
2
Experiencing Model-Driven Engineering

for Railway Interlocking Systems

Fabio Scippacercola1,2, András Zentai3 and Stefano Russo1,2

1DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125
Napoli, Italy
2CINI-Consorzio Interuniversitario Nazionale per l’Informatica,
Italy
3Prolan Process Control Co., Szentendrei út 1-3, H-2011 Budakalász,
Hungary

2.1 Introduction

For a company to be competitive in the market, following technologies and
being updated with new trends and practices, is essential. In safety-critical
domains, the introduction of new practices and methodologies is slower
than in other engineering fields, since safety standards and long established
practices tend to defer the adoption of new emerging technologies, until
assessments and time reveal them mature and safe. Slow introduction of new
methods is especially characterizing the railway domain, where the lifespan
of products could easily reach decades or even a century. Now it is long
time that Model-Driven Engineering (MDE) techniques and tools have been
proposed, but their maturity – especially for safety-critical systems – is still
debated.

Some recent surveys investigated the adoption of MDE methodologies
and technologies in practice [1, 2]. They revealed the increasing adoption of
MDE in industry. The technology is attractive for the development of critical
systems, since it can speed up the activities of Verification and Validation
(V&V), and it enables the early verification of systems, through techniques
such as model reviews, guideline checkers, Rapid Control Prototyping (RCP)
and Model- and Software-in-the-Loop Tests. These techniques shift the cost

31



32 Experiencing Model-Driven Engineering for Railway Interlocking Systems

of development from the phases of V&V to the ones of requirement analysis
and design, thus leading to benefits in terms of residual errors. Companies
not performing model-in-the-loop testing find almost 30% more errors during
module test [3].

Prolan Co. is a Hungarian company, which develops certified products for
safety critical process control and rail signaling systems. Prolan joined the
European project “CErtification of CRItical Systems” (CECRIS [4]); in its
framework, Prolan started an industrial-academic partnership for the transfer
of knowledge of MDE techniques from the academy to the company, with the
goal of assessing their level of maturity for industrial adoption.

During this activity, it emerged the lack of well-defined processes for the
development of a CENELEC SIL-4 safety critical signaling system that was
suited for the real industrial needs.

2.2 Background: MDE

As for most engineering branches, advances in software engineering have
always resulted from increases in the level of abstraction. Let us consider,
for instance, one of the most peculiar activities of this discipline, namely
computer programming: the first abstraction, i.e., the second generation
programming languages – or assembly languages – were born soon after
programmers had struggled with binary machine code; then came the third
generation programming languages (procedural and object-oriented), that
freed the programmers from low-level details of the machine, and then fourth
generation languages, which added more facilities and masked recurrent
problems, such as the representation of data and the interworking between
heterogeneous systems. The same holds in other areas, such as operating
systems, middleware technologies, and network protocols. In this perspective,
MDE aims at raising the level of abstraction in software design and verifica-
tion [5], and promises to change the traditional methodologies of software
development.

Model-driven approaches focus on a model, i.e., on a set of specifications
or representations of a system that neglect aspects that are not of interest at
the current stage in a software process; the process advances transforming the
model in documents, intermediate artifacts, or in the final product. The result
is that MDE shifts the traditional development paradigm, based on different
kinds of artifacts composed by domain experts in multiple formats, to a
common formalism – the model – by which the artifacts are obtained through
computer-assisted transformations. This model-centric paradigm provides



2.2 Background: MDE 33

several benefits, leading to increased productivity and quality of artifacts,
shorter development time, and enhanced automation, which includes auto-
matic code generation and automatic support to the software engineering
activities.

Since models have always been applied at different extents in engineering
problems and activities, there are many acronyms with fuzzy borders in the
universe of software engineering. We refer to the terminology of Brambilla
et al. [6].

When processes exploit models as support for their goals they are part
of Model-Based Engineering (MBE), and we call the activities document-
centric, since models are only a means to achieve the targets, but there
is no particular emphasis on them. Therefore, MBE is the broadest term,
encompassing all the methodologies and activities that employ models.

Model-Driven Engineering focuses on the processes where models are
key artifacts of the activities (model-centric). When we restrict to considering
MDE for supporting the development of systems, we can use the more spe-
cific term of Model-Driven Development (MDD). One approach of MDD is
the Model-Driven Architecture (MDA), proposed by the Object Management
Group (OMG) [7]. The Model-Driven Testing (MDT) is a theory of software
testing that introduces concepts enabling to transform models in test-cases in
order to support V&V activities. Even though MDT is not an OMG standard,
it uses an OMG’s standard profile, the UML-Testing Profile (UTP) [8, 9].

Model-Driven Engineering is founded on concepts of models and trans-
formations: instead of producing (textual) documents as artifacts – require-
ments, design, code, test artifacts – engineers focus on models as primary
artifacts.

Models are defined in (semi-)formal languages, which are typically
machine-understandable and drawn with the support of tools. Other artifacts
are derived through defined transformations, be they: Model-to-Model trans-
formations (M2M) or Model-to-Text transformations (M2T) from models to
textual documents, source code or testing artifacts (such as test cases and test
scripts).

As argued by Kent [10], MDE can identify different levels of decompo-
sition and can employ ad hoc or domain-specific languages for models and
transformations, whereas MDA is bound to OMG’s standards.

The OMG is an international open membership not-for-profit consortium
grouping many IT companies and organizations around the globe. OMG first
conceived MDA as a technology to overcome the interoperability problems of
applications partially addressed by the CORBA standard [11]. Indeed, even
if CORBA provided a good solution for the interoperability of applications,



34 Experiencing Model-Driven Engineering for Railway Interlocking Systems

it became soon clear how it is difficult for large enterprises to standardize
on different middleware platforms: enterprises have applications on differ-
ent middleware, that have to be integrated even though this process turned
out to be expensive and time-consuming. Furthermore, middleware systems
continue to evolve and even CORBA could not be a guarantee for next
decades. Therefore, MDA was proposed as a better way to reach portability,
interoperability and reusability through architectural separation of concerns
in the OMG vision that postulates how the myth of a standalone application
or standard for developing software as well as for data interchange died.

The recent version 2.0 of the Guide to the standard [7] defines MDA as
an approach for deriving value from models and architecture in support of
the full life cycle of physical, organizational and IT systems. MDA became
an approach to deal with complexity and interdependences in large systems,
namely to derive value from modeling by defining the structure, semantics,
and notations of models using industry standards.

In order to enable (automatic) transformations of models, mechanisms
were introduced to reason on the models themselves: this has been done
through the concept of meta-modeling, namely introducing models for
modeling languages. These concepts are commons to MDE, but MDA
standardized the formalisms to use, so as to have four layers of abstractions:

• M0 is the user data layer, it is the layer at lowest abstraction and the
elements are concrete objects of the problem domain.

• M1 is the layer of modeling concepts. Here are the UML models of
entities that abstract the user data layer, like UML classes or association.
At this level are models defined by software engineers to define the
requirements or architecture of the system.

