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Given a finite group G with a bilocal representation, we investigate the bipartite entanglement in the state
constructed from the group algebra of G acting on a separable reference state. We find an upper bound for the
von Neumann entropy for a bipartition �A ,B� of a quantum system and conditions to saturate it. We show that
these states can be interpreted as ground states of generic Hamiltonians or as the physical states in a quantum
gauge theory and that under specific conditions their geometric entropy satisfies the entropic area law. If G is
a group of spin flips acting on a set of qubits, these states are locally equivalent to 2-colorable �i.e., bipartite�
graph states and they include Greenberger-Horne-Zeilinger, cluster states, etc. Examples include an application
to qudits and a calculation of the n-tangle for 2-colorable graph states.
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I. INTRODUCTION

Entanglement is certainly the most striking feature of
quantum mechanics. Other than for its conceptual impor-
tance, entanglement has been in the last years one of the key
concepts in quantum information, where it is the main re-
source required in many protocols of quantum computation
and quantum cryptography: e.g., quantum dense coding,
Shor’s algorithm, and teleportation �1�. Entanglement is also
an increasingly important concept in many topics of con-
densed matter physics, like superconductivity and the frac-
tional quantum Hall effect �2–4�. Moreover, entanglement
has recently been used, in the context of quantum phase tran-
sitions, as a novel tool to gain insights into the structure of
the zero-temperature phase diagram of interacting many-
body systems �5�. It also proves to play an important role in
understanding certain aspects of quantum field theory �6� and
spin systems �7,8�; these include one-dimensional �1D� lat-
tice models for XY �9,10� and Heisenberg models �9�.

However, calculating and classifying entanglement for a
general physical system is a daunting task. There is no
known measure which completely characterizes the entangle-
ment properties of an arbitrary system. If we restrict our-
selves to bipartite entanglement of a system in a pure state,
this task becomes easier. It has been proved that there is an
essentially unique entanglement measure: namely, the von
Neumann entropy of the reduced density matrix of one of the
two subsystems, S=−Tr��A log2 �A� �1,11�. Although this
looks conceptually simple, the calculation can be computa-
tionally intractable even for simple systems.

On the other hand, in several quantum many-body sys-
tems the states of physical interests �e.g., the ground state�
are highly symmetric and these symmetries impose addi-
tional constraints which can simplify the calculation of en-
tropy. This naturally leads to the topic of this article: namely,
exploring the entanglement entropy of a bipartite system us-
ing a group theoretical framework.

Given a group G, possibly non-Abelian, with a bilocal
action on a Hilbert space H=HA � HB, we introduce a class
of states, the G states, constructed from the group algebra of
G acting on a �separable� reference state. G states emerge

naturally as the ground states of generic Hamiltonians. For
these states we obtain an upper bound for the entanglement
entropy, provided a separability conditions holds for the
coefficients. A particular instance of this class, the
G-homogeneous states, is constructed as an equal superposi-
tion of group elements acting on the same reference state �0�.
As expected, this extra symmetry puts more constraints and
is able to provide an exact formula for the entropy. Remark-
ably, when A and B represent spatial complementary
regions—e.g., in a lattice—we recover the entropic area law:
the entanglement entropy for a bipartition �A ,B� depends
only on the degrees of freedom localized on the boundary
between A and B, and not on the bulk ones. This can be
viewed as a another manifestation of the Holographic prin-
ciple �12�. The entropic area law has been recovered in sev-
eral physical systems �13–15�. We examine several ex-
amples. If G is a group of spin flips acting on qubits, we
show that the corresponding states are Calderbank-Shor-
Steane �CSS� states �16� and locally equivalent to a well-
known class of stabilizer states: i.e., 2-colorable graph states.
These states are important and appear in several physical
contexts; examples include the ground state of the Kitaev
model of topological quantum computation �17�, error cor-
rection codes �the CSS states�, and the well-known
Greenberger-Horne-Zeilinger �GHZ� states. For arbitrary sta-
bilizer states, entanglement has been studied also by Fattal
et al. �18�. This group-theoretical framework proves to be
fruitful also beyond the analysis of bipartite entanglement for
qubits. The first extension is to higher-dimensional Hilbert
spaces: i.e., qudits. The second one applies to multipartite
entanglement. Specifically, we show how to calculate the
n-tangle for a G-homogeneous state, where G is a group of
qubit spin flips.

The plan of the article is the following. The framework
and general bounds for the entropy in G states and
G-homogeneous states are given in Sec. II. These are a gen-
eralization of our previous results �19,20�. Next we show that
we can interpret the G states as the physical states in a gauge
theory �Sec. III� and we give a geometric interpretation of
the entropic bound for G-homogeneous states and derive the
area law. Section IV is devoted to G-homogeneous states for
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a group of spin flips, and we show that they are locally
equivalent to 2-colorable graph states. We also discuss an
example for qudits �Sec. IV C� and a calculation of multipar-
tite entanglement �the n-tangle� for 2-colorable graph states
�Sec. V�. We conclude in Sec. VI.

