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A B S T R A C T   

Ecological niche models (ENMs) are a powerful tool in ecological research and conservation planning. Since 
ENMs provide probability maps of suitable areas under environmental change, they may assist in designing 
conservation actions and addressing conservation priorities. However, ENMs are usually implemented by 
learning the species climatic preferences from their current geographic distribution, which leaves them 
vulnerable to the issue of niche truncation, as it comes with non-climatic limits to the current species distribution 
as posed by anthropic activities and settlements, and competition avoidance. These problems might be alleviated 
by the inclusion of fossil occurrences, which refer to moments during species existence when such limits were 
absent or distributed differently. By stacking species occurrences from different time moments is conceivable that 
a larger fraction of the species fundamental niche is thence explored. Here, we combined current and fossil 
occurrence data for 38 medium-large mammal species of conservation concern in order to assess the influence of 
the fossil record inclusion on ENM predictions under future climate change scenarios. We found that ignoring or 
including fossil data yields consistent trends in terms of predicted range increase/decrease. Yet, although adding 
fossil data invariably results in increased niche width, estimates of range change improved for almost a half only 
of the species pool. These results suggest that most species might currently be in non-equilibrium with their 
environment, and that the inclusion of fossil data may be crucial to the better understanding of species climatic 
requirements, hence for designing more effective conservation strategies.   

1. Introduction 

Ecological niche models (ENMs) are sought to represent the biocli
matic preferences and tolerance limits of species (Muscarella et al., 
2014). One key feature of ENMs is the ability to produce probability 
maps of suitable areas for the species, either under current climatic 
conditions, in the past, or in the future. This feature makes ENMs a 
viable tool to model future species response to predicted climate change 
(Barbet-Massin et al., 2018; Fois et al., 2018; Frans et al., 2022; Hanson 
et al., 2020). Yet, it must be considered that projecting ENMs in the 

future (or in the past) stands on strong assumptions (Elith and Leath
wick, 2009; Guisan et al., 2014). First, ENMs assume that the species 
occurrences used to produce the model capture a faithful representation 
of the physiological tolerance spectrum of the species. That is, the spe
cies is presumed to be well–sampled and at equilibrium with its envi
ronment. In areas under intense human impact, such supposition could 
be severely counterfeited, as anthropic activities and settlements may 
limit the extent of area available to the species (Chiarenza et al., 2023; 
Di Marco et al., 2021; Frans et al., 2022; Maiorano et al., 2019; Saupe 
et al., 2019). Secondly, the reliability of ENMs critically depends on the 
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number of occurrence data available (Jiménez-Valverde, 2020; Santini 
et al., 2021), on the natural temporal variability in climates (Santini 
et al., 2021), and on model transferability to past or future climates 
(Qiao et al., 2019). As a matter of fact, ENMs derived from the current 
distribution of a species represent its realized climatic niche, but ENM 
projections in time require approaching the species bioclimatic poten
tial, that is its fundamental niche. Obvious workarounds to sort these 
problems out are using ENM strategies that are little sensitive to limited 
entry data (Breiner et al., 2015; Lomba et al., 2010), which are not 
entirely based on the current distribution of the species (Mondanaro 
et al., 2023; Qiao et al., 2017) and supplementing the current distribu
tion with fossil observations and their related climatic data (Fritz et al., 
2013; Jones et al., 2019; Maguire et al., 2015; Maiorano et al., 2013; 
Raia et al., 2020). The inclusion of fossil data is notoriously important to 
increase the quality of inference in studies of phenotypic evolution 
(Castiglione et al., 2020; Slater et al., 2012). Since the climatic niche can 
be assimilated to an evolving phenotypic trait (Holt and Gaines, 1992; 
Rolland et al., 2018), it seems reasonable to assume that including fossil 
observations and their climates could ameliorate ENM predictions, 
especially for the rare species, by informing the model about the climatic 
conditions potentially suitable to the species that are not currently 
sampled, hence approaching the species fundamental climatic niche. So 
far, the few studies explicitly integrating modern and fossil data into 
climate change vulnerability assessments via ENMs were consistent in 
reporting better predicted outcomes from models including fossil data 
(Lima et al., 2017; Sales et al., 2022). This evidence seems to suggest 
that modern occurrence data might be representative of a limited frac
tion of the species climatic niche in most cases, thus yielding over
estimated vulnerability to climate change (Chiarenza et al., 2023; Sales 
et al., 2022). 

