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a b s t r a c t

Cluster analysis requires fixing the number of clusters and often many hyper-parameters.
In practice, one produces several partitions, and a final one is chosen based on validation
or selection criteria. There exist an abundance of validation methods that, implicitly or
explicitly, assume a certain clustering notion. In this paper, we focus on groups that can
be well separated by quadratic or linear boundaries. The reference cluster concept is
defined through the quadratic discriminant function and parameters describing clusters’
size, center and scatter. We develop two cluster-quality criteria that are consistent with
groups generated from a class of elliptic–symmetric distributions. Using the bootstrap
resampling of the proposed criteria, we propose a selection rule that allows choosing
among many clustering solutions, eventually obtained from different methods. Extensive
experimental analysis shows that the proposed methodology achieves a better overall
performance compared to established alternatives from the literature.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The typical workflow in cluster analysis is to run one or more algorithms with various settings producing several
artitions, among which a researcher needs to choose a final one. There may be multiple partitions that describe the
ata well according to different clusters’ concepts [30]. Because of the intrinsic unsupervised nature of the clustering
roblem, the selection of the desired cluster solution remains a long-standing and open problem [25]. The most significant
ommon issue to all methods and algorithms is choosing an appropriate number of groups, K . However, K is not the only
elevant decision: many clustering methods and algorithms also require hyper-parameters that control the complexity
evel at which the data structure is represented. Similar methods with different hyper-parameters may discover different
artitions of a given data set, even at the fixed ‘‘true’’ K . In the Supplementary Material, Section S2, we provide an example
n the well-known Iris data set [3]. There is a vast catalog of methods proposed to solve the selection problem; for a recent
omprehensive overview, see [21]. Traditionally, in cluster analysis, the selection of the desired partition has been treated
s a validation problem rather than a model selection problem. This is probably because many clustering methods are not
erived from stochastic models, although most are built around at least some implicit model assumptions. Recently, [38]
ttempted to categorize different types of validation approaches. Our proposal contributes to the literature on internal
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alidation methods, which are methods using the same data used to fit the clusters. The advantage of internal methods
s that they do not require additional information that is sometimes expensive to collect. Typically, new proposals are
dvertised claiming their universal ability to discover the data’s ‘‘true’’ groups. However, in pure unsupervised contexts,
rue groups do not exist. Furthermore, it is often overlooked that each method pursues a specific notion of clusters,
hich implicitly or explicitly assumes the existence of certain structures in the data. As noted in [2], one needs to choose
he validation approach that is consistent with the primary goal of the analysis. There are method-dependent validation
ethods, specifically designed to evaluate the output of a specific clustering method and method-independent methods

hat can potentially evaluate the output of any clustering methodology. However, even method-independent validation
pproaches privilege a certain idea of clusters.
In this paper, we take a different approach: we first define a notion of clusters that different clustering methods

ay retrieve and then propose a method-independent validation criterion to measure the quality of such clusters.
pecifically, we look for clusters that can be well separated by quadratic boundaries or linear boundaries as a special
ase. These clusters are consistent with a class of elliptically-symmetric distributions (ESD), where the within-group
ependence structure of the features is mainly driven by correlation. The quest for clusters of this type is rather common
n applications [18].

elated literature. Model-based clustering (MBC) methods, based on ML estimation of finite mixture models of ESDs, are
trong candidates for capturing the clusters mentioned above. Assuming that each of the K mixture components generates
group, the selection of the desired clustering solution is translated into a model-selection problem where, in practice,

he likelihood fit is contrasted with a penalty accounting for model complexity. The most popular selection strategy is to
se information criteria such as the BIC and the AIC [9,31].
Although information-type criteria are based on a solid theoretical background, there are some issues with their

pplication to cluster selection. In [29], Keribin showed that the BIC is consistent for the number of mixture components
nder somewhat restrictive assumptions, but practitioners tend to believe that this result is more general, causing some
aith in it. The consistency notion of [29] is for the recovery of the underlying data distribution and not for clusters.
aradoxically, these consistency results are problematic for cases where the mixture model is not meant to capture the
‘true’’ underlying distribution but rather for approximating the density regions formed by the clusters. Finite Gaussian
ixtures can approximate a large class of distributions [34], implying that consistent criteria like the BIC will include
dditional components inflating K if, for example, a group that is only approximately normal is better fitted by more
han one Gaussian component. The Integrated Complete-data Likelihood (ICL) criterion of [8] [see also 5] modifies the
IC, adapting it to solve the clustering problem. Another model-selection approach, based on likelihood-type criteria
erived from mixture models, is the cross-validation method proposed in [37]. An additional drawback of information-
ype indexes is that they are method-dependent: they only allow to compare solutions from MBC methods because their
alculation is based on likelihood quantities and models’ degrees of freedom. A further issue is that, in some cases, these
riteria cannot be calculated for MBC methods when the effective degrees of freedom of the underlying model cannot be
erived (see the case of ML for Gaussian mixtures with the eigen-ratio regularization treated in Section 4).
Outside the MBC context, there are many method-independent internal validation indexes that mostly measure the

ithin-cluster homogeneity contrasted to a measure of between-clusters heterogeneity. Notable examples are the popular
H index of [10] and the Average Silhouette Width criteria (ASW) of [27]. These are not genuinely model-free indexes
ecause they purse cluster shapes that depend on the underlying dissimilarity notion. These indexes have in common
ith the BIC-type criteria that they implicitly attempt to contrast the cluster fit vs., the increased complexity caused by
he increase in K .

Another idea from the literature that inspired some aspects of the present contribution is that of stability selection [6].
he idea taken from this literature is not the notion of stability, which is about finding similar clusterings on similar data
ets [13,24], but the idea of exploring variations of the clusterings based on perturbations of the data set obtained by
ootstrap resampling of the original data.

ontribution and organization of the paper. We develop a framework where each cluster is represented by a triplet of
arameters representing the notions of size, location and scatter. This allows to map clusterings obtained with different
ethods in a form that is consistent with the notion previously discussed. The method-independent nature of our
roposal is a major advantage over competitors from the MBC literature. These clusters’ parameters and the quadratic
core function, at the heart the Quadratic Discriminant Analysis (QDA), are used to develop two cluster quality criteria
alled quadratic scores. These criteria are shown to be consistent with clusters generated from a restricted class of ESDs,
ncluding the popular Gaussian model (Section 2.1). We show connections between the proposed criteria and likelihood-
ype quantities related to finite mixtures of ESDs and, in particular, Gaussian mixtures (see Section 2.2). In the same spirit
f the pioneering work of [1] on model-selection, we propose to select a clustering solution produced by a method that
chieves the largest expected score across all possible partitions of data sets sampled from the data distribution. The
xpected score and its confidence interval are approximated via empirical bootstrap in Section 3. Finally, in Section 4,
e propose an extensive numerical analysis where the proposed method is compared against some alternatives on both
eal and artificial data sets. Overall, the proposed methodology shows a superior performance and proves to be able to
etrieve interesting clustering solutions even in adverse circumstances. Proofs of the statements are given in Appendix A;
dditional examples and details are given in Supplementary Material.
2



L. Coraggio and P. Coretto Journal of Multivariate Analysis 196 (2023) 105181

2

a

m

2

t

t
K
T
p
a
Q

w

T

. Quadratic scoring

We fix some general notation used throughout the rest of the paper. The general clustering problem is to construct
partition GK = {Gk, k ∈ {1, . . . , K }} allocating the objects {1, . . . , n} into K groups, where K is generally unknown. Let

Xn = {xi, i ∈ {1, . . . , n}} be an observed sample of p-dimensional feature vectors xi ∈ Rp; Xn is the observed version of a
random sample Xn = {Xi, i ∈ {1, . . . , n}}, where Xi ∈ Rp is the p-dimensional random vector of features representing
the ith unit. In clustering, a typically unsupervised task, we observe the features, but we do not observe the group
memberships that we want to discover. Group memberships are introduced through the random vector of 0–1 variables
Z = (Z1, . . . , ZK )T, where Zk = 1 denotes membership to the kth group. For the ith sample point we define the group
emberships as Zik = I {i ∈ Gk}, where I {·} is the usual indicator function.