II. ENTANGLEMENT IN G STATES

Consider �a unitary representation of� a group G acting on
a Hilbert space H. We assume that for a given bipartition
�A ,B� of the Hilbert space, H=HA � HB, the action of G on
H is bilocal; i.e., any g�G is a bilocal operator g=gA � gB,
where gA,B are linear operators acting on the Hilbert space
HA,B, respectively. We also assume that there exists a refer-
ence product state �0�= �0A� � �0B��H. We define the G state
as

��G� ª �
g�G

��g�g�0� , �1�

with �g,h�G��g��̄�h��0�h−1g�0�=1.
We point out that G states appear naturally as the ground

states of Hamiltonians belonging to the group algebra of G,
H�C�G�. Let D= 	g1 , . . . ,gk
 be the set of generators of G
with a local structure �i.e., each gi has a nontrivial action
only on a set of neighboring degrees of freedom�. Then we
can write any Hamiltonian in the form

H = �
gi�D

��gi�gi, �2�

with ��g−1�= �̄�g�. Since the ground state of a generic Hamil-
tonian can be written as ��0�=lim�→� Z−1���e−�H�0�, then
��0� is a sum of all the elements of the group with some
coefficients ���g� : ��0�=�g�G���g�g�0�, hence it is a G state.

If all the coefficients are equal, we call the state a
G-homogeneous state

�G� ª N−1/2 �
g�G

g�0� , �3�

where the normalization factor Nª�G��g�G�0�g�0��0 is as-
sumed to be nonzero and �G� is the order of G. It is obvious
that the state �G� is stabilized by the group G, since h�G�
= �G� , ∀ h�G. Given a partition �A ,B� of the Hilbert space
H we can write the state �G� as

�G� = N −1/2 �
g�G

gA�0A� � gB�0B� , �4�

where gA,B is the restriction of the operator g to the Hilbert
space HA,B. Consider now the two subgroups of G that act
exclusively on the subsystems A and B, respectively:

GA ª 	g � G�g = gA � 1B
 , �5�

GB ª 	g � G�g = 1A � gB
 . �6�

Let their order be dA,Bª�GA,B�. Since GA and GB are sub-
groups of the stabilizing group G, it is true that g�G�= �G�
also for every g�GA,B. As these subgroups are normal, we
can define the quotient group

GAB ª
G

GA 	 GB
. �7�

With this notation we have

G = �
�h��GAB

	�gA � gB�h�gA � 1 � GA,1 � gB � GB
 . �8�

Proposition 1. Suppose we have a bipartition �A ,B� of a
Hilbert space, H=HA � HB, and that the system is in a G
state ��G�=�g�G��g�g�0�. We assume that for every g�G
there is a representative h, with �h��GAB, such that the co-
efficients satisfy the separability condition

��g� � ��gA � gBh� = �A�gA��B�gB���h� , �9�

where again gA � 1�GA ,1 � gB�GB. Then the von Neu-
mann entropy of the G state corresponding to the bipartition
�A ,B� is bounded by

S���G�� 
 − �
�h��GAB

�NANB��h��2log2�NANB��h��2,

�10�

where

NX
2
ª �

gX�GX

��X�gX��2, X = A,B . �11�

Proof. From Eq. �8� we have

��G� = �
gA�gB�GA	GB

�h��GAB

�A�gA��B�gB���h��gA � gB�h�0�

= �QA � QB���G� � , �12�

where QXªNX
−1�gX�GX

�X�gX�gX, with X=A ,B and

��G� � = NANB �
�h��GAB

��h�h�0� = NANB �
�h��GAB

��h��hA� � �hB� ,

�13�

where �hX�ªhX�0X�, X=A ,B. Since QA � QB is a bilocal op-
erator, the entanglement satisfies the bound S���G��

S���G� ��. The entropy of ��G� � is maximal when the
set 	�hX�
, X=A ,B, is biorthogonal �Schmidt decompo-
sition�, in which case the entropy is
−��h��GAB

�NANB��h��2 log2�NANB��h��2; hence, this proves
the bound. �

Observation. The separability condition �9� seems rather
strong. A simple example where this condition is satisfied is
��g�=� J�g�; i.e., the coefficients correspond to 1D charac-
ters of the J-irrep of G.

Corollary 1. If for any element g=gA � gB�G we have

gX � 1X ⇒ �0�gX�0� = 0, �14�

with X=A ,B, then the entropy saturates its upper bound:

S���G�� = − �
�h��GAB

�NANB��h��2log2�NANB��h��2. �15�

Proof. In order for the entropy S���G�� to saturate the
previous bound we need to prove, first, that the sets
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	�hX� , �h��GAB
 form a biorthogonal basis �hence S���G� ��
saturates� and, second, that ��G� and ��G� � have the same
entropy.