That said, the benefits derived from coupling modern and fossil data 
into ENMs to predict climate change effects are not unambiguous 
(Moreno-Amat et al., 2017). First, if the bioclimatic niche evolved, the 
fossil data may represent climates that were, but no longer are, suitable 
to the species. Still, fossil data might be representative of a capacity to 
explore a fraction of the natural variability in climates that is no longer 
existent. For instance, lions Panthera leo were once as widespread as to 
occur in icy North America during the last glacial maximum (Barnett 
et al., 2009). However, this is no proof that extant lion individuals may 
survive in periglacial areas, and the species passed through severe bot
tlenecks that may have reduced its bioclimatic tolerance limits by 
depleting its gene pool (Barnett et al., 2009). 

Herein, we aim at exploring whether and how the inclusion of fossil 
data into climate change vulnerability assessments performed via ENMs 
might alter predicted effects on species distribution, in comparison to 
models trained exclusively with modern occurrence data. We started 
from two related hypotheses: i) adding fossil data to modern occurrences 
provides a steady increase in the sampled climatic niche, that widens the 
species calculated climatic tolerance; ii) that these wider climatic niches 
bring about reduced negative effects by climate change on the future 
geographic distribution in most species. We tested both hypotheses by 
focusing on a number of terrestrial mammal species of conservation 
concern, currently listed as “critically endangered”, “endangered”, 
“vulnerable” or “near threatened” by the IUCN. The two study hypoth
eses were tested pursuing five specific objectives: i) calculate niche 
width and overlap between modern and fossil data, identifying the 
major climate conditions characterizing modern and fossil realized 
niches; ii) calibrate two groups of ENMs, relying on modern occurrence 
only (i.e., modern ENMs) and modern plus fossil data pooled together (i. 
e., full ENMs), projecting both groups to year 2080 under two different 
climate change scenarios; iii) identify possible species showing dis
crepancies in current–2080 range modifications between modern and 
full ENMs predictions; iv) test for the relationship between range net 
change values obtained by modern and full ENMs and the niche width 
gain generated by adding fossil data to modern occurrences; and v) 
evaluate whether possible discrepancies in predicted range alterations 

between the two ENM groups depend on different past climates being 
sampled. 

2. Methods 

2.1. Modern and fossil occurrences 

We collected modern occurrence data from two online databases, the 
“Global Biodiversity Information Facility” (GBIF; www.gbif.org/; 
Table S1) and INaturalist (https://www.inaturalist.org/). The accu
racy of records gathered from GBIF was checked by including only data 
provided with at least two decimal places (0.01 decimal degrees, cor
responding to 1.11 km at the equator), while data from INaturalist were 
assessed by removing records without photos attached and expert 
confirmation. Data were also filtered by removing duplicates and re
cords with unrealistic coordinates, as well as occurrences from natural 
history collections (i.e., the so-called “preserved” data, according to the 
GBIF vocabulary; Marcer et al., 2022). As to fossil data, we implemented 
the mammal database provided in Mondanaro et al. (2021), where 
radiocarbon dates were calibrated using the “Bchron” R package (Has
lett and Parnell, 2008) through the “Intcal20” calibration curve (Reimer 
et al., 2020). From the initial set of candidate mammal species, we 
excluded those reporting <20 modern occurrence data, retaining a total 
of 38 species (Table S1). After filtering procedures, we retrieved 15,012 
modern occurrence records and 1,834 fossil data. Moreover, fossil data 
for each species were replicated 10 times as to account for the uncer
tainty in age estimate inherent to individual fossil data (Mondanaro 
et al., 2021). Specifically, at each replicate the age of each fossil site was 
drawn from a uniform distribution ranging from the minimum to the 
maximum age estimate of the site. 

