A NEW PROOF OF COMPACTNESS IN $G(S) B D$

STEFANO ALMI AND EMANUELE TASSO

Abstract

We prove a compactness result in $G B D$ which also provides a new proof of the compactness theorem in $G S B D$, due to Chambolle and Crismale [5, Theorem 1.1]. Our proof is based on a Fréchet-Kolmogorov compactness criterion and does not rely on Korn or Poincaré-Korn inequalities.

1. Introduction

In this paper we prove a compactness result in $G B D$, which in particular provides an alternative proof of the compactness theorem in $G S B D$ obtained by Chambolle and Crismale in [5, Theorem 1.1]. Referring to Section 2 for the notation used below, the theorem reads as follows.

Theorem 1.1. Let $U \subseteq \mathbb{R}^{n}$ be an open bounded subset of \mathbb{R}^{n} and let $u_{k} \in G B D(U)$ be such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \hat{\mu}_{u_{k}}(U)<+\infty \tag{1.1}
\end{equation*}
$$

Then, there exists a subsequence, still denoted by u_{k}, such that the set

$$
A:=\left\{x \in U:\left|u_{k}(x)\right| \rightarrow+\infty \text { as } k \rightarrow \infty\right\}
$$

has finite perimeter, $u_{k} \rightarrow u$ a.e. in $U \backslash A$ for some function $u \in G B D(U)$ with $u=0$ in A. Furthermore,

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\partial^{*} A\right) \leq \lim _{\sigma \rightarrow \infty} \liminf _{k \rightarrow \infty} \mathcal{H}^{n-1}\left(J_{u_{k}}^{\sigma}\right) \tag{1.2}
\end{equation*}
$$

where $J_{u_{k}}^{\sigma}:=\left\{x \in J_{u_{k}}:\left|\left[u_{k}(x)\right]\right| \geq \sigma\right\}$.
We notice that the main difference with [5] is that we do not request equi-integrability of the approximate symmetric gradient $e\left(u_{k}\right)$ and boundedness of the measure of the jump sets $J_{u_{k}}$, but only boundedness of $\hat{\mu}_{u_{k}}(U)$, which is the natural assumption for sequences in $G B D(U)$. Hence, when passing to the limit, the absolutely continuous and the singular parts of $\hat{\mu}_{u_{k}}$ could interact. For this reason, it is not possible to get weak L^{1}-convergence of the approximate symmetric gradients or lower-semicontinuity of the measure of the jump.

Nevertheless, we are able to recover the lower-semicontinuity (1.2) for the set A where $\left|u_{k}\right| \rightarrow+\infty$. In particular, formula (1.2) highlights that the emergence of the singular set A results from an uncontrolled jump discontinuity along the sequence u_{k}. Hence, an equi-boundedness of the measure of the super-level sets $J_{u_{k}}^{\sigma}$, i.e., for every $\varepsilon>0$ there exists $\sigma_{\varepsilon} \in \mathbb{N}$ such that $\mathcal{H}^{n-1}\left(J_{u_{k}}^{\sigma}\right)<\varepsilon$ for $\sigma \geq \sigma_{\varepsilon}$ and $k \in \mathbb{N}$, guarantees $\partial^{*} A=\emptyset$.

[^0]The $G S B D$-result [5, Theorem 1.1] is recovered by replacing (1.1) with

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \int_{U} \phi\left(\left|e\left(u_{k}\right)\right|\right) \mathrm{d} x+\mathcal{H}^{n-1}\left(J_{u_{k}}\right)<+\infty \tag{1.3}
\end{equation*}
$$

for a positive function ϕ with superlinear growth at infinity. The novelty of our proof, presented in Section 3, concerns the compactness part of Theorem 1.1. It is based on the Fréchet-Kolmogorov criterion and makes no use of Korn or Korn-Poincaré type of inequalities [3] (see also [2, 7, 8]), which are instead the key tools of [5]. The remaining lower-semicontinuity results of [5, Theorem 1.1] can be obtained by standard arguments.

2. Preliminaries and notation

We briefly recall here the notation used throughout the paper. For $d, k \in \mathbb{N}$, we denote by \mathcal{L}^{d} and \mathcal{H}^{k} the Lebesgue and the k-dimensional Hausdorff measure in \mathbb{R}^{d}, respectively. Given $F \subseteq \mathbb{R}^{d}$, we indicate with $\operatorname{dim}_{\mathcal{H}}(F)$ the Hausdorff dimension of F. For every compact subsets F_{1} and F_{2} of \mathbb{R}^{d}, $\operatorname{dist}_{\mathcal{H}}\left(F_{1}, F_{2}\right)$ stands for the Hausdorff distance between F_{1} and F_{2}. We denote by $\mathbb{1}_{E}$ the characteristic function of a set $E \subseteq$ \mathbb{R}^{d}. For every measurable set $\Omega \subseteq \mathbb{R}^{d}$ and every measurable function $u: \Omega \rightarrow \mathbb{R}^{d}$, we further set J_{u} the set of approximate discontinuity points of u and

$$
J_{u}^{\sigma}:=\left\{x \in J_{u}:|[u](x)| \geq \sigma\right\} \quad \sigma>0
$$

where $[u](x):=u^{+}(x)-u^{-}(x), u^{ \pm}(x)$ being the unilateral approximate limit of u at x.
For $m, \ell \in \mathbb{N}$ we denote by $\mathbb{M}^{m \times \ell}$ the space of $m \times \ell$ matrices with real coefficients, and set $\mathbb{M}^{m}:=\mathbb{M}^{m \times m}$. The symbol $\mathbb{M}_{s y m}^{m}\left(\right.$ resp. $\left.\mathbb{M}_{s k w}^{m}\right)$ indicates the subspace of \mathbb{M}^{m} of squared symmetric (resp. skew-symmetric) matrices of order m. We further denote by $S O(m)$ the set of rotation matrices.

Let us now fix $n \in \mathbb{N} \backslash\{0\}$. For every $\xi \in \mathbb{S}^{n-1}$, π_{ξ} stands for the projection over the subspace ξ^{\perp} orthogonal to ξ. For every measurable set $V \subseteq \mathbb{R}^{n}$, every $\xi \in \mathbb{S}^{n-1}$, and every $y \in \mathbb{R}^{n}$, we set

$$
\Pi^{\xi}:=\left\{z \in \mathbb{R}^{n}: z \cdot \xi=0\right\}, \quad V_{y}^{\xi}:=\{t \in \mathbb{R}: y+t \xi \in V\}
$$

For $V \subseteq \mathbb{R}^{n}$ measurable, $\xi \in \mathbb{S}^{n-1}$, and $y \in \mathbb{R}^{n}$ we define

$$
\hat{u}_{y}^{\xi}(t):=u(y+t \xi) \cdot \xi \quad \text { for every } t \in V_{y}^{\xi}
$$

For every open bounded subset U of \mathbb{R}^{n}, the space $G B D(U)$ of generalized functions of bounded deformation [6] is defined as the set of measurable functions $u: U \rightarrow \mathbb{R}^{n}$ which admit a positive Radon measure $\lambda \in \mathcal{M}_{b}^{+}(U)$ such that for every $\xi \in \mathbb{S}^{n-1}$ one of the two equivalent conditions is satisfied [6, Theorem 3.5]:

- for every $\theta \in C^{1}\left(\mathbb{R} ;\left[-\frac{1}{2} ; \frac{1}{2}\right]\right)$ such that $0 \leq \theta^{\prime} \leq 1$, the partial derivative $D_{\xi}(\theta(u \cdot \xi))$ is a Radon measure in U and $\left|D_{\xi}(\theta(u \cdot \xi))\right|(B) \leq \lambda(B)$ for every Borel subset B of U;
- for \mathcal{H}^{n-1}-a.e. $y \in \Pi_{\xi}$ the function \hat{u}_{y}^{ξ} belongs to $B V_{l o c}\left(U_{y}^{\xi}\right)$ and

$$
\begin{equation*}
\int_{\Pi^{\xi}}\left|\left(D \hat{u}_{y}^{\xi}\right)\right|\left(B_{y}^{\xi} \backslash J_{\hat{u}_{y}^{\xi}}^{1}\right)+\mathcal{H}^{0}\left(B_{y}^{\xi} \cap J_{\hat{u}_{y}^{\xi}}^{1}\right) \mathrm{d} \mathcal{H}^{n-1}(y) \leq \lambda(B) \tag{2.1}
\end{equation*}
$$

for every Borel subset B of U.
A function u belongs to $G S B D(U)$ if $\hat{u}_{y}^{\xi} \in S B V_{l o c}\left(U_{y}^{\xi}\right)$ and (2.1) holds. Every function $u \in G B D(U)$ admits an approximate symmetric gradient $e(u) \in L^{1}\left(U ; \mathbb{M}_{\text {sym }}^{n}\right)$. The jump set J_{u} is countably ($\mathcal{H}^{n-1}, n-1$)-rectifiable with approximate unit normal vector ν_{u}. We will also use measures $\hat{\mu}^{\xi}, \hat{\mu}_{u} \in \mathcal{M}_{b}^{+}(U)$ defined in [6, Definitions 4.10
and 4.16] for $u \in G B D(U)$ and $\xi \in \mathbb{S}^{n-1}$. We further refer to [6] for an exhaustive discussion on the fine properties of functions in $G B D(U)$.

3. Proof of Theorem 1.1

This section is devoted to the presentation of an alternative proof of Theorem 1.1, based on the Fréchet-Kolmogorov compactness criterion. We start by giving two definitions.