• M2 is UML Metamodel, i.e., M2 defines, through UML, the syntax of
UML models in M1, as well as their semantic. For instance, M2 will
constraint you to do not use UML links for connecting classes but UML
objects. M1 models can be seen as instances of concepts of M2 layer
and, by M2, you can check consistence of your UML models.

• M3 is most abstract layer defined by OMG. At this level is Meta-
Object Facility (MOF) language. By MOF OMG can define syntax
and semantic for meta-languages. In the MDA, MOF enables to define
transformation rules among different models (of M1 layers) that are
compliant to different meta-models (of M2 layers).

Using its modeling infrastructure, it is possible to define rules to transform
models into other models (M2M) or model into text (M2T). With M2T



2.2 Background: MDE 35

transformation, MDE refers specifically to that kind of transformation that
produces source code (or other textual documents) from models.

2.2.1 MDA Viewpoints and Views

Model-Driven Architecture starts with the well-known and long-established
idea of separating the specification of the operation of a system from the
details on how that system uses the capabilities of its platform. MDA enables
to specify a system independently from the platform that supports it, and to
transform the system specification into one for a particular platform.

A viewpoint specifies a reusable set of criteria for the construction,
selection, and presentation of a portion of the information about a system,
addressing stakeholder concerns [7]; in other words, a viewpoint defines the
abstractions to adopt to focus on particular concerns within the system. A
view is a representation of a system that conforms to a viewpoint [7].

In MDA terms, abstraction eliminates certain elements from the defined
scope and may result in introducing a higher-level viewpoint at the expense
of removing detail. A more abstract model encompasses a broader set of
systems, whereas a less abstract model is more specific to a single system or
restricted set of systems. One important capability of MDA is the automation
that provides for the transformation between levels of abstraction by the use
of patterns.

Model-Driven Architecture specifies three viewpoints, which offer levels
of separation of concerns to realize a system. The three viewpoints are:

Computation Independent Viewpoint (CIV). The computation inde-
pendent viewpoint focuses on the environment of the system, and the
requirements for the system; the details of the structure and processing of
the system are hidden or as yet undetermined;

Platform Independent Viewpoint (PIV). The platform independent
viewpoint focuses on the operation of a system while hiding the details
necessary for a particular platform;

Platform Specific Viewpoint (PSV). The platform specific viewpoint
combines the platform independent viewpoint with an additional focus on
the detail of the use of a specific platform by a system.

The recent version of MDA standard [7] reduces the emphasis on the CIV,
and defines a platform as a set of resources on which a system is realized. This
set of resources is used to implement or support the system. For instance, a
platform can be the organizational structure or a set of buildings and machines



36 Experiencing Model-Driven Engineering for Railway Interlocking Systems

(in case of business or domain platform types); or operating systems, pro-
gramming libraries, and CPUs (when considering computer hardware and
software platform types).

A platform model also specifies requirements on the connection and use
of parts of the platform, and the connections of an application to the platform.
Example: OMG has specified a model of a portion of the CORBA platform
in the UML profile for CORBA. This profile provides a language to use when
specifying CORBA systems. The stereotypes of the profile can function as a
set of markings. A generic platform model can amount to a specification of a
particular architectural style.

Considering the previous views, MDA defines the Computation indepen-
dent Model (CIM), the Platform Independent Model (PIM), and the Platform
Specific Model (PSM). MDA refines CIM in PIM and in PSM using model
transformations during development process.

2.3 The Maturity of MDE

Several surveys analyzed the diffusion and the benefits of Model-Based and
Model-Driven techniques and technologies into industrial practices, after
30 years from the introduction of the first MD tools on the market. However,
these analyses are still not enough to get a complete picture about the state of
the MD practices. Indeed, an aspect that is often neglected by these surveys
is that the utilization of MD techniques is tightly dependent on the domain,
which influences the demands of the users as well as the stability of the envi-
ronment and the availability and maturity of the supporting tools. The domain
of embedded systems, for instance, has seen the diffusion of sophisticated
MD tools such as Matlab Simulink or SCADE, that keep evolving in the
offered functionalities since they were introduced on the market, many years
ago. However, if we consider all other domains, we can see that the adoption
of MDE in software companies differs from that in the domain of embedded
systems: although MDE is always perceived beneficial, the benefits are not as
evident as in the embedded system industry.

In general MDE seems not completely mature yet, and the feasibility of
its adoption partially debated, with tools not enough stable integrated, and
much of the MDE potential yet to be demonstrated. Summarizing the various
observations in the surveys of past years in industry, we may conclude that:

• MDE is spreading in industry, but it is still far to be pervasive. It
followed the concurrent evolution of modeling languages (such as UML)



2.3 The Maturity of MDE 37

and of related tools: in 2005 practitioners were using MBE for concep-
tual modeling [12], in 2008 model-centric approaches were perceived
better than code-centric ones in most of tasks [13], in 2010 and 2011
MDE has been observed in a wide range of application domains
[14–21], despite there are many problems and no general and common
consensus on these approaches;

• Models are mainly used for design and documentation, while the
benefits of advanced techniques (such as code generation, test case gen-
eration, or model animation) are lowly exploited: models are introduced
mostly as an enabling technology inside the process, to enable business
that otherwise would not be possible [14–16];

• UML is gaining popularity, but support tools are not enough mature
yet to build toolchains meeting the specific needs of companies: they
are considered one of the biggest problem by the industry, that is
worried about ease of their usage, the vendor lock-in problem, and the
interoperability among different tools [18–21];

Model-Driven Engineering depends on the business domain and on organi-
zational factors, and its adoption requires changes in the personnel skills, the
software processes, and the company practices. MDE demands for special
skills and for changes in the roles of developers and software engineers:
retraining programmers to think at a higher level of abstraction can reveal
a difficult task. These aspects have not been well addressed so far, and the
current approaches do not adequate to the people, but the people have to adapt
to them.

A partially different scenario is observed in the domain of embedded
systems, where we can draw the following picture:

• Model-based techniques are widely adopted (almost pervasive in auto-
motive domain), and models are used not only for informative and doc-
umentation purposes but they were the key artifacts of the development
processes [1, 2].

• The needs for introducing models was mainly for shorter development
time, and to improve reusability and quality, whereas less than half had
the need to introduce models to exploit formal methods, or because they
were required by the standards [1, 2].

• The activities of V&V had a huge impact by their adoption in the
automotive domain [3]: the automotive industry was used to exploit
model-driven approaches for the early verification of the systems,
by techniques such as model reviews, guideline checkers, RCP and



38 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Model- and Software-in-the-Loop Tests, that lead to better quality,
reduced development time, due to the shifting of the costs to the phases
of requirement analysis and design;

• According to [22], UML is not used widely due to short lead-time
for the software development, or lack of understanding or knowledge
of UML models; however this survey, limited to MDE/MDA in the
Brazilian industry, does not agree with [1, 2] targeting the European
industries of embedded systems. These authors found that the majority
of survey participants were using Matlab/Simulink/Stateflow, followed
by Eclipse-based tools. The most used modeling languages were the
OMGs ones (UML and SysML);

• As for generic software companies, in the top shortcomings identified
there are the scarce interoperability and usability of tools, and the high
(initial) effort to train developers [1, 2].