2.2. Climate predictors 

As environmental predictors, we considered 17 bioclimatic vari
ables. Specifically, variables for training modern ENMs were gathered 
from the CHELSA database version 1.2 (Karger et al., 2017), while past 
climatic predictors were obtained by Krapp et al. (2021). The latter 
database includes paleoclimate simulations generated by the HadCM3 
global circulation model (Valdes et al., 2017), covering the last 800 kya 
at 1 kya temporal resolution. Since paleoclimate simulations in Krapp 
et al. (2021) did not model diurnal cycle, both annual mean diurnal 
range (BIO2) and isothermality (BIO3) were unavailable, thus reducing 
the number of bioclimatic variables to 17 in lieu of 19 (Karger et al., 
2017). For ENMs calibration, CHELSA variables were rasterized at 10 
km spatial resolution, while past climatic predictors were obtained at 50 
km spatial resolution. For prediction purposes, both current and future 
climate variables were aggregated at 50 km spatial resolution. Biocli
matic variables were further checked for multicollinearity by calculating 
the variance inflation factor (VIF) on pooled predictor values over all the 
800 kya temporal span, as to detect possible changes in correlation 
structure over time. After posing a VIF threshold ≤5 (Zuur et al., 2007), 
we retained 6 predictors: Temperature seasonality (BIO4), Mean daily 
maximum air temperature of the warmest month (BIO5), Mean daily 
mean air temperatures of the wettest quarter (BIO8), Precipitation 
amount of the driest month (BIO14), Mean monthly precipitation 
amount of the wettest quarter (BIO16), Mean monthly precipitation 
amount of the driest quarter (BIO17). 

2.3. Niche overlap analyses 

Comparison of the modern and full (i.e., fossil plus modern) climatic 
niches was carried out using the analytical framework proposed by 
Broennimann et al. (2012). Accordingly, PCA was used to decompose 
the environmental space defined for modern and fossil data (i.e., all the 
environmental conditions intersected by the occurrence and background 
points). Occurrence records and climate conditions were projected into 
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this PCA space, then their densities were computed across the first two 
PCs relying on a kernel density estimator. Densities of occurrence and 
background environments were then divided by the maximum number 
of occurrences in any cell of the environmental space and by the number 
of sites with the most common climate, respectively (Broennimann 
et al., 2012). The process generated a density grid in the environmental 
space that was used to quantify niche overlap between modern and fossil 
niches in terms of Schoener’s D index (Schoener, 1970). This index 
ranges from 0 to 1 with values of 0 indicating no niche overlap and 
values of 1 indicating a complete overlap. For each species, the entire 
procedure was repeated for each of the 10 replicated fossil datasets 
generated to account for the uncertainty in age estimate. Niche overlap 
analyses were carried out using the “ecospat” R package (Di Cola et al., 
2017). 

2.4. Ecological niche models 

For modern ENMs, we generated 10,000 background points for each 
species in the study area, covering a region identified by all the WWF 
Terrestrial Ecoregions (Olson et al., 2001). For full ENMs, we generated 
a single ensemble model for each of the 10 replicated fossil datasets. For 
each species modelled under full ENMs, any single replicate included 
modern data, one of the replicated fossil datasets and 10,000 back
ground points selected within the WWF Ecoregions. To compensate for 
potential sampling biases, background points were geographically 
located according to the density of the occurrence data, so that more 
background points occur where presences are denser (Mondanaro et al., 
2021; Roy-Dufresne et al., 2019; Syfert et al., 2013). For full ENMs, we 
divided the record of each species into 1000-years long consecutive time 
bins and allocated the 10,000 background points proportionally to the 
number of presences per time bin. For both modern and full ENMs, we 
adopted an ensemble forecasting approach by relying on the function
alities provided in the ‘biomod2’ R package (Thuiller et al., 2009). 
Models were trained by using four algorithms: Generalized Linear Model 
(GLM), Generalized Boosting Model (GBM), Random Forest (RF) and 
Maximum Entropy (MAXENT). To evaluate the predictive accuracy of 
modern ENMs, we primarily adopted a spatial block cross–validation 
scheme (Roberts et al., 2017), where occurrences falling into three out of 
four folds were used for model calibration, while the held–out data were 
used for evaluation. Furthermore, we assessed modern ENMs temporal 
transferability (Roberts et al., 2017) through a temporal block cross
–validation approach, thus dividing the fossil data of each species into 
10 time bins of approximatively the same length and projecting modern 
ENMs against each bin. A similar approach was applied to evaluate full 
ENMs, at this time using nine out of 10 bins for calibration and the 
held–out ones to assess predictive performance. ENMs predictive accu
racy was assessed by calculating the area under the receiver operating 
characteristic curve (AUC; Swets, 1988) and the continuous Boyce index 
(CBI; Hirzel et al., 2006). To avoid using poorly calibrated models, we 
considered in further analyses only predictions derived from models 
with AUC ≥ 0.7. Model averaging was performed by weighting the in
dividual model projections by their AUC values and averaging the re
sults (Marmion et al., 2009). Both modern and full ENMs were projected 
on current climate and two future climate change scenarios (i.e., RCP4.5 
and RCP8.5) generated under the HadGEM2-CC global circulation 
model (Martin et al., 2011; see Beyer and Manica, 2020 for a similar 
pairing of HadCM3 and HadGEM2 families of global circulation 
models). The future scenarios predict either mild (RCP4.5) or severe 
(RCP8.5) climate change in 2080. Current and future ENMs projections 
were binarized to obtain range maps according to three thresholding 
approaches (i.e., ‘equalize sensitivity and specificity,’ ‘maximize TSS’, 
and ‘10th percentile of predicted probability’; Mondanaro et al., 2021), 
as to account for the effect of using different binarization schemes (Di 
Febbraro et al., 2019). For each species, both suitability and binary 
spatially explicit predictions were constrained within the boundaries of 
the same WWF Ecoregions selected to delimit the area of background 

