
Citation: Patwardhan, N.; Marrone,

S.; Sansone, C. Transformers in the

Real World: A Survey on NLP

Applications. Information 2023, 14,

242. https://doi.org/10.3390/

info14040242

Academic Editor: Katsuhide Fujita

Received: 24 February 2023

Revised: 5 April 2023

Accepted: 12 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Review

Transformers in the Real World: A Survey on NLP Applications
Narendra Patwardhan, Stefano Marrone * and Carlo Sansone

Department of Electrical Engineering and of Information Technology (DIETI), University of Naples Federico II,
Via Claudio 21, 80125 Naples, Italy
* Correspondence: stefano.marrone@unina.it

Abstract: The field of Natural Language Processing (NLP) has undergone a significant transformation
with the introduction of Transformers. From the first introduction of this technology in 2017, the use
of transformers has become widespread and has had a profound impact on the field of NLP. In this
survey, we review the open-access and real-world applications of transformers in NLP, specifically
focusing on those where text is the primary modality. Our goal is to provide a comprehensive
overview of the current state-of-the-art in the use of transformers in NLP, highlight their strengths
and limitations, and identify future directions for research. In this way, we aim to provide valuable
insights for both researchers and practitioners in the field of NLP. In addition, we provide a detailed
analysis of the various challenges faced in the implementation of transformers in real-world applica-
tions, including computational efficiency, interpretability, and ethical considerations. Moreover, we
highlight the impact of transformers on the NLP community, including their influence on research
and the development of new NLP models.

Keywords: transformers; natural language processing; open-source

1. Introduction

Natural language processing (NLP) is a field of artificial intelligence that deals with the
interaction between computers and humans using natural language. NLP has experienced
tremendous growth in recent years due to the increasing availability of large amounts of
textual data and the need for more sophisticated and human-like communication between
computers and humans. The goal of NLP is to develop algorithms and models that can
understand, generate, and manipulate human language in a way that is both accurate
and natural. The importance of NLP lies in its ability to transform the way humans and
computers interact, enabling more intuitive and human-like communication between them.
This has numerous practical applications in areas such as information retrieval, sentiment
analysis, machine translation, and question answering, among others. NLP has the potential
to revolutionize many industries, such as healthcare, education, and customer service,
by enabling more effective and efficient communication and information management.
As such, NLP has become an important area of research and development, with significant
investment being made in its advancement.

One of the most influential papers in the field of NLP was the first introduction of
Transformers [1]. The fundamental unit of said architecture, the transformer block, consists
of two main components: a multi-head self-attention mechanism and a fully connected
feedforward network. The multi-head self-attention mechanism allows the model to
focus on different parts of the input sequence at each layer and weigh the importance of
each part in making a prediction. This is accomplished by computing attention scores
between each element in the input sequence and all other elements, which are then used
to weigh the contribution of each element to the final representation. The multi-head
attention mechanism allows the model to learn different attention patterns for different
tasks and input sequences, making it more versatile and effective than traditional recurrent
or convolutional models. Additionally, the use of self-attention allows the model to process

Information 2023, 14, 242. https://doi.org/10.3390/info14040242 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14040242
https://doi.org/10.3390/info14040242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6852-0377
https://orcid.org/0000-0002-8176-6950
https://doi.org/10.3390/info14040242
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14040242?type=check_update&version=1

Information 2023, 14, 242 2 of 17

input sequences in parallel, making it much faster and more efficient than sequential
models. The feedforward network is essentially a multi-layer perceptron (MLP) that takes
in the self-attention-generated representation as input, applies linear transformations with
activation functions, and outputs the final representation. This final representation is then
passed to the next Transformer block or used for making predictions. Due to operating
exclusively on the feature dimension, the transformer block is permutation-equivariant,
and as such is especially suitable for sequence processing.

Following the success of transformers in machine translation with the original sequence-
to-sequence formulation, researchers began to explore their use in other NLP tasks. One
of the most significant developments in this direction was the introduction of BERT (Bidi-
rectional Encoder Representations from Transformers) by Devlin et al. [2]. BERT is a
pre-trained transformer model that can be fine-tuned for a wide range of NLP tasks, such
as sentiment analysis, named entity recognition and question answering. BERT was trained
using a contrastive task, where it was asked to predict missing tokens in a sentence given
the context of the surrounding tokens. This approach allowed BERT to learn rich contextual
representations of words, making it highly effective for a wide range of NLP tasks.

Another development in the field of transformers was the introduction of GPT (Gen-
erative Pretrained Transformer) by Radford et al. [3]. GPT is a generative model trained
on a large corpus of text with the goal of predicting the next token in a sequence given the
context of the surrounding tokens. GPT has been shown to be highly effective for tasks
such as text generation, language modeling, and question-answering. Unlike BERT, which
was trained using a contrastive task, GPT was trained using a generative task, allowing it
to learn a more diverse and complete representation of language.

The success of transformers in NLP can be attributed to several key factors. First, they
are highly parallelizable, allowing them to scale effectively to large amounts of data. Second,
they are capable of handling variable-length input sequences, making them well-suited to
NLP tasks where the length of the input text can vary widely. Moreover, transformers have
quickly risen to the top of the leaderboard rankings for most NLP tasks thanks to their
effectiveness in capturing long-range dependencies, scalability, and versatility. They have
proven to be a powerful tool for NLP, and their continued development and application
are likely to have a significant impact on the field.

Transformers have not only revolutionized the field of NLP; they are growing beyond
it and finding applications in other areas. For example, transformers have been used in
computer vision tasks such as image captioning, where they have been used to generate
captions for images based on their content, and have been used in speech recognition,
where they have been used to transcribe speech into text.

Another trend in the use of transformers is the development of multimodal models,
which allow for the unified modeling and use of text along with other modalities, such
as images and audio. These models can learn to understand the relationships between
different modalities and can use this understanding to perform a wide range of tasks, such
as image-to-text generation, text-to-image generation, and audio-to-text generation. Indeed,
transformers are growing beyond the field of NLP and are being used in a wide range of
tasks and applications. In addition, they are beginning to allow for the development of
multimodal models that can use text as the interface to other modalities and can perform
a wide range of tasks in a unified and integrated manner. These developments are likely
to have a significant impact on the field and lead to further advancements in the use of
transformers for a wide range of tasks.