Why was the diffusion of MB and MD techniques different in the embedded
systems domain with respect to other application areas? We claim that this is
due to:

i. The different weight of the activities in the development process (more
emphasis on design and implementation for generic software systems;
more emphasis on analysis and V&V for embedded systems);

ii. The parallel evolution of the code-centric technologies that are available
for the development, which raised even more the level of abstraction
during the design, and simplified the way the systems are implemented.
The hypothesis partially reflects the different focus on the adoption of
models in the two domains, since there is more emphasis on design and
documentation in the general market, and on the V&V techniques for
the embedded systems.

The cited surveys identify the current state of the adoption of MD techniques
in industry by collecting the opinions of the practitioners on the benefits and
drawbacks of model-based and model-driven techniques. However, besides
these quantitative data, there is the need of empirical studies that analyze
qualitatively and critically the merits and faults of model-driven approaches.
Indeed, the success or failing factors of MDE are still unclear, and more
research is needed [23].

A systematic review of empirical studies on MDE from 2000 up to June
2007 was performed by Mohagheghi and Dehlen [24]. They show that MDE
can effectively reduce the cost and development time, however this depends
on the grade of adoption in the development process: a success story is the



2.3 The Maturity of MDE 39

one of Motorola [25, 26], that used MDE for more than 15 years in a wide
spectrum of activities, ranging from protocol implementations up to handheld
devices or network controllers; they experienced an increase in quality and
productivity (ranging from 1.2× to 8×) and an approximately 33% reduction
in the effort required to develop test cases.

Motorola could achieve these results within a mature process that was
supported by own-made translators and tools for the model exploitation.
Indeed, one common issue of MDE is the absence of well-defined processes
[24, 27, 28], as the application of MDE requires changes in the activities,
corporate culture and skills of the employees: many software engineering
methods are not fitted to use models as main artifacts, and the environments
seems not mature enough. Some previous studies attempted to apply pre-
existing processes to MDE, or to create own ones, but MDE shifts the
importance of many activities to (automatic) transformation rules, and change
consolidated development process is not a naive task. The study [29] reports a
successful introduction of a MBE process after 4 years and three projects had
been defined and consolidated: there is the need to look beyond the technical
benefits of a particular approach to MDE and instead concentrate on social
and organizational issues [16].

Moreover, the process becomes a more difficult problem in safety-critical
domain, where compliance with certification standards poses additional
requirements on the methodologies for product life cycle. For these kind of
systems, the major part of costs are for the activities of V&V, so rigorous
and well-assessed techniques have to be integrated within the development
process for the early detection of faults and to guarantee the quality of the
product. In addition, non-functional requirements, such as safety, reliabi-
lity and timing requirements, are a primary concern that have to be taken
into account by these processes: current MDE methodologies do not cope
with stringent functional requirements and qualities in current systems, i.e.,
the ability of these approaches to adapt to rapidly changing hardware and
implementation platforms that are highly complex [23].

Parallel to the challenge of the product life cycle, there is the open prob-
lem of the supporting tools: they are not mature yet, and influence most of the
adoption of MDE. Moreover, the vendor lock-in problem is also perceived
as a problem, and the companies prefer to adopt open source solutions or
to develop their own tools. Indeed, the tools are not well usable, do not
interoperate between themselves, do not keep in synchronization the models
at different level of abstractions, are not flexible to collaborative working,
and are not suited with the adoption of different models and modeling



40 Experiencing Model-Driven Engineering for Railway Interlocking Systems

notations [23]. Thus, model-driven processes have to carefully consider the
problem of defining the toolchain for supporting the activities.

2.4 A Model-Driven Methodology for Prolan

In the period when CECRIS started, Prolan was developing the next gener-
ation of railway interlocking systems, and in particular the first product of
this generation, the Prolan Block (PB), a safety-critical system for railway
interlocking that must be CENELEC EN 50126, EN 50128 and EN 50129
SIL-4 certified.

The system is deployed alongside railway segments, which are named
blocks. Each block is equipped with a PB, with sensors for detecting incoming
and outgoing trains (these sensors are the axle counters), and with semaphores
that are part of the signaling system. The PB manages the block (Figure 2.1),
receiving data from sensors, and properly setting the semaphores according
to its internal state.

The interlocking is realized by the overall distributed system that consists
of interacting PBs, which must ensure that no collision will happen on the
railway, directing the train movements by proper sequences of signals. For
instance, according to the specific regulations, the yellow lamps can indicate
that the next block’s semaphore is red because there is an obstacle (e.g., a
train) in the block after the next (e.g., there is a train two semaphores ahead).

Figure 2.1 A representation of the Prolan Block and its operating environment.



2.4 A Model-Driven Methodology for Prolan 41

Prolan was interested in understanding the potentialities that model-
driven technologies could give for the development of the PB and for the
other products of the same generation. Indeed, small and medium size enter-
prises like Prolan are interested in model-driven technologies but there are
barriers to their introduction, for the deep changes that these require into the
organization and in the current industrial practices. Indeed, for the adoption
of MDE Prolan needs to carefully rethink and redesign its current product
development life cycle, that currently complies with the railway standards
CENELEC EN 50126, EN 50128 and EN 50129, as well as the skills of the
employees, even if no proven-in-use model-driven lifecycle for this domain
is available and supported by long-term evidence.

The traditional Prolan development life cycle follows the V-Model and
is compliant with the European railway standard EN 50128. The activities
of the CENELEC V-Model process can be grouped in those concerning
development, that are on the left side of the ‘V’, and those focusing on
V&V, that are on the opposite side as it can be seen in Figure 2.2. The
activities of V&V require planning stages that are performed before their
actual execution: these planning stages are carried out during design.

Besides the activities in the V-Model, CENELEC EN 50128 also pre-
scribes requirements on the documents produced at each stage, as well as
on the project organization. For instance, if we consider the highest integrity
level (SIL-4), distinct people have to test, verify and validate the product, in
order to cross-check their work. The phases adjacent to the ‘V’, the Software
Planning and Software Assessment, aim at tuning and assessing the activities
of the life cycle, defining the tasks to be performed during the process and
checking that the product and all artifacts satisfy the requirements and comply
with the standard.

To gain experience on model-driven technologies, Prolan started a col-
laboration with CINI in the framework of the CECRIS Project to develop a
development process enhanced with model-driven approaches.

Since Prolan wanted a concrete and feasible option for replacing its
current methodology, the researcher proposed a development process backed
to Prolan’s traditional process. This solution minimizes the impact of the
change on the organization, and is also compatible with the safety standards
pursued by the company. The adaptation of the development processes of
Prolan to MDE focused on core phases of the CENELEC V-Model, starting
from the System Development Phase up to the Software Validation Phase,
i.e., on the Software Development Life Cycle (SDLC).