points (Newbold et al., 2015). To prevent model extrapolation effect (i. 
e., predicting on covariate values lying outside the calibration range), 
ENMs projections were constrained using environmental clamping 
(Elith et al., 2011), that is capping covariate values at the training range 
limits. Climate change effect on species distribution was quantified by 
calculating the range net change (RNC, hereafter) metric (in terms of 
percentage of gain/loss suitable territory calculated comparing the 
current to the future range) on binary maps generated for each species, 
model and scenario (Franklin et al., 2013). Lastly, we compared range 
net change values predicted by modern and full ENMs, and classified the 
species in two groups: “higher fossil species” (i.e., range net change from 
full ENMs is higher than that from modern ENMs) and “higher modern 
species” (i.e., showing the opposite figure). 

2.5. Range net change versus niche width gain granted by fossil data 

To test whether an increase in niche width generated by the inclusion 
of fossil data is significantly correlated to a reduction of the predicted 
climate change effects on species distribution, we fit a Linear Mixed 
Model (LMM). Specifically, we considered the difference between RNC 
values predicted by full ENMs and modern ENMs (ΔRNC) as the 
response variable, and the percentage increase in niche width provided 
by fossil data as explanatory variable, in interaction with the climate 
change scenario (RCP4.5 vs. RCP8.5) and the species outcome (that is 
either “higher modern” or “higher fossil”). Furthermore, we added 
model replicate (i.e., due to fossil age uncertainty) and binarization 
threshold as random factors, allowing the model to vary its intercept 
accordingly. We also fit a second LMM dropping the interaction with 
species outcome, as to quantify the contribution of this specific term on 
the relationship between the increase in niche width generated by fossil 
data and ΔRNC. The two alternative LMMs were compared to each other 
through Akaike Information Criterion (AIC). LMM goodness-of-fit was 
assessed through conditional R2 (Nakagawa and Schielzeth, 2013). All 
the analyses were performed with the “lme4” (Bates et al., 2015), 
“lmerTest” (Kuznetsova et al., 2017) and “MuMIn” (Bartoń, 2016) R 
packages. 

2.6. Environmental differences in fossil niche between “higher modern” 
and “higher fossil” species 

To test if a diverging pattern in predicted climate change effect be
tween “higher modern” and “higher fossil” species might depend on 
differences in the climatic conditions provided by the fossil niches of 
these species, we deployed a Random Forest (RF; Breiman, 2001) clas
sification model. Specifically, we pooled all the species together and set 
their outcome (“higher modern” or “higher fossil”) as response variable 
and the climate values associated with fossil niche portions in the PCA 
environmental space as covariates. We calibrated a separate RF model 
for each of the two climate change scenarios (RCP4.5 and RCP8.5), 
assessing classification performance as the accuracy rate calculated 
through a five folds cross–validation approach (Liaw and Wiener, 2002). 
We also generated marginal response plots as to depict the shape of the 
relationship between the climatic conditions provided by the fossil 
niches and the probability for a specie to be classified as “higher fossil” 
or “higher modern”. All the analyses were carried out using the “ran
domForest” R package (Liaw and Wiener, 2002). 

