function 𝐹 (𝜌) has to cross the 𝜌-axis twice with a
negative derivative.

Without loss of generality, let us consider the activation function

𝑓 (𝑣) = 𝛽
[

1 + exp
(

𝑉on − 𝑣
𝐷on

)]−1
. (13)

For 𝑣 < 𝑉on, it is similar to that considered throughout Section 3, while
for 𝑣 > 𝑉on it saturates, taking into account the finite time needed for
a lamp to switch off, as the model otherwise represents lamp flashings
purely like a point process. Let us consider the following parameter
settings: event rate scale 𝛽 = 500 Hz (implicitly corresponding to the
system size), characteristic time 𝜏 = 100 ms, characteristic breakdown
voltage 𝑉on = 74.5 V, and corresponding scaling coefficient 𝐷on = 1 V.

In Fig. 13a, the function 𝐹 (𝜌) is charted as a function of 𝜌, for
different values of 𝑉s and 𝜖. The critical point is obtained when it
crosses the 𝜌-axis with a derivative equal to zero. In this case, the fixed
point is only marginally stable, and large fluctuations occur, as shown
in the next subsection. With the parameter settings considered, this
happens for 𝑉s = 72.5 V, 𝜖 = 0.08 V, shown as the red curve in Fig. 13a.
It is important to note that, for larger values of 𝜖, the function can have
two stable fixed points within a certain interval of 𝑉s. Conversely, for
smaller values of 𝜖, it always has a single stable fixed point. In Fig. 13b,
the region of the parameters 𝑉s and 𝜖 wherein two stable fixed points
exist is shown. The critical point corresponds to the point where the
two lines meet.
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It is therefore clear that the parameter 𝜖−1 plays a role similar to the
global series resistance 𝑅0 in the extended model. Accordingly, when
the value of 𝜖 is lowered, the variance of the potentials decreases, giving
rise to the same effect that an increase in 𝑅0 exerts on the original
model through reducing the time that the lamps remain in the ‘‘on’’
state.

4.2. Numerical results

The approach used in the previous section is based only on the
analysis of the fixed points of Eq. (12), neglecting the fluctuations of
𝜌(𝑡) and 𝑚(𝑡) around the fixed point values 𝜌∗ and 𝑚∗. This is correct
as long as the product 𝜌∗𝜏 tends to infinite, which can be achieved in
two ways: sending 𝜏 to infinity with 𝜏𝜖 held fixed (so that 𝜌∗ and 𝑚∗

remain the same), or sending 𝛽 to infinity with the product 𝛽𝜖 held
fixed (so that 𝜌∗∕𝛽 and 𝑚∗ remain the same). However, in practice,
𝜌∗𝜏 is finite, leading to fluctuations of 𝜌(𝑡) and 𝑚(𝑡). Moving beyond
this initial approximation, it will now be shown that the variance and
autocorrelation of the fluctuations can be derived analytically, as done
in the following subsection, or computed making an explicit simulation
of the model, that is, generating a sequence of spikes by means of the
following procedure.

One starts with 𝑘 = 0 and 𝑡0 = 0, given an initial standard deviation
𝑚(𝑡0) = 0, and iterates the following steps:

– Compute the instantaneous rate 𝜌(𝑡𝑘) from Eq. (10);
– Randomly extract the time 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡𝑘 of the next event from

the inter-event time distribution 𝑝(𝛥𝑡𝑘) ∝ 𝑒−𝜌(𝑡𝑘)𝛥𝑡𝑘 representing a
Poissonian process;

– Compute the standard deviation before the spike 𝑚(𝑡−𝑘+1) = 𝑚(𝑡𝑘)
𝑒−𝛥𝑡𝑘∕𝜏 ;

– Generate the spike at time 𝑡𝑘+1 and then compute the standard
deviation after it, 𝑚(𝑡+𝑘+1) = 𝑚(𝑡−𝑘+1) + 𝜖;

– Finally, update 𝑘 → 𝑘 + 1.

Note that at the second step the rate 𝜌(𝑡) is assumed constant over the
time interval [𝑡𝑘, 𝑡𝑘+1). This approximation could be overcome by using
a more refined algorithm, however it is adequate insofar as the flashing
rate is greater than 𝜏−1.

Fig. 13c and d depict the event rate during a hysteresis loop in the
course of which the potential is increased from 𝑉s = 70 to 74 V over 50
s, and then decreased back to 74 V over the same amount of time. The
rate was computed in time bins with 𝛿bin = 0.2 s. Specifically, Fig. 13c
is for 𝜏 = 100 ms and 𝜖 = 125 mV (corresponding to the left dashed
line in Fig. 13b), while Fig. 13d is for 𝜖 = 80 mV (corresponding to the
right dashed line in Fig. 13b, passing through the critical point). In the
former case, a clear hysteresis effect could be seen, with 𝑣up = 71.9 V
and 𝑣down = 70.9 V, corresponding to a hysteresis in the effect of the
control voltage of 𝛥𝑉s = 1.0 V. Decreasing the value of 𝜖 shrank, and
eventually suppressed, the hysteresis effect. As shown in Fig. 13e and f,
decreasing the ‘‘quantum’’ of variance 𝜖 and elongating the time-scale
𝜏 by a factor of 100 considerably reduced the residual fluctuations,
leaving the effect otherwise essentially unaltered.

