
Economic Theory
https://doi.org/10.1007/s00199-023-01494-0

RESEARCH ART ICLE

Behavioral strong implementation

T. Hayashi1 · R. Jain2 · V. Korpela3 ·M. Lombardi2,4

Received: 1 February 2022 / Accepted: 20 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Choice behavior is rational if it is based on the maximization of some context-
independent preference relation. This study re-examines the questions of implemen-
tation theory in a setting where players’ choice behavior need not be rational and
coalition formation must be taken into account. Our model implies that with non-
rational players, the formation of groups greatly affects the design exercise. As a
by-product, we also propose a notion of behavioral efficiency and we compare it with
existing notions.
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1 Introduction

A cornerstone assumption in economics is that every player is “rational”, in the sense
he maximizes some context-independent preference relation. Thus, a rational player
has self-control and is notmovedby emotions or external factors; hence, he knowswhat
is best for himself. Although this assumption is an important starting point for many
analyses, it does not cover all cases. For instance, Spiegler (2011) adapts models in
industrial organization to identify the optimal contracts that firms canoffer tomaximize
their profits when their customers are subject to specific choice biases. In this paper,
we study the effects of non-rational behavior in an implementation framework.

The theory of implementation under complete information investigates the goals
that a principal can achieve when they depend on players’ preferences. Although
these preferences are commonly known among players, the principal does not know
them, and players’ objectives need not be aligned with that of the principal. The
implementation problem consists of devising a mechanism in such a way that the
equilibrium behavior of players always coincides with the principal’s goal. When
such a mechanism exists, the principal’s goal is said to be (fully) implementable.1

de Clippel (2014), Korpela (2012), and Ray (2010), extend the theory of implemen-
tation to cases in which players canmake choices that are at odds with the conventional
assumption of rationality. This is done by (i) considering individual state-contingent
choices rather than preferences as the primitive characteristics of a player and (ii)
extending the idea of Nash equilibrium beyond the rational domain. This extension
proposes that a strategy profile is a behavioral equilibrium if the resulting outcome
is among each player’s chosen options within the set of outcomes that he can gen-
erate through unilateral deviations. However, because the behavioral equilibrium is a
strictly non-cooperative equilibrium, it is natural to consider the extent to which de
Clippel’s (2014) analysis carries over when coalitions of players can arrange mutually
beneficial deviations.

It has been shown elsewhere that the problem of coalition formation with bound-
edly rational players can offer new perspective on existing problems. For instance,
see Sandholm and Lesser (1997) and Reimer et al. (2020). Therefore, it is worth
exploring the differential impact that the strong equilibrium refinement may have on
implementability when participants are not fully rational.

To illustrate this point, let us consider the leading example of “building willpower
in groups” provided by de Clippel (2014). Therefore, let us suppose that players have a
common long-term goal and let us define willpower as the number of tempting options
a player can overlook to better fulfill his long-term goal. Furthermore, let us suppose
that this long-term goal is difficult to achieve because there are tempting outcomes and
each player has limitedwillpower to exercise self-control. deClippel (2014) shows that
the long-term goal is behaviorally implementable by a mechanism which allows each
player to be “in charge of” a limited number of outcomes. By contrast, when players
can freely communicate and form coalitions and when their equilibrium behavior
coincides with our extension of Aumann’s (1959) notion of strong equilibrium, there

1 For an introduction to the theory of implementation see Jackson (2001), Maskin and Sjöström (2002),
Serrano (2004) and Thomson (1996).

123



Behavioral strong implementation

is no waywe can structure the interactions of players so that their equilibrium behavior
will result in their common long-term goal (details are presented in Sect. 2). The reason
is that the set of outcomes that the grand coalition of all players is “in charge of” is
the set of all outcomes and there is no way that this coalition can exercise self-control
over this set.

In this study, we thus extend the well-known cooperative counterpart of the Nash
equilibrium, namely, the strong equilibrium proposed by Aumann (1959), beyond the
rational domain (termed behavioral strong equilibrium herein) and consider imple-
mentation in this equilibrium. Though this extension can be made in many natural
ways, ours is based on the following two points. First, we want that our notion of equi-
librium coincides with the behavioral equilibrium notion of de Clippel (2014) when
only unilateral deviations are allowed. Second, we want that our notion of equilibrium
coincides with Aumann’s notion on the rational domain.

In a strong equilibrium, no coalition, taking the strategies of its complement as
given, can cooperatively deviate in a way that benefits all its members (Aumann
1959). Thus, it is a strategy profile that is stable not only with respect to the unilateral
deviations of every player, but also with respect to those of every coalition of play-
ers. Since this requirement applies to the grand coalition of all players, every strong
equilibrium is weakly Pareto-optimal.2

We extend this equilibrium notion beyond rational domains as follows. A strategy
profile is a behavioral strong equilibrium if it is a behavioral equilibrium and if no
coalition, taking the strategies of its complement as given, can find an agreement such
that all its members would pick the agreement out of their respective feasible sets and
reject the outcome corresponding to the strategy profile (see the discussion presented
below Definition 1 for more details). When only the unilateral deviations of single
players are allowed, it coincides with the notion of the behavioral equilibrium.

Since a behavioral strong equilibrium is robust to deviations of the grand coalition,
our notion of strong equilibrium incorporates a notion of Pareto efficiency. This notion
extends the Pareto principle beyond rational domains. We introduce this notion of
efficiency in Sect. 3 and compare it with other extensions already proposed in the
literature. According to our extension, outcome x is behaviorally efficient if there
exists a profile of sets (Ei )i∈N , one for each player i ∈ N , such that player i selects
x from the set Ei , while no extension of these sets Ei ⊆ Xi can lead players to
unanimously select some other outcome y and to reject outcome x .

We show that our efficiency concept is non-nested in de Clippel’s (2014) extended
notion of efficiency as well as in Bernheim and Rangel’s (2009) extended notion.
When players are rational, all these extensions of the Pareto principle yield the same
set of Pareto-optimal outcomes. However, in general, none of them is implementable
in the behavioral strong equilibrium.

In Sect. 5, we provide a necessary condition for implementation in the behavioral
strong equilibrium, which extends Maskin monotonicity (Maskin 1999) from rational
domains to any domain of choice behavior. Maskin monotonicity is a necessary con-
dition for implementation in both strong Nash equilibrium (Maskin 1979) and Nash

2 An outcome is Pareto-optimal if it is feasible and there is no feasible outcome that would make everyone
strictly better off.
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equilibrium (Maskin 1999). Contrary to the rational case, we find that the necessary
condition for implementation in the behavioral equilibrium, which is also an extension
of Maskin monotonicity, is no longer necessary for implementation in the behavioral
strong equilibrium (see our example on choice overload). This is somewhat surprising.
In an economic environmentwith fully rational players,Maskinmonotonicity provides
a full characterization of all implementable rules. Since Maskin monotonicity is also
necessary for strong implementation, nothing is gained from an implementation point
of view when coalition formation is allowed. However, with non-rational players,
coalitions matter even in economic environments.

Although our necessary condition is useful to delineate the limitations of imple-
mentation and can provide important insights, it is not sufficient. As inMaskin (1979),
Dutta and Sen (1991), and Korpela (2013), more work is needed to identify, partly
or totally, the class of implementable goals. In Sect. 6, we tackle sufficiency first in
a competitive environment and then provide a simple sufficient condition in a more
general environment when there aremore than two agents.3 This simple sufficient con-
dition is an extension of the axiom of sufficient reason proposed by Korpela (2013) in
the context of strong implementation in rational domains. The practical implications
of these results are provided in Sect. 7. For instance, our necessary condition is also
sufficient in a competitive environment.4

Related literature. Our contribution to the implementation literature is twofold; we
adopt the non-standard solution concept of strong equilibrium and formulate it to
accommodate non-rational players. Implementation in strong equilibrium has been
studied extensively under the assumption of rational players. Maskin (1979) shows
that monotonicity is necessary for strong implementation, just as it is for Nash imple-
mentation. Dutta and Sen (1991) provide the first complete characterization, whereas
Suh (1996) gives a complete characterization when there can be restrictions on feasi-
ble coalitions. There are also some other characterizations based on the unrestricted
preference domain. Fristrup and Keiding (2001) give one of these characterizations
basing it on the idea of effectivity functions. However, these characterization results
are not intuitive, and the condition may be challenging to check in some environments.
A simple sufficient condition for strong implementation, called the axiom of sufficient
reason, is given by Korpela (2013). Savva (2018) provides sufficient conditions for a
social choice rule to be implementable in strong Nash equilibrium in the presence of
partially honest agents, that is, agents who break ties in favor of a truthful message
when they face indifference between outcomes. Recently, Guo and Yannelis (2022)
study belief-free full implementation, a variant ofAumann’s strong equilibrium (1959)
in an incomplete information setting when any coalition can form.

Our main focus, however, lies on the coalition formation of non-rational players. A
growing literature suggests that individual choices are not always consistent with the

3 The two-person case is studied in Hayashi et al (2020; Section 8).
4 Hayashi et al (2020; Section 7) show that the set of behavioral Pareto-optima that no player finds less
desirable than the status quo is implementable in the behavioral strong equilibrium. Unfortunately, as in
Maskin (1979), they find that this set of outcomes is the only implementable set when the domain of players’
state-contingent choice rules is unrestricted.
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maximization of some context-independent preference relation.5 Since mechanisms
are devised to provide players with an incentive to behave in accordance with the
principal’s goal, it is vital to base their design on choicemodels that describe individual
choice behaviormore accurately. It is not surprising, therefore, that a growing literature
on the role of behavioral biases in economic design has accumulated in the past two
decades (Spiegler 2011).

Motivated by recent developments in the theoretical literature on non-rational bahv-
ior, de Clippel (2014) extends the theory of Nash implementation to problems in which
players’ characteristics are described by their state-dependent choices. The first study
to examine implementation problems in a choice framework is Hurwicz (1986), who
shows that Maskin’s (1999) classical results remain valid when each individual choice
rule selects undominated outcomes according to some binary relation. Korpela (2012)
(see also Ray 2010) investigates what choice-consistency properties need to be satis-
fied by the individual choice rules so that the necessary and sufficient conditions of
Moore and Repullo (1990) remain necessary for Nash implementability when players
make state-dependent choices. He finds that a crucial role is played by Sen’s (1971)
property α, which states that if x is the selected from a set A, then it must be selected
in all the subsets of A to which x belongs. Unfortunately, most of the choices made
by non-rational players violate this property. In this paper, we study implementation
problems in which non-rational players can freely form coalitions. The invoked game
theoretic solution concept is that of the behavioral strong equilibrium.