Unfortunately, many of the successful applications of transformers, such as CoPilot,
GPT-3, and ChatGPT, are closed-source, meaning that the underlying algorithms and mod-
els are not available for public scrutiny or modification. This can limit the growth and
development of the field, as researchers and developers are not able to access the code
and models used in these systems and build upon them. Closed development practices
raise important ethical questions, particularly in the context of data annotation and the
relationship between annotators and model developers. In many cases, annotators who

Information 2023, 14, 242 3 of 17

provide the data used to train NLP models do not share a stake in the development or com-
mercialization of the models, and their contributions are often undervalued. For example,
Kenyan annotators who were contracted to label data for OpenAI’s GPT-3 faced exploita-
tion and poor working conditions, with low pay and long hours. This highlights the need
for greater transparency and fairness in the annotation process and the need for annotators
to have a stake in the development and commercialization of NLP models. The need
for open-source development in the field of transformers is critical for several reasons.
First, open-source development allows for greater collaboration and sharing of ideas and
knowledge between researchers and developers. This can lead to faster and more effective
progress in the field and can help to ensure that the technology is developed in a way
that is transparent and ethical. Second, open-source development can help to ensure that
the technology is accessible and affordable, especially for researchers and developers in
developing countries, who may not have the resources to purchase proprietary software.
This can help to democratize access to technology and promote greater innovation and
collaboration. Finally, open-source development can help to build trust and credibility in
the technology, as the underlying algorithms and models are available for public scrutiny
and validation. This can help to ensure that the technology is developed responsibly and
ethically and that its impact on society is understood and managed.

The objective of this survey paper is to survey open-source real-world applications
of transformers in the field of NLP. We aim to provide a comprehensive overview of the
latest developments and trends in the use of transformers for NLP tasks and to highlight
the challenges and limitations that need to be addressed. The aim is to provide valuable
insights for researchers, developers, and practitioners in the field of NLP, and to help
promote further progress and innovation in the use of transformers for NLP tasks.

2. Related Work

The prior research in this field has mainly explored three aspects: structural analysis [4],
deep learning architectures and their applications [5], and the utilization of pre-trained
models [6].

Moreover, Bender et al. [7] examined the current trend in NLP of developing and
deploying larger language models, such as BERT, GPT-2/3, and Switch-C, and questioned
whether the size is the only factor driving progress. They provided recommendations for
mitigating the risks associated with these models, including considering environmental
and financial costs, carefully curating and documenting datasets, evaluating the fit of the
technology with research and development goals and stakeholder values, and encouraging
research beyond larger language models. Despite serving as a crucial cautionary tale, our
survey finds that this work is at odds with the real-world trend of models, which diverge
from the limited instances of solely relying on an increased scale.

Other studies such as one by Dang et al. [8], have provided comprehensive overviews
of specific NLP tasks such as sentiment analysis, highlighting the promise of deep learning
models in solving these challenges by reviewing recent works that construct models based
on term frequency–inverse document frequency (TF-IDF) and word embeddings. However,
such reviews may overlook concurrent and synergistic advancements by focusing only on
one task.

Historically, NLP systems were based on white box techniques, such as rules and
decision trees, that are inherently explainable. However, the popularity of deep learning
models has led to a decline in interpretability. This lack of transparency in AI systems
can erode trust, which is why explainable AI (XAI) has become an important field in AI.
Danilevsky et al. [9] focused on XAI works in NLP that have been presented in main NLP
conferences in the last seven years, making this the first XAI survey specifically focused on
the NLP domain.

Deep learning models require large amounts of data, which can be a challenge for
many NLP tasks, especially for low-resource languages. Additionally, these models require
significant computing resources. The increasing demand for transfer learning is driven

Information 2023, 14, 242 4 of 17

by the need to overcome these limitations and make the most of the large trained models
that are emerging. Alyafeai et al. [10] have examined the recent developments in transfer
learning in the field of NLP.

In contrast to prior work, we seek to explore how Transformer-based models can
be effectively applied in practical scenarios, particularly when source code is accessible.
By concentrating on this specific architectural family and its practical implementations,
our investigation intends to provide deeper insights into the benefits and limitations of
Transformers as well as into potential areas for further innovation and improvement in
natural language processing. Another related study by Wu et al. [11] delved into the
application of graph neural networks (GNNs) for NLP tasks. GNNs share similarities with
Transformers in their ability to capture long-range dependencies and complex relationships
between data entities. However, the unique formulation of GNNs sets them apart from
traditional Transformers, warranting separate investigation, as GNNs explicitly model
data as graphs and leverage graph structures to perform computation and information
propagation, whereas transformers work directly on flattened sequences, and as such are
more suitable for processing language data.

3. Methodology

There are several databases available on the internet that are focused especially on
collecting scientific papers, with differences in terms of the type, amount, and detail of
reported information. While the reasons for this variety are different, the primary one is
because of the target audience (e.g., practitioners, researchers, students, etc.). Among these
databases, PapersWithCode is a valuable source for current advancements and trends in
the NLP field, as it is totally built around the idea of collecting only papers for which
a working code repository is available that can be used to successfully reproduce the
claimed results. In this paper, we focus on real-world applications; thus, an initial corpus of
applications was compiled by extracting natural language processing (NLP) tasks from the
PapersWithCode website. Our initial list consisted of 572 entries, which underwent several
heuristic-based filtering steps to ensure conciseness, accuracy of match, and relevance in
real-world contexts. In particular:

• We first eliminated entries with a high degree of similarity, which we defined as a fuzzy
similarity ratio greater than 95 compared to other entries in the list. We calculated the
fuzzy similarity ratio using the FuzzyWuzzy library, which measures the similarity
between two strings based on the Levenshtein distance which represents the minimum
number of single-character edits (insertions, deletions, or substitutions) required to
transform one string into another. The formula used to compute the fuzzy similarity
ratio is presented in Equation (1). This step targeted “shorter” entries, i.e., those with
fewer characters, in order to maximize information content in cases of high overlap.

F(string1, string2) = (1 − DLevenshtein
max(len(string1), len(string2))

) ∗ 100 (1)

• Second, we removed entries composed solely of uppercase letters, as they were likely
abbreviations or acronyms unrelated to our target applications.

• Third, entries with fewer than five characters were excluded, as they were potentially
incomplete or illegible.

• Fourth, we discarded entries containing numbers, as these were more likely to repre-
sent numerical codes or identifiers than descriptive labels.

• Finally, we removed entries with more than five words in order to exclude overly specific
tasks not pertinent to the broader application themes that we aimed to investigate.

After applying these heuristics, we conducted manual filtering to eliminate benchmark-
specific applications and to group similar tasks. In order to locate relevant papers, we
searched Google Scholar using the refined application list as keywords, limiting the search
to articles published within the last five years and sorting by relevance. This time, the frame

Information 2023, 14, 242 5 of 17

was chosen based on the release of the original transformers paper in 2017. We further
narrowed the results to papers with at least one citation, ensuring relevance and recency.

Additionally, we excluded papers by parsing for Git provider URLs, such as GitHub
or GitLab, embedded within the papers. We then cross-referenced the repository’s title and
description against the paper’s title, discarding papers where the repository title did not
match the paper title. This step ensured that the retained papers had a strong connection to
their corresponding repositories, further refining the quality and relevance of our corpus.