Definition 3.1. Let $\Xi=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ denote an orthonormal basis of \mathbb{R}^{n}. We define

$$
S_{\Xi, 0}:=\bigcup_{\xi \in \Xi}\left\{x \in \mathbb{R}^{n}:|x|=1, x \in \Pi^{\xi}\right\}
$$

Given $\delta>0$ we define the δ-neighborhood of $S_{\Xi, 0}$ as

$$
S_{\Xi, \delta}:=\left\{x \in \mathbb{R}^{n}:|x|=1, \quad \operatorname{dist}\left(x, S_{\Xi, 0}\right)<\delta\right\}
$$

Definition 3.2. In order to simplify the notation, given a family \mathcal{K} and a positive natural number m, we denote by \mathcal{K}_{m} the set consisting of all subsets of \mathcal{K} containing exactly m-elements of \mathcal{K}, i.e.

$$
\mathcal{K}_{m}:=\{\mathcal{Z} \in \mathrm{P}(\mathcal{K}): \# \mathcal{Z}=m\}
$$

In order to prove Theorem 1.1, we need the following two lemmas, which allow us to construct a suitable orthonormal basis of \mathbb{R}^{n} that will be used to test the FréchetKolmogorov compactness criterium.

Lemma 3.3. Let $M \in \mathbb{N}$ be such that $M \geq n$ and consider a family $\mathcal{K}:=\left\{\Xi_{1}, \ldots, \Xi_{M}\right\}$ of orthonormal bases of \mathbb{R}^{n} such that for every $\mathcal{Z} \in \mathcal{K}_{n}$

$$
\begin{equation*}
\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset \tag{3.1}
\end{equation*}
$$

Then, there exists a further orthonormal basis $\Sigma=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ such that for every $\mathcal{Z} \in \mathcal{K}_{n-1}$

$$
\begin{equation*}
S_{\Sigma, 0} \cap \bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset \tag{3.2}
\end{equation*}
$$

Proof. First of all notice that whenever $\mathcal{Z} \in \mathcal{K}_{n}$ is such that

$$
\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset
$$

then we have

$$
\begin{equation*}
\mathcal{H}^{0}\left(\bigcap_{\Xi \in \mathcal{X}} S_{\Xi, 0}\right)<+\infty \quad \text { for every } \mathcal{X} \in \mathcal{Z}_{n-1} \tag{3.3}
\end{equation*}
$$

Indeed, let us suppose by contradiction that (3.3) does not hold for some $\mathcal{X} \in \mathcal{Z}_{n-1}$. Since for $\Xi \in \mathcal{X}$ we have that each $S_{\Xi, 0}$ is a finite union of $(n-1)$-dimensional subspaces of \mathbb{R}^{n} intersected with \mathbb{S}^{n-1}, the equality $\mathcal{H}^{0}\left(\bigcap_{\Xi \in \mathcal{X}} S_{\Xi, 0}\right)=+\infty$ implies that

$$
\operatorname{dim}_{\mathcal{H}}\left(\bigcap_{\Xi \in \mathcal{X}} S_{\Xi, 0}\right) \geq 1
$$

As a consequence we get

$$
\operatorname{dim}_{\mathcal{H}}\left(\bigcap_{\Xi \in \mathcal{X}} \bigcup_{\xi \in \Xi}\left\{\xi^{\perp}\right\}\right) \geq 2
$$

Hence, if we denote by $\bar{\Xi}$ the basis contained in $\mathcal{Z} \backslash \mathcal{X}$, then by using Grassmann's formula

$$
\operatorname{dim}(V)+\operatorname{dim}(W)-\operatorname{dim}(V \cap W)=\operatorname{dim}(V+W) \leq n
$$

which is valid for each couple V, W of vector subspaces of \mathbb{R}^{n}, we deduce

$$
\operatorname{dim}_{\mathcal{H}}\left(\bigcup_{\xi \in \bar{\Xi}}\left\{\xi^{\perp}\right\} \cap \bigcap_{\Xi \in \mathcal{X}} \bigcup_{\xi \in \Xi}\left\{\xi^{\perp}\right\}\right) \geq 1,
$$

hence

$$
\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0} \neq \emptyset
$$

which is a contradiction to the assumption (3.1).
Fix $\left\{e_{1}, \ldots, e_{n}\right\}$ an orthonormal basis of \mathbb{R}^{n} and let $S O(n)$ be the group of special orthogonal matrices. It can be endowed with the structure of an $\left(\frac{n^{2}-n}{2}\right)$-dimensional submanifold of $\mathbb{R}^{n^{2}}$. We can identify an element $O \in S O(n)$ with an $(n \times n)$-matrix whose columns are the vectors of an orthonormal basis Ξ written with respect to $\left\{e_{1}, \ldots, e_{n}\right\}$ and viceversa.

In order to show the existence of Σ satisfying (3.2) we prove the following stronger condition: given $\mathcal{Z} \in \mathcal{K}_{n-1}$, for $\mathcal{H}^{\left(n^{2}-n\right) / 2}$-a.e. choice of Σ we have that

$$
\begin{equation*}
S_{\Sigma, 0} \cap \bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset \tag{3.4}
\end{equation*}
$$

This easily implies the existence of an orthonormal basis Σ satisfying (3.2), as the choice of $\mathcal{Z} \in \mathcal{K}_{n-1}$ is finite. To show (3.4), for every $i \in\{1, \ldots, n\}$ let us define the smooth map $\Lambda_{i}: S O(n) \times\left\{y \in \mathbb{R}^{n-1}:|y|=1\right\} \rightarrow \mathbb{S}^{n-1}$ as

$$
\Lambda_{i}(\Sigma, y):=\sum_{j<i} y_{j} \xi_{j}+\sum_{j>i} y_{j-1} \xi_{j},
$$

where ξ_{j} denotes the j-th column vector of the matrix representing Σ. In order to show (3.4), we claim that it is enough to prove that for every $x \in \mathbb{S}^{n-1}$ we have

$$
\begin{equation*}
\mathcal{H}^{\left(n^{2}-n\right) / 2}\left(\pi_{S O(n)}\left(\left\{\Lambda_{i}^{-1}(x)\right\}\right)\right)=0 \quad \text { for } i \in\{1, \ldots, n\}, \tag{3.5}
\end{equation*}
$$

where $\pi_{S O(n)}: S O(n) \times\left\{y \in \mathbb{R}^{n-1}:|y|=1\right\} \rightarrow S O(n)$ is the canonical projection map. Indeed, if Σ does not belong to $\pi_{S O(n)}\left(\left\{\Lambda_{i}^{-1}(x)\right\}\right)$ for every $x \in \bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}$ and for every $i \in\{1, \ldots, n\}$, then by using the definition of the map Λ_{i} we deduce immediately that Σ satisfies $S_{\Sigma, 0} \cap \bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset$. Therefore, if (3.5) holds, then the set (remember that $\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}$ is a discrete set)

$$
\bigcup_{i=1}^{n} \bigcup_{x \in \bigcap \Xi \in \mathcal{Z}} \pi_{\Xi, 0} \pi_{S O(n)}\left(\left\{\Lambda_{i}^{-1}(x)\right\}\right)
$$

is of $\mathcal{H}^{\left(n^{2}-n\right) / 2}$-measure zero and (3.4) holds true. Thus, $\mathcal{H}^{\left(n^{2}-n\right) / 2}$-a.e. Σ satisfies (3.2).
To prove (3.5) it is enough to show that the differential of Λ_{i} has full rank at every point $z \in S O(n) \times\left\{y \in \mathbb{R}^{n-1}:|y|=1\right\}$. Indeed, this implies that $\Lambda_{i}^{-1}(x)$ is an $\left(\frac{n^{2}-n-2}{2}\right)$-dimensional submanifold for every $x \in \mathbb{S}^{n-1}$, which ensures the validity of (3.5) since

$$
\begin{aligned}
& \#\left(\left\{\pi_{S O(n)}^{-1}(\Xi)\right\} \cap\left\{\Lambda_{i}^{-1}(x)\right\}\right)=1, \quad x \in \mathbb{S}^{n-1}, \\
& \frac{n^{2}-n-2}{2}<\frac{n^{2}-n}{2}=\operatorname{dim}_{\mathcal{H}}(S O(n)) \quad(n \geq 2) .
\end{aligned}
$$

Notice that Λ_{i} is the restriction to $S O(n) \times\left\{y \in \mathbb{R}^{n-1}:|y|=1\right\}$ of the map $\tilde{\Lambda}_{i}: \mathbb{M}^{n} \times$ $\mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$ defined as

$$
\tilde{\Lambda}_{i}(\Theta, y):=\sum_{j<i} y_{j} \theta_{j}+\sum_{j>i} y_{j-1} \theta_{j},
$$

where θ_{j} is the j-th column vector of the matrix $\Theta \in \mathbb{M}^{n}$. To show that the differential of Λ_{i} has full rank everywhere, it is enough to check that for every $z \in S O(n) \times\{y \in$ $\left.\mathbb{R}^{n-1}:|y|=1\right\}$ the differential of $\tilde{\Lambda}_{i}$ restricted to $\operatorname{Tan}\left(S O(n) \times\left\{y \in \mathbb{R}^{n-1}:|y|=1\right\}, z\right)$ has rank equal to $n-1$. By using the relation

$$
\tilde{\Lambda}_{i}(M \Theta, y)=M \tilde{\Lambda}_{i}(\Theta, y)
$$

valid for every $M \in \mathbb{M}^{n}$, we can reduce ourselves to the case $z=(\mathrm{I}, \bar{y})$, where I denotes the identity matrix and $\bar{y} \in \mathbb{R}^{n-1}$ is such that $|\bar{y}|=1$. It is well known that

$$
\operatorname{Tan}\left(S O(n) \times\left\{\zeta \in \mathbb{R}^{n-1}:|\zeta|=1\right\}, z\right) \cong \mathbb{M}_{s k w}^{n} \times \operatorname{Tan}\left(\left\{\zeta \in \mathbb{R}^{n-1}:|\zeta|=1\right\}, \bar{y}\right)
$$

where $\mathbb{M}_{s k w}^{n}$ denotes the space of skew symmetric matrices. Using that $\mathbb{R}^{n^{2}+n-1} \cong$ $\mathbb{M}^{n} \times \mathbb{R}^{n-1}$, we identify a point $Z \in \mathbb{R}^{n^{2}+n-1}$ as $Z=\left(\left(x_{j}^{i}\right)_{i, j=1}^{n}, y_{1}, \ldots, y_{n-1}\right)$. A direct computation shows that the differential of Λ_{i} at the point (I, $\left.\bar{y}\right)$ acting on the vector Z is given by

$$
d \tilde{\Lambda}_{i}(\mathrm{I}, \bar{y})[Z]=\sum_{l=1}^{n} \sum_{j<i}\left(x_{l}^{j} \bar{y}_{j}+\delta_{j l} y_{j}\right) e_{l}+\sum_{j>i}\left(x_{l}^{j} \bar{y}_{j-1}+\delta_{j l} y_{j-1}\right) e_{l}
$$