Barlo and Dalkıran (2019) extend de Clippel’s (2014) analysis to an environment
with incomplete information and provide necessary and sufficient conditions for (ex
post) behavioral implementation. Altun et al. (2022), following de Clippel (2014) and
Matsushima (2008), study behavioral implementation problems in which the state-
contingent choices of players are unknown to the principal and one of the players is
inclined to report the true state-contingent choices of the players, but not the true state
(of the world), when the truth does not pose any obstacle to his material well-being.

Other important studies in this strand of the literature are as follows. Eliaz (2002)
studies Nash implementation problems in which players are “faulty” in the sense that
they fail to act optimally. Cabrales and Serrano (2011) study implementation problems
in an environment in which players myopically adjust their actions in the direction
of better or the best responses. Saran (2011) extends the set of preferences to include
menu-dependent preferences and characterizes the domain in which the revelation
principle holds. Glazer and Rubinstein (2012) present a mechanism design model in
which the ability of a player to manipulate the information he reports is affected by the
content and framing of the mechanism. Bierbrauer and Netzer (2012) study the effect
of introducing intention-based social preferences into mechanism design.Matsushima
(2008) and Dutta and Sen (2012) study independently implementation problems with
partially honest players, where a partially honest player has strict preferences for
revealing the true state over lying when truth-telling does not lead to a worse outcome
than that obtained when lying. Saran (2016) studies implementation under complete
information when players are at most k-rational, where a k-rational player performs k

5 See, for instance, Baigent and Gaertner (1996), Manzini andMariotti (2007), Eliaz et al. (2011), Barberà
et al. (2022) and Hayashi and Takeoka (2022).
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steps of iterative elimination. Salant and Siegel (2018) study a model of contracts in
which a profit-maximizing seller uses framing to influence buyers’ purchase behavior.
Finally, de Clippel et al. (2019) study the theoretical implications of level-k reasoning
in mechanism design.

2 Notation and definitions

The environment consists of a collection of n players (we write N for the set of
players), a set of possible states �, and a (non-empty) set of outcomes X . X =
{A ⊆ X |A �= ∅} is the collection of all possible non-empty subsets of X . We focus
on complete information environments in which the true state is common knowledge
among players but unknown to the principal. Player i’s choice rule at state θ ∈ � is a
correspondence Ci (·; θ) : X � X that assigns a non-empty set of chosen outcomes
Ci (A, θ) ⊆ A for each A ∈ X . When x ∈ Ci (A, θ) and y ∈ A\Ci (A, θ), we say
that x is chosen and y could have been chosen from A but is rejected.

Player i’s choice rule is rational at θ if there exists a complete and transitive (i.e.,
rational) preference relation Rθ

i such that Ci (A, θ) = argmaxRθ
i
A for each A ∈

X . A choice rule is rational at θ if and only if it satisfies Sen (1971)’s property α

(“independence of irrelevant alternatives,” or IIA) and property β.6 If player i’s choice
rule is rational for every θ ∈ �, we simply say that player i is rational. Let �̄ denote
the unrestricted rational domain, that is, the set of states where each player is rational.

Let (M, h) be a mechanism, where M = (Mi )i∈N and h : M → X is
the outcome function. As usual, we refer to Mi as the strategy space of player i
and to a member of M as a strategy profile. For any m ∈ M and i ∈ N , let
m−i = (m1, ...,mi−1,mi+1, ...,mn) ∈ M−i ≡ (

Mj
)
j∈N\{i} denote the strategies

chosen by players other than i . We will write m ∈ M as (mi ,m−i ).
A mechanism (M, h) induces a class of strategic games {(M, h, θ) |θ ∈ �}, where

(M, h, θ) stands for the game in which the set of players is N , the action space of
player i is Mi , and player i’s choice behavior is described by his choice rule Ci (·, θ)

at state θ .
When each player is rational at state θ , a strategy profilem is a (Nash) equilibrium

of the game induced by the mechanism (M, h) at state θ if, for each player i ∈ N and
each m′

i ∈ Mi , the following is satisfied: h (m) Rθ
i h

(
m′

i ,m−i
)
. We denote the set of

(pure strategy) equilibria of (M, h, θ) by E (M, h, θ).
Player i’s opportunity set given a strategy profile m−i ∈ M−i for the other players

is given by Oi (m−i ) = {h (mi ,m−i ) ∈ X |mi ∈ Mi }. Following de Clippel (2014),
for any state θ ∈ �, a strategy profile m is a behavioral equilibrium of the game
induced by the mechanism (M, h) at state θ if h (m) ∈ Ci (Oi (m−i ) , θ) for each

6 Property α states that if x is “best” in a set, it is best in all subsets of it to which x belongs to. Property β

states that if x and y are both best in A, a subset of B, then x is best in B if and only if y is best in B. When
X is a finite set, propertis α and β are equivalent to the Weak Axiom of Revealed Preferences (WARP).
Recall that WARP is not sufficient for the transitive rationalizability of a choice rule when the collection X
is arbitrary (Richter, 1971), even when the choice rule is a function. However, if the collection X includes
all subsets of X of up to three elements, WARP is necessary and sufficient for transitive rationalizability
(Arrow 1959; Sen 1971).
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player i ∈ N . Write BE (M, h, θ) for the set of (pure strategy) behavioral equilibria
of the strategic game (M, h, θ). It is clear that BE (M, h, θ) = E (M, h, θ) if each
player i is rational at state θ .

In a strong equilibrium, no coalition, taking the strategies of its complement as
given, can cooperatively deviate in a way that benefits all its members (Aumann
1959). Formally, let N0 denote the set of all non-empty subsets of N . Each group of
players K (inN0) is a coalition. For any coalition K , any mechanism (M, h), and any
strategy profile m ∈ M , let mK = (mi )i∈K ∈ MK and m−K = (mi )i∈N\K ∈ M−K

be the strategy profiles of the players inside K and outside K , respectively, such that
m = (mK ,m−K ). If each player is rational at state θ , a strategy profile m is a strong
equilibrium of the game induced by the mechanism (M, h) at state θ if for all K ∈ N0
and all m′

K ∈ MK , there exists i ∈ K such that h (m) Rθ
i h

(
m′

K ,m−K
)
. We denote

the set of (pure strategy) strong equilibria of (M, h, θ) by SE (M, h, θ).
Coalition K ’s opportunity set given a strategy profile m−K ∈ M−K for the other

players is given by OK (m−K ) = {h (mK ,m−K ) ∈ X |mK ∈ MK }.

Definition 1 (Behavioral strong equilibrium, BSE) A strategy profilem is a behavioral
strong equilibrium of the game induced by the mechanism (M, h) at state θ provided
that the following requirements are satisfied.

(i) h (m) ∈ Ci (Oi (m−i ) , θ) for all i ∈ N .

(ii) For all K ∈ N0, with |K | ≥ 2, and all m′
K ∈ MK , there does not exist any profile

of sets (Ai )i∈K , with Oi (m−i ) ∪ {h (
m′

K ,m−K
)} ⊆ Ai ⊆ OK (m−K ), such that

for all i ∈ K , h
(
m′

K ,m−K
) ∈ Ci (Ai , θ) and h (m) /∈ Ci (Ai , θ).

Write BSE (M, h, θ) for the set of (pure strategy) behavioral strong equilibria of the
strategic game (M, h, θ).

Our equilibrium notion is built around the notion of behavioral equilibrium pro-
posed by de Clippel (2014). Indeed, a behavioral strong equilibrium is a behavioral
equilibrium in which no coalition, taking the actions of its complement as given, can
cooperatively deviate in a way that benefits all its members. When only unilateral
deviations are allowed, the two equilibrium notions coincide.

In principle, two broad approaches can be followed to generalize the strong
equilibrium ofAumann (1959) into a behavioral setting. One approach consists of gen-
eralizing the equilibrium concept directly and accepting the Pareto principle implied
by this generalization. Another approach consists of generalizing the Pareto principle
and defining behavioral strong equilibrium by requiring that the equilibrium outcome
be efficient within each coalition’s opportunity set. Multiple paths can be followed for
each of these approaches. In this paper, we have started exploring the first approach
by proposing a notion of behavioral strong equilibruim, built around the idea of a
behavioral equilibrium. Below, we explain what our line of thinking was.

To better understand why in part (ii) of our equilibrium notion we consider sub-
sets of coalition K ’s opportunity set, let us consider a two-player situation in which
both players are rational and the set of outcomes is X = {x, y, z}. Players’ rational
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preference relations are represented in the table below:

R1 R2

y z
z y
x x

where, as usual, ab for player i means that he strictly prefers a to b.7 Let us consider the
following two-player mechanism, where the two rows correspond to the two possible
(pure) strategies of player 1 and the three columns correspond to the three possible
(pure) strategies of player 2, and where in each box is the outcome assigned to the
strategy profile to which the box corresponds.

m2 m′
2 m′′

2
m1 x x x
m′

1 x z y

By examining all the possible strategy profiles, we see that
(
m′

1,m
′
2

)
is the unique

strong equilibrium. Since the strategy profile (m1,m2) is an equilibrium but not a
strong equilibrium, the grand coalition {1, 2} should be able to find a strategy profile
that all its members prefer to (m1,m2). Since the opportunity set of the grand coalition
is X , players should be able to cooperatively deviate in a way that benefits everyone.
However, players do not make the same choice from X because player 1 selects only y
from X andplayer 2 selects only z from X . To let themcooperatively deviate, theremust
exist subsets A1, A2 ⊆ X such that x ∈ A1 ∩ A2, the intersection C1 (A1) ∩ C2 (A2)

is not empty and x /∈ C1 (A1) ∪ C2 (A2). These subsets can be A1 = {x, z} and
A2 = {x, y, z}. Only in this way players display the same choice behavior, in the
sense that each of them chooses the same outcome from a subset of X containing x
and rejects x . The strong equilibrium implicitly considers these subsets in its definition.
In a sense, it assumes that if there is a way to find a compromise, players will find
it. In our setting, in which individual choice behavior is captured by a choice rule,
we need to refer to subsets of coalitional opportunity sets explicitly in part (ii) of our
definition. These sets model compromise making, and just like in Aumann (1959), we
assume that if there is any way to find a compromise, players will find it.8 There are
two important assumptions behind Definition 1.

1. In laboratory experiments, subjects often change their behavior once they are told
how their behavior violates axioms of rationality. We assume that the process of
coalition formation does not affect players’ choice behaviors. Specifically, it does
not make players realize how their choice behavior is irrational.

2. Players don’t need to compromise on those outcomes that they can obtain by uni-
lateral deviations; i.e., Oi (m−i ) ⊆ Ai (these outcomes are available despite of
others).