Consider now the scalar products �0�hX
−1hX� �0� with hX ,hX�

such that �h� , �h���GAB and X=A ,B. Then �h�
� �h��⇒hX

−1hX� = �h−1h��X�1. �If hA
−1hA� =1, then �h−1h��= �1�

= �h�−1�h��⇒ �h�= �h��.� From Eq. �14� it follows that the sets
	�hX� � �h��GAB
, with X=A ,B, are a biorthogonal basis.

For the second part it is enough to show that the set

	�h̃X�ªQX�hX� ,X=A ,B
 is biorthogonal. Consider

�h̃X�h̃X� = �hX�QX
†QX�hX�� = NX

−2 �
gX,gX��GX

�̄X�gX��X�gX��

	 �0�hX
−1gX

−1gX�hX� �0� . �16�

By hypothesis �14� the last scalar product is zero unless
hX

−1gX
−1gX�hX� =1; hence, hX= �gX

−1gX��hX� and thus �hX�= �hX��
since they differ by an element of GAB. As we can choose the
same representative for a given equivalence class, hX� =hX and
hence gX� =gX. Taking into account the normalization �11�, we

obtain �h̃X � h̃X��=�h̃X,h̃X�
. Thus ��G� and ��G� � have the same

entropy and the thesis follows immediately. �
Corollary 2. For G-homogeneous states the entropy is

bounded by

S 
 log2�GAB� �17�

and the bound is saturated if the condition �14� holds.
Corollary 3. If the group G is a direct product G

=GA	GB, then S=0.
Proof. In this case we have ∀ g�G ,g=gA � gB with gA

� 1B�GA and 1A � gB�GB. Then we can write the G state as

��G� = �
gA�1B�GA

�AgA�0A� � �
1�gB�GB

�BgB�0B� ¬ ��A� � ��B� .

�18�

As this is a product state with respect to the �A ,B� partition,
it is obvious that its entanglement is zero. �

III. G STATES, GAUGE THEORIES, AND THE
ENTROPIC AREA LAW

What is a G-homogeneous state? And for which states is
the bound in corollary 2 saturated—i.e., S=log2�GAB�? The
following construction can give us some insight. We assume
that H has a given tensor product structure H�Cd1 � ¯

� CdL. Let �0di
� be a reference vector in Cdi and �0� the prod-

uct state �0�ª�0d1
� � ¯ � �0dL

�. Now let us construct one
possible set Cª	C1 , . . . ,CL
 of linear operators Ci�L�Cdi�,
∀ i=1, . . . ,L. In the following we take G to be a finite group
of linear operators in H generated by a suitable choice of
tensor products of elements in C :G= �A1 , . . . ,An�, where ev-
ery

Ak = �
i�Jk

Ci �19�

is a local operator on the local Hilbert space Hk= � i�Jk
Cdi

and Jk is a set of indices. We call the Ak star operators for

reasons that will be clear in the following. A bipartition
�A ,B� is given by the choice of indices IA , IB belonging to the
subsystems A and B, respectively, such that IA� IB
= 	1, . . . ,L
 and H=HA � HB, with HA= � i�IA

Cdi, and simi-
larly for HB. Notice that automatically all the operators in G
have a bilocal action on every partition �A ,B� of the system.
If two sets of indices Jk ,Jk� have one index in common,
Jk�Jk�= 	i
, we say that the corresponding star operators
overlap on the local Hilbert space labeled by i.

Let us now consider n sets of indices J1 , . . . ,Jn defining n
star operators such that

Jk � �
r�k

Jr, k = 1, . . . ,n , �20�

∀ Jk,Jk�:Jk � Jk� = 	i
 or � . �21�

We can see a graph �or a lattice� emerging from these n star
operators. The vertices of the graph correspond to the star
operators, so to n star operators we associate n vertices. The
edges of the graph are the local Hilbert spaces Cdi on which
the star operators overlap. This justifies their name: a star
operator Ak is the product of the operators associated to the
edges extruding from a vertex k. Star operators obviously
have a local structure.

With this construction, we obtain a geometric interpreta-
tion of the entanglement in G states. First of all, the entangle-
ment with respect to a partition �A ,B� is zero if we can split
the set 	Ak
 into two subsets 	AK

�X�
 such that AK
�X�=

� i�JK�IX
Ci, X=A ,B. So the Ak’s in one subset do not overlap

with the ones in the other. The two subsets generate together
the whole G, and since each generates GX, X=A ,B, respec-
tively, in this case G is a direct product G=GA	GB; hence
the entanglement is zero from corollary 3. Geometrically,
this means that A and B are not connected in the graph. If the
graph is connected, then there is no partition for which the
entanglement is zero. On the other hand, if no Ak’s overlap,
the graph is made of all isolated points and the G state is
completely disentangled. If we choose the Ak’s such that we
form a lattice, then there is no way to partition the system
such that G=GA	GB and the entanglement is always differ-
ent from zero under any possible partition.