For each application, we conducted a manual review of the identified papers to
thoroughly examine the methodology, results, and contributions and to critically evaluate
the limitations and challenges associated with each application. The findings from this
review furnished a comprehensive overview of the latest developments and trends in
transformer usage for NLP tasks.

3.1. Categorization

Here, we present a schema with two primary factors to categorize NLP applications,
namely, the degree of modality and the kind of transformer architecture. Unimodal NLP
applications deal with a single modality, such as text or speech, while multimodal NLP ap-
plications deal with multiple modalities, such as text, speech, and images. Text often serves
as the primary interface in multimodal applications. The kind of transformer architecture
used in NLP applications plays a crucial role in determining the overall performance of
the system. Encoder-only transformers are used for discriminative tasks such as sentiment
analysis and named entity recognition, while decoder-only transformers are used for tasks
such as text generation and summarization. Encoder–decoder transformers are used for
tasks such as machine translation and image captioning. Understanding the degree of
modality and kind of transformer architecture used in NLP applications is important for
choosing the right approach to a given task.

4. Applications

In this section, we provide a comprehensive overview of the primary application groups
within the degree-of-modality-based categorization framework outlined in Section 3.1. Our
aim is to provide a clear understanding of the common architectural choices made for each
application group. To enhance the comprehension of the technical details, we present the links
to the source code at the end of the discussion, which encompasses each task subcategory. We
hope this approach will allow the reader to gain a deeper understanding of the implementation
of the described concepts and to explore the code in greater detail if desired.

4.1. Unimodal Applications

Unimodal applications refer to AI-based systems that primarily focus on processing
and analyzing text as their main modality. In the subsequent sections, we delve into the pri-
mary categories of unimodal applications, which include Language Modeling (Section 4.1.1),
Question Answering (Section 4.1.2), Machine Translation (Section 4.1.3), Text Classification
(Section 4.1.4), Text Generation (Section 4.1.5), Text Summarization (Section 4.1.6), Sentiment
Analysis (Section 4.1.7), Named Entity Recognition (Section 4.1.8), and Information Retrieval
(Section 4.1.9). These categories exemplify the diverse range of applications and capabilities
that AI systems can achieve by focusing on text-based information.

4.1.1. Language Modeling

Language modeling is a fundamental task in NLP that involves predicting the next
word in a sequence of text based on the preceding words. The goal of language modeling
is to estimate the probability distribution of sequences of words in a given language,
and is used as a building block for many NLP tasks such as machine translation, speech
recognition, and text generation. Language modeling can be easily extended to more
complex NLP tasks such as sentence-pair modeling, cross-document language modeling,
and definition modeling. By leveraging the knowledge learned from language modeling,

Information 2023, 14, 242 6 of 17

these tasks can benefit from improved accuracy and efficiency. Language modeling typically
follows the decoder-only architecture popularized by the GPT family [3,12,13].

However, when used for generation, language modeling is often limited in its ability
to handle complex language phenomena, and the large size of models makes them com-
putationally expensive to fine-tune for specific tasks. Typically, these models are utilized
by providing additional context in the form of a prompt (called “prompt tuning”), either
manually or through automated selection [14]. Transformer-XL [15] is a unique neural
architecture intended for language modeling that can learn relationships beyond a set
length while keeping temporal consistency. It has a segment-level recurrence mechanism
and an innovative positional encoding scheme that captures longer-term dependencies
while addressing context fragmentation. As a result, Transformer-XL outperforms both
LSTMS and standard transformers on both short and long sequences, and is significantly
faster during evaluation.

Dynamic evaluation enhances models by adapting to recent sequence history through
gradient descent, capitalizing on recurrent sequential patterns. It can exploit long-range
dependencies in natural language, such as style and word usage. Krause et al. [16] investi-
gated the benefits of applying dynamic evaluation to transformers, aiming to determine
whether transformers can fully adapt to recent sequence history. Their work builds on top
of the previously mentioned Transformer-XL model.

Recently, a promising new direction in language modeling involves the use of re-
inforcement learning (RL)-based fine-tuning. In this approach, a pre-trained language
model is fine-tuned using RL to optimize a particular task-specific reward function [17].
This allows the model to learn from its predictions, leading to improved accuracy and
generalization performance on the target task. Additionally, fine-tuning with RL can be
accomplished with much smaller models, making it computationally more efficient and
faster. This new direction of RL-based fine-tuning has shown promising results on a variety
of NLP tasks and is a promising avenue for further research and development in the field
of language modeling. The relevant source code repositories for the papers discussed in
this section can be found in Table 1.

Table 1. Source code links for Language Modeling.

Paper Title Link to Source

Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated
prompts

https://github.com/ucinlp/autoprompt, ac-
cessed on 1 April 2023.

Transformer-XL: Attentive Language Models
Beyond a Fixed-Length Context

https://github.com/kimiyoung/transformer-
xl, accessed on 1 April 2023.

Dynamic Evaluation of Transformer Language
Models

https://github.com/benkrause/dynamiceval-
transformer, accessed on 1 April 2023.

4.1.2. Question Answering

Question answering is a task in NLP that involves automatically answering questions
posed in natural language. The goal of question answering is to extract the relevant
information from a given text corpus and present it as an answer to a user’s question.
Question-answering systems can operate over a wide range of text types, including news
articles, Wikipedia pages, and others, and can be designed to answer a wide range of
questions, including fact-based questions, opinion questions, and others. There are several
subtasks within QA, each with its unique challenges and requirements. Among the most
common subtasks are:

• Open-Domain Question Answering (ODQA): This task involves finding an answer
to a question from an open domain, such as the entire internet or a large corpus of
text. The goal is to find the most relevant information to answer the question, even
if it requires synthesizing information from multiple sources. Reformer, introduced

https://github.com/ucinlp/autoprompt
https://github.com/kimiyoung/transformer-xl
https://github.com/kimiyoung/transformer-xl
https://github.com/benkrause/dynamiceval-transformer
https://github.com/benkrause/dynamiceval-transformer

Information 2023, 14, 242 7 of 17

by Kitaev et al. [18], has been shown to excel at ODQA, with its success attributed to
the use of locality-sensitive hashing which enables far larger context windows than
ordinary transformers.

• Conversational Question Answering (CQA): This task involves answering questions
in a conversational setting, where the model must understand the context of the
conversation and generate an answer that is relevant and appropriate for the current
conversational context. SDNet [19] utilizes both inter-attention and self-attention
mechanisms to effectively process context and questions separately and fuse them at
multiple intervals.

• Answer Selection: This task involves ranking a set of candidate answers for a given
question, where the goal is to select the most accurate answer from the candidate set.
Fine-tuning pre-trained transformers has been shown to be an effective method within
answer selection [20].