7 Throughout the paper, we use this convention.
8 There are other logically possible agreement structures. It is also imaginable that sometimes the principal
can control the agreement structure itself. These are interesting questions that go beyond the scope of this
paper.
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As we show below, when players are rational, our equilibrium notion is equivalent
to strong equilibrium.

Lemma 1 Suppose that each player i is rational at state θ . Then, BSE (M, h, θ) =
SE (M, h, θ).

The goal of the principal is to implement a social choice rule (SCR) ϕ, which
is a rule ϕ : � � X such that ϕ (θ) is non-empty for every θ ∈ �. We refer to
x ∈ ϕ (θ) as a ϕ-optimal outcome at θ . The image or range of ϕ is the set ϕ (�) ≡
{x ∈ X |x ∈ ϕ (θ) for some θ ∈ �}. For any two SCRs, ϕ and ϕ′, we say that ϕ′ is a
selection from ϕ, denoted by ϕ′ ⊆ ϕ, if ϕ′ (θ) ⊆ ϕ (θ) for all θ ∈ �.

A mechanism (M, h) behaviorally implements ϕ provided that for all θ ∈ �,
ϕ (θ) = h (BE (M, h, θ)) ≡ {h (m) |m ∈ BE (M, h, θ)}. If such a mechanism exists,
ϕ is said to be behaviorally implementable.

Definition 2 (Behavioral strong implementation) A mechanism (M, h) behaviorally
strongly implements ϕ provided that for all θ ∈ � , ϕ (θ) = h (BSE (M, h, θ)) ≡
{h (m) |m ∈ BSE (M, h, θ)}. If such a mechanism exists, ϕ is said to be behaviorally
strongly implementable.

3 Efficiency

With rational players, every strong equilibriummust be (weakly) Pareto-optimalwithin
the entire feasible outcome space of the game. An outcome is Pareto-optimal if it is
feasible and no feasible outcome would make everyone strictly better off. Since a
behavioral equilibrium is strong if no coalition, taking the play of its complement
as given, can cooperatively deviate in a way that benefits all of its members, our
equilibrium notion also incorporates a notion of efficiency, which extends the Pareto
principle to choice behaviors that are not consistent with the optimization of some
rational preference relation. In this section, we introduce our extension of the Pareto
principle and compare it with other extensions already proposed in the literature.

Definition 3 (Behavioral efficiency) We say that outcome x is behaviorally efficient
at θ ∈ � if there exists a profile of sets (Ei )i∈N such that (1) x ∈ Ci (Ei , θ) for all
i ∈ N , and (2) there do not exist any profile (Yi )i∈N and any y ∈ X , with Ei ⊆ Yi for
all i ∈ N , such that x /∈ Ci (Yi , θ) and y ∈ Ci (Yi , θ), for all i ∈ N . When this is the
case we say that x is behaviorally efficient with respect to (Ei )i∈N at θ . Furthermore,
for any Z ⊆ X , such that x ∈ Z , we say that x is behaviorally efficient at θ in the set
Z if this definition is satisfied when X = Z .

Behaviorally efficient solution, BE . For all θ ∈ �,

BE (θ) ≡ {x ∈ X | x is behaviorally efficient at θ}.
The set Ei in the definition of behavioral efficiency imposes a restriction on the set

Yi that can be used to evaluate whether an outcome is efficient or not We view this as
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a framing of the choice. If players are rational at θ , and x is Pareto-optimal, then we
can select Ei = {x} for all i ∈ N to show that x is behaviorally efficient. Furthermore,
if x is evaluated as behaviorally efficient with respect to any profile of sets (Ei )i∈N ,
it must be Pareto-optimal. However, if players are not rational at state θ , then the
framing matters. This motivates the following two definitions. If x is behaviorally
efficient at θ with respect to the profile of sets ({x})i∈N , then we call x behaviorally
efficient of type I, and write x ∈ BEI (θ). This means that x can be deemed efficient
without a need for framing. If x is behaviorally efficient at θ , but not with respect
to ({x})i∈N , then we call x behaviorally efficient of type II, and write x ∈ BEI I (θ).
This means that x cannot be deemed efficient without framing. It is now clear that
BE (θ) = BEI (θ) ∪ BEI I (θ).

Notice that the BE solution is always non-empty. Any outcome that some player
selects from X is behaviorally efficient. However, both BEI (θ) and BEI I (θ) can be
empty, although not at the same time, while there can also exist outcomes of both
efficiency types at the same state.

It is important to understand that BE is an extension of the Pareto principle only in
a technical sense. In our model, choice behavior does not necessarily reveal anything
about true efficiency. Sometimes efficiency is a function of the state in the sense that
the designer knows true preferences at each state and also knows whether the choice
behavior of players does or does not reflect them. However, it can also be that the
designer does not know anything about true preferences. Rather, he only knows what
he want’s to implement at each state, and what the choice behavior of players is.

The following corollary of Theorem2 (presented below) shows that implementation
in behavioral strong equilibrium is strongly connected to the above notion of efficiency.

Corollary 1 If ϕ is behaviorally strongly implementable, then there must exist a set
Y ⊆ X such that ϕ is a selection of BE when defined on Y .

Proof Let O = {OK (x, θ) ∈ X | θ ∈ �, x ∈ ϕ(θ), K ∈ N0, x ∈ OK (x, θ)} be any
collection of opportunity sets that is coalitionally consistent with ϕ and let Y be the
set ON (x, θ). Select any state θ and any outcome x ∈ ϕ(θ). Item (iii) in Definition
5 with coalition K = N shows that x is behaviorally efficient with respect to the sets
(Ei )i∈N = (Oi (x, θ))i∈N . ��

We show below that behavioral efficiency is necessary for behavioral strong imple-
mentation. In light of this result, Corollary 2 reveals the connection that must exist
between any subselection of the Pareto rule and its implementation in behaviour strong
equilibria. The reason is that in many real-life situations, agents make non-rational
choices, even though they have well-defined preference orders over outcomes. For
instance, this happens when people have limited willpower to exercise self-control, as
discussed in Sect. 4. Therefore, in situations like these, the Pareto rule is well-defined.
Then, suppose that the planner’s goal is to implement in behavioral strong equilibria a
subsolution ϕ of the Pareto rule. Corollary 2 implies that his goal can only be achieved
if ϕ is a subsolution of BE . Finally, we show in Sect. 4 that there are behaviorally
implementable goas that are not subselections of the BE solution.

123



Behavioral strong implementation

Comparing BE with other extensions of the Pareto principle

The question of how to extend the Pareto principle beyond the rational domain has been
debated in the recent literature. Bernheim and Rangel (2009) propose the following
extension of the Pareto rule that is based on the idea of revealed preferences. Following
their definition, we say that x is preferred to y at state θ , denoted by x Pθ

BR y, if and
only if for every player i ∈ N , y /∈ Ci (A, θ) for all A ∈ X such that x ∈ A. Outcome
x is Bernheim–Rangel efficient at state θ if and only if no outcome is preferred to x .

Bernheim-Rangel Pareto solution, POBR . For all θ ∈ �,

POBR (θ) ≡ {
x ∈ X |there exists no y ∈ X\ {x} such that yPθ

BRx
}
.

de Clippel (2014) proposes the following refinement of the Bernheim–Rangel effi-
ciency. According to de Clippel (2014), x is de Clippel efficient if there exists a
collection of implicit opportunity sets, one for each player, such that each player
would choose x from his own implicit opportunity set and all the outcomes have been
accounted for in the sense that any outcome in X belongs to the opportunity set of at
least one player. Formally,

de Clippel Pareto solution, POdC . For all θ ∈ �,

POdC (θ) ≡
{

x ∈ X there exists (Ai )i∈N ∈ X n such that x ∈ Ci (Ai , θ)

for all i ∈ N , and X = ⋃

i∈N
Ai

}

.

de Clippel efficiency generalizes the idea of a lower contour set to behavioral
domain: Outcome x is efficient if all other outcome are in the lower contour set of
x for at least one player.9 de Clippel explains the connection between his efficiency
concept and BR-efficiency; POdC is a selection from POBR .10

Like de Clippel efficiency, also BE has a connection to the idea of a lower contour
set. In the rational domain, if x is Pareto efficient at θ , the collection of sets (Ei )i∈N in
the definition of BE can be selected as lower contour sets of x for each player at θ to
show that x is efficient. However, in a behavioral domain, even if x is efficient, there
may not exist any collection of sets (Ei )i∈N that cover X entirely. In fact, we can define
a third efficiency notion that combines the idea behind BE and de Clippel efficiency,
by requiring that outcome x is efficient if, and only if, it is BE with respect to some

9 Some results in the literature suggest that the idea of lower contour set makes no sense unless Sen’s
property α holds. Korpela (2012) shows that the characterization of Nash implementable SCRs given in
Moore and Repullo (1990), which is firmly based on the idea of lower contour sets, holds as long as property
α is assumed, but not after that. The reason is that even if outcome x is selected from set A, it may not be
selected from every subset unless property α holds.
10 For all θ ∈ �, POdC (θ) ⊆ POBR (θ), and for some θ ∈ �, POdC (θ) is a proper subset of
POBR (θ) (de Clippel 2014, Proposition 5).
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collection of sets (Ei )i∈N that cover X entirely. Thedownsidewith this definition is that
efficient outcomes may not always exist. It can also happen that de Clippel efficiency
POdC is a selection from BE , if, for example, the sets (Ai )i∈N can be selected in such
away that they also satisfy the definition of BE , which guarantees that a selection from
BE is then behaviorally implementable (de Clippel 2014, Proposition 3, p. 2985).

The next two examples show that the BE solution is not nested either with POdC

nor POBR .

Example 1 Let X = {x, y, z} and N = {1, 2}. The choice behavior of player 1 at state
θ is such that C1({x, y}, θ) = {y}, C1({x, z}, θ) = {x}, and C1({x, y, z}, θ) = {y},
while the choice behavior of player 2 is such thatC2({x, y}, θ) = {y},C2({x, z}, θ) =
{x}, and C2({x, y, z}, θ) = {z}. Selecting E1 = {x} and E2 = {x, z} shows that x is
behaviorally efficient. However, since both players select y from the set {x, y}, it is
not BR-efficient, and hence not de Clippel efficient.

Example 2 Let X = {x, y, z} and N = {1, 2}. The choice behavior of player 1 at state
θ is such that C1({x, y}, θ) = {x} and C1(X , θ) = {z}, while the choice behavior of
player 2 at state θ is such that C2({x, z}, θ) = {x} and C2(X , θ) = {z} (we don’t
need to knowmore about the behavior). Selecting A1 = {x, y} and A2 = {x, z} shows
that x is de Clippel efficient, and hence also BR-efficient. However, since both players
select only z from X , it cannot be behaviorally efficient.