Lastly, we devised a procedure to test whether the inclusion of fossil 
data generated exceedingly wide climatic niches, which would be more 
indicative of intraspecific niche evolution rather than of a fuller repre
sentation of the species fundamental niche. Once this procedure indi
cated for each species the most climatically divergent time bins, all the 
analyses were entirely re–run after excluding all the fossil data older 
than these selected intervals (Supplementary text S1). 
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3. Results 

3.1. Niche overlap analyses 

Results for 10 out of 38 species that achieved both modern and full 
ENMs with AUC < 0.7 were excluded from the subsequent analyses. 
Niche overlap analyses indicated low to moderate overlap values be
tween modern and fossil niches among the analyzed species, reporting 
Schoener’s D values between 0 for West Caucasian tur (Capra caucasica) 
to 0.51 for reindeer (Rangifer tarandus). We found that all the species 
increased their niche width after fossil data inclusion, with almost a half 
of them (i.e., 14 out of 28) even doubling it (Fig. S1). The overall average 
increase is 204 %, with sambar deer (Rusa unicolor) showing the lowest 
increase (i.e., 2 %) and Iberian lynx (Lynx pardinus) the highest (i.e., 
1586 %). 

3.2. Ecological niche models 

The 28 species showing AUC values >0.7 in both modern and full 
ENMs reported a mean AUC equal to 0.82 (sd = 0.07) and a mean CBI 
equal to 0.67 (sd = 0.20) for the former (Table S2), and a mean AUC 
equal to 0.79 (sd = 0.06) and mean CBI of 0.61 (sd = 0.21) for the latter 
(Table S2). These species were included in the further analyses. When 
validated under temporal block cross–validation, modern ENMs sub
stantially failed in predicting species distribution (mean AUC = 0.56, sd 
= 0.17; mean CBI = 0.03, sd = 0.34; Table S2), indicating poor temporal 
transferability. 

ENMs predictions under future climate change scenarios revealed 
similar behaviours between modern and full ENMs in terms of RNC 
values (Fig. 1; Table S3). At some 6 to 10 times more range projected 
than currently predicted, the marsh deer (Blastoceros dichotomus) 
consistently is the species with the highest RNC, irrespective of the 
climate change scenario and the ENM applied. Under RCP4.5, 

C. caucasica (− 98 % with modern ENM) and Barbary macaque (Macaca 
sylvanus; − 67 % with full ENM) are expected to experience the highest 
contraction in suitable range. Under RCP8.5 scenario, both modern and 
full ENMs predicted that the worst scenario regards C. caucasica, with 
− 100 % and − 80 % RNC, respectively (Fig. 1; Table S3). 

The slope of the regression between the RNC predicted by modern 
versus the RNC predicted by full ENMs under RCP4.5 is 0.892 (p <
0.001) and the intercept is not significantly different from zero (p =
0.776). Under RCP8.5, the slope was 0.876 (p < 0.001) and the intercept 
not significantly different from zero (p = 0.914). Of the 56 RNC values 
(28 species multiplied by 2 ENM types), 55 were congruent (Table S3), 
meaning that the predicted RNC went in the same direction irre
spectively of whether fossil data were included or not. These results 
indicate that the inclusion of fossil data does not change the main insight 
as per the species fate (i.e., whether the range is expected to decrease or 
to increase either), rather affecting the magnitude of the predicted range 
change. In fact, under RCP4.5 scenario, 16 out of 28 species reported 
higher RNC values from the full than from the modern ENMs. Of these 16 
“higher fossil” species, six significantly deviate from the average rela
tionship between RNC scores of modern and full ENMs (i.e., C. caucasica, 
Ovis ammon, Ursus thibetanus, Panthera pardus, Zaedyus pichiy and L. 
pardinus; Fig. 1; Table S3). Among the remaining 12 species (i.e., “higher 
modern”), only three showed significantly higher RNC values from 
modern than full ENMs (i.e., M. sylvanus, Pongo pygmaeus and Saiga 
tatarica; Fig. 1). Still under RCP8.5 scenario, 16 species resulted to be 
“higher fossil” and 12 “higher modern”. Four species show significantly 
higher RNC values from full than modern ENMs (i.e., O. ammon, 
U. thibetanus, L. pardinus and B. dichotomus), while two report the 
opposite trend (i.e., P. leo and S. tatarica; Fig. 1; Table S3). 