.1. The reference cluster concept

Assume that X ∼ F , where F is the population distribution function producing K clustered regions of points. We assume
hat each cluster k ∈ {1, . . . , K } is meaningfully described by the triplet of parameters θk =

{
πk,µk,Σ k

}
formalizing the

notions of size, center and scatter. For the kth cluster, πk is the expected fraction of points belonging to the kth group,
µk ∈ Rp is the vector of centers and Σ k ∈ Rp×p is a positive definite scatter matrix that either coincides with or is
proportional to the group’s covariance matrix. A cluster configuration m of K groups is represented by the parameter
vector θ(m) including all unique elements of the objects {(π (m)

k ,µ
(m)
k ,Σ (m)

k ), k ∈ {1, . . . , K }}. Since different θ(m) may refer
o cluster configurations with a different number of groups, depending on the context, we will often use the notation
(θ(m)), or K (m), to denote the number of groups described by θ(m). The set of possible configurations is denoted with M.
he superscript (m) is dropped if it is unnecessary to index more than one cluster configuration, m ∈M. Note that θ is a
arameter serving as a general description of the clustered region but, in general, we do not presume that F is necessarily
function of θ. Given a configuration θ, we look for clusters that form a partition of the data space into K disjoint subsets
(θ) = {Qk(θ), k ∈ {1, . . . , K }},

Qk(θ) :=
{
x ∈ Rp

: qs(x, θk) = max
1≤j≤K

qs(x, θj)
}
, (1)

here qs(x, θk) is the quadratic score function at x according to θk, that is

qs(x, θk) := log(πk)−
1
2
log (det(Σ k))−

1
2
(x− µk)

TΣ k
−1(x− µk). (2)

From now onward, we call Q(θ) the quadratic partition. A point x is defined to belong to the group for which the quadratic
score is maximized. Hence, qs(x, θk) can generally be interpreted as a measure of the fit of x into the kth cluster according
to θk. Note that exp(qs(x;µk,Σ k)) ∝ πkφ(x;µk,Σ k), where φ(·,µk,Σ k) is the multivariate normal density function with
mean µk and covariance Σ k. The classical interpretation of (1) is that it represents the optimal classification boundaries
under the Gaussian assumption. As noted in [23], in practice, the quadratic score can effectively describe partitions well
beyond Gaussianity whenever quadratic and linear boundaries can adequately separate clustered regions. The following
result states that the partition in (1) is consistent with a class of elliptic–symmetric models that includes the Gaussian.

Proposition 1. Assume Pr{Zk = 1} = πk and that for all k ∈ {1, . . . , K } the group-conditional distribution, i.e., the distribution
of X | Zk = 1, has the density function

f (x;µk,Σ k) = det(Σ k)−
1
2 g
(
(x− µk)

TΣ k
−1(x− µk)

)
, (3)

where g(·) is a strictly decreasing function on [0,+∞), µk ∈ Rp is the centrality parameter and Σ k ∈ Rp×p is a positive
definite scatter matrix. Assume at least one of the following:

(C1) f (·) is the Gaussian density function (for an appropriate choice of g(·));

(C2) πi det(Σ i)−
1
2 = πj det(Σ j)−

1
2 , i ̸= j, i, j = 1, . . . , K.

hen, for any partition of the feature space {Ak, k ∈ {1, . . . , K }},

Pr

{
K⋃

k=1

{Zk = 1 ∩ X ∈ Ak}

}
≤ Pr

{
K⋃

k=1

{Zk = 1 ∩ X ∈ Qk(θ)}

}
, (4)

where Qk(θ) ∈ Q(θ) is defined in (1).

The previous result connects and develops ideas from linear classification and its connections to elliptically-symmetric
families investigated in [39].
3
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emark 1. The quadratic partition achieves the largest probability that its members contain points generated from the
sub-populations. The group-conditional model (3) includes popular unimodal models like the Gaussian, the Student-t,

he Laplace, the multivariate logistic, etc. These models generate groups of points lying in regions that are intersections
f ellipsoids described by the pairs (µk,Σ k) and, within each group, the features are connected via their joint linear

dependence. The generating mechanism assumed in Proposition 1 is consistent with data generated from finite mixtures
of such elliptically-symmetric families. Outside the Gaussian case (C1), Proposition 1 is restricted to the cases where
groups have a comparable square root of the generalized precision, det(Σ k)−

1
2 , after weighting by the cluster size πk. A

pecial case of (C2) is when groups are balanced (equal sizes πk) and homoscedastic (equal dispersions Σ k).

2.2. Scoring cluster configurations

Given Xn, we want to measure how well a cluster configuration θ(m) organizes these points within the quadratic
partition. We want to select the ‘‘boxes’’ {Qk(θ), k = 1, . . . , K } that best represents the clustered points. Let Bk

ε(xi; θ) be
ball of radius ε > 0, centered at xi, such that Bk

ϵ(xi; θ) ⊂ Qk(θ), i.e., Bk
ε(x; θ) := {y ∈ Rp

: ∥y − x∥ < ε ∩ y ∈ Qk(θ)}. For
sufficiently small, the joint probability that all points in Xn are accommodated in the quadratic partition consistently
ith the underlying group memberships is

n∏
i=1

Pr
{
Zk = 1 ∩ Xi ∈ Bk

ε(xi; θ)
}
=

n∏
i=1

Pr{Zk = 1}Pr
{
Xi ∈ Bk

ε(xi; θ) | Zk = 1
}
. (5)

nder the generating process of Proposition 1, taking ε → 0, the probability law (5) is transformed into its density
epresentation

Ln(θ) :=
n∏

i=1

K (θ)∏
k=1

(
πkf (xi;µk,Σ k)

)I{xi∈Qk(θ)} , (6)

here I {·} is the usual indicator function. (6) closely resembles the likelihood function for a partition model [see 19, Ch. 7].
owever, this is not exactly the case: for a partition model, we would have had class membership indicators replacing
{xi ∈ Qk(θ)} in (6). Taking the logarithm of (6), we would like to achieve the largest

Ln(θ) =
1
n

n∑
i=1

K (θ)∑
k=1

I {xi ∈ Qk(θ)} log(πkf (xi;µk,Σ k)). (7)

Evaluation of (7) requires the knowledge of the specific group-conditional model f (·). However, we want to evaluate the
uality of the partition even when the group-conditional distribution is not precisely known. Proposition 1 states that, for
ertain group-conditional distributions, point-wise maximization of the quadratic score in the feature space well captures
he main clustered regions. We propose to rank cluster configurations based on the following hard score criterion:

Hn(θ) =
1
n

n∑
i=1

K (θ)∑
k=1

I {xi ∈ Qk(θ)} qs(xi; θk). (8)

We call it hard because Hn(·) is a weighted average of the points score with the 0–1 ‘‘hard’’ weights I {xi ∈ Qk(θ)}.
Interpreting qs(xi; θk) as the strength at which the object i is assigned to the kth group, (8) is the average strength achieved
by a cluster configuration. Despite this qualitative interpretation of Hn(·), there is a connection between (7) and (8) at the
population level, based on the fact that qs(xi; θk) contains the kernel of the Gaussian density. Under regularity conditions,
both sample averages (7) and (8) will asymptotically approach their population counterparts

L(θ) =
K (θ)∑
k=1

∫
Qk(θ)

log(πkf (x; θk))dF and H(θ) =
K (θ)∑
k=1

∫
Qk(θ)

qs(x; θk)dF , (9)

respectively. The following proposition clarifies the relationship between H(·) and L(·).

Proposition 2. Assume that the following integrals exist and that

(C3) infθ(m)
∈ΘM

{∫
Qk(θ(m)) log f (x;µ

(m)
k ,Σ (m)

k )dF −
∫
Qk(θ(m)) logφ(x;µ

(m)
k ,Σ kk)dF

}
≥ 0, k ∈

{
1, . . . , K (θ(m))

}
.

Then

H(θ(m)) = c + L(θ(m))−Λ(θ(m)), (10)

where c is a positive constant, and

Λ(θ(m)) =
K∑∫

(m)
log

(
f (x;µ(m)

k ,Σ (m)
k )

(m) (m)

)
dF ≥ 0.
k=1 Qk(θ ) φ(x;µk ,Σ k )

4
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At the population level, the hard score criterion can be interpreted as the quality of the fitting of the partition, expressed
by L(·), minus a penalty term, Λ(θ(m)) ≥ 0, that measures the departure from the Gaussian clusters’ prototype model
embedded into the quadratic score function. When clusters are truly Gaussian, i.e., f (·) = φ(·), then Λ(θ(m)) = 0 and
H(θ(m)) ∝ L(θ(m)). Condition (C3) is needed to interpret the criterion: it ensures that Λ(θ(m)) ≥ 0 for any possible
cluster configuration θ(m) under comparison so that it works as a penalty. (C3) obeys to the natural principle that,
whenever we pick a configuration θ, the approximating Gaussian model underlying qs(·) cannot fit the quadratic regions
better than the underlying true generating model f (·). Indeed, (C3) is violated if there exists a configuration θ(m) for
which

∫
Qk(θ(m)) log f (X;µ

(m)
k ,Σ (m)

k )dF <
∫
Qk(θ(m)) logφ(X;µ

(m)
k ,Σ (m)

k )dF , where these integrals can be seen as the expected
log-likelihood contribution over the kth members of the quadratic partition under f (·) and φ(·), respectively. From
Proposition 2, it immediately follows that

argmax
m∈M

H(θ(m)) = argmax
m∈M

{
L(θ(m))−Λ(θ(m))

}
.