Previous example highlights one important difference between these efficiency
concepts. If all players select one and the same outcome from X at state θ , that is
Ci (X , θ) = {x} for all i ∈ N , then x is the unique behaviorally efficient outcome at θ .
As the example shows, this is not true for de Clippel efficiency or for BR-efficiency.

When players are rational, the above extensions of the Pareto principle yield the
same set of Pareto-optimal outcomes. The following theorem is proved by showing
that the Pareto rule is not in general implementable in BSE, and therefore, no extension
proposed in the literature is.

Theorem 1 No extension of the Pareto principle is behaviorally strongly imple-
mentable in general.

4 Behavioral implementation vs behavioral strong implementation

This section presents two examples showing that implementation in behavioral strong
equilibrium is not logically related to behavioral implementation.

Choice overload

There are two players N = {1, 2}. A mechanism designer wants to select some out-
come that both players like from the set X = {w, x1, x2, . . . , xm}. Preferences are
linear ordering over X at all states. Any pair of orderings that rank w as the worst out-
come is feasible. Player 1 selects from any choice set the outcome that he prefers most.
Player 2, on the other hand, suffers from a bias called choice overload.11 From any

11 This term was originally coined in Toffler (1970).

123



Behavioral strong implementation

choice set A ∈ X that includes at most k outcomes from {x1, x2, . . . , xn} = X\{w},
player 2 selects the outcome that he prefers most, but if the choice set A contains more
than k outcomes, then he selects all of them, that is, the set A \ {w}.12 Let us assume
that m > k > 2.

Suppose that the designer wants to implement an efficient outcome. This is not hard
in principle. The designer could simply let player 1 (the rational player) select his or
her best outcome from X . This is not fair, however, since this outcome could be the
worst outcome of player 2. Is there a way to select an efficient outcome in a more just
way? One way to satisfy both players, to some extent at least, is to first delete k − 2
outcomes that are the least preferred by player 2 from the set {x1, x2, . . . , xm}, and
then select all Pareto-optimal outcomes from the remaining outcomes. Let us denote
this SCR by F . Formally, let r j (θ) be the outcome that player 2 ranks j th at state θ ,
and PO : � × X → X a correspondence that selects all Pareto-optimal outcomes
PO(θ, A) from any choice set A ∈ X at a given state θ ∈ �. Then

F(θ) = PO
( {r1(θ), r2(θ), . . . , rm−k+2(θ)} )

.

This SCR is not behaviorally implementable: A consistent collection of opportunity
sets does not exist. To see this, suppose that at state θ preferences are

Pθ
1 = xm > xm−1 > · · · > x2 > x1 > w and

Pθ
2 = x1 > x2 > · · · > xm−1 > xm > w.

Thus F(θ) = {x1, x2, . . . , xm−k+2}. Let O2(x1, θ) be any player 2’s set of outcomes
(in X ) that depends on θ ∈ � and x1 ∈ F (θ). The set O2(x1, θ) must include x1 and
at most k − 1 outcomes from {x2, x3, . . . , xm}. Otherwise player 2 would select x1
from this set at all possible states − even when it is among the k − 2 least preferred
outcomes. Let xh ∈ X \ {w} be any outcome such that xh /∈ O2(x1, θ). Now consider
state θ ′ where preferences are instead

Pθ ′
1 = Pθ

1 and Pθ ′
2 = xh > x1 > x2 > · · · > xm−1 > xm > w.

Ranking Pθ ′
2 is the same as ranking Pθ

2 except that xh has been raised to the top.
Then x1 /∈ F(θ ′) since xh Pareto dominates it. However {x1} = C2(O2(x1, θ), θ ′) −
a contradiction since preferences of player 1 have not changed.

Despite of this, F is behaviorally strongly implementable. Consider the following
mechanism (M, h): Player 1 can select any choice set A ∈ X that includes exactly
k − 1 outcomes from the set {x1, x2, . . . , xm}. Player 2 can select any single outcome
x from X . If x ∈ A, then x is implemented, if x /∈ A, then w is implemented. Let θ be
any state. If player 2 selects an outcome x ∈ F(θ), and player 1 selects a choice set A
that includes x together with k − 2 outcomes which player 2 considers worse than x ,
we have a behavioral strong equilibrium of (M, h)with outcome x . Neither player can
improve unilaterally from this strategy profile. Furthermore, the only way that they
could jointly improve is that there exists an outcome y which both prefer to x at θ .

12 You can think of him selecting randomly so that any outcome is possible.
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This, however, is not possible by the definition of F . Hence, for any state θ , we have
that F(θ) ⊆ h (BSE(M, h, θ)). To the other direction, notice that a strategy profile
(A, x), such that x /∈ A, can never be a behavioral strong equilibrium. Player 1 would
simply change his announcement to a choice set B such that x ∈ B. Suppose, then, that
(A, x) is a behavioral strong equilibrium. Since A includes exactly k − 1 outcomes, x
must be preferred to at least k−2 outcomes by player 2− otherwise he would deviate
unilaterally to some outcome in A. On the other hand, if x would not be Pareto-optimal,
say dominated by y, then player 1 could offer player 2 a joint deviation to y. This
amounts to selecting from A ∪ {y}, a choice set with k outcomes, so choice overload
does not kick in and player 2 would select y. Therefore h(BSE(M, h, θ)) ⊆ F(θ) by
definition of F .

This example shows how the possibility to form coalitions allows the rational player
to exert control over the biased player, that is not otherwise possible.

Building willpower in groups

Suppose that players have a common long-term goal, which is difficult to achieve
due to the presence of tempting outcomes: each player’s decisions are affected by a
short-term craving. In other words, each player has limited willpower to exercise self-
control. Player i’s willpower is captured by the number of tempting outcomes that he
can overlook to better fulfill his long-term goal. More precisely, given an ordering 
L

over X capturing the long-term goal, an ordering 
S,i capturing player i’s short-term
craving, and an integer ki denoting player i ’s willpower, player i’s choice out of any
A ∈ X is the most preferred outcomes according to 
L among those dominated by at
most ki outcomes according to 
S,i .

A decision-maker with limited willpower typically makes choices that violate IIA.
For instance, suppose that there are only three outcomes in X = {x, y, z}, that your
long-term ranking is x 
L y 
L z, and that your short-term craving is captured by
z 
S y 
S x . Suppose that you are able to exercise self-control as long as there is at
most one tempting option. Thus, you would choose {y} from X and {x} from {x, y}.

Suppose that a state θ = (
L ,
(
S,i

)
i∈N

)
describes a common long-term goal and

players’ short-term cravings. de Clippel (2014) shows a way to combine the players’
limited willpower to help them better fulfill their common long term goal. The idea is
to decentralize the burden of choice by allowing each player to be “in charge of” only
a small number of outcomes. The mechanism implementing the common long-term
goal can be described as follows. Let Ai ⊆ X be the set of ki outcomes of which player
i is in charge. Suppose that

∑
i∈N ki ≥ |X |, so that the union of the sets of outcomes

assigned to the players can cover X : that is, X = ⋃

i∈N
Ai . The strategy space of player

i is Mi = Ai × Z+, where Z+ is the set of nonnegative integers. The interpretation is
that player i chooses amessage in support of an outcome in Ai as well as a nonnegative
positive integer describing the intensity with which he makes the announcement. The
selected outcome is the outcome supported by the player with the most intense report
(using a fixed tie-breaking rule when players announce the same highest intensity).

In this context, de Clippel (2014) proves the following result; if
∑

i∈N ki ≥ |X |,
then the SCR that selects systematically the top-choice of the common long-term
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goal is behavioral implementable (de Clippel 2014; p. 2981). Unfortunately, there
is no way to combine the players’ limited willpower to help them better fulfill their
common long term goal when players can form coalitions. The reason is that the grand
coalition can be “in charge of” a set of outcomes over which players are unable to
exercise self-control, even though each player, individually, is “in charge of” only
a small number of outcomes. To see this, suppose three outcomes in X = {x, y, z}
and three players in N = {1, 2, 3}. Further, suppose that there exists a feasible state
θ = (
L ,

(
S,i
)
i∈N

)
according to which the common long term goal is described by

the ordering x 
L y 
L z, and their short-term cravings are captured by


S,1 
S,2 
S,3

z y z
y z y
x x x

.

Suppose that player i’s willpower is ki = 1 for each player i ∈ N . Let us assume that
the principal knows the willpower of players, but not the true state.

To show that the possibility of forming coalitions defeats the idea of decentralizing
the burden of choice, it suffices to show the SCR that selects systematically the top
choice of the common long-term goal is behavioral implementable but not a sub-
solution of the BE solution. Since the range of the SCR is X , the set of outcomes
that the grand coalition is “in charge of” is X . At state θ , each player picks only the
outcome y out of the set X and rejects the common long-term goal x , which shows
that y is behaviorally efficient at state θ (select Ei = X for all i ∈ N ), while x is not
(for any (Ei )i∈N select Yi = X for all i ∈ N ).

5 Necessity

In this section, we provide a necessary condition for behavioral strong implementation,
which helps us identify systematically whether an SCR is behaviorally strongly imple-
mentable. deClippel (2014) finds that the extension of the idea ofNash implementation
beyond the rational domain leads to a necessary condition for implementation known
as consistency.

Definition 4 (de Clippel 2014; p. 2982) A collection O = {Oi (x, θ) ∈ X | θ ∈
�, x ∈ ϕ(θ), i ∈ N } of opportunity sets is consistent with ϕ if:

(i) For all θ ∈ �, all x ∈ ϕ(θ) and all i ∈ N , x ∈ Ci (Oi (x, θ), θ).
(ii) For all θ, θ ′ ∈ � and all x ∈ ϕ(θ), if x ∈ Ci (Oi (x, θ), θ ′) for all i ∈ N , then

x ∈ ϕ(θ ′).

Studying implementation in the Nash equilibrium is based onMaskin (1999; circu-
lated since 1977), who proves that any SCR that can be Nash implemented satisfies a
remarkably strong invariance condition, nowwidely referred to asMaskin monotonic-
ity. The above condition is an extension of Maskin monotonicity beyond the rational
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domain.13 Suppose that ϕ is behaviorally implementable. If x is a behavioral equilib-
rium at θ , the equilibrium strategy profilem supporting it defines an opportunity set for
each player i , denoted by Oi (x, θ), which represents the set of outcomes that player
i can generate by varying his own strategy, keeping the other players’ equilibrium
strategies fixed at m−i . From the definition of the behavioral equilibrium, each player
i must choose x fromOi (x, θ) at θ .Moreover, if there is an alternative state θ ′ such that
every player i chooses x from Oi (x, θ) at θ ′, then m forms a behavioral equilibrium
at θ ′. Hence, x is still a ϕ-optimal outcome at θ ′ if ϕ is behaviorally implementable.