4.3. Analytical determination of the fluctuations

To derive the fixed point equations, thus far the term ∑

𝑘 𝛿(𝑡′ − 𝑡𝑘)
appearing in Eq. (11) was approximated as the mean rate 𝜌∗. A less
crude approximation is given by
∑

𝑘
𝛿(𝑡′ − 𝑡𝑘) ≃ 𝜌(𝑡) +

√

𝜌∗ 𝜂(𝑡), (14)

where 𝜂(𝑡) represents a Gaussian noise characterized by ⟨𝜂(𝑡)⟩ = 0,
⟨𝜂(𝑡)𝜂(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). Entering this into Eq. (11), and deriving with
respect to time, one obtains

̇ (𝑡) = −1𝑚(𝑡) + 𝜖𝜌(𝑡) + 𝜖
√

𝜌∗ 𝜂(𝑡). (15)

𝜏
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Fig. 14. Parametric maps of the Fano factor, calculated from the mean-field model, as
a function of 𝜖−1 and 𝑉s. (a) Minimum and (b) Maximum value.

At stationarity, the rate 𝜌(𝑡) and the standard deviation 𝑚(𝑡) fluctuate
around the fixed point values 𝜌∗ and 𝑚∗, where 𝜌∗ is a solution of
Eq. (12), and 𝑚∗ = 𝜖𝜏𝜌∗. Defining 𝛿𝑚(𝑡) = 𝑚(𝑡) − 𝑚∗, from Eq. (10),
one has

𝜌(𝑡) ≃ 𝜌∗ + 𝑓 ′(𝑉s + 𝑚∗) 𝛿𝑚(𝑡). (16)

It follows that

�̇�(𝑡) = −𝜆 𝛿𝑚(𝑡) + 𝜖
√

𝜌∗𝜂(𝑡), (17)

where

𝜆 = 𝜏−1 − 𝜖𝑓 ′(𝑉s + 𝑚∗) = −𝜏−1𝐹 ′(𝜌∗). (18)

From this equation, it is clear that the attractive fixed points are
characterized by 𝜆 > 0, that is, by 𝐹 ′(𝜌∗) < 0, as previously mentioned.
The parameter 𝜆−1 represents the relaxation time of the fluctuations
in 𝜌(𝑡) and 𝑚(𝑡), and was previously undefined under the assumption
of constant 𝑚. It diverges in 𝜆−1 → ∞ at the critical point, where
𝐹 ′(𝜌∗) = 0. The critical fixed point is attractive only marginally, that
is, considering successive derivatives of 𝐹 (𝜌).

From Eq. (17), one can compute the autocorrelation of the fluctua-
tions, given by

⟨𝛿𝑚(𝑡)𝛿𝑚(𝑡′)⟩ =
𝜖2𝜌∗

2𝜆
𝑒−𝜆|𝑡−𝑡

′
|. (19)

Considering an interval of time [𝑡, 𝑡 + 𝛥𝑡], the number of events taking
place within the interval is given by

𝑛events = ∫

𝑡+𝛥𝑡

𝑡
𝜌(𝑡′) d𝑡′

= 𝜌∗𝛥𝑡 + 𝜖−1
(

𝜏−1 − 𝜆
)

∫

𝑡+𝛥𝑡

𝑡
𝛿𝑚(𝑡′) d𝑡′, (20)

where Eqs. (16) and (18) were imported. The Fano factor then is given
by Eqs. (1) and (7), where it is assumed that 𝛥𝑡 is greater than the
autocorrelation time of 𝜌(𝑡). Using Eqs. (16), (18) and (19), finally one
obtains

𝐹 =
( 1
𝜆𝜏

− 1
)2

, (21)

where, as said, the time 𝜏 denotes the relatively fast decay of 𝑚(𝑡) to-
wards zero and 𝜆−1 is the characteristic time of the slower fluctuations
which diverge at the critical point.

In Fig. 14a and b that correspond, respectively, to the minimum
(more stable) and maximum Fano factor, the same is shown as a
function of 𝜖−1 and 𝑉s, focusing on the region of bistability around the
two fixed points. The divergence at the critical point, 𝜖−1 = 12.5 V−1,
𝑉s = 72.5 V, is well evident, and the line of maxima starting at the
critical point and going in the up right direction can be appreciated.
This corresponds to the Widom line, which in phase diagrams originates
from the critical point and rises in the supercritical region, defined as
the locus of maxima of the correlation length or of the fluctuations,
separating a ‘‘liquid-like’’ from a ‘‘gas-like’’ behavior [47]. In Fig. 14b,
the spinodal lines, that is the lines where one of the solutions becomes
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unstable and the fluctuations diverge, are also visible. The correspond-
ing solutions of the equation 𝐹 (𝜌) = 0 are characterized by the fact that
the function touches the 𝜌-axis not at an horizontal inflection point, as
for the critical point, but at a minimum or a maximum.

4.4. Commentary

Some important conclusions can be drawn from this model. The first
is that the critical point always exists at the end of the lines delineating
the region of bistability, and its location corresponds to a pair of values
for the global series resistance 𝑅0 and applied voltage 𝑉s. The second
is that the shape of the activation function plays a central role in
determining the order of the transition. The third is that the presence
and width of the bistability and hysteresis are directly determined by
the ‘‘quantum’’ of variance that each event introduces in the system, to
be considered in proportion with respect to the relaxation time scale.
The fourth is that the effect is quite general, and could therefore be
observed across diverse scenarios that can be in one way or another
reconduced to this abstract model.