We can view the Ak’s generating the group G as local
gauge symmetries. The vertices of the graph represent points
in space. G being Abelian means that the symmetries act
independently at every point. In quantum mechanics we can
construct a gauge theory by projecting a Hilbert space H to a
smaller Hilbert space Hphys of the physical states. This is
done by requiring that the physical states be annihilated by
some operators; for example, the physical states �phys� in
quantum electromagnetism are the ones annihilated �at every
space-time point� by ��A��phys�=0. The Hilbert space H is
the total Hilbert space. The physical states are the states an-
nihilated by the operators Ak−1 �21�:

Hphys = 	� � H��Ak − 1�� = 0
 . �22�

The G-homogeneous state is obviously a physical state.
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How can we characterize all the physical states? Let us
find the algebra of the linear operators acting on the physical
Hilbert space L�Hphys�. What does this algebra look like?
Consider the subgroup W�L�H� of linear operators com-
muting elementwise with G, and let F�W� be its associative
algebra. Then consider the ideal I generated by the Ak−1.
The algebra acting on the physical Hilbert space is then
L�Hphys�=F�W� /I. Then it is immediate to see that

Hphys = F�W�/I�G� = span	W�G�
 . �23�

In other words, the orbit of W through the G-homogeneous
state �G� is an orthonormal basis in Hphys. In general a physi-
cal state is not an equal superposition of a group of linear
operators; hence, we cannot apply proposition 1 to any quan-
tum physical state of a gauge theory. Nevertheless, consider
this particular situation: the system is partitioned such that
every element of W is gauge equivalent to some operator
acting exclusively on A or B. Then, in the hypothesis of G
and W belonging to the subspace B�L�H� of linear opera-
tors such that �0���0�=0 for all ��B, the following propo-
sition holds for every physical state in Hphys.

Proposition 2. Let �A ,B� be a partition of H such that W
acts �modulo a gauge transformation g�G� exclusively on
either A or B—say, w�1A � wB, ∀ w�W. Then the en-
tanglement entropy of every physical state ����Hphys is
equal to S=log2�GAB�.

Proof. The physical states in the physical Hilbert space
Hphys can be written as

��phys� = �
w�W

c�w�w�G� , �24�

with the normalization condition �w�W�c�w��2=1. The den-
sity matrix of this pure state is

�phys = �
w,w��W

c�w��c̄�w�w��w−1 = �
w,w��W

c�w��c̄�w−1�w��w ,

�25�

where � is the density matrix of the G-homogeneous state,
�ª �G��G�. Tracing out the B degrees of freedom we obtain
the reduced density matrix

�A
phys = �

w,w��W
c�w��c̄�w−1�TrB�w��w� . �26�

By hypothesis for every element w�W there is a gauge
transformation g�G such that w̃ªgw=1A � �gw�B. Denote
g ,g� such gauge transformations for the operators w ,w� in
Eq. �26�. Then obviously w�w�=wg�g�w�= w̃�w̃�, since
�w ,g�=0 and g�=�. The particular form of w̃ implies that
TrB�w̃�w̃��=TrB�w̃�w̃��=0 unless w̃�= w̃−1. This follows
from TrB�w̃��=�gg��GgA�0A��0A�gA�gA

−1�0B�gB�w̃�0B� and for
w̃�1 the scalar product �0B�gB�w̃�0B� is always zero. The re-
duced density matrix becomes

�A
phys = �

w,w��W
c�w��c̄�w−1�TrB�w̃��w̃�

= �
w̃,w̃��W

c�w̃��c̄�w̃−1��w̃�w̃−1TrB� = �A. �27�

Then the von Neumann entropy for every physical state is
equal to the entropy of the G-homogeneous state �. �

Entropic area law. The entropy of the physical states in
Hphys satisfies the area law. Consider a partition �A ,B� of
Hphys constructed by taking as subsystem A all the degrees of
freedom �i.e., the local Hilbert spaces Cdi corresponding to
the edges of the graph� inside or intersected by a closed
surface �. The group GAB will be generated by all the stars
Ak based on sites outside the surface that puncture the sur-
face �. Let nAB the number of such stars. Then the entropy is
S=log2�GAB�=log2 f�nAB�, where the function f�nAB�ª �GAB�
gives the order of the group as a function of the number of its
generators. As a measure of the surface � we can choose the
number of punctures �. In general, ��nAB because a star
can puncture the surface in more than one point. It immedi-
ately follows that

S 
 log2 f��� . �28�

This bound can be saturated for some geometries—e.g., in a
cubic lattice if we choose � to be convex �20�.

IV. G-HOMOGENEOUS STATES FOR SPIN FLIPS

A. Qubits

In our previous work �19,20� we investigated examples of
G-homogeneous states where G was a group of spin flips and
hence the states were also stabilizer states; in this case G is
Abelian and moreover ∀ g�G, g2=1. We will clarify later
the relationship between this class of G-homogeneous states
and the well-known graph states. More exactly, we will
prove that G-homogeneous states corresponding to a group
of spin flips are locally equivalent to 2-colorable �i.e., bipar-
tite� graph states. This representation of 2-colorable graph
states as an equal superposition of elements of G acting on a
reference state proves to be very effective in calculating en-
tanglement and general correlation functions.