The idea of extending the notion of the strong equilibrium beyond the rational
domain leads to a necessary condition, called coalitional consistency. Let us present
this from the viewpoint of necessity.

Suppose that ϕ is behaviorally strongly implementable by amechanism (M, h). Let
m be a behavioral strong equilibrium at θ whose associated outcome h (m) coincides
with an element x of ϕ (θ). The equilibrium strategy profile defines an opportunity set
for coalition K , denoted by OK (x, θ), by varying the strategies of the players in K ,
while keeping the other players’ equilibrium strategies fixed at m−K . For the grand
coalition N , its opportunity set coincides with the entire feasible outcome space of the
game, denoted by Y . From the definition of the behavioral strong equilibrium, each
player i chooses x fromOi (x, θ) at θ , and no coalition K with at least two players can
find an outcome y ∈ OK (x, θ) and a profile of subsets (Ai )i∈K of OK (x, θ) where
Oi (x, θ) ∪ {y} ⊆ Ai for all i ∈ N , such that each member i of K chooses y from Ai

and rejects x ∈ Ai at θ .
Take any alternative state θ ′ such that each player chooses x from Oi (x, θ) at this

state θ ′, so that m is still stable in terms of unilateral deviations. In addition, if no
coalition K with at least two players can find an outcome y ∈ OK (x, θ) and a profile
of subsets (Ai )i∈K of OK (x, θ) where Oi (x, θ) ∪ {y} ⊆ Ai for all i ∈ N , such that
each member i of K chooses y from Ai and rejects x ∈ Ai at θ ′, clearly m forms
a behavioral strong equilibrium at θ ′ as well. Hence, x is a ϕ-optimal outcome at θ ′
since ϕ is behaviorally strongly implementable. Formally,

Definition 5 (Coalitional consistency) A collection

O = {OK (x, θ) ∈ X | θ ∈ �, x ∈ ϕ(θ), K ∈ N0, x ∈ OK (x, θ)}
of opportunity sets is coalitionally consistent with ϕ if:

(i) There exists a non-empty set Y ⊆ X such that for all θ ∈ �, all x ∈ ϕ(θ), and
all K , K ′ ∈ N0 with K ⊆ K ′, OK (x, θ) ⊆ OK ′ (x, θ) and Y = ON (x, θ).

(ii) For all θ ∈ �, all x ∈ ϕ(θ) and all i ∈ N , x ∈ Ci (Oi (x, θ), θ).
(iii) For all θ ∈ �, all x ∈ ϕ(θ), all K ∈ N0 with |K | ≥ 2, all y ∈ OK (x, θ) and

all (Ai )i∈K ∈ X |K | such that Oi (x, θ) ∪ {y} ⊆ Ai ⊆ OK (x, θ) for all i ∈ K ,
y /∈ Ci (Ai , θ) or x ∈ Ci (Ai , θ) for some i ∈ K .

(iv) For all θ, θ ′ ∈ � and all x ∈ ϕ(θ), if x ∈ Ci (Oi (x, θ), θ ′) for all i ∈ N , and
if for all K ∈ N0 with |K | ≥ 2 , all y ∈ OK (x, θ) and all (Ai )i∈K ∈ X |K |
such that Oi (x, θ) ∪ {y} ⊆ OK (x, θ) for all i ∈ K , y /∈ Ci (Ai , θ

′) or x ∈
Ci (Ai , θ

′) for some i ∈ K , then x ∈ ϕ(θ ′).
13 See Lemma 3 in Barlo and Dalkıran (2022) for a proof.
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As the discussion in the preceding paragraph illustrates, the existence of a coalition-
ally consistent collection of opportunity sets is a necessary condition for behavioral
strong implementation.

Theorem 2 If ϕ is behaviorally strongly implementable, then there exists a collection
of opportunity sets that is coalitionally consistent with ϕ.

Proof The proof is omitted as it is a direct consequence of the definition of behavioral
strong equilibrium. ��

On the rational domain, the invariance condition known as Maskin monotonicity is
necessary for implementation in both the Nash equilibrium and the strong equilibrium.
With behavioral players, de Clippel’s (2014) condition of consistency is an extension
of Maskin monotonicity beyond the rational domain. Surprisingly, his condition is not
necessary for behavioral strong implementation (see the example on choice overload
in Sect. 2). However, coalitional consistency is equivalent to de Clippel’s condition
when only unilateral deviations are allowed.

6 Sufficiency

While the coalitional consistency of the collection O with ϕ is necessary for behav-
ioral strong implementation, it is not sufficient. Rather than pursuing an exhaustive
characterization which would be intricate, we first tackle sufficiency in a competi-
tive environment before addressing the much harder problem of providing a simple
sufficient condition in a more general environment.

6.1 Competitive environments

Several definitions of economic environment are employed in the implementation
literature. The common feature of these definitions is that the best outcome of a given
player is among the worst outcomes for all other players. This is because the best
outcome of a player is to get all available resources. The following is our adaptation
of this idea into a choice function framework.

Definition 6 (Strongly competitive environment) The environment is strongly com-
petitive if there exists a sequence of outcomes (x [i])i∈N , with x [i] ∈ X for each
i = 1, ..., n and x [i] �= x [ j] for each i �= j , such that the following properties are
satisfied for all i, j ∈ N with i �= j , all θ ∈ � and all A ∈ X .

(i) If x [i] ∈ A, then {x [i]} = Ci (A, θ).
(ii) If x [i] ∈ A and x [i] ∈ C j (A, θ), then A = C j (A, θ).

A simple way to explain this definition is to consider a pure exchange economywith
� commodities in which each player has an endowment vector �i = (�i1, ...,�i�) ∈
R

�+, the aggregate endowment is	 = ∑

i∈N
�i , and the set of feasible allocations is X =

{
x ∈ R

n�+ | ∑i∈N xi ≤ 	
}
. To illustrate the requirement for a strongly competitive
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environment, take x [i] = (	, 0−i ), where (	, 0−i ) is a feasible allocation that assigns
	 to player i and nothing to the other players. Part (i) requires (	, 0−i ) to be the only
allocation chosen by player i whenever it is available. Part (ii) requires that if the
allocation (	, 0−i ) that assigns no consumption to player j �= i is available from a
set A and player j picks it from A, then he cannot reject any allocation from A. More
generally, part (i) requires that for each player, there exists a distinct best outcome that
is always uniquely chosen from every set of outcomes containing it. Part (ii) requires
that if player j deems choosable from A player i’s best outcome, then he must deem
all outcomes in A as equally adequate. This choice consistency property is plausible
in all situations in which the best outcome for player i is the worst outcome for player
j .
A strongly competitive environment represents a situation where it is impossible

to fully satisfy one player without hurting others. Standard economic environment
where preferences are strictly monotonic on consumption is included as a special
case. Whether a given environment is strongly competitive or not can depend on what
kind of allocations the principal can use. Suppose that n houses are assigned to n
players − one for each. If the designer can use only allocations where one house is
allocated to one player, then the environment is not strictly competitive. All players can
be fully satisfied at the same time if the best houses are different. On the other hand, if
many houses can be allocated to one player, out of equilibrium, then the environment
can be strongly competitive.

Combining Definition 5 with coalitional consistency provides a useful and simple
sufficient condition for behavioral strong implementation when there are three or more
players. The reason is that in a strongly competitive environment, we can construct
a mechanism in which the only behavioral strong equilibria are those in which play-
ers make exactly the same announcement, whereas coalitional consistency rules out
undesired equilibria.

Theorem 3 Let n ≥ 3. Assume a strongly competitive environment. SCR ϕ is behav-
iorally strong implementable if and only if there exists a collection O of opportunity
sets that is coalitionally consistent with ϕ.

Unlike in the rational domain, a SCR that is behaviorally strongly implementable
in a strongly competitive environment may not be behaviorally implementable. We
can see this by modifying the choice overload example slightly. Suppose that in
this example there is a third player who is exactly as player 1 in all states, except
that now there are 3 new outcomes x[1], x[2], and x[3], where x[i] is the best
outcome of player i and the worst outcome of the other two players. If we keep
everything else as it was, we now have a strongly competitive environment. Obvi-
ously the same SCR F is still a reasonable goal to be implemented. Furthermore,
this SCR is not behaviorally implementable for exactly the same reason as before,
while it is still behaviorally strongly implementable for exactly the same reason as
before.
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6.2 Non-competitive environments

While the theorem above can be applied in a variety of settings, a limitation to its
applicability comes from the fact that interesting applications lie outside the realm of
our strongly competitive environment. Indeed, a basic yet widely applicable problem
in economics is to allocate indivisible objects to players. This problem is referred to
as the assignment problem. In this setting, there is a set of objects, and the goal is
to allocate them among the players in an optimal manner without allowing transfers
of money. The assignment problem is a fundamental setting that often does not take
place in a strongly competitive environment. Since the model is applicable to many
resource allocation settings in which the objects can be public houses, school seats,
course enrollments, kidneys for transplant, car park spaces, chores, joint assets of a
divorcing couple, or time slots in schedules, we now provide a characterization result
that can also be applied to this fundamental setting.

Definition 7 ϕ is a status quoSCR if there exist Z ⊆ X and a status quooutcomeσ ∈ Z
such that ϕ satisfies the following requirement: For all θ ∈ �, if σ is behaviorally
efficient at θ in the set Z , then σ ∈ ϕ(θ).

In other words,ϕ is a status quo rule if a status quo σ exists such that it is aϕ-optimal
outcome at θ if it is behaviorally efficient. When the objective is to assign students to
rooms, public housing to families, courses to teachers, and rooms, public houses and
courses are desirable items, the status quo could be the allocation that assigns nothing
to everyone.

Combining a status quo SCR with a strengthening of coalitional consistency pro-
vides an alternative useful characterization of behavioral strong implementation. ϕ

satisfies revealed acceptability if a collection of opportunity sets exists that is coali-
tionally consistent with ϕ, the status quo σ is an element of all individual opportunity
sets, and y ∈ ϕ

(
θ ′) for all θ ′ such that each player i reveals y to be equally acceptable

as x at θ by selecting it from a set such that Ai ⊇ Oi (x, θ). Formally,

Definition 8 An SCR ϕ satisfies revealed acceptability provided that there exists
a collection O = {OK (x, θ) ∈ X | θ ∈ �, x ∈ ϕ(θ), K ∈ N0, x ∈ OK (x, θ)} of
opportunity sets such that parts (i)-(iii) of coalitional consistency are satisfied and
such that the following properties are satisfied.