5. Micro- and mesoscopic neural dynamics

5.1. Wilson-Cowan model

The mean-field approximation described in Section 4 has aspects of
similarity with several well-known models of neural activity, especially
the so-called neural mass models. These models represent entire neuron
populations in an aggregate form through a small number of state
variables corresponding, for instance, to the level of activity in the ex-
citatory and inhibitory subpopulations. They are, therefore, abstracted
from the spatiotemporal evolution of the membrane potentials in the
same way that the proposed mean-field approximation is from the
potentials in the neon lamp array. One of the most established neural
mass models is the Wilson–Cowan model [49,50].

According to it, neural activity is characterized by two neuron
populations, one excitatory and the other inhibitory. Each unit (neuron)
can be in the ‘‘on’’ or ‘‘off’’ state, as represented by a binary variable
𝑎𝑖 = 0, 1, and remains in the active state after spiking for a time
determined by a constant extinction rate akin to the parameter 𝜏 in
Section 4. By contrast, the activation rate is a function of the number
of afferent neurons that are in the ‘‘on’’ state. In other words, an active
neuron spontaneously becomes quiescent according to an extinction
rate 𝛼, while a quiescent one becomes active according to an activation
rate 𝑓 (𝑠𝑖), where

𝑠𝑖 =
∑

𝑗
𝑤𝑖𝑗𝑎𝑗 + ℎ𝑖 (22)

is the input of the 𝑖th neuron. The parameters 𝑤𝑖𝑗 represent the
strengths of the connections between pre-synaptic neuron 𝑗 and post-
synaptic neuron 𝑖, and ℎ𝑖 the external input to neuron 𝑖. The function
𝑓 (𝑠) is akin to 𝑓 (𝑣) defined in Section 4: while 𝑓 (𝑣) represents the
flashing rate of a lamp subject to a potential 𝑣, here 𝑓 (𝑠) is the spiking
rate of a neuron whose synaptic input is 𝑠.

In the simplest formulation of the model, neurons are wired up in
an all-to-all topology with identical connections, depending only on the
nature (excitatory or inhibitory) of the neurons. This tantamounts to a
mean-field configuration, where the input of a neuron depends only
on two variables, namely, the fractions 𝑓E and 𝑓I of active excitatory
and inhibitory neurons. The weights of the corresponding outgoing
connections are typically normalized to 𝑤E∕𝑁E and 𝑤I∕𝑁I, where 𝑁E
and 𝑁I denote, respectively, the two subpopulation sizes. One can write

𝑠 = 𝑤E𝑓E −𝑤I𝑓I + ℎ, (23)

where ℎ is the external input, assumed to be equal across all the
neurons. In the following, we also assume that 𝑁 = 𝑁 = 𝑁 . In the Van
E I



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 182 (2024) 114701L. Minati et al.
Kampen’s system-size expansion [51] the fractions of active neurons
obey the equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d𝑓E
d𝑡 = − 𝛼𝑓E + (1 − 𝑓E)𝑓 (𝑠)

+𝑁−1∕2
√

𝛼𝑓E + (1 − 𝑓E)𝑓 (𝑠) 𝜂E(𝑡)
d𝑓I
d𝑡 = − 𝛼𝑓I + (1 − 𝑓I)𝑓 (𝑠)

+𝑁−1∕2
√

𝛼𝑓I + (1 − 𝑓I)𝑓 (𝑠) 𝜂I(𝑡),

(24)

where 𝜂E(𝑡) and 𝜂I(𝑡) are independent Gaussian white noises, with
⟨𝜂𝑥(𝑡)⟩ = 0 and ⟨𝜂𝑥(𝑡)𝜂𝑦(𝑡′)⟩ = 𝛿𝑥,𝑦𝛿(𝑡 − 𝑡′).

Neglecting the stochastic terms in Eq. (24), and defining the total
activity as 𝛴 = (𝑓E + 𝑓I)∕2 and the imbalance as 𝛥 = (𝑓E − 𝑓I)∕2, one
obtains the deterministic equations

⎧

⎪

⎨

⎪

⎩

d𝛴
d𝑡 = −𝛼𝛴 + (1 − 𝛴)𝑓 (𝑠),

d𝛥
d𝑡 = − [𝛼 + 𝑓 (𝑠)]𝛥,

(25)

where 𝑠 = 𝑤0𝛴 + 𝑤𝑠𝛥 + ℎ, 𝑤0 = 𝑤E − 𝑤I, and 𝑤𝑠 = 𝑤E + 𝑤I. In this
way, over sufficiently long times the total activity and the imbalance
converge, apart from 𝑁−1∕2 fluctuations, to the fixed point (𝛴∗, 𝛥∗),
defined by 𝛥∗ = 0 and

𝛼𝛴∗ = (1 − 𝛴∗)𝑓 (𝑤0𝛴
∗ + ℎ). (26)

Similarly to the situation in Section 4, depending on the values of the
parameters and the shape of the activation function 𝑓 (𝑠), Eq. (26) can
have one or two attractive solutions. Let us consider the activation
function

𝑓 (𝑠) =
𝛽

1 + exp(𝜃 − 𝑠)
, (27)

with the parameter settings 𝛼 = 𝛽 = 0.1 ms−1, 𝑤E = 14, and threshold
𝜃 = 6. In Fig. 15a, the region of the plane (𝑤I, ℎ) where two attractive
solutions exist is shown. It can be seen that this region ends in the
critical point, which, in this case, is given by 𝑤I = 6 and ℎ = 4− log 2 ≈
3.31.

