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• Microplastics were found in human 
semen samples. 

• The detected microplastics were char-
acterized by Raman Microspectroscopy. 

• N. 16 pigmented microplastic fragments 
with spheric or irregular shapes were 
found in six of ten samples. 

• Microplastics probably pass through the 
epididymis and the seminal vesicles.  
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A B S T R A C T   

The presence of microplastics (MPs) in human fluids and organs is a great concern, since, as highlighted by recent 
studies on animal models, they could cause alterations of several physiological functions, including reproduction. 
In this study, semen samples collected from men living in a polluted area of the Campania Region (Southern 
Italy), were analyzed to assess the presence of MPs. N. 16 pigmented microplastic fragments (ranging from 2 to 6 
μm in size) with spheric or irregular shapes were found in six out of ten samples. All the detected MPs were 
characterized in terms of morphology (size, colour, and shape) and chemical composition by Raman Micro-
spectroscopy. Chemical composition showed the presence of polypropylene (PP), polyethylene (PE), poly-
ethylene terephthalate (PET), polystyrene (PS), polyvinylchloride (PVC), polycarbonate (PC), polyoxymethylene 
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(POM) and acrylic, suggesting ingestion and/or inhalation as a route of exposure to environmental MPs. In this 
work, we propose for the first time a mechanism by which MPs pass into the semen most likely through the 
epididymis and seminal vesicles, which are the most susceptible to inflammation.   

1. Introduction 

In recent decades, global environmental degradation and widespread 
pollution have represented the most critical threats to the health of all 
living species (Majeed and Ozturk, 2020). In addition, the continuous 
load of chemicals released into the environment (Gray, 2017) has raised 
concerns about human health (Prüss-Ustün et al., 2017). In this context 
of global environmental contamination, massive plastic pollution seems 
to be having an increasingly significant impact. 

Large-scale production of plastics began after World War II and has 
increased considerably to date; globally >400 million tons of plastics are 
generated annually, and by 2050, according to a study by UNEP, it could 
reach 1.1 billion tons per year (UNEP, 2021). Between 1950 and 2017, 
an estimated 9.2 billion tons of plastic were produced, most of which 
remains as waste in our natural environment, threatening global eco-
systems. As plastic degrades, they form microplastics, i.e. particles 
ranging in size from 1 to 5000 μm, with different shapes (fragments, 
fibers, spheres, films, beads, flakes, pellets, and foam) depending on the 
original shape of the plastic object, the deterioration processes occurring 
on its surface, and the length of time it remains in the environment 
(Zhang et al., 2021). Plastic or its fragments have been found at all 
latitudes, contaminating soil, air, marine and fresh waters, and food 
(Ahmed et al., 2021; Akdogan and Guven, 2019; Christian and Köper, 
2023; Mamun et al., 2023; Muhib et al., 2023; O'Brien et al., 2023; 
Ricciardi et al., 2021). They have also been found in unimaginable 
places on Earth, from the highest mountain peaks to the ice cap to the 
ocean's depths, and may also contribute to the global climate crisis (Ford 
et al., 2022). Plastic that degrades emits two types of greenhouse gases: 
ethylene and methane (Royer et al., 2018). Plastic does not only degrade 
when it is released into water, but the most degenerative phase occurs 
with solar radiation; in fact, the production of ethylene is 76 times 
greater than the process that occurs in water after exposure to sunlight 
(Royer et al., 2018). 

The proliferation of plastic and, in turn, of microplastic poses a 
serious threat not only to the environment but also to human health 
(Ziani et al., 2023); microplastics have also been found in plankton, 
which forms the basis of the oceanic food chain and provides the most 
important carbon uptake mechanism in the atmosphere (Ford et al., 
2022). Microplastics enter the human body primarily through ingestion 
of food, water and other beverages, inhalation, and direct skin contact, 
as in the case of personal care products and cosmetics (Pironti et al., 
2021a). Adults can accumulate thousands of microplastic particles 
during their lifetime (Lim, 2021). Microplastics have been found in 
various human tissues, including hair, lungs, kidneys, liver and spleen 
(Kutralam-Muniasamy et al., 2023) but also in meconium, breast milk, 
placenta, blood (Leslie et al., 2022) and in urine (Pironti et al., 2023) 
and might be a potential threat to human health, also including repro-
ductive health (Kutralam-Muniasamy et al., 2023; Malafaia and Barceló, 
2023). 