• Machine Reading Comprehension (MRC): This task involves understanding and
answering questions about a given passage of text. The model must be able to
comprehend the text, extract relevant information, and generate an answer that is
accurate and relevant to the question. XLNet [21] uses a permutation-based training
procedure that allows it to take into account all possible combinations of input tokens,
rather than just the left-to-right order as in traditional transformer models. XLNet’s
ability to capture long-range dependencies and its strong pre-training make it a highly
competitive model for the MRC task.

The source code links for the papers discussed in this section can be found in Table 2.

Table 2. Source code links for Question Answering.

Paper Title Link to Source

Reformer: The efficient transformer
https://github.com/google/trax/tree/
master/trax/models/reformer, accessed on 20
March 2023.

Sdnet: Contextualized attention-based deep net-
work for conversational question answering

https://github.com/Microsoft/SDNet, ac-
cessed on 20 March 2023.

Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection

https://github.com/alexa/wqa_tanda, ac-
cessed on 20 March 2023.

Xlnet: Generalized autoregressive pretraining
for language understanding

https://github.com/zihangdai/xlnet, accessed
on 20 March 2023.

4.1.3. Machine Translation

Machine translation (MT) is the task of automatically converting a source text in
one language to a target text in another language. The goal of machine translation is to
produce a fluent and accurate translation that conveys the meaning of the source text in
the target language. MT models often follow an encoder–decoder architecture to capture
the context effectively using bidirectional encoder and be able to generate text of arbitrary
length, following the original formulation of transformer architecture [1]. There are several
subtasks within MT, each with its unique challenges and requirements. Among the most
common subtasks are:

• Transliteration: This task involves translating text from one script to another, such as
translating between the Latin and Cyrillic scripts. Transliteration is different from tra-
ditional MT in that it typically involves preserving the meaning of words, rather than
translating the meaning of words to another language. Because transliteration requires
support for non-Latin or often arbitrary characters, models developed for it often use
character-level or byte-level encoding. For instance, a model by Wu et al. [22] based on
the same principles has shown strong performance on transliteration, outperforming
established recurrent baselines with large batch sizes.

https://github.com/google/trax/tree/master/trax/models/reformer
https://github.com/google/trax/tree/master/trax/models/reformer
https://github.com/Microsoft/SDNet
https://github.com/alexa/wqa_tanda
https://github.com/zihangdai/xlnet

Information 2023, 14, 242 8 of 17

• Unsupervised Machine Translation (UMT): This task involves translating between
two languages without any parallel training data, meaning that there is no corre-
sponding text in the target language for the source language text. UMT models are
typically trained on monolingual data in each language and use various unsupervised
techniques to learn the relationship between the languages. Zhu et al. [23] show
strong performance on English–French and English–Romanian pairs without any
fine-tuning. The idea behind the BERT-fused approach is to leverage pre-training
with BERT to better understand the relationships between languages and to use the
sequence-to-sequence architecture to generate translations;

• Bilingual Lexicon Induction (BLI): This task involves inducing a bilingual lexicon,
which is a mapping between words in two languages. BLI is a critical component of
MT, and is often used as a pre-processing step to generate initial alignments between
words in the source and target languages.

The source code for the papers discussed in this section can be found in Table 3,
as referenced.

Table 3. Source code links for Machine Translation.

Paper Title Link to Source

Applying the transformer to character-level
transduction

https://github.com/shijie-wu/neural-
transducer, assessed on 1 April 2023.

Incorporating BERT into neural machine trans-
lation

https://github.com/bert-nmt/bert-nmt, as-
sessed on 1 April 2023.

4.1.4. Text Classification

Text classification is the task of categorizing a text into one or more predefined cate-
gories based on its content. The goal of text classification is to automatically assign a label
to a given text based on its content, allowing it to be organized and categorized for easier
analysis and management. These models are trained on annotated text data in order to learn
the relationship between the text content and its label, and can then be used to classify new
unseen text data. Text classification models typically follow a decoder-only architecture
in order to effectively capture the entirety of context using bidirectional attention. While
text classification is often the most varied use case due to its commercial importance, two
primary subcategories are prominent:

• Document Classification: This task involves assigning a label or category to a full
document, such as a news article, blog post, or scientific paper. Document classifi-
cation is typically accomplished by first representing the document as a numerical
vector and then using a machine learning model to make a prediction based on the
document’s representation. LinkBERT [24] extends the pre-training objective of BERT
to incorporate links between documents, which results in better classification quality.

• Cause and Effect Classification: This task involves identifying the cause and effect
relationship between two events described in a sentence or paragraph. An approach
by Hosseini et al. [25] has shown the efficacy of the language modeling paradigm by
verbalizing knowledge graphs and using them as a pre-training corpus for a language
model. The model obtains acceptable performance without any further fine-tuning
or prompting.

The corresponding source code for the papers reviewed in this section can be found in
Table 4.

https://github.com/shijie-wu/neural-transducer
https://github.com/shijie-wu/neural-transducer
https://github.com/bert-nmt/bert-nmt

Information 2023, 14, 242 9 of 17

Table 4. Source code links for Text Classification.

Paper Title Link to Source

Linkbert: Pretraining language models with
document links

https://github.com/michiyasunaga/
LinkBERT, accessed on 20 March 2023.

Knowledge-augmented language models for
cause-effect relation classification

https://github.com/phosseini/causal-
reasoning, accessed on 20 March 2023.

4.1.5. Text Generation

Text Generation is a task in NLP in which the objective is to produce new text auto-
matically, typically starting from a given prompt or input. The output can be a single word,
phrase, sentence, or full-length piece of text, and is used for chatbots, content creation,
and more. The generated text should reflect an understanding of the input and the language
being generated, and the quality and coherence of the generated text can vary depending
on the approach used. Text generation has seen a surge of interest following the release
of commercial APIs such as GPT, Cohere, and ChatGPT. Text generation typically follows
a decoder-only architecture; however, recent issues with prompt-injection attacks have
migrated part of the focus towards encoder = -decoder models that have been instruction-
tuned, such as T5 [26]. While the most prominent approach to text generation is based on
prompting, several other forms of generation have been studied in the literature and have
found commercial success as well. Text generation subtasks include:

• Dialogue Generation: This category focuses on generating text in the form of a
conversation between two or more agents. Dialogue generation systems are used
in various applications, such as chatbots, virtual assistants, and conversational AI
systems. These systems use dialogue history, user input, and context to generate
appropriate and coherent responses. P2-BOT [27] is a transmitter–receiver-based
framework that aims to explicitly model understanding in chat dialogue systems
through mutual persona perception, resulting in improved personalized dialogue
generation based on both automated metrics and human evaluation.

