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Abstract

The meathods of Arnoldi and Lanczos are implemented
for solving large and sparse eigenvalue problems. Such
problams arise in the computation of stability of
solutions of parameter-dependent, nonlinear partial
differential equations discretized by the Galerkindinite
glement method. Results are presented for the
stability of eguilibrium sclutions of axisymmetric
ferromagnetic liquid interfaces in external magnetic
field of varying strength.

1 Introduction

Many important scientific and engineering problems
requira the computation of a small number of
eigenvalues and their corresponding eigenvectors of
large and sparse matrices such as those arising in the
discretization of nonlinear, time dependent partial
differantial equations by Galerkin's mathod of weighted
residuals and finite element basis functions, The
wanted eigenvalues are in most cases in the extrems
part of the matrix eigenspectrum, i.e. those with the
algebraically largest and smallest real parts. These
eigenvalugs determine the stahility of solutions, that is
the outcome of the competition between a base staie -
an equilibrium state in this work -- of a system and
aver-present disturbances of infinitesimal (practically
small) amplitude.

The equations are discretized by nicely suited
finite element basis functions and Galerkin's method of
weighted residuals, which reduces the original partial
differential equation system to a large system of
ordinary differential equations Riy, ¥ :p} =0, where R
is the set of residuals, y is the set of values of the

unknowns at the nodes of the discretization {nodal
values) and ¥ thair time derivatives, and p is a relevant

parameter (or a set of them}. Equilibrium solutions y
satisfy the nonlinear system E{Eu'--cl:p:' = 0, which is
solved by MNewton iteration with parameter
cantinuation.

Stability is governed by the system linearized for
small disturbances Sy from y,, the time dependence of

which can be taken as exponential. Thus b= Ady and

stability is governed by a linearized eigenproblem ([1])
EE=E}.EE+E$..?'.EFE:Q. pe. i}—'ﬁ :?'.;ﬁﬁi |:1}
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where the eigenvectors x; are normal mode
components of &y, 1=R, is the Jacobian matrix of the

equilibrium state, M= :ES- is the averlap ar 'mass’

matrix of the finite element basis functions, and the
gigenvalues A are the stability indicatars. |f any of the
A; have positive real part, or ‘growth factors', the
aquilibrium state is unstable to the corresponding
gigenvectar or mode -- and to the disturbance it carries.
The sigenproblem iz to be solved for the most
dangerous modes, i.e. those with largest growth
factors.

The generalized eigenproblem (1) is usually
reduced, via appropriate matrix transformations, to the
standard eigenvalue problem

Ax=Aa (2]

which could be symmetric or nonsymmedric.
Cepending on the symmetry of A, different
eigensalvers are used to solve (2). Arnoldi's
sigensolver is appropriate for the non-symmetric case;
Lanczos' for the symmetric.

It is waorth mentioning that the standard
eigenproblem arisas diractly in the computation of
stability of time periodic solutions bifurcating from
steady ones (Hopf bifurcation).  In that case, the
wanted eigenvalues are those that are about to cross
the unit circle in the complax plana,

The case under study here is drawn from capillary
magnatohydrostatics. The stability of equilibrium states
of ferrefluid masses with free surfaces in an external
magnetic figld of varying strength is computed. The
equilibrium equations are derived from an energy
formulation {variational formulation) and the rasulting
Jacaobian matrix is symmetric; or from a force
formulation, wheare the eguations are statements of
force balances, and the resulting Jacobian matrix is
nonasymmetric,

2 The case study: Magnetohydrostatic
equilibria of axisymmetric ferrofluid interfaces

The situation of concern is shown in Figure 1. It is the
equilibrium defarmation af a laterally unbounded,
axisymmetric interface between a ferromagnetic liguid,
commaonly known as ferrofluid, and a non-magnetic
medium {e.g, air) in the presence of a magnetic field.
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Figure 1:  An axisymmetric ferrofluid interface in an external magnetic field, Governing equations and boundary conditions

In the absence of an applied field the ferrofluid
interface is flat and remains flat until the strength, Hy,
of an applied uniform magnetic field oriented
perpendicularly to the interface reaches a critical value,
Hp e At Hp = Hy ., the interface deforms in the direction
of the field, whereas the farrofluid underneath remains
static. Distortions of the interface shape lead to
deviations of the nearby magnetic fisld from tha
uniformity it displays away from the interface.