The model can be simulated by means of an algorithm similar to
that described in Section 4. Let 𝑁 = 5000, the number of active
excitatory and inhibitory neurons is given, respectively, by 𝑘 = 𝑁𝑓E
and 𝑙 = 𝑁𝑓I. At a time 𝑡, the deactivation rate 𝛼(𝑘 + 𝑙) and the
activation rate 𝜌 = (2𝑁 − 𝑘 − 𝑙)𝑓 (𝑠), where 𝑠 is given by Eq. (23),
are computed prior to the next event, and a neuron is activated or
deactivated correspondingly. As shown in the previous cases, hysteresis
loops can be performed at different intensities of global inhibition. In
this case, the excitatory input ℎ is the parameter that is varied, starting
from ℎ = 0 and increasing it up to ℎ = 6, and then decreasing it back to
ℎ = 0, at different values of 𝑤I. The functions of these two parameters
largely correspond to the voltage 𝑉s and resistance 𝑅0 in Section 4.
In Fig. 15b the flashing rate is charted as a function of ℎ, and a clear
hysteresis effect can be seen for 𝑤I < 6.

To compute the fluctuations of the event count in the vicinity of the
fixed point of the dynamics, it is convenient to define 𝛴 = 𝛴∗+𝑁−1∕2𝜉𝛴
and 𝛥 = 𝑁−1∕2𝜉𝛥. By making a Taylor expansion of 𝑓 (𝑠) around the
fixed point 𝑠∗ = 𝑤0𝛴∗ + ℎ, one finds that terms of order 𝑁0 vanish,
while terms of order 𝑁−1∕2 give the equations [52–54]

d
d𝑡

(

𝜉𝛴
𝜉𝛥

)

=
(

−𝜏−11 𝑤FF
0 −𝜏−12

)(

𝜉𝛴
𝜉𝛥

)

+
√

2𝛼𝛴∗
(

𝜂𝛴 (𝑡)
𝜂𝛥(𝑡)

)

, (28)

where 𝜏−11 = 𝛼 + 𝑓 (𝑠∗) − (1 − 𝛴∗)𝑤0𝑓 ′(𝑠∗) and 𝜏−12 = 𝛼 + 𝑓 (𝑠∗) are the
relaxation rates of the two eigenvectors, 𝑤FF = (1 − 𝛴∗)(𝑤E +𝑤I)𝑓 ′(𝑠∗)
is the feed-forward strength [49,50], and 𝜂𝛴 (𝑡) =

𝜂E(𝑡)+𝜂I(𝑡)
√

2
and 𝜂𝛥(𝑡) =

𝜂E(𝑡)−𝜂I(𝑡)
√

2
are uncorrelated white noises.

The correlation functions of the fluctuations 𝜉𝛴 (𝑡) and 𝜉𝛥(𝑡) can be
derived analytically from the linear Langevin Eq. (28) [53,54]. The
13
Fig. 15. Simulations of the Wilson–Cowan model. (a) Region of the plane (𝑤I , ℎ) where
two stable solutions exist, ending in the critical point. The red and blue lines denote,
respectively, the upper and lower spinodal, between which a region of bistability is
found. (b) Firing rate during an hysteresis loop of the external input, for different
intensities of the global inhibition. (c) Fano factor as a function of the inhibition
intensity 𝑤I and the external input strength ℎ. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

covariance matrix 𝜎𝑖𝑗 = ⟨𝜉𝑖(0)𝜉𝑗 (0)⟩ with 𝑖, 𝑗 = (𝛴, 𝛥), where ⟨⋯⟩ denotes
an average in the stationary state, satisfies the relation [55]

−
(

𝛼𝛴∗ 0
0 𝛼𝛴∗

)

= 𝐴𝜎 + 𝜎𝐴𝑇 , (29)

where 𝐴 is the matrix appearing in Eq. (28). While the detailed steps
are omitted for brevity, the elements 𝐶𝛴𝛴 (𝑡), 𝐶𝛴𝛥(𝑡), 𝐶𝛥𝛴 (𝑡), and 𝐶𝛥𝛥(𝑡)
of the time correlation matrix 𝐶(𝑡) can then be obtained from the
equations [55]

𝐶𝑖𝑗 (𝑡) = (𝑒𝐴𝑡𝜎)𝑖𝑗 . (30)

Within the linear approximation valid in the limit of a large neuron
number and the assumption of a stationary state, the deterministic
components having relaxed to the attractive fixed point, the firing rate
can be Taylor expanded around the fixed point, giving

𝜌(𝑡) = 2𝑁 (1 − 𝛴(𝑡)) 𝑓
(

𝑤0𝛴(𝑡) +𝑤s𝛥(𝑡) + ℎ
)

(31)

≃ 𝑁𝜌∗ +𝑁1∕2𝜉𝜌(𝑡), (32)

where

𝜉𝜌(𝑡) =
(

𝛼 − 𝜏−11
)

𝜉𝛴 (𝑡) +𝑤FF𝜉𝛥(𝑡). (33)

The autocorrelation function of 𝜉𝜌(𝑡) can then be computed as

⟨𝜉𝜌(𝑡)𝜉𝜌(0)⟩ =
(

𝛼 − 𝜏−11
)2 𝛴𝛴 (𝑡)

+ 𝑤FF
(

𝛼 − 𝜏−11
) [

𝛴𝛥(𝑡) + 𝛥𝛴 (𝑡)
]

+𝑤2
FF𝛥𝛥(𝑡).

From these, using Eq. (7), the Fano factor can be computed as
in Section 4, and the result is visible in Fig. 15c. In the region of
bistability, the solution with the lowest Fano factor was taken. As
expected, the Fano factor diverges at the critical point.