Since qs(·) measures the strength at which a point is assigned to a cluster, a smooth weighting is obtained by
normalizing the quadratic scores. We propose to use the softmax transformation, that is the ith point’s weight into the
kth cluster is

τk(xi; θ) =
exp(qs(xi; θk))∑n
i=1 exp(qs(xi; θk))

. (11)

he corresponding smooth score criterion is defined as

Tn(θ) =
1
n

n∑
i=1

K (θ)∑
k=1

τk(xi; θ) qs(xi; θk). (12)

ther weighting schemes are possible, but the choice of the softmax transformation is because it guarantees some form
f optimality for Gaussian clusters (see the following proposition). Under regularity conditions, for sufficiently large n,
12) will approach its population counterpart

T (θ) =
K (θ)∑
k=1

∫
τk(x; θ) qs(x; θk)dF . (13)

Under the generating mechanism of Proposition 1, the unconditional distribution of X has the finite mixture density

ψf (x; θ) :=
K (θ)∑
k=1

πkf (x;µk,Σ k). (14)

or a sample point xi ∈ Xn, under (14) define the posterior weights

ωf ,k(xi; θ) = Pr{Zik = 1 | Xn} =
πkf (xi;µk,Σ k)
ψf (xi; θ)

. (15)

he ratios defined in (15) are central in MBC methods where the ith object is assigned to the kth component by the
ollowing rule

ẑk(xi; θ) = I
{
k = argmax

1≤j≤K (θ)
ωf ,k(xi; θ)

}
; (16)

n practice, θ is replaced with an estimate. Typically, θ is fitted based on an ML-type estimator, numerically approximated
ith the EM-algorithm [31]. The rule (16), called MAP, retrieves the unobservable membership variables {Zik} and
oincides with the optimal Bayes classifier if the group-conditional model holds. The MAP rule produces a hard assignment
rom the smooth (also called fuzzy) membership weights in (15). The overall uncertainty of the assignment (16) reflecting
15) is captured by

ent(X; θ) = −
K (θ)∑
k=1

ωf ,k(X; θ) logωf ,k(X; θ), (17)

hich is the entropy of the conditional distribution of Z | X . In situations where clusters are strongly separated the
osteriors weights (15) will be close to either 1 or 0 for most points, and the MAP assignment will produce ‘‘clear clusters’’,
eflecting the low entropy of Z | X . On the other hand, cluster configurations with substantial overlap will exhibit large
ntropy. Let ψφ be the mixture model (14) when the group-conditional model is the Gaussian density φ(·), and let entφ(·)
e the corresponding entropy. Moreover, let dKL(f0 ∥g) be the Kullback–Leibler discrepancy from the approximating model
to the ‘‘true’’ model f .
0

5
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roposition 3. Let f0 be the density function corresponding to the ‘‘true’’ underlying population distribution function F . Then

argmax
m∈M

T (θ(m)) = argmin
m∈M

{
dKL(f0 ∥ ψφ(·; θ(m)))+ EF

[
entφ(X; θ(m))

]}
, (18)

here all expectations are assumed to exist and EF [·] denotes the expectation under F .

Proposition 3 clarifies that T (·) looks for a compromise between the best approximation of f0, in the sense of ψφ , and
he lowest entropy of the resulting assignment under the Gaussian prototype model. The entropy term discourages the
riteria from focusing on too complex clustering structures. The term dKL(f0 ∥ ψφ(·; θ(m))) can be made arbitrarily small if
(m) is an overly rich description of the density regions produced by F . Indeed, finite Gaussian mixtures can approximate
ny continuous distribution in a nonparametric sense [34]. However, an overly complex θ(m) (e.g. K (θ(m)) is large) that
escribes the density regions too locally would imply a strong overlap and therefore a large entφ(·).
Propositions 2 and 3 clarify the type of model reference-concept driving the proposed score selection. [5] formulated

parameter estimation criterion based on the right-hand side of (18) to perform MBC. In contrast, here H(·) and T (·) are
ot meant to be parameter estimation criteria, as the ‘‘true’’ underlying generating model F may well be not a function
f the θ(m) for m ∈ M. This will become clearer in the examples of Section 2.3, where we show an example where the
aximum score cannot identify the true underlying distribution even in the Gaussian case.
Under the Gaussian assumption, there is a further connection between the sample scores Hn(·) and Tn(·) and

hat is called observed complete data log-likelihood into the MBC literature. For details, we refer the reader to
upplementary Material, Section S3.

.3. Clusters’ boundaries

To see how H(·) and T (·) define the clusters’ boundary in Gaussian and non-Gaussian settings, consider the following
xamples. We define two data generating processes (dgp):

gpG F is a mixture of two spherical Gaussians in dimension p = 2 with equal sizes π1 = π2 = 0.5 and equal identity
covariance matrix. The first Gaussian component is centered at µ1 = (0, 0)T, while the second component has mean
µ2 = (d, 0)T, for some fixed d > 0.

gpU F is a mixture of two uniform distributions with equal volume in dimension p = 2 and π1 = π2 = 0.5. The
first uniform distribution has support on the square [−1, 1]2 with center at µ1 = (0, 0)T. The second uniform
distribution takes value on the square [d− 1, d+ 1] × [−1, 1] with center at µ2 = (d, 0)T, for some fixed d > 0.

n both cases, d is the Euclidean distance between the clusters’ centers. For d ∈ [0, 10] we have different data generating
rocesses. For each value of d, we have a different generating distribution function, Fd, that is a mixture of: two Gaussian
omponents in dgpG; two uniform components in dgpU. The dgpU is introduced as a substantial departure from the
lliptic assumption of Proposition 1.
We recall that the cluster configuration parameter θ(m) represents the mth configuration collecting the triplets

π
(m)
k ,µ

(m)
k ,Σ (m)

k ) representing the kth cluster size, center and scatter. At each d, we want to compare the population
ersion of the score for two alternative cluster configurations {θ(1), θ(2)

}, where K (θ(1)) = 1 and K (θ(2)) = 2. The number
f possible choices of such configurations is infinite. Hence, we compare two possible specifications, θ(1) and θ(2), that
ry to reflect the group-conditional distributions corresponding to Fd. The problem here is that the two types of Fd
onsidered in the example are not always a function of cluster configuration parameters. In the dgpG case with K = 2, the
enerating distribution Fd is exactly specified in terms of proportion, mean and covariance parameters of the two Gaussian
omponents. However, for all the remaining cases, this is not true. For example, in the dgpG case with K = 1, we need
o define θ(1)

= (π (m),µ(m),Σ (m)) that does not coincide with the parameters of the corresponding Fd. In each case, we
defined competing cluster configuration parameters that are natural descriptions of the group-conditional distributions.
We have three different cases.

• dgpG and dgpU with K = 1: We set θ(1)
=

(
π

(1)
1 ,µ(1),Σ (1)

)
as follows

π
(1)
1 = 1, µ(1)

=

∫
xdFd, Σ (1)

=

∫ (
x− µ(1)) (x− µ(1))TdFd. (19)

• dgpG with K = 2: This is the easiest case, because as previously noted, the parameters of Fd coincide with the
parameters of the two groups. In this case, θ(2) is defined as follows

π
(2)
1 = π

(2)
2 = 0.5, µ

(2)
1 = (0, 0)T, µ

(2)
2 = (d, 0)T, Σ (2)

1 = Σ (2)
2 =

(
1 0
0 1

)
. (20)

• dgpU with K = 2: The main problem for this case is that a uniform distribution is not a function of a scatter
parameter. Both uniform components in dgpU have the same volume and, apart from their center, they would
produce the same scatter of points. First, we computed

V U =

∫
xxTdU,
6
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d

Fig. 1. Population score vs within-cluster distance, for a 2-components Gaussian mixture (dgpG) and a 2-components uniform mixture (dgpU). The
istance between true components’ centers is indicated on the x-axis; y-axis shows H(·) and T (·) scores (top and bottom panels, respectively), when

either K = 1 or K = 2 groups are used to cluster the data.

where U is the distribution function of a random variable X uniformly distributed on the square [−1, 1]2. V U would
be the covariance of such X . The parameter θ(2) is set as follows

π
(2)
1 = π

(2)
2 = 0.5, µ

(2)
1 = (0, 0)T, µ

(2)
2 = (d, 0)T, Σ (2)

1 = Σ (2)
2 = V U . (21)

Since some of the previous integrals, including those defining H(·) and T (·), cannot be calculated analytically we computed
their approximation (for each value of d) using Monte Carlo integration; all the integrals involved in the example are
computed on completely independent experiments with 106 random draws. Each integral has been computed 100 times,
and the results were averaged to obtain a Monte Carlo standard error consistently below 10−5.