42 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.2 Software Development Life Cycle according to EN 50128.

The proposed model-driven V-Model lifecycle is shown in Figure 2.3: it is
composed of a left, center and a right part; the title lines of the boxes refer to
the SDLC activities performed by Prolan, according to CENELEC EN 50128
standard. For each activity, the boxes contain the models produced, and the
formalisms used. Arrows represent dependency between the artifacts. The
Component Design also depends on the Component Verification Design if it
exploits the test model to early detect faults.



2.4 A Model-Driven Methodology for Prolan 43

Figure 2.3 The adapted model-driven V-Model life cycle for Prolan [31].

On the left there are forward engineering activities (system analysis,
design and implementation); the phases in the center are for V&V planning,
while on the right side there are the activities of V&V execution. The
CENELEC V-Model life cycle adopts implicitly different viewpoints on the
system for each level of the ‘V’: the top level focuses on the system as a
whole, the level below uses a viewpoint on the system architecture, then it
considers the components and their internal design; finally, the lowest level
of the ‘V’ sees source code details. These abstractions are used on both sides
of the V-Model, for development and V&V.

The activities are assigned to a number of roles that comply with
the CENELEC EN 50128 standard. We consider the following roles and
responsibilities:

• The Requirements Manager is responsible for specifying the software
requirements. (S)he shall be competent in requirements engineering and
be experienced in application’s domain (as well as in safety attributes);

• The Designer transforms software requirements into a solution, defining
the system architecture and developing component specifications. (S)he
has be competent in the application area, and in safety design principles;

• The Implementer transforms design solutions into data, source code or
other representations to create the product software artifacts. (S)he has to
be competent in engineering of the application area and implementation
languages and supporting tools;

• The Tester develops the test specifications, and performs the test exe-
cution. (S)he has to be competent in the domain where testing is
carried out;



44 Experiencing Model-Driven Engineering for Railway Interlocking Systems

• The Integrator manages the integration process using the software
baselines, developing the integration test specification. (S)he has to be
competent in the domain where component integration is carried out.

All these roles require advanced modeling skills, and experience with MDE,
as well as with the adopted formalisms and tools.

The process starts with System Requirements Specification, by defining
the system environment and software requirements. Then, System Design and
Component Design are carried out. The former defines a high-level system
architecture, identifying the hardware-software interface, and the components
interfaces. Requirements are then allocated to components, and the Designer
specifies their responsibilities and expected interactions. Finally, in Compo-
nent Design the Designer completes the components with the internal design,
and the Implementation concludes the development.

For enabling forward engineering to model-driven technologies, we
define in three stages a CIM, a PIM, and PSM, following the MDA principles.

The V&V planning activities (Validation Design, Integration Verification
Design, and Component Verification Design) have been isolated at the center
of the V-Model. They are followed by the ones of V&V execution that are
performed on the right side of the ‘V’, i.e., Validation, Integration Verification
and Component Verification. For instance, Validation Design produces the
Overall Software Test Specification after the System Requirement Specifi-
cation. Then, the actual validation is performed in the Validation activity,
at the end of the ‘V’, after Integration Verification, to assess the product
conformance to requirements.

For the phases of V&V, we propose a model-driven methodology based
on the MDA abstractions: the planning phases use Platform Independent Test
Models, whereas the execution phases build Platform-Specific Test Models.
In fact, the V&V execution phases on the right side of the ‘V’ benefit from
the availability of the implementation, which constrains the technological
platform.

Using this methodology, Prolan aims at improving the reuse of artifacts of
design and V&V, supporting most of activities of the life cycle with model-
driven approaches. Prolan wanted to evaluate the adoption of OMG standards,
i.e., SysML [30] and UML, to be open to multiple tools and promote the
interoperability of the models. It is worth to note that custom profiles can be
introduced in the process to potentiate the automatic generation of artifacts
throughout the whole SDLC, thus reducing the manual efforts.

We remark that since Prolan’s products must undergo safety certification,
one of the main requirements of the methodology is to exploit model-driven



2.4 A Model-Driven Methodology for Prolan 45

technologies for supporting multiple activities of V&V. Indeed, the proposed
process is open to multiple forms of V&V, and includes techniques of early
system validation, through the definition of the Computation Independent
Test (CIT) model.

2.4.1 Experimentation within A Pilot Project

Prolan started a pilot project on a subset of requirements for the Prolan
Block, in order to assess the benefits and drawbacks of the model-driven
technologies.

2.4.2 System Requirements Specification

At this phase, the Requirements Manager defines the system and the speci-
fication of software requirements. We defined a CIM starting from the high-
level system specification.

The CIM models requirements, and the relations between them, in
SysML, because the language turns out particularly suited in this phase due
to the Requirement diagram, the Use Case Diagram, and the Block Definition
Diagram. In particular, SysML Requirement Diagram is useful to display
textual requirements, and their relationships, and to trace them with other
modeling elements.

Prolan built in the pilot project a CIM using MagicDraw [32], a modeling
tool created by No Magic. Functional and non-functional requirements of the
system were described using requirement diagrams meanwhile the system
context was described with block definition diagrams. Modeling using the
MagicDraw tool was introduced in an earlier phase of the CECRIS project
in the framework of the knowledge transfer with Budapest University of
Technology and Economics. Using models to capture requirements increased
requirement quality significantly because the graphical representation made
it possible to overview complex systems as well as the constraints of the mod-
eling environment forced the engineers to create consistent requirements. We
found it convenient to separate functional and non-functional requirements in
different groups as well as to mark derived requirements using the refinement
relationship.

An example of functional and non-functional requirements modeling can
be seen in Figures 2.4 and 2.5. As it can be seen from Figure 2.6, the PB
system is connected to a Radio Block Center (RBC) to a PB Human Machine
Interface (HMI) to a Station Interlocking System and to track occupancy



46 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.4 Prolan Block (PB) functional requirements.

Figure 2.5 PB non-functional requirements.



2.4 A Model-Driven Methodology for Prolan 47

Figure 2.6 BDD diagram showing the environment of the PB.

detectors. In the BDD diagram not only the related components but also
the multiplicity as well as the exchanged information and signals could be
visualized.

Not only other actors, but also their relations and compositions were
modeled with the BDD. Use case diagrams were created to describe in which
functionalities the actors are involved (Figure 2.7).

One use case of the PB HMI is to receive the status of the PB and display
it. Another use case is to reset the track occupancy detectors in case the
operator activates the axle counter reset.

High-level functionalities of the system defined by functional require-
ments and use cases are further detailed by behavioral diagrams: state
machine diagrams, activity diagrams and sequence diagrams. Requirements
coming from the railway domain like the description of the semaphore’s
behavior (in Figure 2.8) are primarily introduced into the CIM.