• Code Generation: This category focuses on generating code based on a given input,
such as a natural language description of a software problem. Code generation systems
are used in software development to automate repetitive tasks, improve productivity,
and reduce errors. These systems can be trained to use expert knowledge, and can
be specialized for a single programming language, such as SQL [28], or trained on a
large corpus to support various programming languages and different programming
paradigms [29];

• Data-to-Text Generation: This category focuses on generating natural language text
from structured data such as tables, databases, or graphs. Data-to-text generation
systems are used in various applications, such as news reporting, data visualization,
and technical writing. These systems use natural language generation techniques to
convert data into human-readable text, taking into account the context, target audience,
and purpose of the text. Control Prefixes [30] extend prefix tuning by incorporating
input-dependent information into a pre-trained transformer through attribute-level
learnable representations, resulting in a parameter-efficient data-to-text model.

Table 5 contains links to the source code corresponding to the papers discussed in
this section.

https://github.com/michiyasunaga/LinkBERT
https://github.com/michiyasunaga/LinkBERT
https://github.com/phosseini/causal-reasoning
https://github.com/phosseini/causal-reasoning

Information 2023, 14, 242 10 of 17

Table 5. Source code links for Text Generation.

Paper Title Link to Source

Exploring the limits of transfer learning with a
unified text-to-text transformer

https://github.com/google-research/text-to-
text-transfer-transformer, accessed on 2 March
2023.

You impress me: Dialogue generation via mu-
tual persona perception

https://github.com/SivilTaram/Persona-
Dialogue-Generation, accessed on 2 March
2023.

Content Enhanced BERT-based Text-to-SQL
Generation

https://github.com/guotong1988/NL2SQL-
RULE, accessed on 2 March 2023.

Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understand-
ing and generation

https://github.com/salesforce/CodeT5,
accessed on 2 March 2023.

Control prefixes for parameter-efficient text gen-
eration

https://github.com/jordiclive/
ControlPrefixes, accessed on 2 March 2023.

4.1.6. Text Summarization

Text Summarization is a task in NLP where the goal is to condense a given text into a
shorter and more concise version while preserving its essential information. This is typically
accomplished by identifying and extracting the most important information, sentences,
or phrases from the original text. The resulting summary can be a few sentences long or a
single bullet point, and is intended to provide a quick overview of the content without the
need to read the entire text. Text summarization is used in a variety of applications, such
as news aggregation, document summarization, and more. Text summarization typically
requires an encoder–decoder architecture to completely capture the source information.
Depending on the input size, standard attention might prove too costly due to the quadratic
computation cost based on the sequence length. Methods such as [31] replace the attention
layer with an equivalent (here, a pooled attention module) to efficiently handle larger
context windows. Under this category, possible tasks are as follows:

• Extractive Summarization: This is the most straightforward subtask of text summa-
rization, where the goal is to extract the most important sentences or phrases from
a document and present them as a summary. Extractive summarization methods
typically use a combination of information retrieval and natural language processing
techniques to identify the most informative sentences or phrases in a document.

• The attention mechanism of Longformer [32] is a substitute for standard self-attention,
and merges localized windowed attention with globally focused attention. The encoder–
decoder version of the longformer (called LED) has demonstrated its effectiveness on
the arXiv summarization dataset, and is used often for processing long contexts in
real-world applications.

• Abstractive Summarization: This subtask aims to generate a summary by synthe-
sizing new information based on the input document. Abstractive summarization
methods typically use deep learning models, such as recurrent neural networks or
transformers, to generate a summary. These models are trained on large amounts of
data and can generate summaries that are more concise and coherent than extractive
summaries. mBart is a sequence-to-sequence transformer [33] trained on multiple
large-scale monolingual corpora with the objective of denoising. Due to its rich pre-
training dataset and ability to process multiple languages using the same network, it
excels at abstractive summarization.

• Multi-Document Summarization: This subtask addresses the problem of summa-
rizing multiple related documents into a single summary. Multi-document summa-
rization methods typically use information retrieval techniques to identify the most
important documents and natural language processing techniques to generate a sum-
mary from the selected documents. While prior state-of-the-art methods relied on

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/SivilTaram/Persona-Dialogue-Generation
https://github.com/SivilTaram/Persona-Dialogue-Generation
https://github.com/guotong1988/NL2SQL-RULE
https://github.com/guotong1988/NL2SQL-RULE
https://github.com/salesforce/CodeT5
https://github.com/jordiclive/ControlPrefixes
https://github.com/jordiclive/ControlPrefixes

Information 2023, 14, 242 11 of 17

GNNs to take advantage of inherent connectivity, Primer by Xiao et al. [34] has shown
better performance in zero-shot, few-shot, and fine-tuned paradigms by introducing a
new pretraining objective in the form of predicting masked salient sentences.

• Query-Focused Summarization: This subtask focuses on summarizing a document
based on a specific query or topic. Query-focused summarization methods typically
use information retrieval techniques to identify the most relevant sentences or phrases
in a document and present them as a summary. Baumel et al. [35] introduced a
pre-inference step involving computing the relevance between the query and each
sentence of the document. The quality of summarization has been shown to improve
when incorporating this form of relevance as an additional input. Support for multiple
documents is achieved using a simple iterative scheme that uses maximum word
count as a budget.

• Sentence Compression: This subtask focuses on reducing the length of a sentence
while preserving its meaning. Sentence compression methods typically use natural lan-
guage processing techniques to identify redundant or unnecessary words or phrases in
a sentence and remove them to create a more concise sentence. Ghalandari et al. [36]
trained six-layer model called DistilRoBERTa with reinforcement learning to predict a
binary classifier that keeps or discards words to reduce the sentence length.

The source code for the papers discussed in this section can be accessed via the links
provided in Table 6.

Table 6. Source code links for Text Summarization.

Paper Title Link to Source

Adapting Pretrained Text-to-Text Models for
Long Text Sequences

https://github.com/facebookresearch/bart_
ls, accessed on 10 March 2023.

Longformer: The long-document transformer https://github.com/allenai/longformer, ac-
cessed on 10 March 2023.

Multilingual denoising pre-training for neural
machine translation

https://github.com/facebookresearch/
fairseq/tree/main/examples/mbart, accessed
on 10 March 2023.

Primer: Pyramid-based masked sentence pre-
training for multi-document summarization

https://github.com/allenai/PRIMER, ac-
cessed on 10 March 2023.

Query focused abstractive summarization: In-
corporating query relevance, multi-document
coverage, and summary length constraints into
seq2seq models

https://github.com/talbaumel/
RSAsummarization, accessed on 10 March
2023.

Efficient Unsupervised Sentence Compression
by Fine-tuning Transformers with Reinforce-
ment Learning

https://github.com/complementizer/rl-
sentence-compression, accessed on 10 March
2023.