Poor investigations have been performed on the effect of MPs on 
mice's male reproductive system (Jin et al., 2021; Xie et al., 2020) and 
the influence of MPs and their potential damage-inducing mechanisms 
in mammalian testicular tissues need more investigation, especially 
considering the increasing evidence of the risk of genetically and 
epigenetically transmissible damage. MPs have been reported to induce 
reproductive toxicity in rodents (An et al., 2021; J. Hou et al., 2021) and 
aquatic species like oysters (Sussarellu et al., 2016), cladoceri (Jaikumar 
et al., 2019), Caenorhabditis elegans (Chen et al., 2022) and zebrafish 
(Danio rerio) (da Costa Araújo et al., 2020a; Guimarães et al., 2021; 
Qiang and Cheng, 2021). Moreover, toxic effects are observed also in 

birds (Cunha et al., 2022; de Souza et al., 2022) and amphibians (da 
Costa Araújo et al., 2021; da Costa Araújo et al., 2020b). MPs could 
cause adverse effects through oxidative stress, apoptosis, inflammatory 
and fibrotic response and disruption of hormonal balance (Dubey et al., 
2022). The scientific interest in assessing reproductive risk from con-
taminants is of particular concern in light of the reproductive emer-
gency, especially in males, that has been occurring for several decades 
globally (Levine et al., 2023), particularly in the areas where the envi-
ronmental pressure is highest (Bergamo et al., 2016; Lettieri et al., 
2020a). 

The male reproductive system, indeed, appears to be particularly 
sensitive to environmental stresses (Gallo et al., 2020; Montano, 2020; 
Montano et al., 2018), and preliminary results appear to indicate 
transgenerational effects of pollutants on molecular alterations in Sperm 
Nuclear Basic Proteins (SNBP) in humans living in polluted areas (Let-
tieri et al., 2020b). 

Male reproductive system appears particularly susceptible to pol-
lutants. More significative differences in semen rather than in blood 
have been observed as regard pollutants accumulated. In addition, it has 
been observed a reduced total antioxidant capacity in samples from 
geographical areas with a high environmental impact, more evident in 
seminal plasma than in blood (Bergamo et al., 2016). Another study on 
macro and trace elements in human semen and blood serum in high 
polluted areas in Italy underlines how semen is more sensitive than 
blood in accumulating pollutants (Nunzio et al., 2022). The sperm DNA 
fragmentation index (DFI) was also found to be higher in men living in 
more polluted areas (Bosco et al., 2018); in the same way an alteration in 
the length of telomeres was observed in men living in polluted areas, and 
these differences appeared more significant in human spermatozoa 
rather than in blood lymphocytes (Vecoli et al., 2017). 

These data obtained in humans align with those found in mice, where 
susceptibility to certain pollutants has been shown to increase over 
generations (Horan et al., 2017). 

It is known that environmental pollutants, such as heavy metals, 
PM2.5, and endocrine-disrupting compounds (EDCs), are playing an 
effective role in the decline of sperm quality in humans, even if the exact 
mechanisms of action are not clearly understood, (Calogero et al., 2021; 
Virtanen et al., 2017; W. Wu et al., 2022). The damage to reproductive 
health caused by MPs accumulation in males still lacks evidence. 
Although the root cause of this worrying decline in fertility has not yet 
been pinpointed, evidence from ongoing animal studies shows that MPs 
represent a potentially critical threat to reproduction (B. Hou et al., 
2021; Ijaz et al., 2021; Jin et al., 2021). Micro and nanoplastics are 
absorbers and function as a transport medium for hazardous substances, 
commonly used as additives in plastic production, i.e., bisphenols, 
phthalates, polybrominated diphenyls, polychlorinated biphenyl ethers, 
dioxins, polycyclic aromatic hydrocarbons, organic contaminants and 
heavy metals (Pironti et al., 2021b; Ullah et al., 2023; UNEP, 2023). The 
toxicity induced by MPs are size-dependent, since smaller particles 
possess higher adsorption ability and greater surface area and thus can 
release more EDCs and toxic chemicals, becoming damaging to mam-
mals through processes of bioaccumulation and biomagnification (de Sá 
et al., 2018; Hu et al., 2022). These effects are referred to as the “Trojan 
horse effects” of MPs (Schell et al., 2022) and lead to a variety of syn-
ergistic, behavioural, histological, and biomolecular alterations as 
observed in animal model (mainly fish) (Hu et al., 2022). Several EDCs 
contained or transported by MPs share common structural elements with 
specific hormone receptors, consequently, they have the ability to 
interfere with normal hormone receptors by affecting the hormonal 
action of endocrine glands (Ullah et al., 2023). However, these data have 
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been limited to studies on laboratory animals and it is not known to what 
extent they reflect the conditions that animals experience in the natural 
environment. Consequently, the magnitude to which MPs can be bio-
accumulated in terrestrial mammals and affect fertility is not sufficiently 
clear. 