Fig. 1(a) reports H(·) vs., d. For both dgpG and dgpU, the hard score prefers a single cluster for low values of d. The
two clusters are split at d = 3.173 for dgpG and d = 3.694 for dgpU. Fig. 2 shows examples of data produced by the two
sampling designs around the point d where H(·) splits a single cluster into two clusters. The general behavior of H(·) is
similar for both sampling designs. Under K = 2, for both dgpG and dgpU, there is evidence of a non-monotonic behavior of
the criterion due to the hard weighting nature of H(·). Taking dgpG with K = 2, d only changes the position of the second
group, and this is precisely reflected in the definition of θ(2). We have the same quadratic regions accommodating data
points in the same manner. The only difference introduced by d is their location. Therefore, one may expect a monotonic
behavior of H(·). However, when d decreases, overlapping the tail regions of the two distributions, both Q1(θ(2)) and
Q2(θ(2)) start to lose tail points in favor of more central points where qs(·) is larger. Given the symmetric nature of the
setup, for all larger values of d both centers remain at an equal distance from the clusters’ boundary. Indeed, notice that
the boundaries between Q1(θ(2)) and Q2(θ(2)) do not change at changing d, in this particular example. This causes the
tendency to split overlapped regions of points that one would not qualify as separate clusters. This may be problematic
in cases of strong overlap (as shown later, in Section 4). The behavior of T (·) is reported in Fig. 1(b). For K = 2, T (·) is
flat for dgpG and almost flat for dgpU. T (·) splits the two groups at slightly larger separation now: d = 3.47 for dgpG
and d = 4.05 for dgpU. T (·) does not attempt to split close clusters and is more appropriate to handle overlapped groups.
Scatter plots of data sets around the transition are shown in Fig. 2. Finally, we observe that for all d, the true underlying
model corresponds to K = 2, but both scores will prefer K = 1 for low values of d. The latter implies that the maximum
score cannot identify the true underlying distribution even in the Gaussian case.

3. Score selection via resampling

The following discussion applies to both hard and smooth score criteria, therefore we unify the notation. Rewrite both
(8) and (12) as the average

Sn(θ) =
1
n

n∑
s(xi; θ), s(x; θ) :=

K (θ)∑
wk(x; θ) qs(x; θ), (22)
i=1 k=1

7
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Fig. 2. Scatter plots of data sampled under the dgpG and dgpU sampling designs. In each of the four raw panels (a)–(d), we show the same sample
design for three different values of d: the center plot refers to a value of d such that the criterion (H(·) or T (·)) values both cases (i.e., K = 1 and
K = 2) equally; the left plot refers to a value of d, where the criterion prefers K = 1; the right plot refers to a value of d, where the criterion
prefers K = 2.

where s(x; θ) is the cluster-weighted point-score. With wk(x; θ) = I {x ∈ Qk(θ)} we obtain the hard scoring, while
wk(x; θ) = τk(x; θ) returns the smooth score. In Section 2, we assumed a fixed list of candidate configurations, M. In
practice, we work with a list of solutions obtained from applying different algorithms (and their various settings) to the
only available data set Xn. Let θ̂n = Clust(Xn) be a cluster configuration obtained by running a specific algorithm on Xn;
θ̂n reflects the sampling variability, the fitting method’s variance and often an error equal to the difference between the
method’s true solution and its algorithmic approximation. The clustering problem is affected by a mechanism similar to
8
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hat of the bias–variance trade-off in predictive tasks. Computing both θ̂n and Sn(·) using the same observed sample is not
deal because it will lead to an over-optimistic fitting: increasing the solution’s complexity (e.g. increasing K ) improves the
it on the observed data, but does not necessarily guarantee a more coherent representation of the underlying clustering
tructure. One way to overcome the previous issue is to make the fitting step independent of the validation step via
esampling. We explore two methodologies: cross-validation and bootstrap.

Algorithm 1 k-folds cross-validation of quadratic scores (CVQH, CVQS)
input: observed sample Xn, clustering method m ∈M.
output: C̃V

(m)
.

(to ease notation, dependence on m is dropped and reintroduced in step 3.1)

(step 1) randomly partition Xn into k folds
{
X(t), t ∈ {1, . . . , k}

}
, each with (approximately) n/k data points.

for t = 1, . . . , k do
(step 2.1) θ̂

(t)
← Clustm(X̂), where X̂←

⋃
j̸=t X

(j)

(step 2.2) S(t) ← 1
#X(t)

∑
y∈X(t) s(y; θ̂

(t)
)

end for

(step 3) Compute: S̄ ← 1
k

∑k
t=1 S

(t)
; σ̂S ←

1
k−1

∑k
t=1

(
S(t) − S̄

)2
(step 3.1) Compute: C̃V

(m)
← S̄ − δ σ̂S√

k

CVQH = argmaxm∈M
{
C̃V

(m)
}
, when s(·) corresponds to the hard quadratic score

CVQS = argmaxm∈M
{
C̃V

(m)
}
, when s(·) corresponds to the smooth quadratic score

3.1. Cross-validation

Cross-validation (CV) is probably the most popular resampling method to perform model selection by separating the
itting and the testing step. CV has been proposed to estimate K in the MBC framework by [37]. The authors in [20]
roposed the CV to select K with the k-means algorithm. The random CV method of [37] produces an estimate of
xpected Kullback–Leibler information loss under a reference mixture model over an independent test set. Therefore,
t is appropriate for tuning the mixture order for density approximation rather than clustering. We consider estimating
he expected score (22) via the k-folds CV Algorithm 1. A clustering solution is selected by maximizing C̃V ; this defines
he criteria CVQH and CVQS according to s being the hard and smooth scores, respectively. Rather than maximizing the
verage score criterion S̄ computed in step 3, we look at the lower limit of an approximate confidence interval whose
ize depends on δ. Assuming the approximate normality of S̄, δ = 1.96 would determine an approximate 95% confidence
nterval. Although this may result in crude approximation due to the well-known difficulty to estimate the risk variance
ia CV [7], it allows to take into account the uncertainty about the estimated mean score, and it is rather popular in
pplications [see 22]. In the numerical experiments, the selection based on the average criterion S̄ led to inferior results
ompared with the approximate confidence interval rule of step 3. Based on the experimental evidence we suggest k = 10
olds and δ = 1.96. The user may tune the constant δ, but in our experiments, it produced relatively better results
ompared to the more common 1-standard-error rule, that is δ = 1. Additional details about the CV-based selection
ethods (including the original proposal by [37]) are given in the Supplementary Material, Section S1.
Overall, CV-based methods did not perform well in the following experiments except for some specific cases. The

atter is because the application of the CV framework to the clustering task is problematic. CV is designed to estimate
he prediction error of a model conditional on the training set, although [4] recently proved that CV does not achieve
his goal in general. However, clustering is not a prediction problem. We want to assess how a certain θ(m) describes the
lustered structure produced by the underlying F . Therefore, we need the fitted θ̂

(m)
n and the sample on which the score

is computed to convey the same information about the underlying F . The CV aims to estimate a conditional prediction
error, requiring that the train and the test set do not overlap, which often causes the two subsamples’ structures to differ
substantially in finite samples. The latter is the primary motivation for introducing the following bootstrap method.
9
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Algorithm 2 bootstrap scoring (BQH, BQS)
input: observed sample Xn (with ecdf Fn), α ∈ (0, 1); clustering method m ∈M.
output: W̃n, L̃n, Ũn.