In order to make the connection between G-homogeneous
states and stabilizer states we start with some general con-
siderations about the stabilizer formalism. Consider a system
of n spins 1/2 with Hilbert space H=H1

�n �H1
=span	�0� , �1�
 is the Hilbert space of a single spin�. As be-
fore, we choose the reference state �0�ª �0�1 � ¯ � �0�n, cor-
responding to the basis vector with all spins up. We denote
the Pauli matrices by Xi, Yi, and Zi �the subscript represents
the qubit on which they act�. There are two necessary and
sufficient conditions for a group of Pauli operators S
= �s1 , . . . ,sn� to be a stabilizer group �1,26�: �i� si

2=1, si

�−1, ∀ i, and �ii� �si ,sj�=0, ∀ i , j. From the general theory
we know that any element of a stabilizer group can be writ-
ten as ±X�a�Z�b�, where a ,b�Z2

n are binary vectors and
X�a�ªk=1

n Xk
ak; analogously, Z�b�=k=1

n Zk
bk �22�. We can de-

fine the n	2n generator matrix as follows:
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��a1

�
an
�b1

�
bn
� �29�

where si= ±X�ai�Z�bi� and ai ,bi�Z2
n are the binary vectors

corresponding to the generators �the sign is omitted in the
definition of the generator matrix�. Hence the left �right� part
of the generator matrix contains the X- �Z-� type generators,
respectively. We also define the inner product of two binary
vectors as

�a,b� ª �
i=1

n

aibi mod 2. �30�

The two conditions satisfied by the generators become

�i� �ai,bi� = 0, �31�

�ii� �ai,b j� + �a j,bi� = 0 mod 2, ∀ i, j . �32�

An n-qubit stabilizer state ��� is stabilized by a group S��� of
Pauli operators having n generators.

For example, the Bell states ��±�=2−1/2��00�± �11�� and
��±�=2−1/2��01�± �10�� are stabilized by the groups
�±X1X2 ,Z1Z2� and �±X1X2 ,−Z1Z2�, respectively, and the gen-
erator matrix is

��11

00
�00

11
� .

Let C1= �H , P� be the 1-qubit Clifford group, mapping
products of Pauli matrices into products of Pauli matrices;
H=2−1/2�X+Z� is the Hadamard and P=diag�1, i�.

A natural question to ask is when two stabilizer states are
locally equivalent and hence they have the same entropy S. A
restricted criterion for local Clifford equivalence only is the
following.

Proposition 3. Let G and G� be two stabilizer groups of n
qubits and let G be generated by G= �g1 , . . . ,gn�. Then the
states stabilized by G and G� are locally Clifford equivalent
iff there is a local unitary U�C1

�n such that the set hi
=UgiU

†, i=1, . . . ,n, generates G�= �h1 , . . . ,hn�.
Proof. Denote by �G and �G� the states stabilized by G

and G�, respectively. Since G is generated by �g1 , . . . ,gn�, we
can write

�G = �G��G� = 2−n
i=1

n

�1 + gi� . �33�

The two stabilizer states are locally Clifford equivalent iff
there is a local unitary U�C1

�n such that �G�=U�GU†

=2−ni=1
n �1+UgiU

†�; define hiªUgiU
†, i=1, . . . ,n. Then

hi
2=1 and �hi ,hj�=0, ∀ i , j, since the generators gi satisfy the

same relations. Then hi can be chosen as a set of generators
for G�. �

Turning to the previous example, it is easy to see that
��−�=Z1��+� and hence their generators are related by
Z1�X1X2�Z1=−X1X2, Z1�Z1Z2�Z1=Z1Z2.

Let G� �X1 , . . . ,Xn� be a group of spin flips: ∀ g�G ,g
=X�a�, where a�Z2

n is a binary vector and X�a�

=i=1
n Xi

ai. Consider the generators of G= �g1 , . . . ,gk�
= �X�a1� , . . . ,X�ak��; �G�=2k. Then we can write the group G
in terms of an �additive� group of binary vectors A
= �a1 , . . . ,ak��Z2

n, and therefore G=X�A�.
For a group G of spin flips, the G-homogeneous state is

�G� = �G�−1/2 �
a�A

X�a��0� . �34�

As mentioned before, G leaves invariant the state �G�, since
g�G�= �G�, ∀ g�G. We now construct the stabilizer of �G�,
S�G�= �g1 , . . . ,gk ,sk+1 , . . . ,sn�; obviously, it should have n
generators. The first k are the pure spin flips generating G,
gi=X�ai�, 1
 i
k; the other generators can be written as
sj = ±X�a j�Z�b j� with k+1
 j
n. Since sj�G�= �G� and
�sj ,g�=0, ∀ g, we have