Based on this concerning issue, in this preliminary study, we propose 
the first evidence of MPs in human semen and we suggest a possible 
mechanism by which these microparticles can be internalized and reach 
the semen. The analysis was carried out on N. 10 semen samples 
collected from men living in a polluted area of the Campania Region 
(Southern Italy), according to an already defined protocol developed by 
some of the Authors. MPs were characterized in terms of shape, colour, 
dimension and polymer matrix by Raman Microspectroscopy analysis. 
This study, even if preliminary due to the limited number of analyzed 
samples, should be considered extremely relevant for the scientific 
community, and paves the way to further investigations to explore the 
possible damages that these microparticles can cause in terms of human 
reproduction and male fertility. 

2. Materials and methods 

2.1. Patients' enrolment 

The study was approved by the Ethical Committee of the Local 
Health Authority Campania Sud-Salerno (Committee code n. 43 of 30 
June 2015) and it was performed in accordance with the guidelines and 
regulations described by the Code of Ethics of the World Medical As-
sociation (Declaration of Helsinki). This study was a part of a compre-
hensive analysis regarding the influence of environmental conditions on 
human health, in particular the reproductive health of young people (htt 
ps://www.ecofoodfertility.it/, accessed on 08 May 2023). Acting on 
young subjects aims not only to protect and improve semen quality but 
above all to intervene early before more serious problems occur in these 
subjects. 

All patients were exhaustively informed about the project and signed 
an informed consent to participate. Semen samples were collected from 
ten healthy young men living for at least 10 years in a polluted area of 
the Campania Region (Southern Italy). 

The participants recruited were high school and university young 
men aged 18–35 years, the mean age was 23 ± 1.8 years. The selection 
was based on demographic data, lifestyle habits and Western pattern 
diet. The exclusion criteria were:  

- Body Mass Index < 18.5 or >25.0; waist circumference > 102 cm;  
- tobacco smokers;  
- habitual drug and alcohol users; 
- regular use of steroids or anabolic hormones (intake of dietary sup-

plements or substances containing vegetal or animal extracts or trace 
elements). 

Moreover were excluded individuals who had declared to have 
endocrinopathies, cardiovascular diseases, dyslipidaemia, systemic 
lupus erythematosus, and other rheumatological diseases, HIV infection 
or any other active infection, as well as individuals who are undergoing 
cancer treatment or are using hormones and steroidal/non-steroidal 
anti-inflammatory drugs in the last two months and at the time of 
collection and vasectomized participants with a positive diagnosis for 
Diabetes mellitus or any other who have alterations identified in pre-
vious spermiogram. 

2.2. Semen collection and characterization 

Semen samples were collected in a sterile glass container. According 
to the World Health Organization (WHO) guidelines (WHO, 2021), the 
volunteers were informed on the correct procedure to collect semen: 
masturbation after 3–4 sexual abstinence (no masturbation, coitus and 

nocturnal pollutions during sexual abstinence period), absence of fever 
in the previous 30 days, washing of hands and genitals before collection 
with water only and dried with paper. The collection of semen was 
performed in an air-controlled room, classified as class-A room, with a 
maximum of concentration both ≤3.250/m3 of particles ≥0.5 μm and 
≤20/m3 of particles ≥5.0 μm. Glass boxes for semen collection and glass 
pipettes for semen manipulation were immersed in deionized water 
overnight and then washed three times with deionized water. Each glass 
box and each glass pipette were covered with aluminium sheet and dried 
in the oven at 120 ◦C for at least 4 h and left at room temperature until 
the use. 