This phenomenan was first observed in confined
ferrafluid interfaces by Cowley and Rosensweig [2] and
it was named normal field instability. The name is
suggestive of the mechanism that causes the
phenomenon: the flat interface is distorted by ever-
present disturbances, and flux of the applied magnetic
field iz concentrated at the peaks of the distorted
surface; the magnetostatic forces tend to magnify any
disturbance but surface tension tends to flatten the
surface and eliminate the disturbance. So does gravity,
when, as in the present case, the ferrofluid is below a
lighter non-magnetic fluid. At the onset of the
instability the destabilizing influence of magnetostatic
forces exceeds the stabilizing influence provided by
surface tension and gravity.

The equations govarning the magnetohydrostatic
equilibria of the ferrofluid interface are listed below
{and displayed in Figure 1); they are darived in detail in
[3] and [4].

The magnetostatic forces within the ferrofluid
{phase b) are governed by Laplace's equation for the

magnetostatic potential, u;

Vig, =0 (3a)
The magnetostatic potential in air (phase a) also
satisfies Laplace's equation:

Vi, =0 (3b]

The potential u 'produces' the magnetic field, H,
H=Vu. The magnetic induction, B, is everywhere
parallel to H, B =pH, inside the ferrofluid, and B =p,H,
inside air, whare p is the magnetic permaability of the
ferrofluid, taken as constant, and p, is the constant in
the Biot-Savart law, by = 4n x 1077 henry/m (SI units).
The static equilibrium shape of the interface is
dictated by the requirement that magnetostatic force

 balances the capillary force, that is a resultant of
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surface tension, o, acting in a curved interface and the
hydrostatic pressure that is a resultant of gravity. Force
balancing is expressed by a nonlinear partial
differential eguation, the magnetically augmented
Young-Laplace equation of capillarity:

—gAph+ Ly (n Vo b+ LpayiVu, )t + 280 = K (4)
on z=hir), with hir) representing the shape of the

interface, thus the gradient of the potential u, entering
Egn. (4} is evaluated at z=h{r). g is the gravitational



acceleration, y={(L/py1-1=0 is the magnetic
susceptibility of the ferrolfuid and Ap=p, -p,is the
density diffarence between the ferrofluid and air. The

unit normal n to the interface and the local mean
curvature 2% of the intarface are given by

—h.e te,

TN

(5)

1d rh
=L &
rdr {14 If}”"] ()

Heare the subscript r denotes differantiation in the
radial direction {and the subscript z in Figure 1
differentiation in the z-direction). ¢, and g, are the unit
vectors in the r- and z-diraction respectively. K in Egn.
{4} is an unknown, a constant reference pressure along
the interface.

The ferrofluid is incompressible and thus its
volume is praserved in any interface defarmation:

i
[ehiridr =0 (7}
i

The undetormed (flat) ferrofluid/air interface is located
at z=0; this explains why the right side of equation {7)
is set to zero.

The equations are posed in a domain that is
truncated both above and below the interface, e
-D, £ z< D, (see Figure 1); Dy and D- are taken large
enaugh so that magnetic field is virtually unifarm at the
top and bottom boundaries of the domain, Although the
ferrrofluid interface is latarally unbounded, the domain
is taken to be laterally bounded. lis size in the radial
direction is dictated by the wavenumber, k. =
(afpio)'?, of the distorted axisymmetric interface
shape at the onset of the instability ([3], [4]}. The
wavelength, B (U< < R) of the interface shape is given
by R = Ay/ky. whare Xy is the smallest zero of the
Bessal function Jy(r), A, =3.832 ([4]).

The set of governing equations and boundary
conditions listed above is called the force farmulafion of
the magnetohydrostatic equilibria of a ferrofluid
interface, because they are statements of balances of
all forces that are present in the ferrofluidfair system.