3.3. Range net change versus niche width gain granted by fossil data 

LMM including species outcome as interaction term to explain the 

Fig. 1. Range net change values generated for each species by modern (along the x axis) and full (along the y axis) ENMs under RCP4.5 (left) and RCP8.5 (right) 
scenarios. Orange symbols refer to species reporting a higher RNC in full than in modern ENMs (so–called “higher fossil”), while azure symbols indicate the species 
showing the opposite pattern (i.e., “higher modern” species). Labelled triangles refer to species that deviate significantly from the mean relationship linking RNC 
values from modern and full ENMs (the red thick line; dashed lines indicate the 95 % confidence interval). Upper bar plots depict the total number of “higher fossil” 
(orange) and “higher modern” (azure) species, with the bar portions in brighter colours indicating the number of species significantly deviating from the mean 
relationship between modern and full ENMs RNC values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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relationship between the increase in niche width generated by fossil data 
and ΔRNC has a stronger statistical support than the other candidate 
model without this interaction (AIC with species outcome in interaction: 
14981.38; AIC without species outcome in interaction: 15748.93). The 
best LMM achieved a high goodness-of-fit, with conditional R2 value =
0.46. According to this model, an increase in niche width after fossil data 
inclusion is significantly correlated with a higher ΔRNC, namely a 
higher RNC in full than in modern ENMs. However, the sign of this 
correlation is not univocal among the species, resulting significantly 
decreasing in “higher modern” species and significantly increasing in 
“higher fossil” species (Fig. 3; Table S4). This diverging pattern is 
significantly more pronounced under the RCP8.5 scenario (Fig. 3; 
Table S4). 

3.4. Environmental differences in fossil niche between “higher modern” 
and “higher fossil” species 

Both RF models for RCP4.5 and RCP8.5 scenarios achieved high 
classification performances, scoring accuracy rates higher than 80 %. 
According to both RF models, the species with a greater probability to be 
classified as “higher fossil”, that is to report a higher RNC from full than 
from modern ENMs, are those where the inclusion of fossil data provide 
warmer and drier climates to the species niche (Fig. 4). Specifically, the 
chance for a species to be classified as “higher fossil” strongly increases 
toward higher temperatures of the warmest month, the wettest season 
and, to a lesser extent, toward intermediate–high temperature season
ality values (particularly under RCP8.5 scenario). In parallel, the chance 
for a species to be “higher fossil” strongly decreases toward higher 
precipitation values during the driest month and season (Fig. 4). 

After removing the fossil localities older than the most climatically 
divergent time intervals, we found a significant reduction in species 
climate niche width, with respect of the full fossil record (t = 4.0154, p 

< < 0.001). That said, all the insights we gained from using the full 
record remain unaltered (Supplementary text S1). 

4. Discussion 

In this study, we provide evidence that pooling modern and fossil 
data sources to inform climate change vulnerability assessments via 
ENMs determines a systematic increase in the niche width of the 
analyzed species and yet modern and full ENMs predicted consistent 
trends in terms of range increase/decrease. While this result is not un
expected and reported elsewhere (Lima et al., 2017; Sales et al., 2022), 
we also found the two ENM groups showed diverging predictions about 
the magnitude of range change, with several species reporting signifi
cant discrepancies in the RNC values predicted by the two model classes. 
This merits further inquiry, especially if designing conservation plans 
based on ENMs range change predictions is at stake. According to our 
data, the generalized increase in niche width determined by the inclu
sion of fossil data does not imply a monotonic improvement in the 
predicted effects of climate change. In particular, we found that some 
one half of the species reported lower RNC values under the full ENMs. 