It is better to introduce the matrix $P_{i} \in \mathbb{M}^{n \times(n-1)}$ defined as

$$
\left(P_{i}\right)_{k}^{m}:= \begin{cases}\delta_{k m} & \text { if } 1 \leq m<i \\ \delta_{k-1 m} & \text { if } i \leq m \leq n-1\end{cases}
$$

Roughly speaking, given $X \in \mathbb{M}^{l \times n}$, the product $X P_{i}$ is the matrix in $\mathbb{M}^{l \times(n-1)}$ obtained by removing from X the i-th column, while given $Y \in \mathbb{M}^{(n-1) \times l}$, the product $P_{i} Y$ is the matrix in $\mathbb{M}^{n \times l}$ obtained by adding a new row made of zero entries at the i th position. With this definition the linear map $d \Lambda_{i}(\mathrm{I}, \bar{y})(\cdot)$ can be rewritten more compactly as

$$
\begin{equation*}
d \Lambda_{i}(\mathrm{I}, \bar{y})[(X, y)]=X P_{i} \bar{y}+P_{i} y, \quad X \in \mathbb{M}_{s k w}^{n}, \quad y \in \operatorname{Tan}\left(\left\{\zeta \in \mathbb{R}^{n-1}:|\zeta|=1\right\}, \bar{y}\right) . \tag{3.6}
\end{equation*}
$$

Given $O \in S O(n-1)$ such that $O \tilde{e}_{1}=\bar{y}\left(\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{n-1}\right\}\right.$ denotes the reference orthonormal basis of \mathbb{R}^{n-1}), we can rewrite the system as

$$
\begin{equation*}
d \Lambda_{i}(\mathrm{I}, \bar{y})[(X, y)]=X P_{i} O \tilde{e}_{1}+P_{i} y, \quad X \in \mathbb{M}_{s k w}^{n}, \quad y \in \operatorname{Tan}\left(\left\{\zeta \in \mathbb{R}^{n-1}:|\zeta|=1\right\}, \bar{y}\right) \tag{3.7}
\end{equation*}
$$

Hence, by the well known relation

$$
\begin{equation*}
\operatorname{dim}(V)-\operatorname{dim}(\operatorname{Im}[\alpha])=\operatorname{dim}(\operatorname{ker}[\alpha]) \tag{3.8}
\end{equation*}
$$

valid for every linear map $\alpha: V \rightarrow W$ and every finite dimensional vector spaces V and W, if we want to prove that $d \Lambda_{i}(\mathrm{I}, \bar{y})$ has full rank, i.e.

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Im}\left[(\cdot) P_{i} O \tilde{e}_{1}+P_{i}(\cdot)\right]\right)=n-1 \tag{3.9}
\end{equation*}
$$

since

$$
n-1 \geq \operatorname{dim}\left(\operatorname{Im}\left[(\cdot) P_{i} O \tilde{e}_{1}+P_{i}(\cdot)\right]\right) \geq \operatorname{dim}\left(\operatorname{Im}\left[(\cdot) P_{i} O \tilde{e}_{1}\right]\right)
$$

(where the first inequality comes from $\operatorname{Im}\left[d \Lambda_{i}(\mathrm{I}, \bar{y})\right] \subset \operatorname{Tan}\left(\mathbb{S}^{n-1}, \Lambda_{i}(\mathrm{I}, \bar{y})\right)$), it is enough to show that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Im}\left[(\cdot) P_{i} O \tilde{e}_{1}\right]\right)=n-1 \tag{3.10}
\end{equation*}
$$

Again by relation (3.8) we can reduce ourselves to find the dimension of the kernel of the map $\mathbb{M}_{s k w}^{n} \ni X \mapsto X P_{i} O \tilde{e}_{1}$. But this dimension can be easily computed to be

$$
\operatorname{dim}\left(\operatorname{ker}\left[(\cdot) P_{i} O \tilde{e}_{1}\right]\right)=\sum_{k=1}^{n-2} k=\frac{(n-2)(n-1)}{2}
$$

which immediately implies (3.10).
Remark 3.4. By a standard argument from linear algebra it is possible to construct n orthonormal bases of \mathbb{R}^{n}, say $\mathcal{K}=\left\{\Xi_{1}, \ldots, \Xi_{n}\right\}$ satisfying

$$
\bigcap_{\Xi \in \mathcal{K}} S_{\Xi, 0}=\emptyset
$$

Moreover, given $U \subset S O(n)$ open, then Ξ_{i} can be chosen in such a way that

$$
\Xi_{i} \in U, \quad i \in\{1, \ldots, n\}
$$

Therefore, Lemma 3.3, and in particular condition (3.4), tells us that for every $M \in$ $\mathbb{N}(M \geq n)$ we can always find a family of orthonormal bases of \mathbb{R}^{n}, say $\mathcal{K}=$ $\left\{\Xi_{1}, \ldots, \Xi_{M}\right\}$, satisfying (3.1) and

$$
\Xi_{i} \in U, \quad i \in\{1, \ldots, M\}
$$

Lemma 3.5. Let $A \subset \mathbb{R}^{n}$ be a measurable set with $\mathcal{L}^{n}(A)<\infty$, let $\left(B_{k}\right)_{k=1}^{\infty}$ be measurable subsets of A, and let $\left(v_{k}\right)_{k=1}^{\infty}$ be measurable functions $v_{k}: B_{k} \rightarrow \mathbb{S}^{n-1}$. Then, given a sequence $\epsilon_{h} \searrow 0$, there exist a sequence $\delta_{h} \searrow 0$ with $\delta_{h}>0$, a map $\phi: \mathbb{N} \rightarrow \mathbb{N}$, and an orthonormal basis Ξ of \mathbb{R}^{n} such that, up to passing through a subsequence on $k, \mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi, \delta_{h}}\right)\right) \leq \epsilon_{h}$ for every $k \geq \phi(h)$.

Proof. We claim that for every natural number $N \geq n$, for every $j \in\{0,1, \ldots, n-1\}$, for every $\varepsilon>0$, and for every open set $U \subset S O(n)$ there exist $\delta>0$ and a family of orthonormal bases $\mathcal{K}:=\left\{\Xi_{1}, \ldots, \Xi_{N}\right\} \subseteq U$, such that, up to subsequences on k, we have

$$
\begin{gather*}
\mathcal{L}^{n}\left(v_{k}^{-1}\left(\left\{x \in \bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, \delta}: \mathcal{Z} \in \mathcal{K}_{n-j}\right\}\right)\right) \leq \varepsilon, \quad k=1,2, \ldots, \tag{3.11}\\
\Xi \in U, \quad \Xi \in \mathcal{K} \tag{3.12}
\end{gather*}
$$

Clearly the pair (δ, \mathcal{K}) depends on (N, j, ε), but we do not emphasize this fact. We proceed by induction on j. The case $j=0$: given $N \in \mathbb{N}, \varepsilon>0$, and any open set $U \subset S O(n)$, we can make use of Lemma 3.3 and Remark 3.4 to find N orthonormal bases $\mathcal{K}=\left\{\Xi_{1}, \ldots, \Xi_{N}\right\} \subseteq U$ such that

$$
\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, 0}=\emptyset \quad \text { for } \mathcal{Z} \in \mathcal{K}_{n}
$$

Being $S_{\Xi, 0}$ closed sets, there exists $\delta>0$ such that

$$
\bigcap_{\Xi \in \mathcal{Z}} S_{\Xi, \delta}=\emptyset \quad \text { for } \mathcal{Z} \in \mathcal{K}_{n}
$$

Hence, (3.11) is satisfied with $j=0$ and (3.12) holds true.
We want to prove the same for $0<j \leq n-1$. For this purpose we fix a natural number $M \geq n$, a parameter $\varepsilon>0$, and an open set $U \subset S O(n)$. By using the induction hypothesis, we may suppose that (3.11) and (3.12) hold true for $j-1$. This means that given $N \geq n, \tilde{\varepsilon}>0$ (to be chosen later), we find $\delta>0$ and orthonormal
bases $\mathcal{K}=\left\{\Xi_{1}, \ldots, \Xi_{N}\right\}$ such that (3.11) and (3.12) hold true for $j-1$. Choose $\mathcal{Z} \in \mathcal{K}_{M}$ and consider the following set

$$
\begin{equation*}
S_{\mathcal{Z}, \delta}^{n-j}:=\bigcup_{q \in \mathcal{Z}_{n-j}} \bigcap_{\Xi \in q} S_{\Xi, \delta} \tag{3.13}
\end{equation*}
$$

which is the union of all the possible $(n-j)$-intersections of sets of the form $S_{\Xi, \delta}$ for $\Xi \in \mathcal{Z}$.