5.2. Leaky integrate-and-fire neurons

As a final step, it can be shown that the postulated effect of global
inhibition also holds in a detailed model of neural dynamics that repre-
sents the full spatiotemporal evolution of the membrane potentials. A
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model in widespread use is the leaky integrate-and-fire neuron, wherein
the membrane potential is influenced by the integral of the inflow-
ing current, that, in turn, depends upon the spiking of the afferent
neurons [56,57]. In the deterministic version of the model, a neuron
spikes whenever the potential reaches a given threshold value, whereas
in the stochastic version, the spiking probability is a continuously
growing function of the membrane potential, similarly as the neon
lamps considered in Section 4. These related models show strikingly
similar behaviors, whereby for low global inhibition they can display
bistability and hysteresis as a function of the excitability, while for
higher global inhibition the bistability region shrinks and ends with a
critical point. This similarity was, in fact, ab initio one of the primary
drivers for using neon lamps to construct the experimental system in
Section 1. For even higher global inhibition the spiking rate becomes a
smooth, continuous function of the excitability. In the following, these
behaviors are demonstrated.

A leaky integrate-and-fire 𝑖th neuron is modeled as a simple parallel
RC circuit, in which the potential obeys the equation

𝐶𝑖
d𝑉𝑖(𝑡)

d𝑡 = −
𝑉𝑖(𝑡) − 𝑉0

𝑅𝑖
+ 𝐼𝑖(𝑡), (34)

where 𝐶𝑖 is the membrane capacity, 𝜏𝑚 = 𝑅𝑖𝐶𝑖 is the membrane
characteristic time, and 𝑉0 the resting potential of the neuron. When the
potential 𝑉𝑖(𝑡) reaches a threshold 𝑉𝜃 , the neuron fires (emits a spike)
and the potential is reset to 𝑉0. The input current, flowing through the
dendrites, is given by

𝐼𝑖(𝑡) =
∑

𝑗≠𝑖
𝐽𝑖𝑗

∑

𝑡𝑖<𝑡𝑗<𝑡
𝑒−(𝑡−𝑡𝑗 )∕𝜏s +

∑

𝑡𝑖

𝜅(𝑡𝑖)𝑒
−(𝑡𝑖−𝑡𝑗 )∕𝜏s . (35)

The first term denotes the input current due to the spikings in other
neurons of the network, linked to neuron 𝑖 through synapses of strength
𝐽𝑖𝑗 , where 𝑡𝑗 are the spike times of neuron 𝑗. The second term takes
into account the input from other sources, such as neurons outside
the network under consideration, and is modeled as a series of spikes
occurring at random Poissonian-distributed times 𝑡𝑖 with a strength
𝜅(𝑡𝑖). The values of 𝐽𝑖𝑗 or 𝜅(𝑡𝑖) represents the peaks of the input current,
which decays exponentially with a synapse characteristic time 𝜏s.

Let us consider physiologically realistic parameter settings, such as
𝑉0 = −70 mV, 𝑉𝜃 = −55 mV, 𝐶𝑖 = 0.1 nF, 𝑅𝑖 = 100 MΩ, so that 𝜏m =
𝐶𝑖𝑅𝑖 = 10 ms, and 𝜏s = 5 ms [1]. The random Poissonian spikes 𝑡𝑖 are
extracted with a rate of 1 ms−1, and the peak currents 𝜅(𝑡𝑖) are assumed
equal to 19.5 pA. Let us consider a network of 𝑁 = 1000 neurons,
each one having excitatory connections to 10 randomly chosen neurons
different from itself. The synaptic strengths are then taken to be equal
to

𝐽𝑖𝑗 = 𝛴𝑤𝑖𝑗 − 𝛥, (36)

where 𝑤𝑖𝑗 = 1 if there is an excitatory connection from neuron 𝑗
to neuron 𝑖, 0 otherwise. The value of 𝛴, therefore, represents the
strength of the sparse network of excitatory connections, while that of 𝛥
represents the global inhibition between all the neurons in the network.
Note that these quantities should not be confused with 𝛴 and 𝛥 defined
in the previous subsection on the Wilson–Cowan model.

As for the previous models, the hysteresis loops are shown in
Fig. 16a, this time as a function of the strength of the excitatory
connections 𝛴, separately for different level of the global inhibition 𝛥.
The plots start from 𝛴 = 0 and increase it up to 𝛴 = 180 pA over 12
s, then decrease it back to zero over the same amount of time. The
number of firings is determined over time bins of 24 ms, and groups
of 10 time bins are thereafter taken to compute the average firing
rate. In Fig. 16b, the region of bistability is shown, according to the
points where the rate becomes larger than 25 Hz when increasing 𝛴
(upper curve) and the points where the rate drops below 25 Hz when
decreasing 𝛴 (lower curve). Finally, in Fig. 16c the Fano factor of the
rate as is plotted as a function of 𝛥 and 𝛴. In this case, the model is
simulated at fixed values of 𝛥 and 𝛴, the number of spikes in time bins
14
Fig. 16. Simulations of the network of leaky integrate-and-fire neurons. (a) Firing
rate during a hysteresis loop of the strength of excitatory connections, for different
intensities of global inhibition. (b) Region of bistability in the plane of 𝛥 and 𝛴. The
upper curve denotes where the rate becomes larger than 25 Hz when increasing 𝛴 in
the hysteresis loop, whereas the lower curve denotes where the rate drops below 25 Hz
when decreasing 𝛴. (c) Fano factor computed under static conditions.

of varying width is calculated, and finally the Fano factor is computed
according to Eq. (1). As previously discussed, the width of the time bin
needs to be adequately larger than the autocorrelation time of the rate,
and was accordingly set to 𝛿bin = 0.2−25.6 s. The effect of rounding
from first- to second-order transition is, therefore, also reproduced in
this context.