The sperm analysis was performed according to the World Health 
Organization (WHO) guidelines (WHO, 2021) using a phase contrast 
microscope (Nikon Ci-L) for optical evaluation with Makler's chamber 
(SEFI-Medical Instruments), a simple-to-use device for rapid and accu-
rate one-step sperm evaluation of concentration and motility from un-
diluted sample. The following semen parameters were also measured: 
volume, sperm concentration, motility (rapidly progressive, slowly 
progressive, non-progressive, immotile), sperm morphology and num-
ber of round cells. The manipulation of semen samples, according to the 
obligation to use personal protective equipment for biological risk, were 
performed using not coloured (clear) powder free latex gloves. 

2.3. Digestion and filtration of samples 

This analytical step was carried out at the Advanced Research 
Instrumentation Laboratory, Università Politecnica delle Marche 
(Ancona, Italy); to avoid environmental contamination, a room dedi-
cated only to the treatment and preparation of these samples was used. 
For removing the organic matrix, sperm samples were first digested by 
using a 10 % KOH solution (Sigma-Aldrich) in a 1:2 ratio (v/v, sample/ 
KOH) for 48 h at 40 ◦C (Pironti et al., 2023; Ragusa et al., 2021, 2022). 

The filtration of digestates was performed under vacuum by 1.2 μm 
pore-size glass microfiber filter membranes (Whatman GF/C), which 
were then dried at room temperature. Samples were stored in glass Petri 
dishes until Raman Microspectroscopy analysis. 

2.4. Quality Assurance and Control (QA/QC) 

A precise plastic-free protocol was adopted during all the phases of 
the research, from the collection of samples, digestion, storage and 
analysis; plastic tolls were never used. More in detail, only sterilized 
glassware, cotton laboratory coats, steel tools, and single-use latex 
gloves were employed; to clean glassware and instruments, 70 % ethanol 
and deionized water were used, carefully filtered before use through 1.2 
μm pore-size glass microfiber filter membranes (Whatman GF/A); 70 % 
ethanol was also used to cleanse work surfaces. 

Moreover, environmental and procedural blanks were prepared and 
thoroughly analyzed to assess possible plastic contamination deriving 
from external sources. Regarding the environmental blank, a filter 
membrane soaked with 1.2 μm filtered deionized water was kept un-
covered into a Petri dish, and it was located in the dedicated room 
throughout the experiment. A procedural blank for each batch of sam-
ples was also prepared following the same procedure. 

2.5. Raman MicroSpectroscopy (RMS) analysis 

Filter membranes were analyzed using an XploRA Nano Raman 
Microspectrometer (Horiba Scientific) at the Advanced Research 
Instrumentation Laboratory, Università Politecnica delle Marche 
(Ancona, Italy). The entire surface of all filters, including those deriving 
from procedural and environmental blanks, was carefully investigated 
by a visual screening by using a ×10 objective (Olympus MPLAN10×/ 
0.25) to detect the presence of microplastics. Then, each detected 
microparticle was characterized directly on the filter membrane, in 
terms of morphology (shape, size, and colour) by a visual investigation 
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with a ×100 objective (Olympus MPLAN100×/0.90), and chemical 
composition by Raman MicroSpectroscopy analysis. 

For the RMS analysis, 532 nm or 785 nm laser diodes (600 lines per 
mm grating, spectral range 500–1800 cm− 1) were alternatively used. A 
16-bit dynamic range Peltier-cooled CCD detector was employed for 
spectra dispersion; the spectrometer calibration was carried out on the 
520.7 cm− 1 line of silicon. 

Raw Raman spectra collected for each MP were polynomial baseline 
corrected and vector normalized to increase the signal-to-noise ratio 
(Labspec 6 software, Horiba Scientific). Finally, spectra were compared 
with specific spectral libraries of polymers and pigments (KnowItAll 
software, John Wiley & Sons, Inc., Hoboken, NJ, USA) to identify the 
polymer matrix (Pironti et al., 2023). The Hit Quality Index (HQI) value 
higher than 80 was considered satisfactory. 