We recall the following identity valid for any finite family of subsets of A, say $(B)_{l=1}^{L}$, which reads as

$$
\begin{equation*}
\mathcal{L}^{n}\left(\bigcup_{l=1}^{L} B_{l}\right)=\sum_{l=1}^{L} \mathcal{L}^{n}\left(B_{l}\right)-\sum_{l_{1}<l_{2}}^{L} \mathcal{L}^{n}\left(B_{l_{1}} \cap B_{l_{2}}\right)+\ldots+(-1)^{L-1} \mathcal{L}^{n}\left(\bigcap_{l=1}^{L} B_{l}\right) \tag{3.14}
\end{equation*}
$$

Now we partition \mathcal{K} into N / M disjoint subsets (without loss of generality we may choose N to be an integer multiple of M) each of which belongs to \mathcal{K}_{M}. We call this partition \mathcal{P}. By construction, any l-intersection of sets of the form $S_{\mathcal{Z}, \delta}^{n-j}$ with $\mathcal{Z} \in \mathcal{P}$ can be written as the union of $\binom{M}{n-j}^{l}$ sets each of which, thanks to the fact that (we use that \mathcal{P} is a partition)

$$
Z_{1}, Z_{2} \in \mathcal{P} \Rightarrow Z_{1} \cap Z_{2}=\emptyset
$$

is the intersection of at least $n-(j-1)$ different sets of the form $S_{\Xi, \delta}$ with $\Xi \in \mathcal{K}$. Taking this last fact into account, if we replace the sets B_{j} with $v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}^{n-j}\right)$ and $L=N / M$ in identity (3.14), we obtain

$$
\begin{equation*}
\mathcal{L}^{n}\left(\bigcup_{\mathcal{Z} \in \mathcal{P}} v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}^{n-j}\right)\right) \geq \sum_{\mathcal{Z} \in \mathcal{P}} \mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}^{n-j}\right)\right)-\sum_{l=2}^{N / M}\binom{M}{n-j}^{l} \tilde{\varepsilon}, \quad k=1,2, \ldots \tag{3.15}
\end{equation*}
$$

where we have used the inductive hypothesis (3.11) for $j-1$ to estimate the remaining terms in the right hand-side of (3.14).

Now suppose that for every $\mathcal{Z} \in \mathcal{K}_{M}$ it holds true for some k

$$
\begin{equation*}
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}^{n-j}\right)\right)>\varepsilon \tag{3.16}
\end{equation*}
$$

then inequality (3.15) implies

$$
\begin{equation*}
\mathcal{L}^{n}\left(\bigcup_{\mathcal{Z} \in \mathcal{P}} v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}\right)\right)>\frac{N}{M} \varepsilon-\sum_{l=2}^{N / M}\binom{M}{n-j}^{l} \tilde{\varepsilon} . \tag{3.17}
\end{equation*}
$$

Therefore, if we choose N sufficiently large in such a way that

$$
\frac{N}{M} \varepsilon \geq 2 \mathcal{L}^{n}(A)
$$

and $\tilde{\varepsilon}>0$ such that

$$
\sum_{l=2}^{N / M}\binom{M}{n-j}^{l} \tilde{\varepsilon}<\mathcal{L}^{n}(A)
$$

then (3.17) implies that for every k there exists $\mathcal{Z}^{k} \in \mathcal{P}$ for which (3.16) does not hold, i.e.,

$$
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\mathcal{Z}^{k}, \delta}^{n-j}\right)\right) \leq \varepsilon, \quad k=1,2,, \ldots
$$

where we have used that B_{k}, the domain of v_{k}, is contained in A. Being \mathcal{P} a finite family, we may suppose that, up to subsequences on k, we find a common $\mathcal{Z} \in \mathcal{P}$ for which

$$
\begin{equation*}
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\mathcal{Z}, \delta}^{n-j}\right)\right) \leq \varepsilon, \quad k=1,2,, \ldots \tag{3.18}
\end{equation*}
$$

Taking into account the definition of $S_{\mathcal{Z}, \delta}^{n-j}$ (3.13), formula (3.18) gives our claim for j. Finally, by induction, this implies the validity of our claim for every $j \in\{0, \ldots, n\}$.

Now we prove the lemma. For $j=n-1$ the claim says in particular that we find an orthonormal basis Ξ_{0} and $\delta_{0}>0$ such that, up to pass to a subsequence on k, we have

$$
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi_{0}, \delta_{0}}\right)\right) \leq \epsilon_{0}, \quad k=1,2, \ldots .
$$

Notice that by using a continuity argument, we find a neighborhood U_{0} of Ξ_{0} in $S O(n)$ such that

$$
S_{\Xi, \delta_{0} / 2} \Subset S_{\Xi_{0}, \delta}, \quad \Xi \in U_{0} .
$$

By applying again the claim we find an orthonormal basis $\Xi_{1} \in U_{0}$ and $\tilde{\delta}_{1}>0$ such that, up to pass to a further subsequence on k, we have

$$
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi_{1}, \tilde{\delta}_{1}}\right)\right) \leq \epsilon_{1}, \quad k=1,2, \ldots
$$

Hence if we set $\delta_{1}:=\min \left\{\tilde{\delta}_{1}, \delta_{0} / 2\right\}$ we obtain as well

$$
\begin{aligned}
& \mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi_{1}, \delta_{1}}\right)\right) \leq \epsilon_{1}, \quad k=1,2, \ldots, \\
& S_{\Xi_{1}, \delta_{1}} \Subset S_{\Xi_{0}, \delta_{0}}
\end{aligned}
$$

Proceeding again by induction, we find for every $h=1,2, \ldots$ an orthonormal basis $\Xi_{h}, \delta_{h}>0$, and a subsequence $\left(k_{\ell}^{h}\right)_{\ell}$, such that

$$
\begin{aligned}
\mathcal{L}^{n}\left(v_{k_{\ell}^{h}}^{-1}\left(S_{\Xi_{h}, \delta_{h}}\right)\right) & \leq \epsilon_{h}, \quad \ell=1,2, \ldots, \\
S_{\Xi_{h}, \delta_{h}} & \Subset S_{\Xi_{\Xi_{h 1}, \delta_{h-1}}}, \\
\left(k_{\ell}^{h}\right)_{\ell} & \subset\left(k_{\ell}^{h-1}\right)_{\ell}
\end{aligned}
$$

If we denote with abuse of notation the diagonal sequence $\left(k_{h}^{h}\right)_{h}$ simply as k, then we can find a map $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\begin{align*}
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi_{h}, \delta_{h}}\right)\right) & \leq \epsilon_{h}, \quad k \geq \phi(h) \tag{3.19}\\
S_{\Xi_{h}, \delta_{h}} & \Subset S_{\Xi_{h-1}, \delta_{h-1}} . \tag{3.20}
\end{align*}
$$

Being the family $\left(S_{\Xi_{h}, 0}\right)_{h}$ made of compact subsets of \mathbb{S}^{n-1}, then it is relatively compact with respect to the Hausdorff distance. This means that, up to a subsequence on h, we find an orthonormal basis Ξ such that

$$
\lim _{h \rightarrow \infty} \operatorname{dist}_{\mathcal{H}}\left(S_{\Xi_{h}, 0}, S_{\Xi, 0}\right)=0 .
$$

By using (3.20) and the fact that $S_{\Xi_{h}, \delta_{h}}$ are relatively open subsets of \mathbb{S}^{n-1}, this last convergence tells us that for every h the compact inclusion $S_{\Xi, 0} \Subset S_{\Xi_{h}, \delta_{h}}$ holds true. But this implies that up to defining suitable $\delta_{h}^{\prime}>0$ with $\delta_{h}^{\prime} \leq \delta_{h}$, we can write

$$
S_{\Xi, \delta_{h}^{\prime}} \Subset S_{\Xi_{h}, \delta_{h}}, \quad h \in \mathbb{N} .
$$

Finally, with abuse of notation we set $\delta_{h}:=\delta_{h}^{\prime}$ for every h. Then (3.19) implies

$$
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi, \delta_{h}}\right)\right) \leq \epsilon_{h}, \quad k \geq \phi(h), \quad h \in \mathbb{N} .
$$

This gives the desired result.
Remark 3.6. Given $U \subset \mathbb{R}^{n}, u \in G B D(U)$, and $\sigma \geq 1$, we have that

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(J_{u}^{\sigma}\right) \leq 4 n \hat{\mu}_{u}(U) . \tag{3.21}
\end{equation*}
$$