(i) For all θ ∈ �, all x ∈ ϕ(θ) and all i ∈ N , σ ∈ Oi (x, θ).
(ii) For all θ, θ ′ ∈ �, all x ∈ ϕ(θ), and all (Ai )i∈N ∈ X n such that Ai ⊇ Oi (x, θ)

for all i ∈ N , if y ∈ Ci (Ai , θ
′) for all i ∈ N and y ∈ BE

(
θ ′), then y ∈ ϕ(θ ′).

This property is reminiscent of the axiom of sufficient reason proposed by Korpela
(2013) in the context of strong implementation in the rational domain. Let Li (x, θ)

be the lower contour set of x for agent i at state θ i.e. Li (x, θ) = {z ∈ X | x Rθ
i z}.

A SCR ϕ satisfies the axiom of sufficient reason if for all θ, θ ′ ∈ � and all y ∈ X , if
x ∈ ϕ(θ) and Li (x, θ) ⊆ Li (y, θ ′) holds for all i ∈ N , then y ∈ ϕ(θ ′).14 Let us say
that (z, i) ∈ X × N is a reason to select x at θ if player i prefers x to z at θ . ϕ satisfies

14 This condition implies monotonicity. One can see this by selecting y = x .
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the axiom of sufficient reason if, whenever x is a ϕ -optimal outcome at θ , and every
reason to select x at θ is also a reason to select y (possibly different from x in contrast
to monotonicity) at θ ′, then y should be a ϕ -optimal outcome at θ ′. Item (ii) in the
definition of revealed acceptability can be seen as a generalization of this ideas.

We are now ready to state a partial converse of Theorem 2. In contrast to our
previous sufficiency result, the following also holds in the case of two players.

Theorem 4 Let n ≥ 2. Assume that ϕ is a status quo SCR where the set Z coincides
with the set Y specified by part (i) of coalitional consistency. If ϕ satisfies revealed
acceptability, then ϕ is behaviorally strongly implementable.

6.3 Behavioral group strategy-proofness

In a rational domain, group strategy-proofness of an SCR ϕ : � → X implies that
revealing private information is a strong equilibrium of the associated direct mech-
anism (�, ϕ), where the state space � is assumed to have a product structure, i.e.
� = ×i∈N�i .15 Below we extend this notion beyond the rational domain. We do
not, however, analyze how conceptually sound this generalization is. Our aim is only
to study when revealing private information is a behavioral strong equilibrium of the
associated direct mechanism.

Definition 9 (Behavioral group strategy-proofness) SCR ϕ : � → X is behaviorally
group strategy-proof if revealing private information is a BSE of the associated direct
mechanism (�, ϕ) at all states θ ∈ �.

Behavioral group strategy-proofness is a strong requirement, just as group strategy-
proofness is. It is a particular kind of partial implementation. There is at least one
equilibrium that coincideswith the goal of the principal, the private information reveal-
ing equilibrium, but there could also be other equilibria that do not coincide with his
goal.

A famous example of a SCR that is group strategy-proof in the rational domain is
random serial dictatorship rule also known as the random priority rule (see e.g. Pápai
2000). Suppose that m objects are allocated to n players; the number of objects and
players can be different. First players {1, . . . , n} are ordered randomly i1, i2, . . . , in .
Often uniform distribution is used, but any other distribution works just as well. After
the ordering has been decided, the first player i1 gets her most favorite object, the
next players i2 gets her favorite object among the still remaining ones, and so forth.
This goes on until every player has an object or there are not objects left. It is easy to
see that this SCR is group strategy-proof in the rational domain. Take any coalition
K ∈ N0. One of the players in this coalition, say ik , comes before all other members
of K in the random sequence i1, i2, . . . , in . This player obtains her best object among
all objects that are available to this coalition. Hence, there does not exist any deviation
that could improve the position of everyone in K .

Exactly the same argument shows that the random priority rule is behaviorally
group strategy-proof under any choice behavior. This is because the set of objects that

15 In a direct mechanism players are asked to announce their private information and the principal then
implements whatever the rule recommends.
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player ik can get when coalition K tries to manipulate the system must be exactly the
same she can get when it is her turn to select i.e. the coalition cannot prevent ik from
selecting any object of this set.

Theorem 5 The random priority rule is behaviorally group strategy-proof in any
domain of behaviors.

There is one not-so-obvious caveat in our analysis. In the rational domain, a player’s
strategy is called dominant if it is the best response nomatterwhat his opponents choose
to do. If a strategy is dominant against all pure strategies, it is also dominant against
all mixed strategies. This follows from the sure-thing principle (Savage 1972); if an
action is optimal under all possible contingencies, then it must be optimal against any
mixing over these contingencies. In a recent contribution, de Clippel (2022) shows that
the sure-thing principle can fail in behavioral domains. This failure makes dominant
strategy equilibrium less compelling and no longer robust against any kind of beliefs.
Although de Clippel (2022) does not consider the notion of group strategy-proof,16 it
is expected to suffer from a similar shortcoming.

7 Applications

In this section, we briefly discuss the implications of our sufficiency results. Specif-
ically, we show that the type I efficient solution BEI is implementable in a strongly
competitive environment as long as it is non-empty at all states.Moreover, we consider
an implementation problem where the agenda setter is trying to influence the policy
choice by introducing decoy outcomes.

7.1 Behavioral efficiency

Our first application of Theorem 3 is to show that the BEI solution is behaviorally
strongly implementable in a strongly competitive environment. This result is obtained
by defining the opportunity sets of the collection O as follows: Oi (x, θ) = {x},
OK (x, θ) = {x} ∪ (∪i∈N {x [i]}) and ON (x, θ) = X , for all K ∈ N0 such that
|K | ≥ 2, all θ ∈ �, and all x ∈ BEI (θ). Since it is clear that the collection O is
coalitionally consistent with the BEI solution, we then state below (without proving
it) that this solution is behaviorally strongly implementable in a strongly competitive
environment.

Theorem 6 Let n ≥ 3. Assume a strongly competitive environment. Assume that for
all θ ∈ �, BEI (θ) is non-empty. Then, the BEI solution is behaviorally strongly
implementable.

16 It may be due to the fact that so far there has been no models of coalition formation with non-rational
palyers.
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7.2 Tops solution

Let us call the SCR that selects all outcomes that each player selects from X as the
tops solution. Formally:

Tops solution, T S. For all θ ∈ �,

T S (θ) ≡ ⋃

i∈N
Ci (X , θ).

Outcome w ∈ X is called generically worst outcome if players don’t select it from
any choice set that includes also other outcomes, at any state θ ∈ �. Formally, w ∈ X
is a generically worst outcome if for all θ ∈ � and all A ∈ X with A �= {w},
w /∈ (∪i∈NCi (A, θ)).

Theorem 7 T S is implementable in behavioral strong equilibrium if there exists a
generically worst outcome w.

7.3 Decoy alternative in policy choice

Two players (parties) must decide what policy to follow. There are four possible
outcomes {r , c, l, l ′}, where r is the “right wing policy”, c is the “centrist policy”, and
{l, l ′} are the “left wing policies”. l ′ is a decoy policy, which is intended to affect the
behavior of only player 2. The mechanism designer does not know this. Both players
prefer either the right wing policy, or the left wing policy, and consider the centrist
policy as a middle alternative. Player 1 has four possible preference relations over
policies:

r P c P l P l ′, l P c P r P l ′, r P c P l ′ P l, l ′ P c P r P l.

If the preference relation of player 1 is r P c P l P l ′, then he considers right
wing policy to be the best and l ′ is the decoy policy. The decoy policy does not affect
his choice behavior: Player 1 selects the alternative that is the best according to his
preferences from all choice sets.

Player 2, on the other hand, suffers from a decision bias when the decoy policy is
an available policy. He has four possible preference relations, the same as player 1,
but the choice behavior is different. If the underlying preference relation of player 2
is r P c P l P l ′, for example, then he selects the best alternative according to this
preference relation from any choice set that does not contain {l, l ′} as a subset, and
l ′ (the left wing policy that is the decoy) from any set that contains {l, l ′}. This is a
situation where the agenda setter is trying to affect the decision in favor of the centrist
policy by splitting unanimity whenever it is behind the right wing policy or the left
wing policy.17

17 Herne (1997) explains how asymmetric dominance can generate a situation like this.
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There are eight states depending on which left wing policy {l, l ′} is the decoy, say l ′,
and which of the remaining non-centrist policies {r , l} players rank first. By θ(r , l, l ′)
we denote the state where player 1 ranks the right wing policy first, player 2 ranks the
left wing policy first, and l ′ is the decoy. All possible states are θ(r , l, l ′), θ(l, r , l ′),
θ(r , r , l ′), θ(l, l, l ′), θ(r , l ′, l), θ(l ′, r , l), θ(r , r , l), θ(l ′, l ′, l). A mechanism designer
wants to implement the right wing policy, or the left wing policy, if both players rank
it first, and the centrist policy c otherwise. That is, F is such that

F(θ(r , r , l ′)) = F(θ(r , r , l)) = {r}, F(θ(l, l, l ′)) = {l}, F(θ(l ′, l ′, l)) = {l ′},
F(θ(r , l, l ′)) = F(θ(l, r , l ′)) = F(θ(r , l ′, l)) = F(θ(l ′, r , l)) = {c}.

We can use Theorem 3 to show that this SCR is behaviorally strongly imple-
mentable. Let Y = {r , c, l, l ′} and O1 (x, θ) = O2 (x, θ) = {x, c} for all states θ

where {x} = F(θ). It is easy to see that F satisfies revealed acceptability with respect
to this collection of opportunity sets if we set σ = c.

8 Conclusions

Many choice models have been developed in the last two decades to explain clas-
sic choice “anomalies”, which include status quo biases, attraction and compromise
effects, framing, temptation and self-control, consideration sets, choice overload, and
limited attention (for an introductory survey to these choice anomalies, see Camerer
et al. 2003).18 Far less attention, however, has been paid to the question of how non-
rational choice behavior alters the implementation exercise of the principal. This paper
is the first study to assess the impact of these anomalies on implementability when
players can freely form coalitions.

The scope of the presented analysis is not limited to these anomalies; indeed,
it encompasses situations in which each player acts on behalf of a group of rational
players. The literature on social choice theory shows us thatmost of the decisionsmade
by a group cannot be explained through the maximization of a context-independent
preference relation and this fact motived Hurwicz (1986) to develop an approach to
implementation theory based on state-contingent choices instead of rational preference
relations.