(to ease notation, dependence on m is dropped and reintroduced in step 3.1)

for b ∈ {1, . . . , B} do

(step 1.1) X∗(b)n ←

{
x∗(b)i ; i ∈ {1, . . . , n}

} iid
∼Fn

(step 1.2) θ̂
∗(b)
n ← Clustm(X

∗(b)
n )

(step 1.3) S∗(b)n ← Sn(θ̂
∗(b)
n ) = n−1

∑n
i=1 s(xi; θ̂

∗(b)
n )

end for
(step 2) W̃n ←

1
B

∑B
b=1 S

∗(b)
n

(step 3) Let R∗(b)n =
√
n
(
S∗(b)n − W̃n

)
(step 3.1) Compute

L̃(m)
n ← inf

t

{
t :

1
B

B∑
b=1

I
{
R∗(b)n ≤ t

}
≥
α

2

}
; Ũ (m)

n ← inf
t

{
t :

1
B

B∑
b=1

I
{
R∗(b)n ≤ t

}
≥ 1−

α

2

}

BQH = argmaxm∈M
{̃
Ln
}
when s(·) corresponds to the hard quadratic score

BQS = argmaxm∈M
{̃
Ln
}
when s(·) corresponds to the smooth quadratic score

3.2. Bootstrap

Assume that θ̂n ∼ G, where G reflects the randomness of the clustering output. Assuming that θ̂n is independent of X ,
we want to construct a selection criterion that, at the population level, targets the quantity W = EG[EF [s(X; θ̂n)]]. W is the
xpectation over all possible realization of θ̂n of the expected cluster-weighted point score (22). This approach is inspired
y the seminal work of [1] on model selection. In practical situations, G is not available, but the variations induced by θ̂n
an be reproduced by repeating the clustering step on resampled versions of the data. Let Fn be the ecdf of the sample;
e propose to approximate W using multiple independent samples obtained from Fn. The proposed estimation procedure

s described in Algorithm 2, and it is based on the classical Efron’s non-parametric bootstrap idea. In steps (1.1)–(1.2) of
lgorithm 2, independent bootstrap samples from the original data are used to reproduce the variations of θ̂n. In step (1.3),
he original sample is used to compute the empirical approximation of the inner expectation of W at the specific θ̂

∗(b)
n .

tep (2) of Algorithm 2 computes an estimate W̃n of W obtained as the expectation of the Monte Carlo approximation of
he bootstrap distribution of S∗(b)n . Step (3) corresponds to the percentile method calculation of an approximate (1− α)–
onfidence interval for W . Calculation of a confidence interval for W can be used to consider the uncertainty about W ,
eflecting both the sample variations and the variance of θ̂n. Let W (m) be the value of the expected score, W , produced
y the mth method/algorithm under comparison. Rather than selecting the cluster configurations achieving the largest
stimated W̃ (m), we propose to select the clustering corresponding to θ̂

(m∗)
n where, for a fixed level of α ∈ (0, 1),

m∗ = argmax
m∈M

L̃(m)
n ; (23)

his defines the BQH and BQS criteria when s is the hard and smooth score, respectively. In principle, one should fix
large enough. The main drawback of Algorithm 2 is that it requires refitting the clusters B times for each clustering
onfiguration m ∈ M. With the k-folds CV, one also needs to refit the clusters k times, but the number of folds k is
sually much smaller than the number of required bootstrap data sets B. In the large experiment shown in Section 4, we
et B = 1000. In the Supplementary Material, Section S5.2, we also provide evidence that even choosing B = 100 did not
hange results substantially.

. Experimental analysis

In this section, we present an extensive experimental analysis of the selection problem. The complexity of the following
etting aims at offering a neutral comparison, where each competing method is expected to perform well in certain
cenarios. This is of utmost importance to achieve scientific progress in unsupervised learning, where global theoretical
uarantees are rare, and most of the performances are shown via experimental studies [32]. Experiments are conducted on
10
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m

Table 1
Data sets analyzed in the experimental section. For each, the table shows: the number of sample points (n), the data dimensionality (d), the
‘‘true’’ number of clusters (K ), and a short description. For real data sets (top sub-table) the reported K reflects the original classification(s)
of data points; for simulated designs (bottom sub-table), K coincides with the number of mixture components of the data generating process.

Data n d K Short Description

Iris 150 4 3 Measurements on Iris flowers; two classes show substantial overlap.
Banknote 200 6 2 Measurements on original and counterfeit bills; the latter class is usually split

in more groups due to the high variability of the measurements.
Olive 572 8 3/9 Olive oils’ fatty acids. Features two different classifications; some classes scatters

are concentrated on lower dimensional hyperplanes and show substantial overlap.

Real

Wine 178 13 3 Chemical analysis of wines grown from three different cultivars.
High dimensions; balanced classes.

Pentagon5 300 2 5 Mixture of highly unbalanced Gaussian distributions;
strong pairwise overlap of 4 of the 5 components.

T52D 300 2 5 Mixture of 5 equal-proportions, well-separated Student-t components.
Simulated T510D 300 10 5 Adds 8 unclustered dimensions to T52D, increasing dimensionality without

adding new clustering information.
Flower2 300 2 5 Mixture of 2 Student-t, 2 uniform and 1 spherical Gaussian;

features regions of strong cluster overlaps.
Uniform 300 2 1 Uniform distribution; many criteria are not able to identify the unclustered case.

both real and simulated data. The latter are analyzed using Monte Carlo replicates, as explained later. Table 1 summarizes
the different settings, giving a short description of the challenges that each setting poses for the selection problem. A
detailed discussion of the data is given in Supplementary Material, Section S4. In what follows, we describe the general
aspects that are applied to all data sets in the experiments.

4.1. Clustering methods and algorithms

For each data set, the set of candidate solutions for the selection problem is obtained by fitting a clustering method,
∈M, to the data. Each member m ∈M is a solution obtained by an algorithm implementing a clustering method with a

set of its specific hyper-parameters. Hyper-parameters are the number of clusters K ∈ {1, . . . , 10}; often, restrictions and
regularizers for clusters’ covariance matrices (whenever possible); algorithmic initialization (for a subset of methods). For
each data set we consider |M| = 440 candidate solutions including: K-means and K-medoids partitions; ML for Gaussian
mixtures with covariance matrix restrictions (as implemented in mclust software [36]) or eigen-ratio regularization (as
implemented in otrimle software [11,12]); ML for Student-t and Skew Student-t mixtures (as implemented in EMMIXskew
software [40]). Both Gaussian and Student-t based MBC methods are natural candidates to discover the cluster concept
presented in Section 2. On the other hand, we also consider Skewed Student-t models to assess the ability of the selection
procedure to tame the overfitting issue usually arising with additional complexity. In fact, the Skewed Student-t family
contains both Gaussian and Student-t models as special cases. In what follows, we occasionally refer to subsets of solutions
in M, named after the implementing software: k-means, k-medoids, mclust, rimle and emmix. More details on the
clustering methods are given in Supplementary Material, Section S1.1.

4.2. Selection methods

We compare a large number of selection criteria over M. The list of existing criteria is vast. Thus, we restrict
the comparison to classical internal validation criteria routinely used by practitioners or those criteria rooted into the
MBC literature that are more appropriate for pursuing the cluster notion of interest (for a detailed description see
Supplementary Material, Section S1.2).

Method-independent criteria. We consider the Caliński–Harabasz (CH; [10]) and Average Silhouettes Width (ASW; [28])
indexes based on Euclidean distances. While not designed to pursue the cluster’s notion investigated in this paper, they
are rather popular, and practitioners use them in various settings. The bootstrap stability method of [13], labeled as
FW, is introduced in the comparison as another bootstrap-based alternative. It pursues a stability notion rather than
the validation philosophy developed here.

Method-dependent criteria. The strongest candidates to discover the cluster concept of interest are information criteria:
AIC [1], BIC [35], and ICL [8]). They cannot be computed for members of M not derived from a probability model, or
when the underlying model does not easily map into degrees-of-freedom (e.g. k-means, k-medoids and rimle); this is
summarized in Table 2. We also consider the methodology of [37], labeled as CVLK, which minimizes a cross-validated
risk based on the data likelihood. CVLK also requires the definition of a models’ likelihood function, therefore it can be
applied to MBC methods only: mclust, rimle and emmix.
11
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(

Table 2
Available clustering quality criteria for each type of configuration in M. A tick mark (✓) in a cell indicates that the corresponding quality criterion
column) can be calculated for solutions obtained with a certain class of clustering configurations (row).
Configuration AIC BIC ICL ASW CH FW CVLK QH QS CVQH CVQS BQH BQS

k-means ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
k-medoids ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mclust ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rimle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Emmix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Proposed selection criteria. QH and QS select the clustering solution maximizing (8) and (12), respectively. They exploit
in-sample information only, using the observed data both to estimate and score the solution; their results will motivate
the need for resampling strategies as discussed above. BQH and BQS methods are the bootstrapped version of the quadratic
score method. They correspond to the maximization of (23) using hard and smooth scores, respectively. For both BQH and
BQS we set B = 1000 for real data; this may be a demanding computing load for large data sets but, in practice, setting
a much lower B = 100 left the results almost unaltered (see Supplementary Material, Section S5). For the Monte Carlo
experiments with simulated data, due to the higher computational load, we set B = 100.