4.1.7. Sentiment Analysis

Sentiment Analysis is a task in NLP with the goal of determining the sentiment
expressed in a given text. This is typically accomplished by assigning a sentiment label
such as positive, negative, or neutral to the text based on its contents. The sentiment can
be expressed in different forms, such as opinions, emotions, or evaluations, and can be
expressed at various levels of granularity, such as at the document, sentence, or aspect level.
Sentiment Analysis is used in a variety of applications, such as customer service, marketing,
and opinion mining. The quality of the sentiment analysis results can be influenced by
factors such as the subjectivity of the text, the tone, and the context in which the sentiment is
expressed. Instruction-tuned models such as T5 [26] are often used in a zero-shot manner to
perform sentiment analysis. XLNet [21] has been shown to be effective on several sentiment
analysis leaderboards such as SST-2, IMDB, and Yelp fine-grained. The source code for the

https://github.com/facebookresearch/bart_ls
https://github.com/facebookresearch/bart_ls
https://github.com/allenai/longformer
https://github.com/facebookresearch/fairseq/tree/main/examples/mbart
https://github.com/facebookresearch/fairseq/tree/main/examples/mbart
https://github.com/allenai/PRIMER
https://github.com/talbaumel/RSAsummarization
https://github.com/talbaumel/RSAsummarization
https://github.com/complementizer/rl-sentence-compression
https://github.com/complementizer/rl-sentence-compression

Information 2023, 14, 242 12 of 17

papers discussed in this section can be found in Table 7, where links to the repositories
are provided.

Table 7. Source code links for Sentiment Analysis.

Paper Title Link to Source

Exploring the limits of transfer learning with a
unified text-to-text transformer

https://github.com/google-research/text-to-
text-transfer-transformer, accessed on 1 March
2023.

Xlnet: Generalized autoregressive pretraining
for language understanding

https://github.com/zihangdai/xlnet, accessed
on 1 March 2023.

4.1.8. Named Entity Recognition

Named Entity Recognition (NER) is a task in NLP with the goal of identifying and
categorizing named entities present in a given text into predefined categories such as
person names, organizations, locations, dates, and more. NER is an important subtask of
information extraction, and is used as an intermediate step in various applications such as
question-answering, event extraction, and information retrieval. The quality of NER results
can be influenced by factors such as the ambiguity of entity names, the presence of entity
mentions with different forms, and the context in which the entities are expressed.

NER systems typically use machine learning techniques such as supervised learning
to learn and identify named entities based on annotated training data. The output of NER
is usually a sequence of tagged words, with each word being labeled with its corresponding
entity class. As such, it falls under the paradigm of token-wise classification, with the added
caveat that unlike most classification tasks it includes a null category. As the sentence and
output lengths in NER are equal, it typically utilizes an encoder-only architecture. While
the approach of fine-tuning a pretrained model with a classification head added on top
for NER works well in practice, Automated Concatenation of Embeddings (ACE) [37] has
shown improved results using an ensemble of several pretrained models while training
only a simple classifier on top using reinforcement learning. The relevant source code
repository for ACE can be found in Table 8.

Table 8. Source code links for Named Entity Recognition.

Paper Title Link to Source

Automated concatenation of embeddings for
structured prediction

https://github.com/Alibaba-NLP/AC,
accessed on 1 March 2023.

4.1.9. Information Retrieval

Information Retrieval (IR) is a task in NLP with the goal of retrieving relevant infor-
mation from a large collection of documents in response to a user query. This is typically
accomplished by matching the query terms against the document content and ranking
the documents based on their relevance to the query. IR systems can be used for various
applications, such as web search, document search, and question answering. The quality
of the retrieval results can be influenced by factors such as the relevance of the docu-
ments, the effectiveness of the ranking algorithm, and the representation of the documents
and queries.

IR systems are typically classified further based on the level of granularity, such as
document, paragraph, sentence, etc. While symbolic methods dominated IR leaderboards
for a long time, transformer-based embeddings are quickly becoming the norm within
the research community. Commercial use however remains in its infancy due to more
demanding hardware requirements as compared to symbolic methods. The typical methods
for retrieval include the use of a pretrained model such as RoBERTa [38] in a Siamese fashion
to find the similarity between two embeddings. For larger datasets, the embeddings are

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/zihangdai/xlnet
https://github.com/Alibaba-NLP/AC

Information 2023, 14, 242 13 of 17

precomputed and stored in a vector database for faster lookup. The source code link for
RoBERTa can be found in Table 9.

Table 9. Source code links for Information Retrieval.

Paper Title Link to Source

RoBERTa: A Robustly Optimized BERT Pre-
training Approach

https://github.com/facebookresearch/
fairseq, accessed on 1 March 2023.

4.2. Multimodal Applications

Multimodal applications are AI-driven systems that leverage multiple modalities, such
as text, images, and videos, to process and analyze information. By integrating various
forms of data, these applications enable more comprehensive and versatile solutions in
diverse domains. In the subsequent sections, we explore the primary categories of multi-
modal applications, including Generative Control (Section 4.2.1), Description Generation
(Section 4.2.2), and Multimodal Question Answering (Section 4.2.3). These categories
showcase the potential of AI systems to deliver more robust and context-aware insights
by utilizing different data types, ultimately leading to improved performance and user
experience across a wide array of applications.

4.2.1. Generative Control

Generative Control is a task in multimodal NLP in which text is used as an interface
to generate another modality, such as images or speech. The goal of Generative Control is
to generate a target modality that corresponds to a given text description or instruction.
For example, based on a textual description of an object, such as "a red sports car," the
task of Generative Control would be to generate an image of a red sports car. Generative
Control combines the strengths of NLP and computer graphics or speech synthesis to
produce high-quality and semantically meaningful outputs in the target modality. It has
applications in areas such as computer vision, robotics, and human–computer interaction.
Rombach et al. [39] used text as the primary modality for image generation. An open-
source implementation of this method named StableDiffusion has generated vast interest
as an alternative to the commercial API based on prior work by Ramesh et al. [40]. In the
domain of text-to-speech (TTS), Wang et al. [41] combined traditional neural codecs with
transformers, which is able to outperform zero-shot TTS systems by treating the problem
as conditional language modeling.

The source code for the papers discussed in this section can be found in Table 10,
as referenced.

Table 10. Source code links for Generative Control.

Paper Title Link to Source

High-resolution image synthesis with latent dif-
fusion models

https://github.com/CompVis/latent-
diffusion, accessed on 1 March 2023.

Neural Codec Language Models are Zero-Shot
Text to Speech Synthesizers

https://github.com/microsoft/unilm/tree/
master/valle, accessed on 1 March 2023.

4.2.2. Description Generation

Description Generation is a task in which text is generated to describe another modality,
such as an image or a point cloud. The goal of Description Generation is to automatically
produce a textual description of the content of the target modality that accurately captures
its key aspects and characteristics. For example, given an image of a scene, the task of
Description Generation would be to generate a textual description of the objects, actions,
and attributes present in the scene. Description generation commonly includes tasks such
as image captioning and scene understanding.

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq
https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/latent-diffusion
https://github.com/microsoft/unilm/tree/master/valle
https://github.com/microsoft/unilm/tree/master/valle

Information 2023, 14, 242 14 of 17

mPLUG [42] is a new transformer-based vision-language model that combines cross-
modal understanding and generation, achieving state-of-the-art results on various vision-
language tasks and addressing the inefficiency and linguistic signal issues in existing
models through its efficient cross-modal skip-connections. The link to the corresponding
source code for mPlug can be found in Table 11.