An alternative formulation is the so-called energy
formulation that is a staterment of minimization of the
total energy of the system at equilibrium. The
appropriate energy functional that includes the
gravitational, magnetic and interfacial energies of the
system and accounts for the constraint of fixed ferrafluid
walume is given by

B B g BTy 5
pp=Taap[hirde—Sp| [(Vu,) rdrdz— Tug[ | (Wug )" rdrdz
o b

=T
R 3 R

+6 (14 b)) P rdr + K [ hrde (8}
0 0

and it is minimized over all admissible perturbations of
h and u. The minimization of (8) over perturbations
u+ep(r,z) and h+ek{r) of u and h, respectively, is
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condition

equivalent to the (dg f dell,_p=0.
Substituting the perturbations of u and h inta Eqgn. (8}
and requiring that the minimization condition be
satisfied, we recover the governing equations and
boundary conditions of the force formulation; that is,
the minimizers u and h of @ are the eguilibrium
solutions that satisfy Eqns. (3), (4} and {7) and their
boundary conditions. Therefore, force and energy
formulations are equivalant,

The set of governing equations (3}, {4) and {7} and
their boundary conitions in the force formulation (or the
equivalent enargy formulation) constitute a nonlinear
problem. The inherent nonlinearities arise in the
Young-Laplace equation (Eqn. {4)} and they are due to
the curvature term, a nonlinear function of interface
location {cf. Eqn. (6}), and to the magnetic terms, which
are nonlinear in the gradient of the magnetostatic
potential at the interface. Furthermore the problem is a
free boundary one bacause the interface shape is
unknown a priori and must be solved for right along
with the magnetostatic potential.

3 The computational problem

The problem of magnetohydrostatic equilibria of an
axisymmetric ferrofluid interface so formulated as to
account for the effects of gravity, surface tension and
magnetic field non-unifermity, including large
distortions of the interface from any simple shape, is
amenahla to solution only by means of modern
computer-aided meathods. The choica here is the
combination of Galerkin's method of weigted residuals
and finite element basis functions ([5]).

The domain is tessellated inte quadrilateral
alaments between suitably placed vertical spines and
transverse curves whose intersections with each sping
are located at distances thal are proportional to the
displacement of the interface along that spine. The
dependent variables u(r,z) and hir) are then expressed
in terms of finite element basis funtions that are
fuadratic polynomials in each spatial coordinate:

N
ulr,z) = X g (6,7} (9a)

=1

hir}= 3 hyp’{r.hirh) (3b)
=l

Each basis function is unity at the i-th node created by
the tessellation and zero at all other nodes. Here u; is
the value of the potential at the i-th nods in the domain
and h; is the value of the interface displacement at the

j-th interface node. N is the total number of nodes in
the entire domain and M is the number on the interface
alone.

The governing equations (3) and (4} are
discretized with the Galerkin method by weighting
their residuals with each basis function in turn, i.e. by
multiplying each eguation by each basis function
separately, then substituting the unknowns from Eqns.
{9), then integrating by Gauss gquadrature in an
isoparametric domain and setting each of the resulting
aquations to zero;, for mare details about the



implementation of the method we refer to (6] and [7],
where similar situations are analyzed. Eqn. (7}, being
already an integral equation, is not weighted in the
Galerkin sense; h is substituted fram Egn. {3b} and the
integration is also done by Gauss quadrature.

The discratized problem is a set of (N+M+1)
nonlinear algebraic equations in the uknowns u.hy and
K. In compact form it reads