Active support from the CINI side was necessary in modeling the CIM,
because the technology was relatively new to the requirement engineers
of the company. During this phase 6 SysML Requirement diagrams; 12
SysML Block Definition diagrams; 41 Use Cases diagrams; 6 State Machines
diagrams; 29 Activity diagrams; and 33 Sequence diagrams were created.



48 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.7 Computation Independent Model (CIM) use case diagram for the Prolan Block.

2.4.3 System Design

In System Design, the Software Designer builds the Platform Independent
Model to define the software architecture, the interfaces between the com-
ponents, and between the components and the overall software. To this end,
(s)he uses structural diagrams, such as Component and Class Diagrams, and
assigns the requirements to the system components. Since the viewpoint is
platform independent, the interfaces are independent of any technological
platform.

In the pilot project, Prolan used UML component and class diagrams to
model the high-level architecture of the PB.

The PB design comprises five components (Figure 2.9): Prolan Block
Core Logic, Track Occupancy Detector, Network Communicator, IS Con-
troller, and HMI Controller.

By communicating with the axle counters, the Track Occupancy Detector
notifies to the system events such as “a train entered the block” or “a train
has left the block”. It also manages device failures, notifying exceptional
conditions.



2.4 A Model-Driven Methodology for Prolan 49

Figure 2.8 State machine diagram of the semaphore behavior [31].

The IS Controller interacts with the semaphore, setting the proper aspect
and coping with malfunctionings. Similarly, the NetworkCommunicator uses
the network, for interacting with adjacent PBs, and the HMIController
manages the human-machine interface.

Finally, the ProlanBlockCoreLogic sets the interlocking systems accord-
ing to its internal status and by collaborating with the other four components.

The components’ interfaces were defined following guidelines to keep
them as much as possible UML standard and platform-independent. For



50 Experiencing Model-Driven Engineering for Railway Interlocking Systems

PBObjects

:ProlanBlockCoreLogic1

HMIControllerReq

IHMIControllerListener IHMIController

IConventionalISListener

IConventionalISController

ConvISReq

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManagerListener

INetworkManager

NetworkPortReq

IHMIControllerIHMIControllerListener

HMIControllerReq

ConvISReq

IConventionalISController

IConventionalISListener

ITrackOccupanyListener

ITrackOccupancyDetector

TrackOccReq

INetworkManager

NetworkPortReq

INetworkManagerListener

:TrackOccupancyDetector1
ITrackOccupancyDetector

ITrackOccupanyListener

TrackOccPro

ITrackOccupancyDetector

TrackOccPro

ITrackOccupanyListener

:ISController1IConventionalISController

IConventionalISListener

ConvISPro

IConventionalISController

ConvISPro

IConventionalISListener

:NetworkCommunicat1

INetworkManager

INetworkManagerListener

NetworkPortPro

INetworkManager

INetworkManagerListener

NetworkPortPro

:HMIController1

IHMIController

IHMIControllerListener

HMIControllerPro

IHMIController

IHMIControllerListener

HMIControllerPro

Figure 2.9 High-level system architecture [31].

instance the services of any middleware or library have been defined in
terms of abstract interfaces, and the data types of the variables neglected one
specific programming language.

2.4.4 Component Design

The next phase is Component Design: here the Designer refines the PIM, to
specify the internal design of the components. (S)he identifies all lowest soft-
ware units, fully detailing their input and output, and specifying algorithms
and data structure. The PIM becomes complete, and can be runnable and
object of simulation.

In the pilot project, Prolan defined the PIM using IBM Rhapsody Deve-
loper [33] (hereinafter: Rhapsody), but following the guidelines to build a
model platform-independent. Indeed, the tool does not allow a clear separa-
tion between a PIM and a PSM, thus we avoided to insert C++ code, and
adopted UML compliant syntax where possible.



2.4 A Model-Driven Methodology for Prolan 51

Only few parts could not be specified in a platform-independent style.
However, these parts were specified in C++, to exploit the model anima-
tion feature of Rhapsody. Indeed, Prolan was interested in this feature as a
technique of early fault detection: Rhapsody’s model animation generates an
instrumented implementation of the model that allows to observe at runtime
the program execution. This feature was useful and valuable for getting an
immediate feedback on the design.

By Rhapsody Panel Diagrams, we drew a graphical user interface bound
to the model that enabled to generate and receive model events at runtime. Of
course, the execution can be also followed on behavioral diagrams, e.g., state
machines or sequence diagrams.

2.4.4.1 Implementation
Implementation phase deals with the production of software that is analy-
zable, testable, verifiable and maintainable. Following MDA, the PIM is
refined into one (or more) Platform Specific Models that are bound to target
platforms. The PSM adds low-level implementation details. For instance, a
PSM binds data and interfaces to the target OS and middleware chosen for
the instantiation of the PIM.

Using IBM Rhapsody, Prolan set tagged values and other parameters to
enrich the PIM with information platform-specific details, to specify how to
translate the association (e.g., by static or dynamic arrays), what is the clock
for the scheduler of the state machines’ event queues, and other parameters.
These are used by Rhapsody for the automatic translation of PSM into code.

Considering the requirements of the PB, Prolan specified that the gen-
erated code cannot use dynamic memory and that the variables have to be
initialized at runtime, due to the lack of memory isolation on Prosigma, the
technological platform for the PB. The platform specific code can also exploit
the round-trip code feature of MDE tools:

1. By automatic code generation, packages, code skeletons, make files and
other artifacts are automatically model-to-text produced;

2. The Implementer fills the code skeletons with platform-specific details,
using the support of modern development environments (such as
Eclipse);

3. By code round-trip, the model is automatically augmented with the
information written manually by the Implementer in the source code.

According to the requirements, there are many options for the translator
that include the execution framework at runtime. For instance, Rhapsody



52 Experiencing Model-Driven Engineering for Railway Interlocking Systems

offers two C/C++ frameworks: IBM Rhapsody Object Execution Framework
(OXF), and IBM Rhapsody Simple Execution Framework (SXF). The latter is
dedicated to embedded systems and safety-related development: qualification
kits support the certification of the automatic generated code for several
standard (including ISO 26262, EN 50128 and recently DO-178B).

The translation of our PSM in C++ source code generated around 7.5
thousands of lines of code for a platform using a conventional OS, 7.3 thou-
sands for target platform using a commercial Real Time Operating System
(VxWorks), and 5.9 thousands C lines of code for an embedded systems not
using an OS. We used the SXF framework in the last code generation.

2.4.5 Validation Design

For Validation Design, we propose a model, named CIT Model, to specify the
behavior of the actors and of the environment. CIT can be used for designing
validation tests, e.g., as UTP sequence diagrams representing the interactions
of the actors with the system.

Prolan decided to does not build a CIT model for the Prolan Block, and
the benefits of CIT modeling have been experimented on another system, the
Prolan Monitor, that is discussed in the next section.