5.3. Commentary

Albeit briefly, these final simulations underline two important as-
pects. First, the results obtained from the neon glow lamp system
indeed appear to be generalizable to other neural models, reaffirming
their relevance to neurophysiology and computational neuroscience.
Across all these systems, a critical point is always found as a function of
a pair of parameters controlling local excitability and global inhibition
strength. In other words, the gradual rounding from a first- to a
second-order transition does not stem from a system-specific feature, as
was already implied by the results obtained in the mean-field model.
Second, the results hold across different scales of neural modeling.
Given the sheer size and complexity of biological neural systems, the
conjoint consideration of multiple levels of description -both struc-
turally and dynamically- is a cornerstone of modern neuroscience [58–
60]. Investigations concerned with the behavior of individual neurons
hinge around physiologically-realistic models which, albeit to varying
degrees of detail, represent the fundamental aspect of the temporal
evolution of spike generation; the leaky integrate-and-fire model is
one of the most commonly used abstractions in this area, as it lends
itself well to the simulation and training of microscale networks that
typically include hundreds to thousands of neurons corresponding, for
example, to a cortical microcircuit [56,57]. On the other hand, studies
addressing large-scale dynamics, such as those unfolding over extended
cortical circuits, necessarily trade physiological detail for computa-
tional tractability, and represent entire populations of neurons in an
aggregate form through a small number of state variables correspond-
ing, for instance, to the level of activity in excitatory and inhibitory
subpopulations. Arguably the most influential model of this class is
the Wilson–Cowan model [49,50]. There are countless variations of
models of individual neurons and neural masses, encompassing the
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non-trivial effects of important factors such as stochastic dynamics [52,
53], and greater physiological detail such as the FitzHugh–Nagumo and
Hindmarsh–Rose systems [58–60]. The present results only represent
an initial confirmation of generality, and a comprehensive assessment
of the impact of global inhibitory feedback on neural dynamics using
these models is well-motivated but left for others to pursue.

6. Discussion

6.1. Bistability and hysteresis in the present array circuit and other engi-
neered systems

This work was predicated upon the idea of modifying an elec-
tronic model of neural dynamics by adding global inhibitory feedback,
implemented via an additional resistor. This resistor instantaneously
translates an increase of the absorbed current into a decrease of the
globally-applied control voltage, which determines how closely each
node dwells close to its excitation potential. The principal finding
is that this type of feedback, through attenuating the spatiotemporal
variance and correlations, has a pronounced effect on the transition
between two phases of the collective dynamics, one featuring low rate
and low spatiotemporal order, the other characterized by considerably
more intense and more regular activity. In line with previous obser-
vations, when the additional resistor has zero value, the switchover
between the two phases as a function of the control voltage is discon-
tinuous and associated with a relatively large hysteresis effect. There
is, in other words, a first-order transition between two well-separated
bistable states [39]. As the resistor value is increased, the two states
are drawn closer, the bistability shrinks, and the discontinuity becomes
rounded, eventually turning into a continuous, second-order transition.
Implementing a similar global inhibitory feedback produced analogous
effects in two different neural models, pointing to a plausible generality
of the observed association, including in biological systems.

At this point, it is worthwhile reminding oneself about the relation-
ship between bistability and hysteresis. Bistability is the presence of
two (or more, in the case of multistability) stable states, corresponding
to the local minima of a potential function. In the absence of noise,
the states have an infinite lifetime, however, in the presence of noise,
the lifetimes depend on the depths of corresponding potential wells.
Bistability is a necessary condition for hysteresis, and the separation
between the two states determines the width of the hysteresis ef-
fect [61]. On the other hand, though bistability and hysteresis are often
observed together, bistability is not a sufficient condition for hysteresis
because, for example, one of the states could be inaccessible under
given conditions [62].

Both bistability and hysteresis are common observations in en-
gineered systems, either by design or as a consequence of physical
properties, with well-studied examples found in electronics, mechanics
and optics. The modeling and control of hysteretic systems is a promi-
nent topic in systems theory, and general operator- and differential-
based mathematical models are available [63]. An archetypal example
is the Schmitt trigger, which is a buffer designed to exhibit a pre-
scribed hysteresis level acting as a filter and reducing the bouncing
of digital signals near the logical threshold [64]. In the case of this
circuit, the width of the hysteresis effect is directly determined by
a positive feedback gain combined with a saturation function, and,
accordingly, several circuits allowing one to change it dynamically have
been described [65]. On the other hand, dynamical systems endowed
with a double-well potential, as described by the Duffing equation,
can also display hysteresis, the width of which is controlled by the
potential landscape. For example, in driven mechanical resonators, the
bistability region shrinks with increasing dissipation and decreasing
driving force [66].