Our notionof behavioral strong equilibrium is basedon twoconsiderations. First,we
wanted to preserve the behavioral equilibrium notion of de Clippel (2014). Second, we
wanted to preserve Aumann’s notion of equilibrium on the rational domain. However,
there are many other natural ways to extend Aumann (1959)’s strong equilibrium
notion beyond the rational domain. This is a fruitful area for future research.

18 Characterization results of non-rational choices can be found in Ambrus and Rozen (2015), Bernheim
and Rangel (2009), Cherepanov et al. (2013), de Clippel and Eliaz (2012), Kalai et al. (2002), Lipman and
Pesendorfer (2013), Lleras et al. (2017), Lombardi (2009),Manzini andMariotti (2007, 2012),Masatlioglu
and Nakajima (2013),Masatlioglu and Ok (2005, 2014),Masatlioglu et al. (2012), Nishimura et al. (2017),
Ok et al. (2015) Salant and Rubinstein (2008) and in Rubistein and Salant (2006).
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9 Appendix

Proof of Lemma 1

Suppose that m ∈ SE (M, h, θ). We show that m ∈ BSE (M, h, θ). Since
SE (M, h, θ) ⊆ BE (M, h, θ), it follows that part (i) of Definition 1 holds. Next,
fix any K , with |K | ≥ 2, and any m′

K ∈ MK . Since m ∈ SE (M, h, θ), there
exists i ∈ K such that h (m) Rθ

i h
(
m′

K ,m−K
)
. Since player i is rational at θ , it fol-

lows that for all Ai ∈ X , with Oi (mi ) ∪ {h (
m′

K ,m−K
)} ⊆ Ai , it cannot be that

h
(
m′

K ,m−K
) ∈ Ci (Ai , θ) and h (m) /∈ Ci (Ai , θ). Since the choice of mK ∈ MK

is arbitrary, we established that for all m′
K ∈ MK , there does not exist any profile of

sets (Ai )i∈K , with Oi (m−i ) ∪ {h (
m′

K ,m−K
)} ⊆ Ai ⊆ OK (m−K ), such that for all

i ∈ K , h
(
m′

K ,m−K
) ∈ Ci (Ai , θ) and h (m) /∈ Ci (Ai , θ). Since the choice of K ,

with |K | ≥ 2, is arbitrary, it follows that part (ii) of Definition 1 is satisfied. Thus,
m ∈ BSE (M, h, θ).

Suppose thatm ∈ BSE (M, h, θ).We show thatm ∈ SE (M, h, θ). Assume, to the
contrary, that there exist K andm′

K ∈ MK such that h
(
m′

K ,m−K
)
Pθ
i h (m) for all i ∈

K , where Pθ
i is the asymmetric part of Rθ

i . Since each player i ∈ K is rational at state
θ , we have that for all i ∈ K ,

{
h

(
m′

K ,m−K
)} = Ci

(
Oi (m−i ) ∪ {h (

m′
K ,m−K

)}, θ)

and h (m) /∈ Ci (A, θ) for all A ∈ X such that h (mK ,m−K ) , h (m) ∈ A. If K = {i},
then h (m) /∈ Ci (Oi (m−K ) , θ), which is a contradiction. Suppose that |K | �= 1.
Then, there exists a sequence (Ai )i∈K , with Ai = Oi (m−i ) ∪ {h (

m′
K ,m−K

) ∈ X ,
such that for all i ∈ K ,

{
h

(
m′

K ,m−K
)} = Ci

({
h (m) , h

(
m′

K ,m−K
)}

, θ
)
, which is

a contradiction.

Proof of Theorem 1

There are three players N ≡ {1, 2, 3} and two states � = {
θ, θ ′}. Players’ rational

preference relations over {x, y} are represented in the table below:

θ θ ′
1 2 3 1 2 3
x x y y y y
y y x x x x

.

The set of Pareto-optimal outcomes at θ , denoted by PO (θ), is the set {x, y}, while
the set of Pareto-optimal outcomes at θ ′ is PO

(
θ ′) = {y}. Assume that the set of

Pareto-optimal outcomes at θ as well as at θ ′ is behaviorally strongly implementable.
Then, there exists a mechanism (M, h) such that h (BSE (M, h, θ)) = PO (θ) and
h

(
BSE

(
M, h, θ ′)) = PO

(
θ ′). This implies that at state θ there exists a strategy

profile m (x, θ) ∈ BSE (M, h, θ) such that h (m (x, θ)) = x , and there exists a
strategy profile m (y, θ) ∈ BSE (M, h, θ) such that h (m (y, θ)) = y.

Let m = (m1 (x, θ) ,m2 (x, θ) ,m3 (y, θ)), so that m ∈ M . Assume that h (m) =
x . It follows that coalition {1, 2} can profitably deviate from m (y, θ) by changing
m−3 (y, θ) into m−3, which is a contradiction. Therefore, it must be the case that
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h (m) = y. It follows that player 3 can unilaterally profitably deviate from m (x, θ)

by changing m3 (x, θ) into m3, which is a contradiction.

Proof of Theorem 3

Let the premises hold. For all i ∈ N , set

Mi = M1
i × M2

i × M3
i × M4

i ,

where: M1
i = � is the set of states; M2

i = Y ∪ (∪i∈N {x [i]}), where Y is the set
of outcomes specified by part (i) of Definition 4, where (x [i])ni=1 is the sequence of
outcomes specified by Definition 5; M3

i = {0, 1}; and Z+ is the set of nonnegative
integers.
A generic element of Mi is denoted by mi = (

m1
i ,m

2
i ,m

3
i ,m

4
i

) = (θi , xi , αi , ki ). For
each m ∈ M , define h (m) according to the following rules.

Rule 1 If m3
i = 0 for all i ∈ N and

(
θ̄ , x

)
is reported by at least n − 1 players and

x ∈ ϕ
(
θ̄
)
, then h (m) = x .

Rule 2 If there exists i ∈ N such that m j = (
θ̄ , x, 0, k j

)
for all j ∈ N\ {i} with

x ∈ ϕ
(
θ̄
)
, and mi = (θi , xi , 1, ki ), then h (m) = xi if xi ∈ Oi

(
x, θ̄

)
;

otherwise, h (m) = x ∈ Oi
(
x, θ̄

)
.

Rule 3 If there exists K ∈ N0, with 2 ≤ |K | < n, such that m j = (
θ̄ , x, 0, k j

)

for all j ∈ N\K with x ∈ ϕ
(
θ̄
)
, and mi = (θi , xi , 1, ki ) for all i ∈ K ,

then h (m) = xi∗ where i∗ = min {argmaxi∈N ki } if xi∗ ∈ OK
(
x, θ̄

) ∪
(∪i∈N {x [i]}); otherwise, h (m) = x ∈ OK

(
x, θ̄

)
.

Rule 4 If mi = (θi , xi , 1, ki ) for all i ∈ N , then h (m) = xi∗ where i∗ =
min {argmaxi∈N ki }.

Rule 5 In all other cases, h (m) = x
[
i∗

]
where i∗ = min {argmaxi∈N ki }.

To show that this mechanism implements ϕ, suppose that θ is the true state.
Let us first show that ϕ (θ) ⊆ h (BSE (M, h, θ)). Assume that x ∈ ϕ (θ). For each

i , let mi = (θ, x, 0, ki ). By Rule 1, h (m) = x .
The set of options that player i can generate through unilateral deviations is

Oi (x, θ). Part (ii) of condition of coalitional consistency of O with ϕ implies that
x ∈ Ci (Oi (x, θ) , θ) for each i .

The set of options that coalition N can generate through deviations is Y ∪
(∪i∈N {x [i]}). Moreover, the set of options that K , with 2 ≤ |K | < n, can generate
through deviations is OK (x, θ) ∪ (∪i∈N {x [i]}). Part (iii) of condition of coalitional
consistency of O with ϕ, combined with parts (i)-(ii) of Definition 5, implies that
no coalition K , with 2 ≤ |K |, can find a profitable deviation; that is, part (ii) of
Definition 1 is satisfied for any coalition K , with 2 ≤ |K |.19

Since no coalition can find a profitable deviation from m, that is, m satisfies parts
(i)-(ii) of Definition 1, we conclude that m ∈ BSE (M, h, θ) and h (m) = x ∈
h (BSE (M, h, θ)).

19 Item (ii) in the definition of strongly competitive environment is needed to guarantee that no coalition
of size 2+ is willing to select x[i] and reject h(m).
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Next, we prove that h (BSE (M, h, θ)) ⊆ ϕ (θ).20 Fix any m ∈ BSE (M, h, θ).
First we will show that m can correspond only to Rule 1 because we are in a strongly
competitive environment. Let us proceed by contradiction. Assume that the outcome
at m is determined by Rules 2,3,4, or 5. Suppose that Rule 2 is used. Let i be the only
player who announces 1 as the third component of his strategy. There are at least two
players in N \ {i}, say player j and player k, who can announce 1 instead of 0 as the
third component of their strategy and induce x[ j] and x[k] respectively by deviating
to Rule 3 (player j , for example, announces x[ j] as the second component with a
high enough integer). Since both players want to select this outcome from any set that
contains it, by the assumption of strongly competitive environment, at least on player
wants to deviate and hence m cannot be a BSE. Suppose, then, that the outcome is
determined using either Rule 3 or Rule 4. In both case there are at least two players,
say player j and k, who announce 1 as the third component of their strategy. These
players can induce x[ j] and x[k] respectively for the same reason as in the case of
Rule 2 but now in such a way that the same rule is still used. Thus, for exactly the same
reason as before, m cannot be a BSE. The last case, Rule 5, is easy. If the outcome is
determined using this rule, then the outcome is still determined using this rule if one
of the player change the integer announcement and nothing else is changed. Thus, any
player i can induce x[i], and hence m cannot be a BSE for the same reason as in the
other cases.

Thus, suppose that m falls into Rule 1. This implies that m3
i = 0 for all i ∈ N ,(

θ̄ , x
)
is reported by at least n− 1 players, x ∈ ϕ

(
θ̄
)
and h (m) = x . Let us first show

that m is such that mi = (
θ̄ , x, 0, ki

)
for each i .

Suppose that
(
m1

i ,m
2
i

) �= (
θ̄ , x

)
for at most one agent i . We proceed according to

whether h (m) �= x [ j] for all j ∈ N or not.
Suppose that h (m) = x �= x [ j] for all j ∈ N . Since there are n ≥ 3 players,

pick any player � ∈ N\ {i}. Player � can induce Rule 5 by changing m� into m′
� =(

θ̄ , x [�] , 0, �
)
. To obtain x [�], player � needs to choose k� so that he is the winner of

the integer game. Thus, we have that x [�] ∈ O� (m−�). Part (i) of Definition 5 implies
that {x [�]} = C� (O� (m−�) , θ), which contradicts part (i) of Definition 1.