There is widespread acknowledgement that fossil data pertaining to 
living species help understanding their evolution, anatomy and ecology. 
For what concerns species ecology, fossil information provides valuable 
data about their area of origin, potential distribution, and reaction to 
past climatic changes that are hard to gain by relying on the current 
distribution only (Jones et al., 2019; Maiorano et al., 2013; Mondanaro 
et al., 2020). For instance, fossil data inform about species ecological 
plasticity (Di Febbraro et al., 2017), phenotypic adaptation (Mitchell 
et al., 2018; Smith and Betancourt, 2003), and geographic range shift in 
response to climate change (Beyer and Manica, 2020; Carotenuto et al., 
2016). Since fossil data represent moments of evolution with potentially 
non-analogue (to the current conditions) climates and are mostly free 

Fig. 2. Spatially explicit predictions of Pongo pygmaeus (panels A and B) and Ovis ammon (panels C and D) range modifications under 2080 climate change scenarios, 
as generated by modern (panels A and C) and full (panels B and D) ENMs. Maps refer to the “maximize TSS” binarization threshold. Light grey: stable unsuitable 
areas; purple: range loss; yellow: stable range; green: range gain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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from any human impact, our starting hypothesis was that the climatic 
niche width of species could only increase once their fossil occurrences 
were considered. In keeping with this hypothesis, we found an average 
increase in niche width of ca. 180 % when pooling modern and fossil 
data (Fig. S1), while the degree of niche overlap was generally modest, 
probably because of the sampling of non-analogue climates. This 
outcome is in contrast with the substantial evidence for niche stability in 
corals found by Jones et al. (2019), though this latter research was set to 
cover a relatively shorter temporal span (i.e., Last Interglacial, ca. 125 
kya), compared to ours. Realized niche evolution could be exceedingly 
fast in modern species and clades (Atwater et al., 2018; Castiglione et al., 
2022; Di Marco et al., 2021). Yet, niche conservatism is probably com
mon (Cooper et al., 2011; Liu et al., 2020; Peterson et al., 1999), sug
gesting that rapid climatic niche evolution might refer to the exploration 
of different spaces of the fundamental niche, rather than to its evolution 
(Pearman et al., 2008; Tingley et al., 2014). This is probably the case 
with our data. Despite the generally low Schoener’s D values, the results 

obtained by modern and full ENMs in terms of RNC trends (range in
crease vs. decrease) are congruent. This means that modern ENMs are 
very good predictors of full ENMs results (Fig. 1). That said, the two 
model classes diverge in terms of RNC magnitude, with a majority of 
species reporting higher RNC under full than modern ENMs. This may 
result in substantial differences in terms of where suitable habitats are 
predicted to occur in the future (Fig. 2), raising concern about the use of 
modern data only to project species suitable ranges in the future for 
conservation planning. 

Our second hypothesis was that climatic niche expansion by inclu
sion of fossil data would result in a reduced impact of climate change on 
the future geographic distribution in most cases. Interestingly, we did 
not find such a consistent pattern among the mammal species we stud
ied, with almost a half of them showing worsened predicted climate 
change effects after the inclusion of fossil data. This outcome is in 
contrast with reports presented elsewhere (Lima et al., 2017; Sales et al., 
2022), which tend to suggest that including fossil data determines an 

Fig. 3. Linear Mixed Model relationship fitted between the percentage increase in niche environmental space generated by the inclusion of fossil data and the 
difference in range net change values from full and modern ENMs. Tick lines indicate the statistical relationship between x and y variables, while dashed lines refer to 
95 % confidence interval. Each point in the plot represents the mean values of the two above–mentioned variables for each species, while error lines depict standard 
error values. 
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improved reaction to climate change. Sales et al. (2022) reported a 
prevalent increase in species niche width after the inclusion of fossil 
data, exactly as we found, though indicating full ENMs to predict higher 
RNC than modern ENMs in almost 75 % of the analysed species. 
Moreover, the remaining ca. 25 % species reported a modest discrepancy 
between modern and full ENMs predictions of range change (i.e., 
>10–12 % on average). In contrast, we found the species showing higher 
RNC values according to modern ENMs was as high as some 45 %, 
reporting discrepancies in range change values >40 % on average. Such 
divergent outcomes might be related to the different modelling 
approach deployed here (i.e., a classical ENM framework) as contrasted 
to Sales et al. (2022), who used reconstructions of past geographic dis
tributions obtained from a mixture of different techniques, instead of 
explicitly modelling them relying on fossil data. Alternative modelling 
strategies exist that supposedly allow to account for evolution in esti
mating niche characteristics. For instance, Smith et al. (2019) suggested 
that capturing niches at supraspecific taxonomic levels (i.e., “data 
lumping”) might improve environmental preference estimation. While 
we cannot exclude that applying such an alternative approach in this 
context might have led to different outcomes, it is important to mention 
that data lumping is mostly recommended for related taxa sharing wide 