In this paper, a different and novel mechanism leading to a bistable
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and hysteretic behavior has been considered. As compared with the
previous examples, the new mechanism is different because such prop-
erties do not stem directly from a design feature: positive feedback
in the former case, and potential landscape in the latter. Rather, they
emerge from the presence of two phases in a system composed of many
interacting constituents and therefore amenable to be studied with the
tools of statistical mechanics. In fact, the hysteresis of each individual
lamp, which is determined by the difference between the breakdown
and extinction voltage and determines the periodic flashing in the
Pearson–Anson relaxation oscillator, is fixed by physical construction
(e.g., gas mixture composition and pressure, electrode composition and
distance) [43]. In the absence of an ensemble of units, an isolated
lamp does not show distinct high and low rate phases, therefore, there
is no hysteresis or bistability in the event rate, and fluctuations are
Poissonian. It is only the interactions between many lamps that lead to
collective states characterized by different event rates, and eventually
to the large fluctuations and non-Poissonian behavior when approach-
ing the critical point. In the settings considered here, the behavior of
the system could be well described by a simple approximation where
the interaction between the lamps is a long-range one and mediated by
a ‘‘mean field’’, represented by the variance of the local potentials of the
lamps [39]. It has to be stressed that the phase transition observed is
different from a thermodynamical phase transition, in the sense that the
system considered cannot be straightforwardly described by an energy
function, and its phases by the minima of the free energy. Rather, it
is a non-equilibrium phase transition between different states of the
system, characterized by non-zero currents and dissipation. However,
an analogy with thermodynamic phase transitions is possible in the
limit of a large number of constituents and slow (quasi-static) variation
of the external parameters [47,67,68].

6.2. Comparison with other physical scenarios

Physical systems abound in situations where first- and second-order
phase transitions appear in different regions of the parameter space.
Such transitions could be juxtaposed to the observations in dynamical
systems such as the present circuit under two assumptions, namely, that
the system behaves sufficiently close to the infinite-dimensional case
and that the process is quasi-static [47]. Because dynamical systems, by
contrast, inherently operate far from equilibrium, the juxtaposition can
be proposed purely at a phenomenological level [67,68]. In classical
thermodynamics, the transitions between the macroscopic phases of
matter away from the critical point are first-order, eventually turning
into second-order as the critical point is reached. Increasing temper-
ature, therefore, can lead to a shrinkage of the hysteresis effect akin
to increasing resistance in the present system [69]. In ferromagnetic
materials, the bulk magnetization vs. the magnetizing field shows a
well-known hysteresis effect, the width of which depends foremost on
the type of material. For increasing temperature, the disorder induced
by thermal activation causes a shrinkage of the loop, until, at the
critical temperature, the transition becomes second-order [70]. The
dependence of coercivity on temperature is explicitly described by
Kneller’s law [71].

Besides, the notion that a first-order transition may turn into a
second-order one through gradual rounding of the discontinuity has
been repeatedly put forward across diverse situations; for instance,
random fluctuations in the structural parameters suppress first-order
transitions in ferromagnetic random-field Ising spin models [72] and
in magnetoresistive manganites [73]. Changeover between first- and
second-order transitions has also been described as a function of the
number of states in generalizations of the Ising model [74], and as a
function of an electromagnetic field applied to a population of two-level
atoms [75]. Under suitable conditions, in liquid crystals, increasing
temperature, due to its effects on domain size, leads to a first-order
phase transition eventually being replaced by a second-order one [76].
An effect of the interaction range on the transition order is also ob-

served in spatial interdependent networks, wherein couplings beyond
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a minimal range are required for first-order transitions to appear [77],
and in models of synchronization and swarming behaviors [78]. There
is, therefore, a multitude of known physical scenarios within which
a secondary control parameter modulates, in a reversible way, the
separation between bistable states and eventually the transition order
observed as a function of a primary control parameter.

6.3. Possible biological mechanisms of global inhibition

Two aspects remain to be discussed: the mechanisms through which
global inhibitory feedback could be implemented in biological neural
systems, and the computational role that it could serve in that context.

The existence of synaptic architectures that implement global inhi-
bition has been postulated for a range of neural functions, and explicitly
demonstrated in specific cases, most notably the head-direction cell
circuit [13]. While the actual biological realization is likely to be more
complex and detailed accounts of interneuron diversity and connec-
tivity are found elsewhere [4,5], three stylized motifs implementing
global inhibition can be envisaged. The first revolves around a single
large interneuron enjoying both high indegree and outdegree, and
forming synapses directly with many excitatory cells to integrate spa-
tiotemporally their activity and feed back a diffuse inhibition signal.
The presence of this motif has been directly demonstrated in the
mouse visual thalamus using high-resolution reconstruction of neural
morphology [11]. The second involves the distributed action of a large
number of interneurons that, while individually having fewer processes,
collectively parcel out an extended region, potentially forming inter-
twined, interacting, or even competing connections. In a broad sense,
this is the arrangement realized by the ring and 𝛿 neurons in head-
direction circuits [13–15]. The third is based on local interneurons
endowed with high in-degree, attained either through direct connec-
tions or mediated by other neurons, that gather excitatory activity in a
diffuse and unspecific form, then apply an excitatory signal on specific
targets, thus having a relatively low outdegree. This architecture is the
one that is deemed fundamental towards realizing sparse responses en-
coding odors across glomeruli in insects, as visualized by both calcium
imaging and electrical recordings [16,17].