3. Results and discussion 

In the present study, N. 10 semen samples collected from men living 
in a polluted area of Campania Region (Southern Italy), have been 
investigated by Raman Microspectroscopy to highlight the presence of 
microplastics, and N. 16 MPs were detected in six out of the ten analyzed 
samples. In addition to the above-described semen samples, environ-
mental and procedural blanks were also analyzed to rule out any 
possible contamination during the analysis, and no MPs were found. In 
Table 1, the morphological and chemical features of all the detected MPs 
are reported. More in detail, size, colour and shape were evaluated by 
optical microscopy investigation, while the composition of the poly-
meric matrix was assessed by Raman Microspectroscopy analysis. 

In Fig. 1, the microphotographs and the corresponding Raman 

spectra of some representative MPs are reported as an example. 
All the found microplastics ranged from 2 to 6 μm; they were pre-

dominantly irregularly shaped fragments, except for two subjects in 
which spherically shaped microplastics were found. As regards the 
chemical composition, the most common polymers present in daily life 
were found, including polypropylene (PP), polystyrene (PS), poly-
ethylene terephthalate (PET), polyethylene (PE), polyoxymethylene 
(POM), polyvinylchloride (PVC), and polycarbonate (PC); moreover, an 
acrylic microfragment was detected. The major amount of MPs was 
detected in samples #1 (N. 5), #2 (N. 4), and #3 (N. 3); no micropar-
ticles were detected in samples #5, #6, #7, and #8. 

Studies focusing on the toxicokinetic of MPs are still limited, and 
conclusions about their translocation are hardly drawn, but it is well- 
documented that the absorption and distribution of MPs through 
human tissues is size-dependent (de Sá et al., 2018; Hu et al., 2022; 
Leslie et al., 2022; P. Wu et al., 2022). A potential mechanism that can 
explain the presence of MPs in human semen could be related to the 
possibility that MPs pass into the semen, probably through the epidid-
ymis and also from the seminal vesicles (Fig. 2), which are moreover the 
most sensitive to inflammation. 

The testis has the so-called “blood-testis barrier” which prevents 
blood and immune-cells accessing to the endoluminal compartment 
where spermatogenesis takes place. Spermatozoa are haploid cells, so 
the immune-system could recognize these as non-self, producing auto-
immune response; for this reason, is important that spermatogenesis 
takes place in a protect environment, in absence of white blood cells. 
The tight junctions are the main structures involved in maintaining the 
integrity of blood-testis barrier. When the spermatozoa have completed 
spermatogenesis, they are released from the seminiferous tubules and 
stationed in the epididymis until are released following ejaculation. 
Epididymal spermatozoa join glandular secretions from the prostate, 
seminal vesicles and accessory glands; these glandular secretions 
constitute the seminal plasma. The epididymis and these glands, more 
frequently than testicles, can undergo infections and inflammations; 
therefore, leucocytes are more likely to be found in this part of the male 
reproductive system. It has been proposed that macrophages can uptake 
and release MPs through endo- and exocytosis (Ragusa et al., 2021). 

Therefore, it could be speculated that MPs pass through endo- and 
exocytosis of the lining cells. Alterations in the blood-testicular barrier 
would cause the passage of MPs, with smaller sizes; the inflammatory 
process would be more significant as endothelial hyperpermeability is a 
hallmark of the inflammatory response to injury or infection. In fact, 
during acute inflammation, the junction proteins undergo post-
translational modifications or conformational changes, disrupting bar-
rier integrity and enhancing permeability (Chatterjee et al., 2020). 

An accumulation in the peritesticular fat and epididymis could be 
related to the lipophilicity of MPs which increases the likelihood of their 
elimination through the semen. Our hypothesis is supported by some 
works conducted on mice. In particular, a study performed on mice was 
designed to follow and explain the internalization of MPs and nano-
plastics (NPs) into mammal bodies after acute oral exposure (Yang et al., 
2022). In the specific case, a dose of 200 mg/kg body weight of fluo-
rescent polystyrene (PS) beads sized 100 nm, 3 μm, and 10 μm, were 
administered to mice once by gavage. After administration, the fluo-
rescence intensity was measured at 0.5, 1, 2, and 4 h in different tissues 
including the testis, and epididymis using an IVIS Spectrum small- 
animal imaging system. Moreover, to validate the findings, confocal 
laser scanning, histological examination, and transmission electron 
microscope were used. The authors found that NPs penetrate the blood- 
testis barrier (BTB) increasing in testis. Among all measured tissues, the 
autofluorescence intensity of the epididymis was the highest. Precisely, 
under the same fold-increase, the absolute increase in fluorescence in-
tensity of the epididymis was nearly 2 times and over 5 times the amount 
in the testis and nervous system, respectively. This higher number of NPs 
could be related to the accumulation in the epididymis through which 
they end up in the semen. In addition, the penetrating abilities were also 