1 = �G�sj�G� = ± �G�−1 �
g,g��G

�0�gX�a j�Z�b j�g��0�

= ± �
h�G

�0�hX�a j��0� = ± �G„X�a j�… , �35�

where the characteristic function is defined as �G�h�=1 if h
�G and 0 otherwise. This implies that ±X�a j��G; hence,
we can choose all the generators sj as pure phase
flips, sj =Z�b j�. Therefore the stabilizer S�G�
= �X�a1� , . . . ,X�ak� ,Z�bk+1� , . . . ,Z�bn��=X�A� ·Z�B� is a di-
rect product of pure spin flips and pure phase flips, with A
= �a1 , . . . ,ak� and B= �bk+1 , . . . ,bn�. Commutation of all gen-
erators implies �ai ,b j�=0, ∀ i , j; hence, B=A�. Thus the
whole information about the state is contained only in the
X-type generators �or, equivalently, only in the Z-type ones�,

S�G� = X�A� · Z�A�� , �36�

and so the group G=X�A� describes fully the stabilizer state
�G�. A stabilizer state having only X- and Z-type generators is
also known as a CSS state.

Another way of seeing this is the following. The stabilizer
of the vacuum is S�0�ª �Z1 , . . . ,Zn� and hence

�0��0� = 2−n �
h�S0

h = 2−n �
b�Z2

n

Z�b� . �37�

As any group of pure phase flips Z�B��S�0�, these symme-
tries are already included in the way we constructed the
G-homogeneous state �34�, since the reference state is ex-
actly �0�.

B. Relationship to graph states

Graph states are a class of multiparticle entangled states
which include cluster states, GHZ states, etc., and have been
extensively studied recently �23–25�. Given a graph G, the
associated graph state is stabilized by the following n gen-
erators:
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gi = Xi 
j�neigh�i�

Zj, i = 1,n , �38�

where the product is taken over all the nearest-neighbor ver-
tices of vertex i. It is easy to see that the n	2n matrix
describing the generators is the following:

�1n�M�; �39�

hence, the X part of the generators is the unit matrix and the
Z part the adjacency matrix M of the graph. Let us analyze
first the relationship between stabilizer states and graph
states. Clearly, graph states are a particular class of stabilizer
states. According to Gottesman ��26�, Chap. 4� we can put
the stabilizer matrix into a standard form by performing
Gaussian elimination. For stabilizer states �set k=0 in Eq.
�4.3� of �26�� we have the standard form

�� 1r,r Ar,n−r

0n−r,r 0n−r,n−r
� Br,r Cr,n−r

Dn−r,r 1n−r,n−r
� , �40�

where r is the rank of the X part of the generators matrix �the
subscripts denote the size of the matrices�. If r=n, then this
is equal to

�1�B� , �41�

with both n	n matrices. Now, is B the adjacency matrix of
a graph? We need to prove that Bii=0 and Bij =Bji. This
follows immediately from the properties of stabilizer genera-
tors. For any generators gi,j =X�ai,j�Z�bi,j�, we have �ai ,bi�
=0 and �ai ,b j�+ �a j ,bi�=0 mod 2, ∀ i , j, from which follows
that B is indeed an adjacency matrix. Therefore, if the rank
of the X part of the generator matrix is maximal, r=n, the
stabilizer state in question is a graph state. What if r�n? It
has been shown that any stabilizer state is equivalent to a
graph state under local Clifford operation �27�. In conclu-
sion, an arbitrary stabilizer state is either a graph state �if r
=n� or is locally equivalent to a graph state �r�n�.

One problem with graph states is that there is no one-to-
one correspondence between graphs and locally inequivalent
states. Thus, a GHZ state can be described either by a star
graph or by a fully connected graph �28�. Moreover, some
graph states have a more compact description as
G-homogeneous states. For example, the stabilizer of the
GHZ state is

SGHZ = �X�n,Z1Z2, . . . ,Z1Zn� , �42�

with the notation X�n
ªi=1

n Xi. Described as a graph state,
the GHZ state is �locally equivalent� to a star graph with a
stabilizer group generated by

Sstar� = �X1
i=2

n

Zi,X2Z1, . . . ,XnZ1� . �43�

It is immediate to see that the two set of generators are re-
lated by gk�=HgkH, k=1, . . . ,n, where the local operator is
Hªk=2

n Hk �Hk is a Hadamard on the k qubit�. Then the
density matrix of the star graph state stabilized by S�Star is

�star = 2−n�1 + X1
i=2

n

Zi�
j=2

n

�1 + XjZ1� . �44�

The above form is more complicated than the description of
�GHZ� in our formalism, since the group G of spin flips is
just G= �X�n�, �G�=2. So instead of describing the n-GHZ
state using n generators, we use only one, irrespectively of
the number of qubits. Thus the rationale behind this approach
is to find a more convenient description for a certain class of
stabilizer-graph states.

In the last section we proved that the generators matrix
associated to the G-homogeneous state is

�� Ak,n

0n−k,n
� 0k,n

An−k,n
� � , �45�

where 0mn is the m	n zero matrix and A= �a1 , . . . ,ak�T. In-
tuitively, if we can separate the X- and Z-type generators, we
can “throw away” the Z part and work only with the spin
flips �acting on vacuum�, since the Z’s leave invariant the
vacuum �0�.