Table 11. Source code links for Description Generation.

Paper Title Link to Source

mPLUG: Effective and Efficient Vision-
Language Learning by Cross-modal Skip-
connections

https://github.com/alibaba/AliceMind/tree/
main/mPLUG, accessed on 10 March 2023.

4.2.3. Multimodal Question Answering

Multimodal Question Answering (QA) is a task with the goal of answering questions
about a given multimodal input, such as an image or a video, using information from
multiple modalities. The task involves combining information from text, images, audio,
and other modalities to accurately answer questions about the content of the input. For ex-
ample, given an image of a scene and a question about the scene, such as “what is the
color of the car?”, the task of Multimodal QA would be to identify the car in the image
and answer the question with the correct color. Multimodal QA requires the integration of
NLP, computer vision, and other relevant modalities to accurately answer questions about
the content of the input. It has applications in areas such as intelligent tutoring systems,
customer service, and multimedia retrieval.

Models utilized for multimodal QA usually show heterogeneity to effectively process
modalities other than text. For example, Plepi et al. [43] used a stacked pointer network
to aggregate information from a knowledge graph for conversational question answering.
Unik-qa [44] uses a retriever–reader architecture that fetches the most relevant documents
related to the question based on dense embedding similarity and uses it as context during
generation, supporting multiple modalities such as text, tables, lists, and knowledge bases
within the documents.

BEiT [45] performs masked language modeling on images, texts, and image-text pairs
using a shared backbone. For visual question answering, the model utilizes a fusion encoder
in which patch and word embeddings share attention with the attention component of the
transformer block while having separate feed-forward layers in the initial stages. By simply
fine-tuning a classifier on top, BEiT outperforms all previous methods by a large margin.

Table 12 contains links to the source code corresponding to the papers discussed in
this section.

Table 12. Source code links for Multimodal Question Answering.

Paper Title Link to Source

Context transformer with stacked pointer net-
works for conversational question answering
over knowledge graphs

https://github.com/endrikacupaj/CARTON,
accessed on 10 March 2023.

Unik-qa: Unified representations of structured
and unstructured knowledge for open-domain
question answering

https://github.com/facebookresearch/UniK-
QA, accessed on 10 March 2023.

Image as a foreign language: Beit pretraining
for all vision and vision-language tasks

https://github.com/microsoft/unilm/tree/
master/beit, accessed on 10 March 2023.

5. Discussion and Conclusions

In conclusion, this comprehensive work has delved into the landscape of transformers
in real-world NLP applications, specifically focusing on those with open-source imple-

https://github.com/alibaba/AliceMind/tree/main/mPLUG
https://github.com/alibaba/AliceMind/tree/main/mPLUG
https://github.com/endrikacupaj/CARTON
https://github.com/facebookresearch/UniK-QA
https://github.com/facebookresearch/UniK-QA
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/microsoft/unilm/tree/master/beit

Information 2023, 14, 242 15 of 17

mentations. Through our extensive survey, we have identified and examined twelve
main categories and seventeen subcategories of tasks that showcase the versatility and
power of transformer models in addressing various challenges in the field of natural
language processing.

Our decision to focus on papers with accompanying open-source implementations
was driven by the aim of promoting accessibility, reproducibility, and collaboration within
the research community. Open-source implementations facilitate a more transparent and
inclusive environment, enabling researchers and practitioners from various backgrounds
to build upon, refine, and adapt existing models and techniques. This approach encour-
ages innovation by lowering the barriers to entry and fostering a more diverse range of
perspectives. Additionally, emphasizing reproducibility can ensure that research findings
are reliable and robust, ultimately contributing to the overall advancement and credibility
of the field.

In all, the field of natural language processing (NLP) has witnessed significant ad-
vancements thanks to the introduction of various transformer architectures, which have
proven effective in addressing long-range dependencies, scalability, and versatility across
various tasks. While research tends to focus on larger models with increasing parameter
counts, real-world applications often rely on models with fewer than one billion parameters.
As demonstrated in Figure 1, smaller models can provide comparable or even superior
performance, particularly when training data are limited. Moreover, more compact models
are faster to train, simpler to deploy, and offer enhanced interpretability, which is crucial
for understanding the rationale behind their predictions in practical settings. Consequently,
the pursuit of increasingly large models in research should be balanced with an appreciation
for the potential advantages of smaller models in real-world applications.

Figure 1. Reported parameter count of the largest model by year. The grey diamonds represent
outliers.

This analysis contributes to our understanding of the strengths and weaknesses of
transformers in practice, and offers valuable guidance for subsequent research in this
domain. By showcasing the potential of open-source development in transformer-based
models, we hope to encourage further collaboration, innovation, and ethical considerations
in NLP research and application.

Author Contributions: Conceptualization, N.P. and S.M.; methodology, N.P. and S.M.; software,
N.P.; validation, all; investigation, N.P.; resources, N.P.; data curation, N.P.; writing—original draft
preparation, N.P.; writing—review and editing, S.M. and C.S.; visualization, N.P.; supervision, S.M.
and C.S.; project administration, S.M. and C.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was made possible thanks to the generous support of the SIMAR GROUP
s.r.l., Monte Urano (FM, Italy) and NextGenerationEU, which provided a Ph.D. scholarship to the
lead author.

Information 2023, 14, 242 16 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data analyzed are all publicly available and all the sources are
contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

NLP Natural Language Processing
API Application Programming Interface
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pretrained Transformers
NER Named Entity Recognition
SQL Structured Query Language
TTS Text-to-Speech
MT Machine Translation
UMT Unsupervised Machine Translation

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 3058.
2. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
3. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training.

OpenAI 2018.
4. Chowdhary, K.; Chowdhary, K. Natural language processing. Fundam. Artif. Intell. 2020, 1, 603–649.
5. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 604–624. [CrossRef]
6. Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; Huang, X. Pre-trained models for natural language processing: A survey. Sci. China

Technol. Sci. 2020, 63, 1872–1897. [CrossRef]
7. Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too

Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event, 3–10 March 2021;
pp. 610–623.

8. Dang, N.C.; Moreno-García, M.N.; De la Prieta, F. Sentiment analysis based on deep learning: A comparative study. Electronics
2020, 9, 483. [CrossRef]

9. Danilevsky, M.; Qian, K.; Aharonov, R.; Katsis, Y.; Kawas, B.; Sen, P. A survey of the state of explainable AI for natural language
processing. arXiv 2020, arXiv:2010.0071.

10. Alyafeai, Z.; AlShaibani, M.S.; Ahmad, I. A survey on transfer learning in natural language processing. arXiv 2020,
arXiv:2007.04239.