Table 1 
Number, morphological (shape, size, colour) and chemical (polymer matrix) 
features of MPs found in human sperm samples.  

Sample N. of 
MPs 

Shape Size Colour Polymer matrix 

#1  5 Elongated 
fragment 

~4 
μm 

Green Polypropylene 

Sphere ~4 
μm 

Black Polystyrene 

Irregular 
fragment 

~3 
μm 

Grey Polyethylene 
terephthalate 

Sphere ~2 
μm 

Orange Polyethylene 

Irregular 
fragment 

~3 
μm 

Orange Polyoxymethylene 

#2  4 Irregular 
fragment 

~6 
μm 

Green Polyethylene 
terephthalate 

Irregular 
fragment 

~3 
μm 

Black Polycarbonate 

Irregular 
fragment 

~5 
μm 

Clear Polycarbonate 

Irregular 
fragment 

~4 
μm 

Orange Polyvinylchloride 

#3  3 Irregular 
fragment 

~3 
μm 

Grey Polystyrene 

Irregular 
fragment 

~4 
μm 

Blue Polyethylene 

Irregular 
fragment 

~3 
μm 

Orange Polypropylene 

#4  2 Irregular 
fragment 

~6 
μm 

Blue Polyethylene 

Sphere ~2 
μm 

Yellow Polystyrene 

#5  0 – – – – 
#6  0 – – – – 
#7  0 – – – – 
#8  0 – – – – 
#9  1 Irregular 

fragment 
~5 
μm 

Blue Polypropylene 

#10  1 Irregular 
fragment 

~4 
μm 

Magenta Acrylic  
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a

b
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c

60080010001200140016001800

d

60080010001200140016001800

60080010001200140016001800

e

f

60080010001200140016001800

g

60080010001200140016001800

Fig. 1. Microphotographs and corresponding Raman spectra of representative microplastics found in human semen samples: a) polypropylene; b) polystyrene; c) 
polyethylene terephthalate; d) polyethylene; e) polyoxymethylene; f) polycarbonate; g) acrylic. Raman spectra are presented as Raman shifts in x-axis (spectral range 
500–1800 cm− 1) and intensity in y-axis. 

L. Montano et al.                                                                                                                                                                                                                               



Science of the Total Environment 901 (2023) 165922

6

found for 3 μm PS beads 4 h after exposure, whereas it was not evidenced 
for higher dimensions in the same time lap. As expected, the tox-
icokinetic of MPs resulted significantly time- and size-dependent. 

In addition, another study in mice showed that PS-MPs induced 
mTORC1 and mTORC2 imbalance via ROS burst and altered the 
expression profile of actin-binding proteins, resulting in disorganization 
of F-actin and reduced expression of junctional proteins in the BTB. 
Finally, PS-MPs led to the disruption of BTB integrity and spermato-
genesis dysfunction (Wei et al., 2021). 

In another study performed on mice, altered testicular histology, 
abnormal spermatogenesis and reduced serum testosterone, LH and FSH 
content was observed in mice following exposure to 0.5 μm, 4 μm and 
10 μm PS-MP at polluting concentrations for 180 days. Testosterone 
synthesis is regulated by LH, and LHR is crucial for testosterone syn-
thesis in Leydig cells. The authors observed that PS-MPs triggered a 
decrease in the level of LHR in testes and Leydig cells, resulting in a 
decrease in cAMP content and PKA activity with a consequent decrease 
in the expression of StAR and steroidogenic enzymes. Overall together, 
PS-MPs induced a reduction in testosterone levels through down-
regulation of the LH-mediated LHR/cAMP/PKA/StAR pathway, result-
ing in male reproductive disorders. These results may provide new 
perspectives for understanding the reproductive toxicity of PS-MPs in 
mammals (Jin et al., 2022). Another study in which an increased 
accumulation of pollutants in the epididymis was found is that of Gali-
mov et al., 2008. Specifically, in this study, the authors examined the 
accumulation of environmental pollutants belonging to the class of 
polychlorinated biphenyls in the adipose tissue and reproductive organs 
of male rats and found an increased accumulation of pollutants in the 
epididymis and showed marked differences in the cellular content and 
functional capacity of spermatozoa (Galimov et al., 2008). 