2.4.6 Integration Verification Design

During Integration Verification Design, the Integrator realizes integration
tests to show that components behave correctly when integrated together. The
expected behavior of the components is independent from their inner design,
thus we refer to this model is named Black Box Platform Independent Test
Model (BB-PIT).

BB-PIT provides static and dynamic views of the system’s compo-
nents, and supports functional testing for unit/integration/system verification
(Figure 2.10). The static description supports the generation of test harness,
such as stubs and drivers for unit and integration testing. The dynamic
description supports the generation of test suites and test cases.

The components’ behavior seems modeled twice, in PIM and BB-PIT.
However, the two models have different purposes: the first specifies how to
build the system, and represents the specification that an actual implementa-
tion must comply with; the second describes the expected behavior in a way
to verify its correspondence between requirements and implementation (e.g.,
by test cases).



2.4 A Model-Driven Methodology for Prolan 53

Figure 2.10 The transformations of the BB-PIT.

For tests specification, UML-UTP Sequence diagrams are less error-
prone than textual notations, and it is easier to derive test cases for multiple
target platforms (such as TTCN-3 and JUnit), enhancing reusability and
maintainability.

In the pilot project, Prolan adopted Conformiq Designer (from here
onward: Conformiq) [34] to generate automatically test cases from the
BB-PIT. However, since Conformiq is not fully compliant with UML, the
behavior was specified in QML, the language used by the tool. As ade-
quacy criterion we used the requirement coverage, using the requirement
traceability offered by the model-driven tools.

In total, Prolan achieved the full coverage of requirements generating 21
test cases for the ProlanBlockCoreLogic. Test cases were exported to JUnit
from sequence diagrams (Figure 2.11), and the tool also provided us with
the traceability matrix correlating test cases with the structural features they
cover (states, transitions, requirements).

We also assessed the test harness generation from BB-PIT. Conformiq
required to write the SUT adapter to let the testing framework interact
with the system. Instead, Rhapsody offers the Test Conductor Add On [35],
that automatically generates the testing harness (including the drivers and
stubs), starting from model design diagrams. Within Test Conductor we could
execute test cases directly in Rhapsody, observing the effects, and following
the behavior of the SUT by means of sequence diagrams.

2.4.7 Component Verification Design

In Component Verification Design tests have to confirm that components
perform their intended functions. Here, we define the Grey Box Plat-
form Independent Test (GB-PIT) Model, which is used for verification
by the internal view of the components. Following this flow, engineers



54 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Figure 2.11 A test case automatically generated from the BB-PIT by Conformiq.

focus on a functional V&V modeling in the Integration Verification Design,
whereas they focus on functional and structural V&V modeling at this
stage.

Prolan assessed the IBM Rhapsody Automatic Test Generator (ATG) [36]
for the structural verification of the ProlanBlockCoreLogic. ATG generated
ten test cases (Figure 2.11) achieving the 91% coverage of the structural
features of the model (they covered 19/21 states and 22/24 transitions).
However, it was not able to reach the complete coverage.

2.4.8 Model-Driven V&V Subprocess

The activities on the right side of the V-Model concern V&V execution: we
propose to use in these phases the models built during the Design activities,
but after they have been refined with the new details added in PSM during
implementation.



2.5 Environment System Validation 55

Thus, in Component Verification we named the model White Box Plat-
form Specific Model (WB-PST), and the Tester adds new test cases consider-
ing the details of the target platform. The WB-PST can be used to calculate
the test coverage on the basis of the final system code, as well as to support
any kind of verification of the actual code, such as to derive consistent and
efficient code review plans by considering the component software metrics
and implementation details.

Similarly, during Integration Verification phase the BB-PIT model is
refined in the Black Box Platform Specific Test Model (BB-PST), where plat-
form specific details complete the integration test specification. For instance,
the BB-PST can be exploited to perform interface testing, a technique that is
highly recommended by CENELEC EN 50128: interface testing is executed
knowing the actual domain of all interface variables, and selecting particular
input to assess the behavior of the (integrated) components (e.g., at their
normal, boundary, or invalid values).

Finally, in Validation phase, the Tester assesses that system and software
requirements are met. To this end, (s)he executes the overall system tests
defined in the CIT. Moreover, if the CIT is executable, the Tester can put
the CIT and the software in-a-loop, to perform software-in-the-loop and
hardware-in-the-loop testing.

2.5 Environment System Validation

Our methodology also exploits MDE for validation, by defining an environ-
mental model during Validation Design to analyze the actors’ behavior. This
model, named CIT Model, specifies the expected behavior of the environment
when interacting with the system by behavioral diagrams (e.g., Sequence,
State Machine or Activity diagrams) that are used to derive validation
test case.

The CIT also appears in other studies [37] but our definition differs
from the previous ones, since we define the CIT a model for validation
that abstracts from the computation details of the system under analysis
(SUT), and also propose to develop the CIT as an executable model of the
environment, with interfaces specular to those of the PIM. This definition
supports multiple forms of V&V during the product life cycle.

Since the CIT has an interface specular to the one of the PIM, we can put
the two models in-a-loop and the CIT can be used to perform model-in-the-
loop test (since it is runnable), enabling to:



56 Experiencing Model-Driven Engineering for Railway Interlocking Systems

• Validate the system against its expected interactions with external actors;
• Create a simulated environment to reason about the operational aspects

of the system in its environment (also through model animation).

Model-in-the-loop (MIL) testing can be performed as soon as the PIM is
available, i.e., during the Component Design, enabling to an early fault detec-
tion. Moreover, if the Tester can use additional/external sources of knowledge
to model the actors’ behavior (such as domain knowledge or historical data),
MIL testing can also be useful to detect missed software requirements, by
assessing the behavior in a simulated environment.

Then, when a system implementation is available, the Tester can build an
adapter to allow the CIT to interact with the actual SUT, allowing Software-
and Hardware-in-the-loop Testing.

CIT also enables to performance testing, generally adopted for the assess-
ment of critical systems, as it is recommended by the safety standards. Indeed,
the CIT can generate inputs representative of the operational profile.

Other forms of verification allowed by the CIT are:
Model-checking through the in-the-loop model. This can assess the

absence of undesired conditions during the operation, analyzing the states
of the PIM and CIT.

Back-to-back testing, a special case is when the CIT can be seen as
another PIM, for instance when we consider systems that act as client and
server at the same time. For this kind of systems, we can instantiate two PIMs,
putting in-a-loop each other, to perform back-to-back testing.

2.6 Experimenting the CIT

The benefits of the CIT and of environmental modeling have been assessed
in another part of the interlocking system with which Prolan Block interacts,
the Prolan Monitor.

The Prolan Monitor (PM) shares with the PB the Prosigma hardware and
middleware platform, which is the basis of the next generation of Prolan’s
products.