Indeed, given $\epsilon>0$, one can consider a partition of \mathbb{S}^{n-1} into a finite family of measurable sets $\left\{S_{1}, \ldots, S_{M}\right\}$ such that for every $m=1, \ldots, M$ there exists an orthonormal basis $\Xi_{m}=\left\{\xi_{1}^{m}, \ldots, \xi_{n}^{m}\right\}$ with $\xi \cdot \xi_{i}^{m} \geq 1 / 4$ for every $\xi \in S_{m}$ and for every
$i, j \in\{1, \ldots, n\}$ and $m \in\{1, \ldots, M\}$. Consider then the partition of J_{u}^{σ} given by $\left\{B_{1}, \ldots, B_{M}\right\}$ where $B_{m}:=\left\{x \in J_{u}^{\sigma}:[u(x)] /|[u(x)]| \in S_{m}\right\}$. We then have

$$
\begin{aligned}
\mathcal{H}^{n-1}\left(J_{u}^{\sigma}\right) & \leq \sum_{m=1}^{M} \sum_{\xi \in \Xi_{m}} \int_{B_{m}}\left|\nu_{u} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1}=\sum_{m=1}^{M} \sum_{\xi \in \Xi_{m}} \int_{\Pi_{\xi}} \mathcal{H}^{0}\left(\left(B_{m}\right)_{y}^{\xi}\right) \mathrm{d} \mathcal{H}^{n-1}(y) \\
& =\sum_{m=1}^{M} \sum_{\xi \in \Xi_{m}} \int_{\Pi_{\xi}} \mathcal{H}^{0}\left(J_{4 \hat{u}_{y}^{\xi}}^{1} \cap\left(B_{m}\right)_{y}^{\xi}\right) \mathrm{d} \mathcal{H}^{n-1}(y)=\sum_{m=1}^{M} \sum_{\xi \in \Xi_{m}} \hat{\mu}_{4 u}^{\xi}\left(B_{m}\right) \\
& \leq n \sum_{m=1}^{M} \hat{\mu}_{4 u}\left(B_{m}\right) \leq n \hat{\mu}_{4 u}(U) \leq 4 n \mu_{u}(U),
\end{aligned}
$$

where we have used that $\left|\left[4 \hat{u}_{y}^{\xi}\right](t)\right| \geq 1$ for every $t \in J_{4 \hat{u}_{y}^{\xi}} \cap\left(B_{m}\right)_{y}^{\xi}$ for \mathcal{H}^{n-1}-a.e. $y \in \Pi^{\xi}$ with $\xi \in \Xi_{m}$.

Remark 3.7. Let $U \subset \mathbb{R}^{n}$ and $u \in G B D(U)$. Given $\xi \in \mathbb{S}^{n-1}$ and $\sigma>1$ if we introduce the map $\hat{\mu}_{\sigma}^{\xi}: \mathcal{B}(U) \rightarrow \overline{\mathbb{R}}$ as

$$
\begin{equation*}
\hat{\mu}_{\sigma}^{\xi}(B):=\int_{\Pi}\left|D \hat{u}_{y}^{\xi}\right|\left(B_{y}^{\xi} \backslash J_{\hat{u}_{y}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(B_{y}^{\xi} \cap J_{\hat{u}_{y}^{\xi}}^{\sigma}\right) \mathrm{d} \mathcal{H}^{n-1}(y), \quad B \in \mathcal{B}(U), \tag{3.22}
\end{equation*}
$$

then we have $\hat{\mu}_{\sigma}^{\xi} \in \mathcal{M}_{b}^{+}(U)$. More precisely, for \mathcal{H}^{n-1}-a.e. $y \in \Pi^{\xi}$ we have

$$
\begin{aligned}
& \left|D \hat{u}_{y}^{\xi}\right|\left(B \backslash J_{\hat{u}_{\vartheta}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(B \cap J_{\hat{u}_{\vartheta}^{\xi}}^{\sigma}\right) \\
& \leq\left|D \hat{u}_{y}^{\xi}\right|\left(B \backslash J_{\hat{u}_{y}^{\xi}}^{1}\right)+\mathcal{H}^{0}\left(B \cap J_{\hat{u}_{y}^{\xi}}^{1}\right)+(\sigma-1) \mathcal{H}^{0}\left(B \cap\left(J_{\hat{u}_{y}^{\xi}}^{1} \backslash J_{\hat{u}_{y}^{\xi}}^{\sigma}\right)\right), \quad B \in \mathcal{B}\left(U_{y}^{\xi}\right),
\end{aligned}
$$

(notice that for \mathcal{H}^{n-1}-a.e. y the right hand side is a finite measure thanks to Remark 3.6). By using the inclusion $J_{\hat{v}_{y}^{\xi}}^{1} \subset\left(J_{v}^{1}\right)_{y}^{\xi}$, valid for every $v \in G B D(U)$ for every $\xi \in \mathbb{S}^{n-1}$ for \mathcal{H}^{n-1}-a.e. $y \in \Pi^{\xi}$, we deduce

$$
\begin{equation*}
\hat{\mu}_{\sigma}^{\xi}(B) \leq \hat{\mu}^{\xi}(B)+(\sigma-1) \int_{B \cap J_{u}^{1}}\left|\nu_{u} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1}, \quad B \in \mathcal{B}(U) . \tag{3.23}
\end{equation*}
$$

Finally, Remark 3.6 and the definition of $\hat{\mu}^{\xi}$ (see [6, Definition 4.10]) imply that the right-hand side of (3.23) is a finite measure, and so is $\hat{\mu}_{\sigma}^{\xi}$.

We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1. Let $\tau(t):=\arctan (t)$. We claim that for every $i \in\{1, \ldots, n\}$ the family $\left(\tau\left(u_{k} \cdot e_{i}\right)\right)_{k}$ is relatively compact in $L^{1}(U)$, where $\left\{e_{i}\right\}_{i=1}^{n}$ denotes a suitable orthonormal basis of \mathbb{R}^{n}. Now given $\epsilon_{h} \searrow 0$, by using Lemma 3.5, there exists $\delta_{h} \searrow 0$ such that if we define $B_{k}:=\left\{\left|u_{k}\right| \neq 0\right\}$ and $v_{k}: B_{k} \rightarrow \mathbb{S}^{n-1}$ as $v_{k}:=u_{k} /\left|u_{k}\right|$, then

$$
\mathcal{L}^{n}\left(v_{k}^{-1}\left(S_{\Xi, \delta_{h}}\right)\right) \leq \epsilon_{h} \quad \text { for every } k \geq \phi(h)
$$

for a suitable orthonormal basis Ξ and a suitable map $\phi: \mathbb{N} \rightarrow \mathbb{N}$.
In order to simplify the notation, let us denote $\Xi=\left\{e_{1}, \ldots, e_{n}\right\}$. Fix $i \in\{1, \ldots, n\}$ and set $\xi_{j}^{t}:=\frac{\sqrt{t}}{\sqrt{t+t^{2}}} e_{i}+\frac{t}{\sqrt{t+t^{2}}} e_{j} \in \mathbb{S}^{n-1}$ for every $j \neq i$ and $t>0$. Notice that

$$
\begin{equation*}
\left|\xi_{j}^{t}-e_{i}\right| \leq \sqrt{2 t} \quad \text { and } \quad\left|\frac{\xi_{j}^{t}-e_{i}}{\left|\xi_{j}^{t}-e_{i}\right|}-e_{j}\right| \leq \sqrt{2 t} \tag{3.24}
\end{equation*}
$$

We define $U_{t}:=\{x \in U: \operatorname{dist}(\partial U, x)>t\}$. Since we want to apply FréchetKolmogorov Theorem, we have to estimate for $x \in U_{t}$

$$
\begin{aligned}
\mid \tau\left(u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right)- & \tau\left(u_{k}(x) \cdot e_{i}\right) \mid \\
\leq & \left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right)-\tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right)\right| \\
& +\left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)\right| \\
& +\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot e_{i}\right)\right| \\
& +\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot e_{i}\right)-\tau\left(u_{k}(x) \cdot e_{i}\right)\right| .
\end{aligned}
$$

Now notice that by definition of $S_{\Xi, \delta_{h}}$ (see Definition 3.1), there exists a positive constant $c=c\left(\delta_{h}\right)$ such that for every $x \in U \backslash v_{k}^{-1}\left(S_{\Xi, \delta_{h} / 2}\right)$ and every $i, j \in\{1, \ldots, n\}$

$$
\begin{equation*}
\left|u_{k}(x) \cdot e_{i}\right| \geq c\left(\delta_{h}\right)\left|u_{k}(x) \cdot e_{j}\right| \quad \text { for every } k \text { and } h . \tag{3.25}
\end{equation*}
$$

Moreover, by taking into account (3.24), we deduce the existence of a dimensional parameter $\bar{t}>0$ such that

$$
\begin{array}{rl}
\left|z \cdot \xi_{j}^{t}\right|^{2} \geq 2^{-1}\left|z \cdot e_{i}\right|^{2} & t \leq \bar{t}, z \in \mathbb{R}^{n}, i, j \in\{1, \ldots, n\} \\
\left|z \cdot \frac{\xi_{j}^{t}-e_{i}}{\left|\xi_{j}^{t}-e_{i}\right|}\right| \leq 2\left|z \cdot e_{j}\right| & t \leq \bar{t}, z \in \mathbb{R}^{n}, i, j \in\{1, \ldots, n\} . \tag{3.27}
\end{array}
$$

For every $t \leq \bar{t}$, if $x \in U_{t}$ and $x \notin v_{k}^{-1}\left(S_{\Xi, \delta_{h} / 2}\right)-t e_{j}$, by using (3.24) and (3.25)(3.27), we can write

$$
\begin{aligned}
& \left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right)-\tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right)\right|=\left|\int_{u_{k}\left(x+t e_{j}\right) \cdot e_{i}}^{u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}} \frac{\mathrm{~d} s}{1+s^{2}}\right| \\
& \leq \max \left\{\frac{\sqrt{2 t}}{1+\left|u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right|^{2}}, \frac{\sqrt{2 t}}{1+\left|u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right|^{2}}\right\}\left|u_{k}\left(x+t e_{j}\right) \cdot \frac{\xi_{j}^{t}-e_{i}}{\left|\xi_{j}^{t}-e_{i}\right|}\right| \\
& \leq \max \left\{\frac{\sqrt{2 t}}{1+\left|u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right|^{2}}, \frac{\sqrt{2 t}}{1+2^{-1}\left|u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right|^{2}}\right\}\left|u_{k}\left(x+t e_{j}\right) \cdot \frac{\xi_{j}^{t}-e_{i}}{\left|\xi_{j}^{t}-e_{i}\right|}\right| \\
& \leq \frac{2 \sqrt{2 t}}{1+2^{-1}\left|u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right|^{2}}\left|u_{k}\left(x+t e_{j}\right) \cdot e_{j}\right| \leq \frac{2 \sqrt{t}}{c\left(\delta_{h}\right)}
\end{aligned}
$$

and analogously if $x \in U_{t}$ and $x \notin v_{k}^{-1}\left(S_{\Xi, \delta_{h} / 2}\right)+\sqrt{t} e_{i}$

$$
\begin{equation*}
\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot e_{i}\right)\right| \leq \frac{2 \sqrt{t}}{c\left(\delta_{h}\right)} . \tag{3.29}
\end{equation*}
$$