In support of our hypothesis, there is also a study on the lizard 
P. sicula that showed that ingestion of food and water polluted with an 
estrogen-like EDC, i.e. NP has an impact on spermatogenesis and the 
morpho-physiology of the epididymis during the mating period and 

interferes with the reproductive cycle of this organism (Verderame and 
Limatola, 2015). 

After all, there is data on quail as well. The first plastic feeding 
experiment was carried out on newly hatched Japanese quails (Coturnix 
japonica) with polypropylene nurdles that were exposed to the sea of 
Tasmania to simulate the weather and toxin uptake (Roman et al., 
2019). The most interesting endocrine disruptive effect found in this 
study was the increase in the occurrence and severity of epididymal 
intra-epithelial cysts for males of parental generations and their 
offspring (Roman et al., 2019). As is well known, the epididymis has a 
tortuous structure that surrounds the testis and receives immature 
sperms from the testis and stores them for several days. When ejacula-
tion occurs, sperm is expelled from the epididymis into the ductus def-
erens. The sperm then travels through the ductus deferens, up the 
spermatic cord to the pelvic cavity, passing through the ureter to the 
prostate, behind the bladder. Here the vas deferens join the seminal 
vesicle to form the ejaculatory duct, which passes through the prostate 
and empties into the urethra. The seminal vesicles have an important 
function in the male reproductive system, as they produce semen and 
therefore a suitable environment for spermatozoa. 

Seminal plasma is important for nutrition, regular sperm cell 
motility, sperm fluidity, sperm cell chromatin stabilization, as well as 
the immune modulation of the male reproductive system. Indeed, 
seminal vesicle dysfunction is linked to male infertility (Andrade et al., 
2021; Font et al., 2017). In fact, in the study conducted by Malinowski 
et al. (2022), the expression characteristics of membrane transporters 
and vectors in human seminal vesicles were documented for the first 
time. This information is very useful for a better understanding of the 
organ's pathophysiological processes. Active and passive transporters 
across membranes can regulate seminal fluid composition (both physi-
ological and deleterious/toxic) which in turn can influence sperm 
quality and male fertility potential. It is known by studies carried out on 
other organs that various factors influence the expression and function 
of transporters and, in the same way, in seminal vesicles, an 

Fig. 2. Schematization of the mechanism by which MPs pass into the semen: through environmental exposure (inhalation, ingestion and dermal contact) they enter 
the human body, reaching the male reproductive apparatus, particularly the epididymis and the seminal vesicles. 
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inflammatory process, drugs and toxins can influence transporters and 
carriers (Malinowski et al., 2022). 

Moreover, that pollutants can accumulate in the epididymis and 
seminal vesicles has been also demonstrated for heavy metals in a work 
conducted on men. Concentrations of lead, cadmium and zinc were 
determined in various reproductive organs taken at the time of necropsy 
from 41 men who died suddenly. Tissue concentrations of cadmium 
increased with increasing age in all the reproductive organs examined. 
Among these, the epididymis and seminal vesicles contained the highest 
concentrations (Oldereid et al., 1993). 

Thus, the epididymis, and to a lesser extent the seminal vesicles, 
appeared to be more efficient than both the prostate gland and testis in 
their capacity to accumulate cadmium. Evidence of heavy metal accu-
mulation, especially cadmium, was shown in the seminal vesicles of the 
earthworm, Eisenia fetida (Hirano and Tamae, 2011). In addition, in 
mice, it was also shown that arsenic accumulates in male reproductive 
tissues, including the prostate, seminal vesicles, testis and also in the 
epididymis (Pant et al., 2001). Arsenic accumulation in the epididymis 
results in low sperm viability (Danielsson et al., 1984) as a consequence 
of spermatozoa DNA viability and spermatozoa damage (Recio et al., 
2001). In light of the above, parameters related to semen quality such as 
volume, sperm concentration, motility, sperm morphology and the 
number of round cells were determined, and the results are shown in 
Table 2. 