The purpose of the PM is to send signals generated by legacy inter-
locking devices to modern interlocking systems that communicate through
protocols based on IP networks (such as via X.25 over TCP/IP). More
specifically, PM monitors railway objects: each object is associated to one
bit of information, which is encoded by one couple of valent and antivalent
physical signal values. The PM transmits the bit of information to other
devices, detecting invalid values for the couple of electric signals. Indeed,



2.6 Experimenting the CIT 57

the input can suffer of special unstable states during which the signals
quickly alternate in their value for a transient time, called bounce time: the
PM must properly filter the signals, separating transient noise from invalid
inputs.

To assess the benefits of the CIT, Prolan made an executable model of the
PM’s environment. The CIT is composed of two CIT Railway Objects: each
CIT Railway Object controls the couple of logical signals associated with the
binary information that they encapsulate; from the CIT point of view, the PM
is an actor.

The CIT Railway Objects are implemented by a Signal Generator and
an Event Generator: the Event Generator determines the next output to
be triggered (including transient and invalid states), as specified by a user-
defined operational profile, whereas the Signal Generator sets the couple of
output signals and manages the duration of the transients.

A panel diagram makes the CIT interactive: a couple of knobs allow to set
the event generation period and to customize the duration of transient states.

Linking together with an adapter simulating a physical relay the CIT and
the PIM, we preliminarily performed Model-in-the-loop testing. Only chang-
ing the adapter with a real hardware card forwarding the events to the actual
SUT, we could also perform Hardware in-the-loop testing (Figure 2.12).

Figure 2.12 The configuration of the PM for HIL Testing.



58 Experiencing Model-Driven Engineering for Railway Interlocking Systems

2.7 Lesson Learned

The CECRIS knowledge transfer activities allowed assessing the maturity
of MDE for railway interlocking systems. The project managers became
acquainted with MDE methodologies and tools, and Prolan started to consider
their introduction into the development processes.

Indeed, the pilot project showed that MDE is a mature technology, which
supports the whole development process. Using SysML for requirements
specification helped to produce better artifacts, reasoning formally on incon-
gruences and missing specifications than with the current document-centric
approach. Also, fast prototyping, early fault detection, automatic test gener-
ation, and other MDE features revealed a gain of productivity and quality
during design and V&V phases than current methodology.

However, even for SME companies as Prolan that have limited engi-
neering capacity, it is not easy to change current development process and
practices. MDE requires for a technological and knowledge transfer. While
the former can be addressed with personnel trainings, the latter is more subtle,
long, and expensive. Therefore, Prolan submitted a joint tender proposal
together with the Hungarian University, partner of CECRIS project, aiming
at getting active support in their introduction during the next safety critical
project, and to investigate model-driven technologies further.

Indeed, still an extensive experimentation of model-driven methodologies
is needed. By the pilot project on the Prolan Block we qualitatively assessed
MDE: even if the benefits of model-driven approaches turned out to be
evident, we could not easily evaluate how much time is needed for Prolan to
have a return of investment. This tender would introduce the academic know-
how and support in the planning, design and implementation for a complete
Railway Interlocking System project.

However, the current experience has been saved by Prolan, and if the
tender is rejected then the enhancement of the current development lifecycle
of Prolan with the one proposed in the framework of the pilot project will be
applied. The innovation is planned to be applied gradually, through several
stages expected to last several years.

At the first stage, Prolan targets to introduce models for supporting the
current activities, starting to use MBE than MDE approaches. For instance,
it is expected to adopt modelling tools for system requirement specification
and system design phases. The current document-based system requirements
specification and the the requirement management system will be replaced
with software using SysML models, taking benefits of the improved model
traceability.



References 59

These first changes already raise knowledge and technologies issues: we
still have not decided if to adopt exclusively SysML for describing the system
requirements, because we could be not able to teach satisfactorily modeling
and SysML to all the team members; moreover, we have not completed the
tool selection process. Among the selection criteria it is required that new
tools be stable, and easily interoperable with the other software suites already
in use at Prolan. The fully compliance with standards, and the vendor lock-in
problem are also of interest for the tool selection. The relatively high price
of licenses and the difficulty of using these modeling tools have an adverse
effect on the introduction of model-driven methodologies.

The CECRIS experience revealed that model-driven technologies can
really improve the development, enhancing quality of the product and of
the development life cycle. Despite these advantages, the management of
the railway product development decided to pursue a conservative approach
towards the introduction of model based tools and development methods: the
big issues of MDE concern skills and organization. The learning curve of
these technologies is long and difficult to quantify, and the relevance of roles
during the development will change, deeply impacting human-organizational
factors. The innovation must be introduced gradually, taking into account
these factors.

The benefits of cooperating with academic partners within the CECRIS
project were manifold, as it was demonstrated by the pilot project: the
experience in the methodologies and tools enabled Prolan to receive active
tutoring and support for the full product lifecycle, shortening the learning
curves and reducing the number of errors caused by the lack of knowledge,
method, and experience with the tools. Moreover, the broad knowledge of
the emerging new technologies in the field enabled the academic partners to
suggest the criteria in selecting the appropriate tools and methodologies.

References

[1] Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson J. (2014).
“Assessing the State-of-Practice of Model-Based Engineering in the
Embedded Systems Domain,” in Proceedings of the 7th International
Conference on Model-Driven Engineering Languages and Systems
(MODELS), eds. J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E.
Insfran (Berlin: Springer International Publishing), 166–182.

[2] Marko, N., Liebel, G., Sauter, D., Lodwich, A., Tichy, M., Leitner, A.,
and Hansson J. (2014). Model-based engineering for embedded systems



60 Experiencing Model-Driven Engineering for Railway Interlocking Systems

in practice. Research Reports in Software Engineering and Management,
Technical report, University of Gothenburg, Gothenburg.

[3] Broy, M., Kirstan, S., Krcmar, H., Schätz, B., and Zimmermann, J.
(2013). “What is the benefit of a model-based design of embedded soft-
ware systems in the car industry” in Emerging Technologies for the Evo-
lution and Maintenance of Software Models (Hershey, PA: IGI Global),
343–369.

[4] CECRIS. (2016). EU Project CECRIS, CErtification of CRItical
Systems. Available at: http://www.cecris-project.eu

[5] Schmidt, D. C. (2006). “Guest Editor’s Introduction: Model-Driven
Engineering,” in: Computer 39.2, 25–31. Lecture Notes in Computer
Science (Berlin: Springer).

[6] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-Driven Soft-
ware Engineering in Practice. San Rafael, CA: Morgan & Claypool
Publishers.

[7] Object Management Group (OMG). (2014). MDA Guide (Version 2.0).
Available at: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (accessed
on 2016-03).

[8] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I.,
and Williams, C. (2007). Model-Driven Testing: Using the UML Testing
Profile (New York, NY: Springer-Verlag New York, Inc.).

[9] Dai, Z. R. (2004). “Model-driven testing with UML 2.0,” in Proceedings
of the 2nd European Workshop on Model Driven Architecture (MDA)
with an emphasis on Methodologies and Transformations (EWMDA),
eds D. Akehurst, 179–187. Tech. rep. 17-04, University of Kent,
Canterbury.