R=|R,.Ry; Ryl =Riy;p=10 (10}

R is the set of residuals and R,.Ry R, the subsets of
residuals of Laplace's equation, the Young-Laplace
equation and the volume constraint, respactively,
¥=[uwh K] is the set of unknowns and u= [u3,05,..,uy],
h=lhy,bz....hy] are the subsets of uknowns of the
potential values at the nodes and of the interface
location at the nodes along the interface, raspectively;
p is a relevant parameter. Here the parameter of
importance is, of course, the strength of the applied
magnetic fisld, H,, or the appliad magnetic induction
Bo=HgHo.-
At a given parameter value, p=By. the algebraic
equation set is solved by Newton iteration:
_Tfk}l},lfkll] —}f':k:'|=—R{k:' [11}
where k is the iteration counter, y'® is  the
approximatian of the solution at the k-th iteration and
R'™ is the set of residuals calculated at v =y'*!. Initial
estimates, ¥, of a solution at a given parameter value
are provided by solutions already found at nearby
parameter values, in the course of continuation in
parameter space ([8]). J™*! is the Jacobian matrix,
calculated at y =yt
1 is a sparse matrix, due to the limited overlap of

the finite alement basis functions over the domain. In
block-notatian J is:

- 1 )

_.B"_‘ : _.Eaﬂ | i}
| _du | 3 e YN
F}_YI, ..I_J-B. L1 HETL

i = == | [13}

L _du i dh 1 8K |

o Rty

T

ol
The off-diagonal blocks [a;;]. of size (N x M}, and

['ﬂ%ﬂ]. of size (M x N}, are not identical: in the former,
[l

Laplace’'s equation residuals depend on the interface
location unknowns through the element boundaries
that follow the interface shape: in the latter, the Young-
Laplace equation residuals depend only an the
potential unknowns at the nodes that belong to
elements adjacent to the interface (since in Egn. (4]

the gradient of the potential is evaluated at z=h{r)).
Therefore ] is a non-symmetric matrix.
At each iteration, the linearized equation set {11]

~ is solved by a frontal salver {[9]), an implementation of
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Gauss elimination suitable for the direct selution of
large and sparse equation systems. At a given value of
the parameter p, the nonlinear equation set (10) can
have a unigue solution, or multiple solutions iwhen pis
a bifurcation paint), or even no solution iwhen pis a
turning point on a solution branch). Solution multiplicity
is monitored and entire solution branches are traced by
parameter cantinuation,

Stability is governed by the minimization of the
energy functional & in Eqn, {8). Replacement of u and
h in Eqgn. (&) by their approximations from Egns. 9
yields an expression r=glyip) = p{nuKopy for the
energy functional. The necessary condition for the
minimization of & is;

{14}

The solutions of Eqns. (14) are solutions of the
magnetohysdrostatic equilibria  of the ferrofluid
interface and they should coincide with those of Egns.

(10), as expectad by the equivalence of force and
anergy formulations,

Any admissible disturbance from an aquilibrium
solution is expressed in terms of the same finite
elernent basis functions used for the approximation of
the equilibrium solution {cf. Egns. (9)). Thus the
stability is governed by a generalized eigenproblem
(o

Hx; = 2 Mx, {15}

where H is the so-called Hessian, or stability matrix, of
the energy formulation, Hy = 3%/ dy,dy,, and M is the
averlap or ‘'mass' matrix of the finite element basis
functions, i.e. the inner products of basis functions. the

Hessian and mass matrix in {15) are evaluated at
equilibrium selutions. In block-natation 1 is:

Fp 1 b [
oot dwh .
i S’i:?)_‘g;ﬁ (16)
== 7m0 | 29h | 3K
i
d ]
1 dKdh |

Eqgn. {16) makes clear that H fs a symmetric matrix.

All the eigenvalues of the symmetric
eigenproblem (15) are necessarily real; if any of the
eigenvalues is negative, the equilibrium state is
unstable to the corresponding eigenvector x,, that is to
the disturbance 'carried' by the eigenvector. Therefore,
among the eigenvalues thase that change sign {‘cross'
zero) along a solution branch signal change of solution
stability. Thus the eigenvalues to be monitored along
an equilibrium solution branch {in the course of




parameter continuation) are those of the smallest
magnituce. Because the eigenvalues of the standard
eigenproblem

Hx =Ax {17)

and those of the generalized eigenproblem {15) cross
zero simultanequsly, it suffices to monitar the
eigenvalues of smallest magnitude of {17). The
equivalence of force and energy formulations in the
centinuum suggests that the eigenvalues of smallest
magnitude of the standard eigenproblem
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x=hx (18)

ba also monitored,

4 The Arnoldi and Lanczos Eigensolvers

When A is & n x n non-symmetric matrix, as in the
case A =], the eigenproblem

Ax=hx (19)
is solved here by Arnoldi's algorithm ([1], [11], [12]):