4.3. Performance measures

We measure the quality of the selected solutions in terms of: (i) agreement with respect to true clusters’ memberships;
(ii) the selected number of clusters compared to the ground truth. Point (i) captures similarity between true and fitted
groups, and it is measured using the Adjusted Rand Index (ARI) of [26] and the Variation of Information Criterion (VIC)
of [33]. ARI ∈ [0, 1], where ARI = 1 means perfect agreement. Originally, VIC ∈ [0,∞); however, we compute and report
the negative of the VIC, so that a larger value means better agreement as for the ARI. ARI and VIC are not only different in
scales, but they capture the similarity differently. The data sets present different challenges in retrieving the true classes.
We design situations where, even for some artificial data, the ‘‘true clustering’’ is not obvious and none of the 440 methods
in M is able to reach near-to-perfect performances (e.g. ARI ≈ 1 and/or VIC ≈ 0). Nevertheless, here we do not compare
clustering methods. In contrast, we study the problem of selecting the best available partition. For this reason, besides
comparing with the ground truth, we benchmark the 13 selection methods against the ‘‘two best feasible partitions’’,
labeled as best ari and best vic. These are obtained running the 440 methods’ configurations on a data set and choosing
the partitions achieving the best ARI and VIC, respectively. Note that for some data sets, there are multiple members of
M that give the same best feasible partition.

5. Discussion of the results

Table 3 summarizes the results on both real and simulated data, which are discussed in 5.1 and 5.2, respectively.
Additional results and comments are given in Supplementary Material, Section S5.

5.1. Results on real data sets

The data sets analyzed in this study are (Table 1, top sub-table): the Iris data set of [3,14]; the Banknote data set of [15];
the Olive data set of [16], for which there are two possible true partitions (a coarser one with 3 classes corresponding
to Italian geographical macro-regions, and a finer classification with 9 narrower geographical regions); the Wine data set
of [17]. Additional description and visualization is given in the Supplementary Material, Section S4.1. Results presented
in this section use B = 1000 bootstrap resamples. These are almost unaltered setting a much lower B = 100 (see
Supplementary Material, Section S5.2).

Fig. 3 provides a graphical representation of the results for the proposed smooth score on the four data sets. Similar
displays for the other data sets are shown in the Supplementary Material, Section S5.2, using B = 100. For all the clustering
methods, there is remarkable evidence that in-sample estimates of the score (QH and QS) become overly optimistic as the
complexity of the clustering solutions increases. Indeed, considering the Iris data, for K > 3 (true number of groups) and
increased model complexity, both QH and QS leave the scores’ confidence intervals. Moreover, as soon as K (m) exceeds the
true K = 3, the more complex members of M also produce wider confidence bands, confirming the well-known pattern
in the model selection that unnecessary additional model complexity introduces additional uncertainty. An analogous
pattern is found for the other data sets, although for Olive and Wine the vertical scale dominates the plots. These results
are robust to a lower B = 100.

Table 3, top sub-table, summarizes the selected solutions for all the clustering selection criteria on the four data sets
(details of the selected solutions are shown in Supplementary Material, Section S5.2). First, note that the best feasible
partitions available from M (best) do not always retrieve the underlying clusters perfectly, although they catch the true
K but for the Olive data with 9 classes. In this case, the best feasible solution corresponds to a configuration fitted by the
mclust software with K = 8 groups.
12
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I (a) and negative VIC (v). Bottom sub-table: aggregated
quency in parentheses (k); ARI (a) and negative VIC (v),
t vic select different number of groups or with different
ld.

CVQH CVQS BQH BQS

4 4 3 3
0.81 0.81 0.9 0.9
−0.57 −0.58 −0.32 −0.32
3 3 3 3
0.78 0.78 0.86 0.86
−0.62 −0.62 −0.37 −0.37

7 7 8 8
0.28 0.28 0.49 0.49
−2.04 −2.04 −1.28 −1.28

7 7 8 8
0.44 0.44 0.86 0.86
−1.96 −1.96 −0.74 −0.74

5 5 3 3
0.64 0.64 0.9 0.9
−1.11 −1.11 −0.38 −0.38

4 (42%) 3 (61%) 3 (90%) 3 (98%)
.13) 0.82 (0.09) 0.84 (0.05) 0.85 (0.03) 0.84 (0.03)
(0.33) −0.58 (0.25) −0.48 (0.13) −0.43 (0.06) −0.43 (0.06)

4 (43%) 4 (54%) 5 (98%) 5 (98%)
.13) 0.9 (0.11) 0.93 (0.08) 0.99 (0.01) 0.99 (0.01)
(0.27) −0.32 (0.23) −0.27 (0.19) −0.08 (0.06) −0.08 (0.06)

5 (36%) 5 (38%) 5 (69%) 5 (85%)
.13) 0.79 (0.13) 0.8 (0.13) 0.91 (0.12) 0.94 (0.09)
(0.43) −0.62 (0.33) −0.61 (0.34) −0.28 (0.26) −0.2 (0.18)

6 (27%) 5 (23%) 5 (74%) 5 (72%)
.11) 0.47 (0.13) 0.43 (0.14) 0.53 (0.09) 0.46 (0.11)
.27) −1.73 (0.27) −1.74 (0.27) −1.51 (0.25) −1.58 (0.24)

7 (22%) 1 (85%) 10 (82%) 1 (96%)
0.06 (0.24) 0.85 (0.35) 0 (0) 0.96 (0.19)

(0.28) −2.3 (0.81) −0.25 (0.73) −3.14 (0.31) −0.1 (0.54)

13
Table 3
Summary of the experimental results. Top sub-table: selected solutions for real data; cell value: selected solution’s number of groups (k), AR
results for selected solutions on 100 MC replicates for each simulated design; cell value: most frequently selected number of groups, with fre
with standard errors in parentheses. Column best: in both tables it refers to the best ari (a) and best vic (v) solutions; when best ari and bes
frequency (bottom sub-table), both solutions are shown separated by a hyphen, reporting best ari first. The best results are highlighted in bo

BEST AIC BIC ICL QH QS CH ASW FW CVLK

k 3 6 2 2 7 7 3 2 2 4
a 0.94 0.57 0.57 0.57 0.42 0.42 0.73 0.57 0.57 0.81Iris
v −0.26 −1.52 −0.67 −0.67 −1.56 −1.56 −0.76 −0.67 −0.67 −0.57

k 2 6 3 3 10 10 2 2 2 3
a 1 0.6 0.84 0.84 0.26 0.26 1 1 0.98 0.85Banknote
v 0 −1.16 −0.43 −0.43 −2.14 −2.14 0 0 −0.08 −0.42

k 3 10 6 6 10 10 3 2 2 10
a 1 0.33 0.52 0.52 0.29 0.29 0.32 0.39 0.82 0.3Olive (K = 3)
v −0.03 −1.74 −1.42 −1.42 −1.84 −1.84 −1.88 −1.28 −0.42 −1.81

k 8 10 6 6 10 10 3 2 2 10
a 0.88 0.47 0.76 0.76 0.54 0.54 0.42 0.29 0.36 0.58Olive (K = 9)
v −0.65 −1.77 −1.32 −1.32 −1.26 −1.26 −2.28 −2.28 −1.84 −1.18

k 3 3 3 3 8 8 10 2 3 6
a 0.98 0.44 0.84 0.84 0.46 0.46 0.15 0.37 0.87 0.59Wine
v −0.08 −1.42 −0.58 −0.58 −1.53 −1.53 −3.15 −1.41 −0.48 −1.37

k 5 (83%)-4 (52%) 5 (59%) 5 (45%) 3 (88%) 10 (31%) 4 (39%) 3 (100%) 3 (100%) 3 (99%) 6 (32%)
a 0.92 (0.02) 0.82 (0.11) 0.88 (0.04) 0.85 (0.03) 0.76 (0.12) 0.84 (0.07) 0.84 (0.02) 0.84 (0.03) 0.84 (0.06) 0.73 (0Pentagon5
v −0.36 (0.07) −0.66 (0.31) −0.43 (0.09) −0.42 (0.06) −0.89 (0.36) −0.57 (0.25) −0.43 (0.05) −0.43 (0.06) −0.43 (0.1) −0.85

k 5 (99%–97%) 6 (21%) 5 (90%) 5 (95%) 10 (41%) 10 (21%) 7 (40%) 5 (86%) 2 (81%) 6 (41%)
a 0.99 (0.01) 0.84 (0.13) 0.97 (0.04) 0.98 (0.01) 0.85 (0.1) 0.91 (0.08) 0.7 (0.1) 0.92 (0.15) 0.59 (0.18) 0.84 (0T52D
v −0.06 (0.05) −0.5 (0.32) −0.12 (0.1) −0.11 (0.08) −0.55 (0.26) −0.35 (0.25) −0.7 (0.26) −0.26 (0.32) −0.93 (0.36) −0.44