Hence, from (3.28) and (3.29) we infer that for every $t \leq \bar{t}$

$$
\int_{U_{t}}\left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right)-\tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right)\right| \mathrm{d} x \leq|U| \frac{2 \sqrt{t}}{c\left(\delta_{h}\right)}+\pi \epsilon_{h}
$$

and

$$
\int_{U_{t}}\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot e_{i}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)\right| \mathrm{d} x \leq|U| \frac{2 \sqrt{t}}{c\left(\delta_{h}\right)}+\pi \epsilon_{h} .
$$

Moreover, setting $s_{t}:=\sqrt{t+t^{2}}$ we can write

$$
\begin{align*}
& \int_{U_{t}}\left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)\right| \mathrm{d} x \tag{3.30}\\
& \quad=\int_{U_{t}}\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}+s_{t} \xi_{j}^{t}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right)\right| \mathrm{d} x
\end{align*}
$$

$$
\begin{aligned}
& =\int_{U_{t}+\sqrt{t} e_{i}}\left|\tau\left(u_{k}\left(x+s_{t} \xi_{j}^{t}\right) \cdot \xi_{j}^{t}\right)-\tau\left(u_{k}(x) \cdot \xi_{j}^{t}\right)\right| \mathrm{d} x \\
& \leq \int_{\Pi_{\xi_{j}^{t}}}\left(\int_{\left(U_{t}+\sqrt{t} e_{i}\right)_{y}^{\xi_{j}^{t}}}\left|D \tau\left(\hat{u}_{y}^{\xi_{j}^{t}}\right)\right|\left(\left(s, s+s_{t}\right)\right) \mathrm{d} s\right) \mathrm{d} \mathcal{H}^{n-1}(y)
\end{aligned}
$$

By a mollification argument, we have that

$$
\begin{aligned}
& \int_{\Pi_{\xi_{j}^{t}}}\left(\int_{\left(U_{t}+\sqrt{t} e_{i}\right)_{j}^{\xi_{j}^{t}}}\left|D \tau\left(\hat{u}_{y}^{\xi_{j}^{t}}\right)\right|\left(\left(s, s+s_{t}\right)\right) \mathrm{d} s\right) \mathrm{d} \mathcal{H}^{n-1}(y) \\
&=\int_{\Pi_{\xi_{j}^{t}}}\left(\int_{0}^{s_{t}}\left|D \tau\left(\hat{u}_{y}^{\xi_{j}^{t}}\right)\right|\left(\left(U_{t}+\sqrt{t} e_{i}\right)_{y}^{\xi_{j}^{t}}+\lambda\right) \mathrm{d} \lambda\right) \mathrm{d} \mathcal{H}^{n-1}(y)
\end{aligned}
$$

so that we obtain from (3.30) that

$$
\begin{aligned}
\int_{U_{t}} \mid \tau\left(u_{k}\left(x+t e_{j}\right) \cdot \xi_{j}^{t}\right) & -\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot \xi_{j}^{t}\right) \mid \mathrm{d} x \\
& \leq \int_{\Pi_{\xi_{j}^{t}}}\left(\int_{0}^{s_{t}}\left|D \tau\left(\hat{u}_{y}^{t_{j}^{t}}\right)\right|\left(\left(U_{t}+\sqrt{t} e_{i}\right)_{y}^{\xi_{j}^{t}}+\lambda\right) \mathrm{d} \lambda\right) \mathrm{d} \mathcal{H}^{n-1}(y) \\
& \leq \int_{0}^{s_{t}}\left(\int_{\Pi_{\xi_{j}^{t}}}\left|D \tau\left(\hat{u}_{y}^{t_{j}^{t}}\right)\right|\left(U_{y}^{\xi_{j}^{t}}\right) \mathrm{d} \mathcal{H}^{n-1}(y)\right) \mathrm{d} \lambda \leq \pi s_{t} \hat{\mu}_{u_{k}}(U)
\end{aligned}
$$

Analogously,

$$
\int_{U_{t}}\left|\tau\left(u_{k}\left(x-\sqrt{t} e_{i}\right) \cdot e_{i}\right)-\tau\left(u_{k}(x) \cdot e_{i}\right)\right| \mathrm{d} x \leq \pi \sqrt{t} \hat{\mu}_{u_{k}}(U) .
$$

Summarizing, we have shown that if t_{h} is such that $t_{h} \in(0, \bar{t}]$ and

$$
|U| \frac{2 \sqrt{t_{h}}}{c\left(\delta_{h}\right)} \leq \epsilon_{h} \quad \text { and } \quad \pi s_{t_{h}} \hat{\mu}_{u_{k}}(U) \leq \epsilon_{h}
$$

then for every $t \leq t_{h}$ we have for every $e_{j} \in \Xi$

$$
\int_{U_{t}}\left|\tau\left(u_{k}\left(x+t e_{j}\right) \cdot e_{i}\right)-\tau\left(u_{k}(x) \cdot e_{i}\right)\right| \mathrm{d} x \leq 10 \epsilon_{h} \quad \text { for every } k \geq \phi(h) .
$$

As a consequence, there exists a positive constant $L=L(n)$ such that

$$
\int_{U_{t}}\left|\tau\left(u_{k}(x+t \xi) \cdot e_{i}\right)-\tau\left(u_{k}(x) \cdot e_{i}\right)\right| \mathrm{d} x \leq L(n) \epsilon_{h} \quad \xi \in \mathbb{S}^{n-1}, \quad k \geq \phi(h), \quad t \leq t_{h}
$$

Since the index i chosen at the beginning was arbitrary, this means also that if we consider the diffeomorphism $\psi: \mathbb{R}^{n} \rightarrow(-\pi / 2, \pi / 2)^{n}$ defined by $\psi(x):=\left(\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)\right)$, then

$$
\int_{U_{t}}\left|\psi\left(u_{k}(x+t \xi)\right)-\psi\left(u_{k}(x)\right)\right| \mathrm{d} x \leq L^{\prime}(n) \epsilon_{h}, \quad \xi \in \mathbb{S}^{n-1}, \quad k \geq \phi(h), \quad t \leq t_{h}
$$

By Fréchet-Kolmogorov Theorem, this last inequality implies that the sequence $\psi\left(u_{k}\right)$ is relatively compact in $L^{1}\left(U ; \mathbb{R}^{n}\right)$. Hence, we can pass to another subsequence, still denoted by $\psi\left(u_{k}\right)$, such that $\psi\left(u_{k}\right) \rightarrow v$ as $k \rightarrow \infty$ strongly in $L^{1}\left(U ; \mathbb{R}^{n}\right)$. By eventually passing through another subsequence, we may suppose $\psi\left(u_{k}(x)\right) \rightarrow v(x)$ a.e. in U as $k \rightarrow \infty$. As a consequence, there exists a measurable $u: U \rightarrow \overline{\mathbb{R}}$ such that $u_{k}(x) \rightarrow u(x)$ as $k \rightarrow \infty$ a.e. in $U \backslash\left\{x \in U: v(x) \in \partial\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{n}\right\}$. Moreover, $\left|u_{k}(x)\right| \rightarrow+\infty$ if and only if for at least one index $i, u_{k}(x) \cdot e_{i} \rightarrow \pm \infty$ (clearly $\left.\tau\left(u \cdot e_{i}\right)=v_{i}\right)$ or equivalently
if and only if $x \in\left\{x \in U: v(x) \in \partial\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{n}\right\}$. Thus, we obtain that $u_{k} \rightarrow u$ a.e. in $U \backslash A$ as $k \rightarrow \infty$.

To show that $A:=\left\{x \in U:\left|u_{k}(x)\right| \rightarrow+\infty\right\}$ has finite perimeter the argument follows that in [4]. We give a sketch of the proof.