Chaose g, with llg Il =1

For | = 1 until Convergence Do
1. Compute and store Ag :

2. Compute hy;=(Ag,.q) t="1,.]

1
3. 15= Qﬂj 5 E‘,h'-ﬂt
4 N, = () ¥
End For

JHLj

At step |, the algarithm produces an orthonormal basis
{9,,9,s---9_} of the Krylov subspace K; spanned by
gvég],...,fhj IH]- The projection of A on K, is
represented in the basis {g.} by the upper Hessenberg
matrix HJ.:Q;_"QQJ. whosa elements are the
coefficients: hy. The eigenvalues of i, provide

approximations of the eigenvalues of A only for the
outermost part of the spectrum of A, whereas the inner
gigenpairs aré poorly represented. The eigenproblem
far Ij:j is small and it is solved routinely by EISPACK.

When A is a n x n symmetric matrix, as in the
case A=H, Lanczaos' algorithm ([13], [14]} is preferrad
for the solution of (19):

vir=0i=12n

Bﬁ::]'

ji=1

Do While {l?:j =10
I€ (j=0) then

Fori=I,....n
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L=, wii= "Iﬁ_-il.‘_":j:: _ﬁj.lz
=AWty
i=j+1
4= (W, ¥}
nE¥oaw

[ =lll

The extreme eigenvalues and the corresponding
eigenvectars of A are approximated by the

eigenvalues of the symmetric tridiagonal matrix 1L
whose diagonal and subdiagonal alemants are A1
and [il,,,.,ﬁj 1» respectively, The eigenproblem for lj is

solved with EISPACK, as before.

5 Stability analysis: results and discussion

Thearetical pradictions were computed at the following
parameter values: x=(pipg)-1=1, Ap=792 kg/m? and
o=0.029 N/m. The computational domain was half of
that shown in Figura 1, the ane to the right of the
symmetry axis at r=0, dua to the axial symmetry of the
solutions sought; it was tessellated finely enough that
the solutions of the discretized governing equations
are reliable, ie. rabust against further discretization
refinement. 20 elements were placed in the vertical
direction and 10 in the radial -- a total of 200 elements,
The total number of unknowns (and thus of equations)
was BB3. The discretization used was judged
appropriate to guarantee reliability of sclutions:
doubling the number of elements led to solutions that
ware close to within 1.5% to the ones already obtained.
The governing equatians as well as the corresponding
residual equations admit a flat solution at at valuaes of
applied field strength;

flat interface; h =0,

lingar magnetostatic potential:
U={Bo/Ho}(z + Dyllx# 1)), Uy=(Bofk}{z + D),
reference pressure K = LBiy/u

The eigenvalues of smallest magnitude (usually 5
ta 10 in number) of ] and H are monitored alang the flat
salution branch by continuation in the wvalue af By,
Arnoldi's eigensclver is used for 1 and Lanczos for H.
The determinant of | and H is also monitored. The
eigenvalues of smallest magnitude are computed most
conveniantly by incorporating the inverse power

method in the sigenselvers ([1]. [13]). This requires
inversion of | and H {instead of a matrix-vector

multiplication -- the case when the eigenvalues of
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-2
155 %O 5 Bo gauss 7O