Sample #1 reflects the highest abnormality (no sperms are visible in 
the seminal liquid). Samples #2 and #3 show very low sperm number 
and motility, whereas samples #5–#8, where no MPs were detected, 
have the best seminal quality in terms of volume, number, motility and 
morphology. Studies in rats showed that exposure to polystyrene 
microplastics (PS-MPs) caused damage to the seminiferous tubule, 
apoptosis of spermatogenic cells decreased sperm motility and concen-
tration, and increased sperm abnormalities (Li et al., 2021). Further-
more, PS-MPs were able to induce oxidative stress and activate the p38 
MAPK pathway, thus reducing nuclear factor erythroid 2 (Nrf2). In 
addition, PS-MPs led to a decrease in BTB protein expression. All these 
results showed that exposure to PS-MPs can lead to the destruction of 
BTB integrity and apoptosis of spermatogenic cells through the activa-
tion of the MAPK-Nrf2 pathway (Li et al., 2021). 

After all, alterations of the seminiferous tubules, Leydig and Sertoli 
cells and infertility are well known in Klinefelter syndrome (KS). This 
latter is the most frequent known genetic cause of infertility in men. 
Testicular tissue degeneration begins in the uterus and intensifies at 
puberty with hyalinisation of the seminiferous tubules, apoptosis of the 
spermatogonia and arrest of germ cell maturation. A marked decrease in 
seminiferous tubules expressing androgen receptors (AR) was detected 
in KS compared to controls with normal spermatogenesis. The expres-
sion of INSL3, a marker of Leydig cell (LC) maturation, was also 
significantly reduced in KS compared to patients with normal sper-
matogenesis or Sertoli-cell-only (SCO) syndrome (Giudice et al., 2019). 

In the end, the harmful impact of plastics on our environment has 
long been recognized, although inadequately addressed. The 

implications for human health of cumulative exposure to microplastics 
have only recently been established (Kannan and Vimalkumar, 2021; 
Lee et al., 2023; Rahman et al., 2021; Xu et al., 2022). Intervention is 
necessary to stop the exponential plastic waste increase. In particular, 
there is a need for action to avoid additional permanent damage to the 
planet and the human body. Medical operators may have a role by 
means of legislative advocacy, community education and patient 
counselling to minimize exposure to microplastics. Therefore, from the 
perspective of health, there is a necessity for high-quality retrospective 
research to determine the magnitude of the problem and damage po-
tential. More importantly, if microplastic pollution impacts the already 
critical reproductive process, as evidenced in particular by the decline in 
seminal quality recorded in recent decades globally (Levine et al., 2023), 
it may prove to be exacerbating for our species in the not too distant 
future. 

4. Conclusions 

In this paper, we report the presence of MPs in human semen and, for 
the first time, we propose a mechanism through which MPs can trans-
locate to the reproductive apparatus. N. 16 microplastic pigmented 
fragments, with spheric or irregular shapes, were found in six out of ten 
samples. Chemical composition showed the main polymeric materials 
present in daily life (from polyolefin to polyesters and acrylic resins) 
suggesting ingestion and/or inhalation as a route of exposure to envi-
ronmental MPs. Due to their small dimensions (ranging from 2 to 6 μm in 
size), these particles can move into the semen presumably via the 
epididymis and also from the seminal vesicles, which are the most sus-
ceptible to inflammation. Thus, MPs probably pass through the endo- 
and macropinocytosis of the lining cells. We cannot exclude alterations 
in the blood-testicular barrier that may favour the passage of MPs, but 
we believe that the inflammatory process would be more relevant, given 
that endothelial hyperpermeability is a characteristic sign of the in-
flammatory response to injury or infection. Although it is possible to 
assimilate MPs to other environmental pollutants and infer their toxi-
cological impact on male fertility, this is the first study on this topic, so 
the observation of the relationship between MPs and sperm quality de-
serves further investigation. 
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