k 5 (99%) 9 (24%) 6 (50%) 5 (83%) 10 (98%) 10 (98%) 2 (100%) 2 (100%) 2 (94%) 6 (45%)
a 0.99 (0.01) 0.7 (0.13) 0.86 (0.1) 0.94 (0.08) 0.55 (0.08) 0.55 (0.07) 0.51 (0.03) 0.51 (0.03) 0.53 (0.11) 0.74 (0T510D
v −0.09 (0.06) −1.06 (0.43) −0.35 (0.18) −0.23 (0.15) −1.23 (0.32) −1.2 (0.23) −1.1 (0.05) −1.1 (0.05) −1.05 (0.21) −0.75

k 5 (73%–77%) 8 (24%) 2 (58%) 2 (65%) 10 (85%) 10 (59%) 10 (87%) 5 (85%) 5 (86%) 7 (43%)
a 0.68 (0.06) 0.48 (0.1) 0.32 (0.1) 0.35 (0.12) 0.47 (0.07) 0.46 (0.08) 0.44 (0.04) 0.45 (0.17) 0.45 (0.1) 0.49 (0Flower2
v −1.21 (0.17) −1.91 (0.34) −1.88 (0.22) −1.8 (0.26) −1.96 (0.21) −1.88 (0.22) −1.98 (0.17) −1.58 (0.29) −1.6 (0.21) −1.8 (0

k 1 (100%) 10 (51%) 4 (65%) 1 (77%) 10 (90%) 10 (71%) 10 (46%) 4 (74%) 4 (64%) 8 (30%)
a 1 (0) 0 (0) 0 (0) 0.77 (0.42) 0 (0) 0.16 (0.37) 0 (0) 0 (0) 0 (0) 0 (0)Uniform
v 0 (0) −3.01 (0.22) −1.94 (0.4) −0.22 (0.45) −3.1 (0.11) −2.61 (1.14) −3.06 (0.41) −2.1 (0.37) −2.38 (0.59) −2.84



L. Coraggio and P. Coretto Journal of Multivariate Analysis 196 (2023) 105181

i
W
w

Fig. 3. Results for the Quadratic Smooth score criteria QS and BQS. Horizontal axes: the 440 m ∈ M are sorted by: clustering method (colors);
ncreasing K (axis ticks); increasing complexity (fewer restrictions on scatter matrices). Vertical axes: QH and QS (dashed lines); bootstrap estimated˜n (solid lines) with estimated confidence intervals at 95% (shaded areas). Lower band corresponds to BQH and BQS. Missing solutions are reported
ith an (×)-symbol (bottom of the plot).
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Fig. 4. Scatters produced by the 5 DGPs with n = 300 in each case. For T510D (right) we plot the first two marginals (x1 and x2), a combination
of them with an uninformative marginal (x3) and two uninformative marginals (x3 and x4).

Iris: The selected solutions include partitions with a K ranging from 2 to 6. The true K = 3 is detected by BQH, BQS and
CH. However, only BQH and BQS selected partition is very close to the best available.

Banknote: The top performers are CH and ASW that discover the true partition exactly, with FW reporting a close
performance. In this case, some methods, including BQH, BQS and ICL, provided a second-best performance fitting
K = 3 groups. This is due to the heterogeneity of the ‘‘counterfeit’’ class, which a single ESD component cannot
adequately capture.

Olive: Assuming 3-classes, only CH discovers 3 groups, but these are unrelated to the ground truth; FW reports the best,
reasonably good ARI and VIC, with 2 groups mixing some of the underlying 3 classes. Assuming K = 9 classes,
none of the selection methods discovers 9 groups: BQH and BQS retrieve two partitions that are close to the best
available in M, while all other methods select solutions that are far away from the ground truth.

Wine: Within the set of considered methods, it is almost possible to retrieve the true classes exactly. Nonetheless, all the
methods show disappointing performances but for BIC, ICL, BQH and BQS. These four criteria select solutions with
correct number of classes, but BQH and BQS outperform the other two, achieving better ARI and VIC, close to the
optimal ones.

The overall conclusion are: (i) BQH and BQS offer a similar performance, finding the best feasible partition or a partition
close to it; (ii) the in-sample versions of the quadratic score criteria, QH and QS, dramatically over-estimate K in all
situations; (iii) all cross-validation alternatives showed a poor performance; (iv) information-based criteria showed a
mixed evidence. AIC tends to select too complex solutions, while both BIC and the ICL select less complex solutions as
expected. BIC and ICL show a similar performance, selecting a reasonable partition in the case of the Banknote and Wine
data.

5.2. Monte Carlo experiments

In this section, we present experiments with data simulated from 5 different data generating processes (DGP), shown
in Fig. 4. The DGPs are labeled as (Table 1, bottom sub-table): Pentagon5, T52D, T510D, Flower2 and Uniform. All DGPs
produce data in dimension p = 2 except for T10D, where p = 10. The Uniform design generates points drawn from
a single 2-dimensional uniform distribution to test the behavior with unclustered data. For all other DGPs, points are
drawn from finite mixtures with 5 components. Pentagon5 generates points form Gaussian components, some of which
are strongly overlapped and unbalanced. T52D generates points from reasonably separated Student-t components. T510D
generates the same clusters as T52D on the first two coordinates while the remaining 8 dimensions are ‘‘noisy features’’
with a joint spherical distribution that does not carry any clustering information. Finally, Flower2 generates points from
both uniform and ESD components. A detailed description of the DGPs and additional data visualizations are available in
the Supplementary Material, Section S4.2. The ‘‘true’’ cluster membership of a point is identified with the corresponding
mixture component generating it. However, some DGPs produce situations that are not always in line with this ground
truth definition. For example, one may want to look for 3 clusters in Pentagon5, while 5 groups may not be necessarily
the only appropriate description of Flower2’s structure. Some DGPs contain substantial departures from elliptic shapes,
unbalanced groups and strong between-scatter discrepancies. This is for testing the robustness of the proposed method in

situations where the assumptions in Proposition 1 are not exactly fulfilled. Moreover, we fix n = 300 for all simulated data
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ets. The latter choice challenges some resampling criteria due to the strong stress it imposes on bootstrap resampling.
ndeed, empirical bootstrap may fail to replicate the distribution of small clusters when n is small.

For each of the 5 simulated designs, we simulate 100 independent data sets from the DGP, and run the model selection
xperiment on each, in a Monte Carlo (MC) fashion. In this section, we report results for the MC experiments, aggregated
or each sample design. Due to the computational complexity of this exercise, we limit the bootstrap replicate to B = 100
or all the experiments. Results for all the designs are summarized in Fig. 5, showing boxplots of the Monte Carlo
istribution of the ARI and the VIC, and Table 3, bottom sub-table. The ARI and the VIC compare the selected partition to
he ground truth previously defined.

entagon5: All methods do well. The AIC and the BIC selected 5 groups in roughly 50% of the experiments. This confirms
the tendency of such criteria to recover the underlying true DGP rather than the clustering structure. In fact, for
this DGP, 3 groups are what one would suggest by visual inspection of the scatter plot in Fig. 4. The other well-
performing criteria typically prefer the 3-clusters solution. BQH, BQS, ICL, ASW, CH and FW also excelled for the
stability of the results.

52D: The top performers are BIC, ICL, ASW, BQH and BQS. All of these criteria fit 5 clusters on average, selecting partitions
ofM that are close to the best available in the set. This is not surprising given the strong between-cluster separation.
BQH and BQS do marginally better, showing the most stable selection. It is worth noting that ASW does well, even
if it is not specifically designed to handle DGPs of this type. Whenever clusters are well separated, the intuition is
that a distance-based index like ASW can retrieve the true clusters if it uses an appropriate metric.

510D: The addition of uninformative noisy features in T510D changes the results dramatically: only ICL and BQS
maintain excellent performances, with BQS doing slightly better overall in terms of ARI and VIC. In our experiments
(see Supplementary Material, Section S5.3) ICL never selects solutions having a number of groups extremely
different from that of the ground truth partition, in contrast with BQS, which selects K > 7 groups in rare cases.
However, it is worth noting that information-type criteria select over a smaller subset of M, not including k-means,
k-medoids and rimle solutions, which may produce less variability in the selection.

Flower2: This is probably the most challenging case. The best feasible solutions in M achieve modest levels of average
ARI and VIC. A 5 cluster solution achieves the best ARI and VIC roughly 77% of the time, and the methods identifying
5 clusters more often are ASW, FW, BQH, and BQS. The latter two more closely match the frequency with which
best ari and best vic selects 5 groups. BQH does only marginally better than its competitors in terms of ARI and
VIC, but we can see that the performance of BQS, ASW, and FW are equally good.