11. Wu, L.; Chen, Y.; Shen, K.; Guo, X.; Gao, H.; Li, S.; Pei, J.; Long, B. Graph neural networks for natural language processing: A
survey. Found. Trends® Mach. Learn. 2023, 16, 119–328. [CrossRef]

12. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

13. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

14. Shin, T.; Razeghi, Y.; Logan IV, R.L.; Wallace, E.; Singh, S. Autoprompt: Eliciting knowledge from language models with
automatically generated prompts. arXiv 2020, arXiv:2010.15980.

15. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv 2019, arXiv:1901.02860.

16. Krause, B.; Kahembwe, E.; Murray, I.; Renals, S. Dynamic evaluation of transformer language models. arXiv 2019,
arXiv:1904.08378.

17. Ziegler, D.M.; Stiennon, N.; Wu, J.; Brown, T.B.; Radford, A.; Amodei, D.; Christiano, P.; Irving, G. Fine-tuning language models
from human preferences. arXiv 2019, arXiv:1909.08593.

18. Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020, arXiv:2001.04451.

http://doi.org/10.1109/TNNLS.2020.2979670
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.3390/electronics9030483
http://dx.doi.org/10.1561/2200000096

Information 2023, 14, 242 17 of 17

19. Zhu, C.; Zeng, M.; Huang, X. Sdnet: Contextualized attention-based deep network for conversational question answering. arXiv
2018, arXiv:1812.03593.

20. Garg, S.; Vu, T.; Moschitti, A. Tanda: Transfer and adapt pre-trained transformer models for answer sentence selection. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 7780–7788.

21. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language
understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 3088.

22. Wu, S.; Cotterell, R.; Hulden, M. Applying the transformer to character-level transduction. arXiv 2020, arXiv:2005.10213.
23. Zhu, J.; Xia, Y.; Wu, L.; He, D.; Qin, T.; Zhou, W.; Li, H.; Liu, T.Y. Incorporating bert into neural machine translation. arXiv 2020,

arXiv:2002.06823.
24. Yasunaga, M.; Leskovec, J.; Liang, P. Linkbert: Pretraining language models with document links. arXiv 2022, arXiv:2203.15827.
25. Hosseini, P.; Broniatowski, D.A.; Diab, M. Knowledge-augmented language models for cause-effect relation classification. In

Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022), Dublin, UK, 27 May 2022;
pp. 43–48.

26. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

27. Liu, Q.; Chen, Y.; Chen, B.; Lou, J.G.; Chen, Z.; Zhou, B.; Zhang, D. You impress me: Dialogue generation via mutual persona
perception. arXiv 2020, arXiv:2004.05388.

28. Guo, T.; Gao, H. Content enhanced bert-based text-to-sql generation. arXiv 2019, arXiv:1910.07179.
29. Wang, Y.; Wang, W.; Joty, S.; Hoi, S.C. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understand-

ing and generation. arXiv 2021, arXiv:2109.00859.
30. Clive, J.; Cao, K.; Rei, M. Control prefixes for parameter-efficient text generation. In Proceedings of the 2nd Workshop on Natural

Language Generation, Evaluation, and Metrics (GEM), Online, 7–11 December 2022; pp. 363–382.
31. Xiong, W.; Gupta, A.; Toshniwal, S.; Mehdad, Y.; Yih, W.T. Adapting Pretrained Text-to-Text Models for Long Text Sequences.

arXiv2022, arXiv:2209.10052.
32. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150.
33. Liu, Y.; Gu, J.; Goyal, N.; Li, X.; Edunov, S.; Ghazvininejad, M.; Lewis, M.; Zettlemoyer, L. Multilingual denoising pre-training for

neural machine translation. Trans. Assoc. Comput. Linguist. 2020, 8, 726–742. [CrossRef]
34. Xiao, W.; Beltagy, I.; Carenini, G.; Cohan, A. Primer: Pyramid-based masked sentence pre-training for multi-document

summarization. arXiv 2021, arXiv:2110.08499.
35. Baumel, T.; Eyal, M.; Elhadad, M. Query focused abstractive summarization: Incorporating query relevance, multi-document

coverage, and summary length constraints into seq2seq models. arXiv 2018, arXiv:1801.07704.
36. Ghalandari, D.G.; Hokamp, C.; Ifrim, G. Efficient Unsupervised Sentence Compression by Fine-tuning Transformers with

Reinforcement Learning. arXiv 2022, arXiv:2205.08221.
37. Wang, X.; Jiang, Y.; Bach, N.; Wang, T.; Huang, Z.; Huang, F.; Tu, K. Automated concatenation of embeddings for structured

prediction. arXiv 2020, arXiv:2010.05006 .
38. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
39. Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 24–28 June 2022;
pp. 10684–10695.

40. Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv
2022, arXiv:2204.06125.

41. Wang, C.; Chen, S.; Wu, Y.; Zhang, Z.; Zhou, L.; Liu, S.; Chen, Z.; Liu, Y.; Wang, H.; Li, J.; et al. Neural Codec Language Models
are Zero-Shot Text to Speech Synthesizers. arXiv 2023, arXiv:2301.02111.

42. Li, C.; Xu, H.; Tian, J.; Wang, W.; Yan, M.; Bi, B.; Ye, J.; Chen, H.; Xu, G.; Cao, Z.; et al. mPLUG: Effective and Efficient
Vision-Language Learning by Cross-modal Skip-connections. arXiv 2022, arXiv:2205.12005.

43. Plepi, J.; Kacupaj, E.; Singh, K.; Thakkar, H.; Lehmann, J. Context transformer with stacked pointer networks for conversational
question answering over knowledge graphs. In Proceedings of the The Semantic Web: 18th International Conference, ESWC
2021, Online, 6–10 June, 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 356–371.

44. Oguz, B.; Chen, X.; Karpukhin, V.; Peshterliev, S.; Okhonko, D.; Schlichtkrull, M.; Gupta, S.; Mehdad, Y.; Yih, S. Unik-qa: Unified
representations of structured and unstructured knowledge for open-domain question answering. arXiv 2020, arXiv:2012.14610.

45. Wang, W.; Bao, H.; Dong, L.; Bjorck, J.; Peng, Z.; Liu, Q.; Aggarwal, K.; Mohammed, O.K.; Singhal, S.; Som, S.; et al. Image as a
foreign language: Beit pretraining for all vision and vision-language tasks. arXiv 2022, arXiv:2208.10442.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/tacl_a_00343

	Introduction
	Related Work
	Methodology
	Categorization

	Applications
	Unimodal Applications
	Language Modeling
	Question Answering
	Machine Translation
	Text Classification
	Text Generation
	Text Summarization
	Sentiment Analysis
	Named Entity Recognition
	Information Retrieval

	Multimodal Applications
	Generative Control
	Description Generation
	Multimodal Question Answering

	Discussion and Conclusions
	References