It is easy to check that for \mathcal{H}^{n-1}-a.e. $\xi \in \mathbb{S}^{n-1}$ it holds true

$$
\begin{equation*}
x \in A \quad \text { if and only if } \quad \lim _{k \rightarrow \infty} \tau\left(u_{k}(x) \cdot \xi\right)= \pm \frac{\pi}{2}, \quad \text { for a.e. } x \in U \tag{3.31}
\end{equation*}
$$

Now fix $\sigma \geq 1$. First of all using also (3.31) we can follow a standard measure theoretic argument which shows that we can extract a subsequence, still denoted as $\left(u_{k}\right)_{k}$, such that for \mathcal{H}^{n-1}-a.e. $\xi \in \mathbb{S}^{n-1}$ for \mathcal{H}^{n-1}-a.e. $y \in \Pi^{\xi}$ it holds true

$$
\tau\left(\left(\hat{u}_{k}\right)_{y}^{\xi}\right) \rightarrow v_{y}^{\xi}:=\left\{\begin{array}{ll}
\tau\left(\hat{u}_{y}^{\xi}\right) & \text { on } U_{y}^{\xi} \backslash A_{y}^{\xi} \tag{3.32}\\
\pm \frac{\pi}{2} & \text { on } A_{y}^{\xi},
\end{array} \quad \text { in } L^{1}\left(U_{y}^{\xi}\right)\right.
$$

Fix $\epsilon>0$. By Fatou Lemma and Remarks 3.6 and 3.7 we estimate

$$
\begin{align*}
& \int_{\Pi_{\xi}} \liminf _{k \rightarrow \infty}\left[\epsilon\left|D\left(\hat{u}_{k}\right)_{y}^{\xi}\right|\left(U_{y}^{\xi} \backslash J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(U_{y}^{\xi} \cap J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)\right] \mathrm{d} \mathcal{H}^{n-1}(y) \tag{3.33}\\
& \leq \int_{\Pi_{\xi}} \liminf _{k \rightarrow \infty}\left[\epsilon\left|D\left(\hat{u}_{k}\right)_{y}^{\xi}\right|\left(U_{y}^{\xi} \backslash J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(U_{y}^{\xi} \cap\left(J_{u_{k}}^{\sigma}\right)_{y}^{\xi}\right)\right] \mathrm{d} \mathcal{H}^{n-1}(y) \\
& \leq \limsup _{k \rightarrow \infty}\left(\epsilon \hat{\mu}_{u_{k}}^{\xi}(U)+\epsilon(\sigma-1) \int_{U \cap J_{u_{k}}^{1}}\left|\nu_{u_{k}} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1}\right)+\liminf _{k \rightarrow \infty} \int_{U \cap J_{u_{k}}^{\sigma}}\left|\nu_{u_{k}} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1} \\
& \leq \epsilon \sup _{k \in \mathbb{N}}(1+4 n(\sigma-1)) \hat{\mu}_{u_{k}}(U)+\liminf _{k \rightarrow \infty} \int_{U \cap J_{u_{k}}^{\sigma}}\left|\nu_{u_{k}} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1}<+\infty
\end{align*}
$$

For \mathcal{H}^{n-1}-a.e. y we can thus consider a subsequence depending on y but still denoted by $\left(u_{k}\right)_{k}$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \epsilon\left|D\left(\hat{u}_{k}\right)_{y}^{\xi}\right|\left(U_{y}^{\xi} \backslash J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(U_{y}^{\xi} \cap J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)<+\infty \tag{3.34}
\end{equation*}
$$

Now we study the behavior of a sequence of one dimensional functions satisfying (3.34). Let $(a, b) \subset \mathbb{R}$ be a non-empty open interval and suppose that $\left(f_{k}\right)_{k}$ is a sequence in $B V_{\text {loc }}((a, b))$ satisfying

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left|D f_{k}\right|\left((a, b) \backslash J_{f_{k}}^{\sigma}\right)+\mathcal{H}^{0}\left(J_{f_{k}}^{\sigma}\right)<\infty \tag{3.35}
\end{equation*}
$$

We write $f_{k}=f_{k}^{1}+f_{k}^{2}$ for $f_{k}^{1}, f_{k}^{2}:(a, b) \rightarrow \mathbb{R}$ defined as

$$
f_{k}^{1}(t):=D f_{k}\left((a, t) \backslash J_{f_{k}}^{\sigma}\right) \text { and } f_{k}^{2}(t):=f_{k}(a)+D f_{k}\left((a, t) \cap J_{f_{k}}^{\sigma}\right)
$$

We study the convergence of f_{k}^{1} and f_{k}^{2} separately.
Inequality (3.35) tells us that up to extract a further not relabelled subsequence

$$
\begin{equation*}
f_{k}^{1} \rightarrow f^{1} \text { pointwise a.e. for some } f^{1} \in B V((a, b)) \text { as } k \rightarrow \infty \tag{3.36}
\end{equation*}
$$

As for $\left(f_{k}^{2}\right)_{k}$, by inequality (3.35) we may suppose that, up to extract a further not relabelled subsequence, there exists a finite set $J \subset[a, b]$ such that

$$
\begin{align*}
& \mathcal{H}^{0}(J) \leq \sup _{k \in \mathbb{N}} \mathcal{H}^{0}\left(J_{f_{k}}^{\sigma}\right) \tag{3.37}\\
& J_{f_{k}}^{\sigma} \rightarrow J \quad \text { in Hausdorff distance as } k \rightarrow \infty \tag{3.38}
\end{align*}
$$

Then, (3.37)-(3.38) together with the fact that by construction f_{k}^{2} is a piecewise constant function allows us to deduce that any pointwise limit function f^{2} for $\left(f_{k}^{2}\right)_{k}$ must be of the form

$$
f^{2}(t)=\sum_{l=1}^{M} \alpha_{l} \mathbb{1}_{\left(a_{l}, a_{l+1}\right)}(t) \quad \text { for } t \in(a, b)
$$

for a suitable $M \leq \mathcal{H}^{0}(J \cap(a, b))+1$, for suitable $\alpha_{l} \in \mathbb{R} \cup\{ \pm \infty\}$ with $\alpha_{l} \neq \alpha_{l+1}$, and for suitable $a_{l} \in J$ with $a_{l}<a_{l+1}$ and $a_{1}=a, a_{\mathcal{H}^{0}(J \cap(a, b))+2}=b$. Up to extract a further not relabelled subsequence we may suppose $f_{k}^{2} \rightarrow f^{2}$ pointwise a.e.. Now if $\alpha_{l} \in\{ \pm \infty\}$ and $l \neq 1$ and $l \neq \mathcal{H}^{0}(J \cap(a, b))+1$, we set

$$
\begin{aligned}
& T_{l, k}:=\left\{t \in J_{f_{k}^{2}}^{\sigma}:\left|t-a_{l}\right| \leq 1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right\} \\
& T_{l+1, k}:=\left\{t \in J_{f_{k}^{2}}^{\sigma}:\left|t-a_{l+1}\right| \leq 1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right\}
\end{aligned}
$$

while if $l=1$ we set

$$
T_{l, k}:=\left\{t \in J_{f_{k}^{2}}^{\sigma}:\left|t-a_{l+1}\right| \leq 1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right\}
$$

and if $l=M$ we set

$$
T_{l, k}:=\left\{t \in J_{f_{k}^{2}}^{\sigma}:\left|t-a_{l}\right| \leq 1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right\}
$$

By (3.38) we have $T_{l, k} \neq \emptyset$ for every but sufficiently large k and thanks to the definition of $T_{l, k}$ any sequence $\left(t_{l, k}\right)_{k}$ with $t_{l, k} \in T_{l, k}$ is such that $t_{l, k} \rightarrow \alpha_{l}$ as $k \rightarrow \infty$. We claim that for every $l \in\{1, \ldots, M\}$ there exists one of such sequences $\left(t_{l, k}\right)_{k}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\left[f_{k}^{2}\left(t_{l, k}\right)\right]\right|=+\infty \tag{3.39}
\end{equation*}
$$

Suppose by contradiction that there exists l and a subsequence k_{j} such that

$$
\sup _{j \in \mathbb{N}} \max _{t \in T_{l, k_{j}}}\left|\left[f_{k_{j}}^{2}(t)\right]\right|<+\infty
$$

Then, we are in the following situation: we choose one of the endpoints a_{l} or a_{l+1}, for example a_{l}, (in the case $l=1$ we choose a_{l+1} and in the case $l=M$ we choose a_{l}) and the sequence $v_{j}:=f_{k_{j}}^{2}\left\llcorner\left(a_{l}-\frac{1}{2} \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|, a_{l}+\frac{1}{2} \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right)\right.$ satisfies

$$
v_{j} \text { is piecewise constant, }
$$

$$
\begin{aligned}
& J_{v_{j}}=T_{l, k_{j}} \quad \text { and } \quad J_{v_{j}} \rightarrow a_{l} \text { in Hausdorff distance as } j \rightarrow \infty \\
& \sup _{j \in \mathbb{N}} \mathcal{H}^{0}\left(T_{l, k_{j}}\right)<+\infty, \quad \sup _{j \in \mathbb{N}} \max _{t \in J_{v_{j}}}\left|\left[v_{j}\right](t)\right|<+\infty
\end{aligned}
$$

It is easy to see that the previous conditions are in contradiction with the fact that $f^{2}\left\llcorner\left(a_{l}-1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|, a_{l}+1 / 2 \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right)\right.$, i.e. the pointwise limit of v_{j}, is such that f^{2} has a non finite jump point at a_{l}. This proves our claim. Our claim implies in particular that, being $\left(f_{k}^{1}\right)_{k}$ equibounded, then the sequence $t_{l, k}$ satisfying (3.39) is actually contained for every but sufficiently large k in $J_{f_{k}}^{\sigma}$ (roughly speaking the jumps of f_{k}^{1} cannot compensate a non-bounded sequence of jumps of f_{k}^{2}). Clearly, being the interval $\left\{t:\left|t-a_{l}\right|<\frac{1}{2} \min _{t_{1}, t_{2} \in J}\left|t_{1}-t_{2}\right|\right\}$ pairwise disjoints for $l \in\{2, \ldots M\}$ (we are avoiding the end points a and b), then we have actually proved the following lower semi-continuity property

$$
\begin{equation*}
\mathcal{H}^{0}\left(\partial^{*}\{f= \pm \infty\}\right)=\mathcal{H}^{0}\left(\left\{t \in(a, b) \cap J_{f}:|[f(t)]|=\infty\right\}\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{0}\left(J_{f_{k}}^{\sigma}\right) \tag{3.40}
\end{equation*}
$$

where $f:=f_{1}+f_{2}$. Notice that the set J_{f} is well defined since f is the sum of a (bounded) $B V$ function and a piecewise constant function which might assume values $\pm \infty$, but jumps only at finitely many points.