145 150
Figura 2; Bifurcation diagram of equilbrium axisymmetric shapes of ferrofluid interface in
magnetic field {By=joHq)
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largest magnitute are wanied; cf. Section 4). Inversian,
however, is not actually needed because it is already
done by frontal solver for solving the linearized set of
govarning equations during Newton iteration (Eqn.
{(11)), what needed to be done was simply the
implementation of a ‘communication interface’ between
Arnoldi's and Lanczos' solvers and the re-solution part
of the frontal solver the subroutine that re-solves
Ji=Db,orHxi=h,when ] or H are already inverted and

b changes),

The flat s=olution becomes
axisymmetric disturbances af the interface shape
beyond a critical magnetic induclion strength, By .
{Ho er=Bo oHo). The predicted critical value of By at the
onset of the instability was By ,,=150.842 gauss and
agrees, within 0.2%, with pradictions of lingarized
theory ([4]). At the parameter value Bp=Bg . a
bifurcation point appears on the branch representing
the flat solution. Acrass the bifurcation point an the fat
sciution the determinant of ] and of H change sign
indicating that an odd number of eigenvaluas of | and
H change sign. Arncldi's and Lanczos' eigensalvers
find sign change of ane eigenvalue.

The bifurcation of equilibrium solutions with
distorted interface shape from the flat solution branch is
shown in Figure 2; their branch is hereafter called
distorted solution branch, The bifurcation is two-sided
ior trans-critical], that is distorted solutions exist near

unstable to

criticallity at parameter values highar and lower than
By=Bp . The eigenvactor x corresponding to the
gigenvalue that crosses zero is an axisymmetric
disiurbange that gives way to axisymmetric equilibrium
solutions with distorted inlerfage shape emanating from
the flat solution branch. The interface shape in the

egiganvaector is shown in Figure 3a. Initial estimates,
_v’:f'”: of solutions on the distorted solution branch ars

provided by =
{20)

A0y g
ld _:ll' HEX

whera ¥ is a solution on the fiat solution branch at
By=B;, and ¢ is a small amplitude parameter,

Sarmple interface shapes on the distorted solution
branch are shown in Figure 2, On the supercritical part
of the branch {By=By ) the deflection of the interface is
negative at the axis of symmetry (r=0). On the
suberitical part a spike develops at the axis of
symmetry, The subcritical part of the distorted solution
tranch ‘turns back’ towards values of B, higher than the
critical at a turning point A, where Bp=B, ,=148.2 gauss
{see Figure 2); that is, distorted interface shapes with a

spike at r=0 fail to exist at By=By 4. The turning point is
cirmumwented during parameter cantinuation by
amploying arc-length-type continuation methods ([8]).
The stability of sciutions along the flat and the
distorted solution branches is determined by the sign

()

L (¢)

Figure 3: Intarface shape in the eigenvectars: {a) on the flat branch at By=8; ., ; {1} on the bifurcating branch
of distorted interface shapes at By=B; ., | {c) close 1o the turning point A
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of the eigenvalues of the eigenproblem {15). Stability
of solutions changes when a positive eigenvalue turns
negative. This happens along the flat solution branch
across Be=Bg ., and along the distorted solution branch
across By=B; ., and By=Bg 4. Equilibrium solutions on
the flat salution branch are stable at 0<By<B, ., and
unstable at By=By .. Solutions on the supercritical part
of the distorted solution branch are stable; on the
subcritical part sclutions are unstable at By x<Bg<Bg
but they regain stability past the turning point [at
Bu=Bpa). The stability results predicted hare agree
with those dictated by elemantary stability and
biturcation theory {[1%]). The interface shapes in the
giganvectors corresponding to the eigenvalues that
change sign on the distorted solution branch across
Bp=By o and across By=B; 4 are shown in Figures 3b
and 3¢, respactively.

Stability predictions of Amocldi's and Lanczos'
methods are practically identical. However Lanczos'
method is suoperior o Arnaldi's in terms of
computational cost: as shown in Figure 4a, for a
reasonable size of the matrix (J and H}, Arnoldi's
elgensolver is about three times more expensive than
Lanczos'. Performance diagrams of Arnoldi's and
Lanczos' eigensalvers are shown in Figures 4b, 4c and
4d. At fixed number of Arnoldi staps, the computational
cost grows sharply, although linearly, with tha number
of wanted eigenvalues (Figure 4b}, Cost drops linearly
with the number of Arnaldi steps, at fixed number of

wanted siganvalues, up to about 15 steps (Figure 4c),
Figure 4d shows that the cost of Lanczos' eigensalver
grows almost linearly with the number of wanted

eigenvalues.
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