It needs to be considered that synaptic architectures are not the
only mechanism by which global inhibition could be implemented in
biological neural systems, since numerous other feedback mechanisms
are present. An important aspect to consider is the interaction be-
tween neurons and glial cells, particularly astrocytes, that have long
been known to exert a regulatory action via inhibition [79]. In par-
ticular, astrocytic processes envelope synapses, leading to the notion
of ‘‘tripartite’’ synapses, and this is drawing considerable attention
because it appears to subserve not only a homeostatic but also poten-
tially a computational function [80,81]. A multitude of biochemical
pathways have been described, providing the ability for astrocytes to
both sense the concentration of and release the primary inhibitory
neurotransmitter released by interneurons, gamma-aminobutyric acid,
thus effectively mimicking their action [82,83]. Remarkably, depend-
ing on the species, a single astrocyte can directly contact thousands
or millions of synapses, forming anatomical domains that parcel the
cortex in an organized manner, implying a certain level of functional
specificity [84,85]. Furthermore, it was demonstrated that astrocytes
control the dynamic range of neural activity, continuously adjusting the
circuit gain and spike timing to optimize the responsiveness to sensory
stimuli of different intensities, and influencing the behaviors that these
produce. Their action, therefore, appears to have substantial elements
of similarity with that of interneurons [86,87].

Another key pathway for global inhibition is the regulation of
the extracellular ionic concentrations, which track the spatiotemporal
summation of neural activity, and, in turn, exert a diffuse influence
on the level of excitability. All types of glia appear to be potentially
implicated in the dynamic regulation of potassium levels, with some
16

diversity depending on the brain region [88]. Astrocytes, in particular,
have a central role in this mechanism, providing a signaling medium
suitable for information distribution [89,90]. In turn, they form ex-
tended networks between themselves via gap junctions, providing a
further means of interaction [91]. Specialized types of glia in the
cerebellum even show dynamic uptake of potassium under the control
of calcium transients, closely resembling proper synaptic functions.
There are, therefore, a multitude of mechanisms through which glia
could implement global inhibition [92].

6.4. Significance and future work

As said, the joint action of local excitation and global inhibition has
been posited to be a fundamental substrate for a multitude of neural
functions, including implementing ring attractor dynamics in head
direction circuits [13–15], enabling a sparsely coded representation of
odors across glomeruli [16,17], modulating the range of memory re-
trieval [19], and controlling the network-level signal amplification and
switchover between dynamical regimes [20]. A particularly compelling
computational model based on global inhibition and local excitation
is known as the ‘‘Locally Excitatory Globally Inhibitory Oscillator Net-
works (LEGION)’’, and was found to have excellent performance in
solving specific signal processing problems, such as image segmenta-
tion [93]. The point of the present work, however, is different and
revolves more specifically around the notion that global inhibitory
feedback gradually rounds a discontinuous transition, shrinking the
region of bistability and hysteresis and turning the transition into a
continuous one. In particular, there appears to be a combination of local
excitability and global inhibition strength that corresponds to a critical
point. Why would such a mechanism be relevant to the brain? We posit
that an ability to dynamically switch between dynamics characterized
by first- and second-order transitions is essential, because hysteresis is
necessary, for example, for sensory and memory persistence [22–24],
while operation close to criticality advantageously optimizes dynamical
range, information capacity, and flexibility [28,32–36].

Future work should investigate in biological scenarios the postu-
lated relevance of global inhibition in controlling the transition order.
In this regard, a very recent study based on stereo-electroencephalograph
in epilepsy patients and computational modeling concluded that in the
brain critical-like dynamics emerge over a continuum between first-
and second-order phase transitions. A fact of particular interest is that
positive feedback promoted the bistable dynamics, which rhymes with
the present observation that negative feedback, by contrast, attenuates
discontinuity [25]. In-vitro recordings of cultured neurons and brain
slices using multi-electrode arrays provide access to a rich repertoire
of spontaneous behaviors [29,94], and optogenetics provides a versatile
tool to implement global inhibition [95]. Combining the two techniques
in a closed-loop configuration, therefore, appears motivated to replicate
the present work in a biological setting. A suggested setup for a future
experiment is shown in Fig. 17, and involves interfacing a neural
culture on a multi-electrode array to a real-time digital signal proces-
sor, that would perform spike detection and spatiotemporal activity
summation. The activity level thus determined would be multiplied
by a gain controlling the intensity of global inhibition, which would
be delivered nearly instantaneously via an optical signal through a
light-emitting diode, thus realizing a closed-loop control referred to as
Path #1. The possibility of processing neural signals of this kind with
sub-millisecond latencies using programmable logic has been shown
before [96], and the inhibition could be delivered biologically either
through interneuron activation, or through the hyperpolarization of
excitatory neurons using an opsin such as halorhodopsin (a chloride
pump activated by yellow light). The sweep in the baseline excitability
level could be realized via another open-loop path, referred to as
Path #2. One possibility would be to implement dual optogenetic
control, for example via inducing depolarization through the activation
of channelrhodopsin (a nonspecific cation channel activated by blue

light) [97]. It is important to underline that, while Path #1 would
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Fig. 17. Hypothetical setup for an experimental investigation in cultured neurons.
Path #1 delivers the real-time global inhibitory feedback, while Path #2 provides
the parametric sweep to investigate hysteresis. ADC: Analog-to-digital converter, DSP:
Digital signal processor, MEA: Multi-electrode array. See text for description.

provide a high-speed pulsed feedback signal, Path #2 would provide
a continuous, quasi-static illumination to slowly perform a parametric
sweep, as done for the supply voltage in the neon lamp array in this
paper. Given the need for only slow changes, replacing the culture
medium continuously using a flow chamber-like approach would be
another possibility. In such a case, one could start with a Ca2+-free
medium, gradually increase its concentration, and then flush it away,
or similarly work on the concentrations of Na+ and K+.
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