Consider now some transformations. A Hadamard on the
i-qubit Hi interchanges Zi↔Xi, and it is equivalent to ex-
changing the i column in the X part with the i column in the
Z part of the generator matrix �45�. Therefore applying H�n

interchanges the X and Z blocks and this is convenient if n
−k�k, since we have a local equivalent state described by a
smaller group of spin flips. The next proposition establishes
the relationship between graph states and G-homogeneous
states.

Proposition 4. Let G be a bipartite graph �i.e.,
2-colorable�, and let V1, V2, with �V1�
 �V2�, be the sets of
vertices forming the bipartition �thus all the vertices in Vi
have the same color�. Then the associated graph state �G� is
locally equivalent to a G-homogeneous state, �G�=U�G�,
with U=i�V2

Hi. Moreover, the group G of spin flips satis-
fies �G�=2�V1�.

Proof. Without loss of generality, we can label the vertices
such that the first n1ª �V1� belong to the V1 partition; define
also n2ª �V2�=n−n1. Then the generator matrix of the stabi-
lizer is

�� 1n1
0n1,n2

0n2,n1
1n2

� 0n1
An1,n2

An2,n1

T 0n2

� , �46�

where the subscripts denote the size of the matrices �for
square matrices only one index is used�; A is the nonzero part
of the adjacency matrix. Performing a Hadamard on all the
qubits belonging to V2 interchanges the X and Z columns,

�� 1n1
An1,n2

0n2,n1
0n2

� 0n1
0n1,n2

An2,n1

T 1n2

� , �47�

which is of the form �45�, so we can write

�G� = 
i�V2

Hi�G� . �48�

We can also check that all generators commute; hence,
�X�ai� ,Z�b j��=0, ∀ i=1, . . . ,n1 and j=1, . . . ,n2. We have
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�ai ,b j�=Aji
T +Aij =0 mod 2, as expected �this should have

been obvious, since applying local Hadamards to a genera-
tors matrix gives another generators matrix�. Since the num-
ber of X generators is n1, we have �G�=2�V1�. �

This result has been independently proved by Chen and
Lo �29�. Moreover, they also proved the reciprocal: any CSS
state is locally equivalent to a 2-colorable graph state. There-
fore we conclude that if G is a group of spin flips acting on
qubits, the corresponding G-homogeneous states are locally
equivalent to 2-colorable graph states.

Applying Eq. �17�, it is now easy to derive a bound on the
entropy for bipartite graph states:

S 
 log2�G� = �V1� 
 �n
2

� , �49�

recovering a result obtained in �23�.
Examples of 2-colorable graphs include cluster states,

trees �n-star, n-linear� and 2n-ring graphs. Since they are
equivalent to G-homogeneous states, they have a simpler de-
scription in terms of only X-type generators. How wide-
spread are 2-colorable graph states? In Ref. �23� the authors
found 45 �connected� graph states with up to seven vertices
which are not equivalent �under local unitaries and graph
isomorphisms�; out of these, 32 are 2-colorable and the other
13 are 3-colorable.

C. Qudits

The formalism of G-homogeneous states can also encom-
pass multiqudit states. A qudit is a quantum system having a
d-dimensional Hilbert space Hd=span	�0� , . . . , �d−1�
�Cd.
The generalized Pauli operators for qudits are defined as

X�k� = �k � 1� , �50�

Z�k� = �k�k� , �51�

where �=e2�i/d and � is the sum modulo d. They are no
longer idempotent, since Xd=Zd=1; moreover, ZX=�XZ. It
is straightforward to see that for the case of qubits �d=2� we
recover the usual definitions and commutations relations for
X and Z. We can generate any basis vector by applying spin
flips on �0�, �k�=Xk�0�; hence, an arbitrary state in Hd has the
form ���=�k=0

d−1�kX
k�0�.

As an example, consider the Hilbert space of n qudits
H= �Cd��n and let G= �X�n�= 	1 ,X�n , . . . , �X�n�d−1
, with
X�n=i=1

n Xi; obviously, �G�=d. The corresponding n-qudit
G-homogeneous state is

�G� = d −1/2�
i=0

d−1

�X�n�i�0� . �52�

It is immediate to see that �G� is the maximally entangled
state of n qudits �it generalizes the n-GHZ state�, since dA
=dB=1 for any bipartition �A ,B�, so the entropy is S
=log2 d as expected.

V. MULTIPARTICLE ENTANGLEMENT

In this section we show that the compact form of writing
a G-homogeneous state �3� is a useful device in calculating

multiparticle entanglement. The von Neumann entropy char-
acterizes well the bipartite entanglement of a system in a
pure state. However, S fails to address the problem of mul-
tipartite entanglement. This becomes apparent even for the
simple case of three qubits; there are two classes of states
with genuine tripartite entanglement, the W- and GHZ-type
states, which cannot be distinguished by calculating only the
bipartite entanglement �30�. An entanglement measure which
does distinguish between the two families of states is the
3-tangle �3 �31�, since �3�GHZ�=1 and �3�W�=0. More gen-
erally, �3��GHZ��0, and �3��W�=0 for all the states
�GHZ ,�W belonging to the GHZ and W families, respectively.