Having this in mind we can come back to our original problem. Fix $\xi \in \mathbb{S}^{n-1}$ satisfying (3.32). Given $y \in \Pi^{\xi}$ for which (3.32) and (3.34) hold true we can pass through a not relabelled subsequence (depending on y) for which the following liminf

$$
\liminf _{k \rightarrow \infty}\left[\epsilon\left|D\left(\hat{u}_{k}\right)_{y}^{\xi}\right|\left(U_{y}^{\xi} \backslash J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)+\mathcal{H}^{0}\left(U_{y}^{\xi} \cap J_{\left.\left(\hat{u}_{k}\right)_{y}^{\xi_{y}}\right)}^{\sigma}\right)\right]
$$

is actually a limit. Passing through a further not relabelled subsequence, we may also suppose that (3.40) holds true in each connected component of U_{y}^{ξ}, i.e.

$$
\mathcal{H}^{0}\left(\partial^{*}\left\{v_{y}^{\xi}= \pm \pi / 2\right\}\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{0}\left(J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right)
$$

Notice that $\left|v_{y}^{\xi}\right|<\pi / 2$ a.e. on $U_{y}^{\xi} \backslash A_{y}^{\xi}$, hence $\left\{v_{y}^{\xi}= \pm \pi / 2\right\}=A_{y}^{\xi}$ a.e. and so $\partial^{*}\left\{v_{y}^{\xi}=\right.$ $\pm \pi / 2\}=\partial^{*} A_{y}^{\xi}$. In particular

$$
\begin{equation*}
\mathcal{H}^{0}\left(\partial^{*} A_{y}^{\xi}\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{0}\left(J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}^{\sigma}\right) \tag{3.41}
\end{equation*}
$$

Therefore, by passing through suitable subsequences, each depending on y, when computing the liminf inside the left-hand side integral of (3.33) and by using (3.41) we infer

$$
\begin{align*}
& \int_{\Pi \xi} \mathcal{H}^{0}\left(\partial^{*} A_{y}^{\xi}\right) \mathrm{d} \mathcal{H}^{n-1}(y) \tag{3.42}\\
& \quad \leq \epsilon \sup _{k \in \mathbb{N}}(1+4 n(\sigma-1)) \hat{\mu}_{u_{k}}(U)+\liminf _{k \rightarrow \infty} \int_{U \cap J_{u_{k}}^{\sigma}}\left|\nu_{u_{k}} \cdot \xi\right| \mathrm{d} \mathcal{H}^{n-1}
\end{align*}
$$

The arbitrariness of ξ implies that (3.42) holds for \mathcal{H}^{n-1}-a.e. $\xi \in \mathbb{S}^{n-1}$. Hence, we deduce that A has finite perimeter in U. In addition, by taking the integral on \mathbb{S}^{n-1} on both sides of (3.42) we infer

$$
\alpha_{n} \mathcal{H}^{n-1}\left(\partial^{*} A\right) \leq \epsilon n \omega_{n}(1+4 n(\sigma-1)) \sup _{k \in \mathbb{N}} \hat{\mu}_{u_{k}}(U)+\alpha_{n} \liminf _{k \rightarrow \infty} \mathcal{H}^{n-1}\left(J_{u_{k}}^{\sigma}\right)
$$

where $\alpha_{n}:=\int_{\mathbb{S}^{n-1}}|\nu \cdot \xi|$. Moreover, the arbitrariness of $\epsilon>0$ tells us

$$
\mathcal{H}^{n-1}\left(\partial^{*} A\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{n-1}\left(J_{u_{k}}^{\sigma}\right)
$$

Finally, by the arbitrariness of $\sigma \geq 1$ and by the fact that $J^{\sigma_{1}} \subset J^{\sigma_{2}}$ for $\sigma_{1} \geq \sigma_{2}$ we conclude (1.2).

In order to show that u can be extended to the whole of U as a function in $G B D(U)$, we define the sequence of $G B D(U)$ functions by

$$
\tilde{u}_{k}(x):= \begin{cases}u_{k}(x) & \text { if } x \in U \backslash A \\ 0 & \text { if } x \in A\end{cases}
$$

Clearly, if we define v as

$$
v(x):= \begin{cases}u(x) & \text { if } x \in U \backslash A \tag{3.43}\\ 0 & \text { if } x \in A\end{cases}
$$

then we have $\tilde{u}_{k} \rightarrow v$ a.e. in U and

$$
\sup _{k \in \mathbb{N}} \hat{\mu}_{\tilde{u}_{k}}(U) \leq \sup _{k \in \mathbb{N}} \hat{\mu}_{u_{k}}(U)+\mathcal{H}^{n-1}\left(\partial^{*} A\right)<+\infty
$$

Therefore, by using the technique developed in $[1,6]$ we can conclude $v \in G B D(U)$.

Remark 3.8. Under the additional assumption (1.3) with $u_{k} \in \operatorname{GSBD}(U)$, we can obtain the further information $e\left(u_{k}\right) \mathbb{1}_{U \backslash A} \rightharpoonup e(u)$ in $L^{1}\left(U ; \mathbb{M}_{s y m}^{n}\right)$ thanks to $e\left(\tilde{u}_{k}\right) \rightharpoonup e(u)$ in $L^{1}\left(U ; \mathbb{M}_{s y m}^{n}\right)$ together with the fact $e\left(u_{k}\right) \mathbb{1}_{U \backslash A}=e\left(\tilde{u}_{k}\right)$ for every $k \in \mathbb{N}$. Moreover, (3.40) can be modified in the following way:

$$
\mathcal{H}^{0}\left(J_{f} \cup \partial^{*}\{f= \pm \infty\}\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{0}\left(J_{f_{k}}\right),
$$

from which it is possible to deduce that

$$
\mathcal{H}^{n-1}\left(J_{u} \cup \partial^{*} A\right) \leq \liminf _{k \rightarrow \infty} \mathcal{H}^{n-1}\left(J_{u_{k}}\right) .
$$

Condition (1.3) would also imply that in (3.33) we actually control

$$
\int_{\Pi_{\xi}} \liminf _{k \rightarrow \infty}\left[\int_{U_{y}^{\xi}} \epsilon \phi\left(\left|\left(\dot{u}_{k}\right)_{y}^{\xi}(t)\right|\right) \mathrm{d} t+\mathcal{H}^{0}\left(U_{y}^{\xi} \cap J_{\left(\hat{u}_{k}\right)_{y}^{\xi}}\right)\right] \mathrm{d} \mathcal{H}^{n-1}(y)<+\infty,
$$

where $\left(\dot{u}_{k}\right)_{y}^{\xi}$ denotes the absolutely continuous part of $D\left(\hat{u}_{k}\right)_{y}^{\xi}$. This in turns allows us to use the well known compactness result for $S B V$ functions in one variable to deduce that the pointwise limit function f^{1} in (3.36) belongs to $S B V((a, b))$. For this reason, the techniques of $[1,6]$ can be adapted to deduce $v \in \operatorname{GSBD}(U)$ (see (3.43) for the definition of v). The convergence of $e\left(u_{k}\right)$ to $e(u)$ in $L^{2}\left(\Omega \backslash A ; \mathbb{M}_{s y m}^{n}\right)$ follows instead by the arguments of [5, pp. 10-11].

Acknowledgements

S.A. acknowledges the support of the OeAD-WTZ project CZ 01/2021 and of the FWF through the project I 5149. E.T. was partially supported by the Austrian Science Fund (FWF) through the project F65.

References

[1] G. Bellettini, A. Coscia, and G. Dal Maso, Compactness and lower semicontinuity properties in $\operatorname{SBD}(\Omega)$, Math. Z., 228 (1998), pp. 337-351.
[2] F. Cagnetti, A. Chambolle, and L. Scardia, Korn and poincaré-korn inequalities for functions with small jump set, Preprint cvgmt.sns.it/paper/4636/, (2020).
[3] A. Chambolle, S. Conti, and G. Francfort, Korn-Poincaré inequalities for functions with a small jump set, Indiana Univ. Math. J., 65 (2016), pp. 1373-1399.
[4] A. Chambolle and V. Crismale, A density result in $G S B D^{p}$ with applications to the approximation of brittle fracture energies, Arch. Ration. Mech. Anal., 232 (2019), pp. 1329-1378.
[5] ——, Compactness and lower semicontinuity in GSBD, J. Eur. Math. Soc. (JEMS), 23 (2021), pp. 701-719.
[6] G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS), 15 (2013), pp. 1943-1997.
[7] M. Friedrich, A Korn-type inequality in SBD for functions with small jump sets, Math. Models Methods Appl. Sci., 27 (2017), pp. 2461-2484.
[8] _, A piecewise Korn inequality in SBD and applications to embedding and density results, SIAM J. Math. Anal., 50 (2018), pp. 3842-3918.
(Stefano Almi) Faculty of Mathematics, University of Vienna, Oskar-MorgensternPlatz 1, 1090 Wien, Austria.

E-mail address: stefano.almi@univie.ac.at
(Emanuele Tasso) Technische Universität Dresden, Faculty of Mathematics, 01062 Dresden, Germany

E-mail address: emanuele.tasso@tu-dresden.de

[^0]: Date: March 28, 2023.
 2010 Mathematics Subject Classification. 49J45, 74R10.
 Key words and phrases. Generalized functions of bounded deformation, compactness, brittle fracture.