portions of their niches, which is obviously not the case addressed here. 
The species we classified as “higher fossil” had experienced past 

climatic conditions that are expected to be brought about by current 
climatic change (Fig. 4). The converse seems to be true of the “higher 
modern” species group. These results, along with the very good agree
ment between the two ENMs classes, suggest that most species in our 
data seem to have explored, in the past, different domains of their 
respective fundamental niches. The idiosyncrasies separating “higher 
fossil” from “higher living” species groups probably rely in the mean 
bioclimatic preference of their fundamental niche. The global temper
ature increases and extensive aridification expected to occur in the next 
few decades could potentially favour species that were capable to exploit 
these conditions in the past, regardless of how dry and warm the envi
ronment they now occupy are, and the other way around for those which 
show preference for cooler/wetter conditions during their evolutionary 
past (Fig. 4). This calls for the importance of considering the fossil record 
of species occurrences to fully understand their bioclimatic preferences, 
as several species nowadays possibly are in non-equilibrium with their 
environments. 

In summary, our study suggests that the inclusion of fossil data in 
calibrating ENMs gives results strongly consistent with the insight 

Fig. 4. Dashed lines describe the relationship between climate variable values within the fossil niche and the probability of a species to be classified as “higher 
fossil”, as generated by random forest model. To improve readability, curves generated by a gam spline were superimposed. 
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gained at using modern data only, meaning that species will either gain 
or lose suitable territories irrespective of the ENM approach used. 
However, the different magnitudes in predicted climate change effects 
between the two model classes suggest caution in defining conservation 
actions relying exclusively on ENM calibrated with modern data. For 
instance, a high vulnerability to climate change predicted for a given 
species by considering only modern data might suggest that it currently 
occupies suboptimal climates due to some form of niche truncation. 
Unravelling the true potential of such a species to face future climate 
change impacts can only be possible by exploring its realized niche 
portions expressed in the past, i.e., relying on its fossil record. 

The evidence provided in this study highlights the potential for fossil 
data to open a window into the possible reactions to future threats to 
species distribution that are not apparent by using modern data only. 
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evaluation of transferability of ecological niche models. Ecography 42, 521–534. 
https://doi.org/10.1111/ecog.03986. 

Raia, P., Mondanaro, A., Melchionna, M., Di Febbraro, M., Diniz-Filho, J.A.F., Rangel, T. 
F., Holden, P.B., Carotenuto, F., Edwards, N.R., Lima-Ribeiro, M.S., Profico, A., 
Maiorano, L., Castiglione, S., Serio, C., Rook, L., 2020. Past extinctions of Homo 
species coincided with increased vulnerability to climatic change. One Earth 3, 
480–490. https://doi.org/10.1016/j.oneear.2020.09.007. 

Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., 
Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., 
Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., 
Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., 
Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., 
Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., 
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Roy-Dufresne, E., Saltré, F., Cooke, B.D., Mellin, C., Mutze, G., Cox, T., Fordham, D.A., 
2019. Modeling the distribution of a wide-ranging invasive species using the 
sampling efforts of expert and citizen scientists. Ecol. Evol. 9, 11053–11063. https:// 
doi.org/10.1002/ece3.5609. 

Sales, L.P., Galetti, M., Carnaval, A., Monsarrat, S., Svenning, J.C., Pires, M.M., 2022. The 
effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. 
Chang. Biol. 28, 3683–3693. https://doi.org/10.1111/gcb.16145. 

Santini, L., Benítez-López, A., Maiorano, L., Čengić, M., Huijbregts, M.A.J., 2021. 
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