A generalization of the 3-tangle to an even number n of
qubits is the n-tangle introduced in Ref. �32�. For a state ���,
the n-tangle is defined as

�n ª ����Y �n��*��2, �53�

where � means complex conjugation. It has been shown that
�n is an entanglement monotone and is invariant under local
unitaries. Note that �n is not defined for n odd.

Proposition 5. Let G= �X�a1� , . . . ,X�ak�� be a group of
spin flips. Denote by piª �ai ,ai� the parity of the generator
gi=X�ai� and let p�h�= �a ,a� be the parity of an arbitrary
element h=X�a��G. Then we have the following:

�G�−1 �
h�G

�− 1�p�h� = 
i=1

k

�1 − pi� ¬ 1 − p�G� , �54�

where the last equation defines the parity p�G� of the group
G. The proof is trivial. If all the generators are even, then all
the group elements have even parity, hence, the above sum is
1 and p�G�=0. If only one of the generators is odd �say, g1�,
then exactly half of the group elements are odd �those con-
taining g1 in their expansion� and the other half are even;
therefore, the sum is 0 and p�G�=1. If more than one gen-
erator is odd, we can always choose an equivalent set of
generators such that only one is odd—say, g1—e.g., by mul-
tiplying all the odd generators by g1 �apart from g1 itself�;
hence, this case reduces to the previous one.

We now calculate �n for G-homogeneous states �and, con-
sequently, for 2-colorable graph states, as they are locally
equivalent�. Let

��� = �G�−1/2�g�G
g�0� = �G�−1/2�a�A

X�a��0� = ��*�.
Since

Y�nX�b� = �− 1��b,b�X�b�Y�n = in�− 1��b,b�X�b�X�nZ�n

and Z�n�0�= �0�, we obtain

�G�Y �n�G� = �G�−1 �
a,b�A

�0�X�a�Y �nX�b��0�

= in�G�−1 �
a,b�A

�− 1��b,b��0�X�a�X�b�X�n�0�

= in�G�−1 �
b,b��A

�− 1��b,b��0�X�b��X�n�0�

= in�1 − p�G���G�X�n� , �55�

where the characteristic function �G�X�n�=1 if X�n�G and
0 otherwise. Therefore we have the following.
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Corollary. For a G-homogeneous state the n-tangle is

�n = �1 − p�G���G�X�n� . �56�

Hence the n-tangle is 1 iff all the generators of G are even
and X�n�G.

VI. SUMMARY

Entanglement has been used recently to probe many-body
systems and gain insights into their properties. Quantum
phase transitions are a notable example in this sense. Several
authors have shown that a critical behavior of entanglement
can signal quantum phase transitions �5�.

However, calculating the entanglement entropy for an ar-
bitrary system is often a computationally intractable prob-
lem. One way to circumvent this problem is to focus on
states with extra built-in symmetries. In the present article
we formalized this intuition using tools from group theory.
We have investigated the entanglement entropy for a class of
states constructed by acting with the group algebra of a pos-
sibly non-Abelian group G on a separable reference state �0�.
The group is required to have a bilocal action with respect to
a given partition A ,B of the full Hilbert space H=HA � HB.
We started first with the G states, which are constructed as an
arbitrary superposition of group elements acting on �0�.
These states are extremely general, as any state of a Hilbert
space can be regarded as a G state with an suitable group G.
Moreover, we have shown that the ground states of generic
Hamiltonians are G states. We have derived an upper bound

for the entropy provided a separability condition holds for
the coefficients.

A particular class are the G-homogeneous states and in
this case we generalized our previous results �19,20�. If G is
a group of spin flips, we show that the associated
G-homogeneous states are locally equivalent to 2-colorable
graph states and CSS states. Examples include GHZ states
and the ground state of the Kitaev model.

We have shown that we can regard the G states as the
physical states in a quantum gauge theory. In this framework
all the physical states are obtained acting on the
G-homogeneous state with the commutant algebra of the
group algebra of G. With some extra assumptions, we can
compute the bipartite entanglement for all the physical states.
We have shown how to relate this quantity to the geometric
entropy introduced in �33�: namely, the von Neumann en-
tropy relative to a bipartition obtained by considering a
closed surface � of area � and taking as subsystem A all the
particles �or degrees of freedom� within �. Moreover, the
entanglement of the physical states obeys the area law: i.e.,
S��phys��= f���.

Finally, we have shown that this construction can be ex-
tended in two directions: computing the entanglement en-
tropy for qudits in G-homogeneous states and the n-tangle
for 2-colorable graph states.

A future challenge will be to find other physical systems
which can benefit from the group theoretical framework de-
scribed here.
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