[10] Kent, S. (2002). “Model Driven Engineering,” in the Proceedings of the
Third International Conference on Integrated Formal Methods (IFM),
286–298. Berlin: Springer-Verlag.

[11] Object Management Group (OMG). (2003). MDA Guide (Version 1.0.1).
Available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed
on 2016-03).

[12] Davies, I., Green, P., Rosemann, M., Indulska, M., and Gallo, S. (2006).
How do practitioners use conceptual modeling in practice? Data Knowl.
Eng. 58.3, 358–380.

[13] Forward, A. and Lethbridge, T. C. (2008). “Problems and Opportunities
for Model-centric Versus Code-centric Software Development: A Sur-
vey of Software Professionals,” in Proc. of the International Workshop
on Models in Software Engineering (MISE) (New York, NY: ACM),
27–32.



References 61

[14] Hutchinson, J., Rouncefield, M., and Whittle, J. (2011). “Model-driven
engineering practices in industry,” in Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE) (New York, NY:
IEEE), 633–642.

[15] Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S.
(2011). “Empirical Assessment of MDE in Industry,” in Proceedings
of the 33rd International Conference on Software Engineering (ICSE)
(New York, NY: ACM), 471–480.

[16] Hutchinson, J., Whittle, J., and Rouncefield, M. (2014). “Model-driven
engineering practices in industry: social, organizational and manage-
rial factors that lead to success or failure,” in Science of Computer
Programming 89, Part B (Amsterdam: Elsevier), 144–161.

[17] Whittle, J., Hutchinson, J., and Rouncefield, M. (2014). “The state of
practice in model-driven engineering,” in IEEE Software 31.3 (New
York, NY: IEEE), 79–85.

[18] Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., and Reggio, G. (2012).
“Maturity of software modelling and model driven engineering: A sur-
vey in the Italian industry,” in Proceedings of the 16th International
Conference on Evaluation Assessment in Software Engineering (EASE)
(New York, NY: ACM), pp. 91–100.

[19] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G. (2011).
“Preliminary Findings from a Survey on the MD State of the Practice,”
in Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM) (New York, NY: ACM),
372–375.

[20] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G.
(2012). “Benefits from modelling and MDD adoption: expectations and
achievements,” in Proceedings of the 2nd International Workshop on
Experiences and Empirical Studies in Software Modelling (EESSMod)
(New York, NY: ACM), 1–6.

[21] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reggio, G. (2013).
Relevance, benefits, and problems of software modelling and model
driven techniques – A survey in the Italian industry. J. Syst. Softw. 86.8,
2110–2126.

[22] Agner, L. T. W., Soares, I. W., Stadzisz, P. C., and Simo, J. M. (2013).
A Brazilian survey on UML and model-driven practices for embedded
software development. J. Syst. Softw. 86.4, 997–1005.

[23] Mussbacher, G., Amyot, D., Breu, R., Bruel, J. M., Cheng, B. H.
C., Collet, P., Combemale, B., France, R. B., Heldal, R., Hill, J.,



62 Experiencing Model-Driven Engineering for Railway Interlocking Systems

Kienzle, J., Schöttle, M., Steimann, F., Stikkolorum, D., and Whittle, J.
(2014). “The relevance of model-driven engineering thirty years from
now,” in Proceedings of the 17th International Conference on Model-
Driven Engineering Languages and Systems (MODELS) eds. J. Dingel,
W. Schulte, I. Ramos, S. Abrahão, and E. Insfran (New York, NY:
Springer International Publishing), 183–200.

[24] Mohagheghi, P. and Dehlen, V. (2008). “Where Is the Proof? A Review
of Experiences from Applying MDE in Industry,” in Proceedings of
4th European Conference on the Model Driven Architecture – Founda-
tions and Applications (ECMDA-FA), Vol. 5095, ed. I. Schiefer-decker
and A. Hartman. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 432–443.

[25] Baker, P., Loh, S., and Weil, F. (2005). “Model-Driven Engineering in
a Large Industrial Context – Motorola Case Study,” in Proceedings of
the 8th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), eds. L. Briand and C. Williams (Berlin:
Springer), 476–491.

[26] Weigert, T. and Weil, F. (2006). “Practical experiences in using model-
driven engineering to develop trustworthy computing systems,” in Proc.
of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, Vol. 1 (New York: IEEE), 208–215.

[27] Huhn, M. and Hungar, H. (2010). “8 UML for software safety and
certification,” in Model-Based Engineering of Embedded Real-Time Sys-
tems: International Dagstuhl Workshop. Revised Selected Papers, eds.
H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz (Berlin: Springer),
201–237.

[28] Pettit, R., Mezcciani, N., and Fant, J. (2014). “On the needs and
challenges of model-based engineering for spaceflight software sys-
tems,” in Proceedings of the IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC) (New York: IEEE), 25–31.

[29] Ferrari, A., Fantechi, A., and Gnesi, S. (2012). “Lessons learnt from
the adoption of formal model-based development,” in Proc. of 4th Inter-
national Symposium on the NASA Formal Methods (NFM), eds. A. E.
Goodloe and S. Person (Berlin: Springer), 24–38.

[30] Object Management Group (OMG). (2008). Systems modeling language
(SysML). Available at: http://www.omg.org/docs/formal/08-11-02.pdf
(accessed on 2016-03).



References 63

[31] Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A. (2015).
“Model-driven engineering of a railway interlocking system,” in Pro-
ceedings of the 3rd International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD 2015) (Setúbal:
SCITEPRESS), 509–519.

[32] No Magic, Inc. (2016). Magic Draw. MagicDraw. Available at: http://
www.nomagic.com/products/magic-draw.html (accessed on 2016-03).

[33] IBM Corp. (2016). Rationalr Rhapsodyr Developer. Available
at: http://www-03.ibm.com/software/products/it/ratirhap (accessed on
2016-03).

[34] Conformiq Inc. Conformiq Designer. http://www.conformiq.com/
products/conformiq-designer, (accessed on 2016-03).

[35] IBM Corp. (2016). Rationalr Rhapsodyr Test Conductor Add On. User
Guide. Available at: http://pic.dhe.ibm.com/infocenter/rhaphlp/v7r6/
topic/com.ibm.rhp.oem.pdf.doc/pdf/RTCUserGuide.pdf (accessed on
2016-03).

[36] IBM Corp. (2016). Rationalr Rhapsodyr Automatic Test Generator
Add On. User Guide. Available at: http://pic.dhe.ibm.com/infocenter/
rhaphlp/v7r5/topic/com.ibm.rhapsody.oem.pdf.doc/pdf/ATG-UserGuid
e.pdf (accessed on 2016-03).

[37] Schieferdecker, I. (2005). “The UML 2.0 Test Profile as a Basis for
Integrated System and Test Development,” in Proceedings of Köllen
Druck+Verlag GmbH, Jahrestagung der Gesellschaft für Informatik
(Germany: Köllen Druck & Verlag GmbH), Vol. 35, pp. 395–399.