Uniform: this sampling design is more of a clear-cut: ICL, BQS, and CVQS are all able to correctly identify no clustering
structure. In this case, the clear winner is BQS, selecting a single cluster in 96% of the replicates compared to the
85% of CVQS and 77% of ICL. All the other methods wrongly identify clustering structures in the data (note that FW
cannot be directly used to handle the unclustered case). Here, we can see that the AIC looks for the best distribution
fit rather than accommodating clustered regions. Indeed, AIC prefers a large number of mixture components to fit
the highly unstructured uniform scatter. The BIC mitigates this tendency, but it is not enough. It is also remarkable
to see the difference between the top performer, BQS, and its close cousin BQH failing miserably. The explanation
of such a bad performance is the tendency of the hard scoring approach to split close groups of points (as shown
in Section 2.3). In this case, with a small n = 300, the uniform DGP (see Fig. 4) creates many small groups of data
points with minimal within-distance, which encourages the hard score to identify many groups.

Overall, experiments on simulated data confirm the analysis on real data. BQS has shown a best or second-best
performance in all cases, also yielding better results overall than BQH, proving to be more robust to diverse settings than
the latter. ICL is undoubtedly the strongest competitor, although its performance is far from optimal on some occasions.
Method-independent criteria like the ASW and the CH, routinely used by practitioners, sometimes completely miss the
underlying structure. However, they selected meaningful solutions occasionally, depending on the underlying clustering
structure. As already noted for the real data sets, the in-sample estimates QH and QS show a strong selection bias and
variance for all data sets. All the methods based on cross-validation exhibit disappointing performances.

6. Conclusions and final remarks

We introduce a unifying framework for treating the problem of cluster selection and validation in the context of
clusters generated from elliptic–symmetric families. Within this framework, we propose a novel method for selecting
an appropriate clustering for a given data set over a set of candidate partitions (potentially obtained with any clustering
method). An extensive comparative experimental study shows that the proposed methodology improves upon popular
existing alternatives. In particular, the smooth score criterion with resampling (BQS) consistently provides the best or
second-best results in all the considered settings and is thus the authors’ advocated criterion. Due to the resampling–refit
strategy, the method can be computationally demanding in some circumstances, but this drawback is offset by improved
performances and a visualization method that can be used to inspect for unnecessary complexity of the solutions.
16
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Fig. 5. Boxplots of Monte Carlo distribution of ARI and VIC performance measures (y-axis; higher value is better), for the considered selection criteria
x-axis). Each sub-plot (a–e) refers to a specific experimental design, and it is further split into two sub-figures representing ARI and VIC performance,
espectively. As a benchmark, we report information on ARI and VIC’s Monte Carlo distribution for the best ari and best vic solutions, respectively:
the red dashed line denotes average values, and the shaded area represents the interval ranging from the first to the third quartile. Overall, the
proposed BQH and BQS criteria consistently show close-to-best performance, with less variability across Monte Carlo replicates, as compared to the
other criteria. In particular, only the smooth score (CVQS and BQS) and the ICL criteria are able to automatically distinguish the unclustered case
(panel e).
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ppendix A. Proofs of statements

roof of Proposition 1. The problem is the analogue of showing the optimality of the Bayes classifier. However, this is
onceptually different due to the unsupervised nature of the clustering problem, where a natural notion of loss does not
xist. Consider any partition {Ak, k = 1, . . . , K }, then

Pr

{
K⋃

k=1

{Zk = 1 ∩ X ∈ Ak}

}
=

K∑
k=1

Pr{Zk = 1}Pr{X ∈ Ak | Zk = 1} =
K∑

k=1

∫
Ak

πkf (x;µk,Σ k)dx. (A.1)

In order to maximize (A.1) it suffices to choose the partition
{
A∗k, k ∈ {1, . . . , K }

}
A∗k =

{
x ∈ Rp

: πkf (x;µk,Σ k) = max
1≤j≤K

πjf (x;µj,Σ j)
}
.

Under (C1), πkf (x;µk,Σ k) = πkφ(x;µk,Σ k), and it is immediate to see that A∗k coincides with Qk, proving (4). Denote
δk = (x− µk)

TΣ k
−1(x − µk). Since both g(t) and exp(−t/2) are monotonically decreasing for t ∈ [0,+∞), under (C2),

for any x ∈ Rp,

πkf (x;µk,Σ k) ≥ max
1≤j≤K

πjf (x;µj,Σ j) ⇐⇒ g(δk) ≥ max
1≤j≤K
{g(δj)} ⇐⇒ exp(−δk/2) ≥ max

1≤j≤K
{exp(−δj/2)}

⇐⇒ qs(x, θ(m)
k ) ≥ max

1≤j≤K

{
qs(x, θ(m)

j )
}
.

This means that A∗k = Qk(θ) ∈ Q(θ), k ∈ {1, . . . , K }. □

Proof of Proposition 2. First, note that

qs(x, θ(m)
k ) = c + log(π (m)

k φ(x;µ(m)
k ,Σ (m)

k )),

where c = p log(
√
2π )/2, with π here being the mathematical constant. Since

∑K (θ(m))
k=1

∫
Qk(θ(m)) c dF = c , then

H(θ(m)) = c +
K (θ(m))∑
k=1

∫
Qk(θ(m))

log(π (m)
k )dF +

K (θ(m))∑
k=1

∫
Qk(θ(m))

log(φ(x;µ(m)
k ,Σ (m)

k ))dF . (A.2)

Using the expression for L(θ) from (9), we can write

K (θ(m))∑
k=1

∫
Qk(θ(m))

log(π (m)
k )dF = L(θ(m))−

K (θ(m))∑
k=1

∫
Qk(θ(m))

log(f (x;µ(m)
k ,Σ (m)

k ))dF .

Replace the right-hand side of the previous equation into (A.2) to obtain (10). Under (C3), for any choice of θ(m) and k,∫
Qk(θ(m))

log

(
f (x;µ(m)

k ,Σ (m)
k )

φ(x;µ(m)
k ,Σ (m)

k )

)
dF ≥ 0,

which proves that Λ(θ(m)) ≥ 0. □

Proof of Proposition 3. The posterior weights (15) under the Gaussian group-conditional model coincide with the smooth
score weights, in fact

ωφ,k(x; θ(m)) =
π

(m)
k φ(x;µ(m)

k ,Σ (m)
k )∑K (θ(m))

k=1 π
(m)
k φ(x;µ(m)

k ,Σ (m)
k )
= τk(x; θ(m))

for all k. Use the same arguments as in the proof of Proposition 2 and write

T (θ(m)) = c +
K (θ(m))∑
k=1

∫
ωφ,k(x; θ(m)) log(π (m)

k φ(x;µ(m)
k ,Σ (m)

k ))dF , (A.3)

for an appropriate constant c that does not depend on θ(m). Since
∑K (θ(m))

k=1 ωφ,k(x; θ(m)) = 1, the right-hand-side of (A.3),
neglecting the constant term, can be expressed as

K (θ(m))∑ ∫
ωφ,k(x; θ(m)) log(π (m)

k φ(x;µ(m)
k ,Σ (m)

k ))dF = A(θ(m))− B(θ(m)), (A.4)

k=1

18
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w
here

A(θ(m)) =
∫

log(ψφ(x; θ(m)))dF =
∫

log

⎛⎝K (θ(m))∑
k=1

π
(m)
k φ(x;µ(m)

k ,Σ (m)
k )

⎞⎠ dF , (A.5)

and

B(θ(m)) = −
K (θ(m))∑
k=1

∫
ωφ,k(x; θ(m)) logωφ,k(x; θ(m))dF . (A.6)

The term A(θ(m)) is the expected log-likelihood under the Gaussian mixture model. Since f0 by assumption is the density
of F , then

A(θ(m)) = − dKL(f0 ∥ ψ(·; θ(m)))+
∫

log(f0(x))dF ,

where the last integral depends only on unknown population objects, and therefore does not depend on θ(m). (A.6) is the
expectation under F of

entφ(Z | X; θ(m)) = −
K (θ(m))∑
k=1

ωφ,k(X; θ(m)) log
(
ωφ,k(X; θ(m))

)
.

We can now conclude that

argmax
1≤m≤M

T (θ(m)) = argmax
1≤m≤M

A(θ(m))− B(θ(m)),

= argmin
1≤m≤M

dKL(f0 ∥ ψ(·; θ(m)))+ EF
[
entφ(θ(m))

]
.

The latter proves the desired result (18). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2023.105181.
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