Suppose that h (m) = x [ j] for some j ∈ N . Since there are n ≥ 3 players, pick any
player � ∈ N\ {i, j}. By using the same arguments used in the preceding paragraph,
we have that {x [�]} = C� (O� (m−�) , θ), which a contradiction.

Thus, m is such that mi = (
θ̄ , x, 0, ki

)
for each i . Observe that h (m) = x . The

set of options that player i can generate through unilateral deviations is Oi
(
x, θ̄

) =
Oi (m−i ). Since m ∈ BSE (M, h, θ), part (i) of Definition 1 implies that h (m) ∈
Ci

(Oi
(
x, θ̄

)
, θ

)
for each i .

Assume, to the contrary, that x /∈ ϕ (θ). Since x ∈ Ci
(Oi

(
x, θ̄

)
, θ

)
for each

player i , part (iv) of condition of coalitional consistency ofO with ϕ implies that there
exist K , with 2 ≤ |K |, y ∈ OK (x, θ̄ ) and (Ai )i∈K ∈ X |K |, with Oi

(
x, θ̄

) ∪ {y} =
Oi (m−i ) ∪ {y} ⊆ Ai ⊆ OK (x, θ̄ ) for all i ∈ K , such that y ∈ Ci (Ai , θ) and
x /∈ Ci (Ai , θ) for all i ∈ K . Recall that part (i) of condition of coalitional consistency
of O with ϕ implies that OK (x, θ̄ ) = Y if K = N . Since K can attain outcome y by

20 This is where we rely on the assumption of strongly competitive environment; to rule out unwanted
equilibria.
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choosing mK appropriately–either via Rule 3 if K �= N , or via Rule 4 if K = N , this
leads to a contradiction to our supposition that m ∈ BSE (M, h, θ); that is, it leads to
a contradiction to part (ii) of Definition 1. Thus, x ∈ ϕ (θ).

Proof of Theorem 4

Let the premises hold. For all i ∈ N , set Mi = �×Y ×{0, 1}×Z+, where Y is the set
specified by part (i) of Definition 4, and where Z+ is the set of nonnegative integers.
A generic element of Mi is denoted by mi = (θi , xi , αi , ki ). For each m ∈ M , define
h (m) according to the following rules.

Rule 1 If mi = (
θ̄ , x, 0, ki

)
for all i ∈ N and x ∈ ϕ

(
θ̄
)
, then h (m) = x .

Rule 2 If there exists i ∈ N such that m j = (
θ̄ , x, 0, k j

)
for all j ∈ N\ {i} with

x ∈ ϕ
(
θ̄
)
, andmi = (θi , xi , 1, ki ), then either h (m) = xi if xi ∈ Oi

(
x, θ̄

)
;

or otherwise, h (m) = x ∈ Oi
(
x, θ̄

)
.

Rule 3 If there exists K ∈ N0, with 2 ≤ |K | < n, such that m j = (
θ̄ , x, 0, k j

)

for all j ∈ N\K with x ∈ ϕ
(
θ̄
)
, and mi = (θi , xi , 1, ki ) for all i ∈ K ,

then h (m) = xi∗ where i∗ = min {argmaxi∈N ki } if xi∗ ∈ OK
(
x, θ̄

)
;

otherwise, h (m) = x ∈ OK
(
x, θ̄

)
.

Rule 4 If mi = (θi , xi , 1, ki ) for all i ∈ N , then h (m) = xi∗ where i∗ =
min {argmaxi∈N ki }.

Rule 5 In all other cases, h (m) = σ .

Suppose that θ is the true state. We show ϕ (θ) = h (BSE (M, h, θ)). Fix any
x ∈ ϕ (θ). For each i , let mi = (θ, x, 0, ki ). By Rule 1, h (m) = x . The set of
options that player i can generate through unilateral deviations is Oi (x, θ). Part (i)
of Definition 5 implies that x ∈ Ci (Oi (x, θ) , θ) for each i . The set of options that
coalition K , with 2 ≤ |K |, can generate through deviations is OK (x, θ). Part (ii) of
Definition 5 implies that no coalition can find a profitable deviation; that is, part (ii)
of Definition 1 is satisfied for any coalition K , with 2 ≤ |K |. Since no coalition can
find a profitable deviation from m, that is, m satisfies parts (i)-(ii) of Definition 1, we
conclude that m ∈ BSE (M, h, θ), and so h (m) ∈ h (BSE (M, h, θ)).

For the remainder of the proof, fix any m ∈ BSE (M, h, θ). We show that h (m) ∈
ϕ (θ).

Step 1: m falls into Rule 1
Since i can induce Rule 2, i can attain the set Oi

(
h (m) , θ̄

) = Oi
(
m∗−i

)
. Since m ∈

BSE (M, h, θ), part (i) of Definition 1 implies that h (m) ∈ Ci
(Oi

(
h (m) , θ̄

)
, θ

)
for

each i . Part (ii) of revealed acceptability implies that h (m) ∈ ϕ (θ).

Step 2: m falls into Rule 2
Plainly, i can attain the set Oi

(
x, θ̄

) = Oi (m−i ) ∈ X , where x, h (m) ∈ Oi
(
x, θ̄

)
.

Fix any j �= i . Player j can induce Rule 3 and attain any outcome in O{i, j}
(
x, θ̄

) ⊆
O j

(
m− j

)
. Observe that h (m) , x ∈ O j

(
m− j

) ∈ X . Since by part (i) of Definition 5
it holds that O j

(
x, θ̄

) ⊆ O{i, j}
(
x, θ̄

)
, it follows that O j

(
x, θ̄

) ⊆ O j
(
m− j

)
. Since

the choice of player j is arbitrary, we have that x, h (m) ∈ O j
(
m− j

) ⊇ O j
(
x, θ̄

)
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for each j �= i . Since m ∈ BSE (M, h, θ), part (i) of Definition 1 implies that
h (m) ∈ Ci (Oi (m−i ) , θ) and h (m) ∈ C j

(
O j

(
m− j

)
, θ

)
for all j �= i . Part (ii) of

revealed acceptability implies that h (m) ∈ ϕ (θ).

Step 3: m falls into Rule 3
Plainly, i ∈ K can attain the set OK

(
x, θ̄

) ⊆ Oi (m−i ) ∈ X . Note that x, h (m) ∈
Oi (m−i ). Fix any j ∈ N\K . Player j can induce either Rule 3 or Rule 4, and attain
any outcome inOK∪{ j}

(
x, θ̄

) ⊆ O j
(
m− j

) ∈ X . Observe that x, h (m) ∈ O j
(
m− j

)
.

Also, sinceO j
(
x, θ̄

) ⊆ OK∪{ j}
(
x, θ̄

)
by part (i) of coalitional consistency, it follows

that O j
(
x, θ̄

) ⊆ O j
(
m− j

)
. Since the choice of player j is arbitrary, we have that

x, h (m) ∈ O j
(
m− j

) ⊇ O j
(
x, θ̄

)
for each j ∈ N\K . Since m ∈ BSE (M, h, θ),

part (i) of Definition 1 implies that h (m) ∈ Ci (Oi (m−i ) , θ) for all i ∈ K and
h (m) ∈ C j

(
O j

(
m− j

)
, θ

)
for all j ∈ N\K . Part (ii) of revealed acceptability implies

that h (m) ∈ ϕ (θ).

Step 4: m falls into Rule 4
Fix any j ∈ N . Fix any y ∈ Y . Player j can induce Rule 4 by changing m j into
m j = (

θ j , y, 1, k j
)
. To obtain y, player j has to choose k j such that he wins the

integer game. Since the choice of y is arbitrary, we obtain that Y ⊆ O j
(
m− j

) ∈ X .
Observe thath (m) ∈ O j

(
m− j

)
.Moreover, take any θ̄ ∈ � such that x ∈ ϕ

(
θ̄
)
. Part (i)

of coalitional consistency implies that Y = ON
(
x, θ̄

)
and that O j

(
x, θ̄

) ⊆ Y . Since
the choice of player j is arbitrary, we have that x, h (m) ∈ O j

(
m− j

) ⊇ O j
(
x, θ̄

)

for each j ∈ N . Since m ∈ BSE (M, h, θ), part (i) of Definition 1 implies that
h (m) ∈ C j

(
O j

(
m− j

)
, θ

)
for all j ∈ N . Part (ii) of revealed acceptability implies

that h (m) ∈ ϕ (θ).

Step 5: m falls into Rule 5
Thus h (m) = σ . Since m ∈ BSE (M, h, θ), there cannot exist any profile of sets
(Ai )i∈N , and an outcome y, such thatOi (m−i ) ⊆ Ai ⊆ ON (∅) = Y , σ /∈ Ci (Ai , θ),
and y ∈ Ci (Ai , θ) for all i ∈ N . Therefore, σ is behaviorally efficient with respect to
the sets (Oi (m−i ))i∈N at θ . We conclude that σ ∈ ϕ (θ).

Proof of Theorem 7

We can prove this claim by using Theorem 3 with σ = w. For any θ ∈ �, any i ∈ N ,
and any x ∈ T S(θ), setOi (x, θ) = X if x ∈ Ci (X , θ) (at least one such i exists), and
Oi (x, θ) = {x, w}, otherwise. Then, for any K ∈ N0, let

OK (x, θ) ≡
⋃

i∈K
Oi (x, θ).

It is easy to check that these sets satisfy parts (i)-(iii) of coalitional consistency when
we set Y = X . This is because either OK (x, θ) = {x, w}, in which case every player
wants to select x , or OK (x, θ) = X , in which case a player is already selecting what
she wants from X .
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Also items (i) and (ii) of revealed acceptability are easy to check. Item (i) holds
by definition of the collection O. To check item (ii), fix any θ ∈ �, any x ∈ T S (θ)

and any (Ai )i∈N such that Ai ⊇ Oi (x, θ) for all i ∈ N . Note that since x ∈ T S (θ),
and so x ∈ Ci (X , θ) for some i ∈ N , it follows that for at leat one player i , the set
Ai ⊇ Oi (x, θ) is such that Ai = X = Oi (x, θ). Suppose that y ∈ Ci

(
Ai , θ

′) for all
i ∈ N and y ∈ BE

(
θ ′). Since Ai = X for some i ∈ N , we have that y ∈ Ci

(
X , θ ′)

for some i ∈ N , and so y ∈ T S
(
θ ′). Thus, T S satisfies revealed acceptability.
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