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Abstract
In this paper we analyze the role of pollution for industry location and residence choice.
We present a new economic geography (NEG) model in which manufacturing generates
local pollution (that does not accumulate) and uses two types of labour input: unskilled
workers that cannot migrate and work where they live; and high-skilled entrepreneurs that
choose where to produce and where to live. Taking on board costless commuting or, in
alternative, distance working, entrepreneurs can live in a different location from production.
Both types of households enjoy utility from consuming all commodities (locally and imported
variants) and suffer from local pollution. The resulting model is of the footloose entrepreneur
variant, but involves two dynamic equations: the standard one governing the residential
choice of entrepreneurs, and another one governing where production is located. The current
paper analyses the discrete time dynamic process defined by a two-dimensional piecewise
smooth map. Depending on parameters this map can have possibly coexisting attractors of
various types (fixed points, cycles, closed curves aswell as chaotic attractors).We analytically
obtain stability conditions for the fixed points. Using numerical methods we describe also
some global dynamic properties of the considered map. Finally, we propose an economic
interpretation of the results concerning local stability analysis and global dynamics.
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1 Introduction

Many factors shape the distribution across space and through time of industrial produc-
tion. Krugman (1993) distinguishes between first nature advantages, depending on natural
features, and second nature advantages, caused by human economic activities, as main deter-
minants of industrial agglomeration. The main focus of the new economic geography (NEG)
approach is to highlight which type of endogenous economic forces are at the core of the
dynamic processes that determine spatial distribution of the economic activities, mostly in
the context of a two-region economy. These are named agglomeration and dispersion forces.
The agglomeration of industry is spurred by the size of the market (market size effect) –
firms are attracted by the region with the higher concentration of consumers / households –
and by the cost of living (cost of living effect) – households, which are also factor owners,
prefer to live in the region where more goods are available at lower prices; whereas it is
discouraged by crowded markets (market competition effect) – firms prefer to locate where
competition is less fierce. The balancing of these forces, which are governed by increasing
returns and trade costs, determines the long-run distribution of the industrial activity across
space: in Krugman (1991) core-periphery (CP) model these are full agglomeration in one
region or symmetric dispersion across the regions. The dynamic processes leading to one of
these long-run equilibria are one-dimensional and framed in continuous time. In this context,
environmental pollution could represent a further dispersion force that may counteract the
process of industrial agglomeration (pollution effect) – with households being attracted by a
cleaner environment. Indeed, contemporary industrial economies are heavily challenged by
environmental issues. As nowadays widely recognized, air pollution has a strong negative
impact on human health, on the environment and on human activities (OECD, 2016). Popu-
lation can escape the damaging effect of pollution by adopting defensive behaviour avoiding
air pollution exposure or alleviating the consequences of its effects. In alternative, households
may follow Tiebout’s (1956) model approach by “voting with their feet”, that is, moving to
places with the preferred characteristics. A growing empirical literature (see for example Xu
and Sylwester (2016); Chen et al. (2022); Li et al. (2020); Xue et al. (2021); Levine et al.
(2018); Germani et al. (2021); Heblich et al. (2021) examines the causality link between air
pollution and residence choices highlighting that population with higher levels of education
is more willing to escape pollution. Migration motivated by the search of cleaner air occurs
at different geographical scales involving movements between countries, regions, cities and
even within cities. In their study, Xu and Sylwester (2016), looking at migration across coun-
tries, show that air pollution is positively associated with population movements, especially
considering the highly educated individuals. Individuals may also opt for within-country
migration to avoid pollution. Chen et al. (2022), Li et al. (2020) and Xue et al. (2021) show
that pollution is an important driver for internal migration in China, one of the countries more
exposed to pollution. Their studies reveal that the willingness of households to settle down
in the place where they work is negatively affected by the air pollution level in that location.
On an even lower scale, Heblich et al. (2021) observe that air pollution affecting cities during
the industrial revolution had a well-defined long-term effect on the spatial sorting of low
and high-skilled workers within the metropolitan areas in England and Wales. In line with
the current empirical literature on the relationship between pollution and residence choices,
our analysis tries to capture the idea that people, especially with a high level of education,
prefer to live sufficiently far from more polluted areas. As a consequence, residence choices
of high skilled workers are necessarily separated from (polluting) firms’ location choices.
On the other hand, industrial agglomeration often occurs where the local markets are bigger.
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It follows that households’ residence choices may have a feedback on industrial location
decisions by enlarging the local market size (for a concise literature review on the empiri-
cal relevance of the market size effect on industrial agglomeration, see Gaspar, 2018). This
discussion suggests quite neatly that households’ residence choices and (polluting) firms’
location decisions are interrelated but do not necessarily coincide.

Some contributions in theNEG literature explore the impact of environmental pollution on
industrial location. In one of these, vanMarrewijk (2005) introduces pollution in aNEGmodel
– in particular in the footloose entrepreneur (FE) variant developed by Ottaviano (2001) and
Forslid andOttaviano (2003)1– as a local negative externality damaging household’s welfare.
Specifically, this author introduceswhat is known in the environmental economics literature as
‘damage function’ as a multiplicative (non separable) term in the utility function (introducing
a ‘distaste effect’ of pollution on consumption; see Michel and Rotillon (1995), for a more
detailed definition of this effect). Moreover, he assumes that increasing pollution is related to
production in both the industrial sector and in the agricultural (traditional or constant returns)
sector. As a consequence, a damaged environment could represent an agglomeration force
(rather than a dispersion force)when pollution generated by the agricultural sector has a larger
detrimental impact on welfare compared to that of the industrial sector. Lange and Quaas
(2007) introduce, in an otherwise similar FE set upwhere only industrial production generates
harmful emissions, the damage function as an additive (separable) non-linear term in the
utility function and therefore pollution does not affect the choice over the consumption goods
(excluding a distaste effect of pollution on consumption). These authors confirm that, when
only industrial pollution is involved, environmental damage represents a dispersion force.
They show that, depending on transport costs and environmental damage, several patterns
of industrial location are possible. In particular, a flow of local industrial pollution could
generate stable partial agglomeration equilibria where the balancing of agglomeration and
dispersion forces is such that the industrial sector is not fully agglomerated nor symmetrically
dispersed across space but distributed asymmetrically in both regions.

As in Lange and Quaas (2007), Ciucci et al. (2015) introduce the damage function as a
separable term in the utility function in an FE model. Ciucci et al. (2015) consider the case of
transboundary pollution, when the damaging effects of pollution involves the utility of house-
holds living in a place far away from where the emissions originate. These authors conclude
that when transboundary pollution is symmetric but most of the damaging effect on utility is
local, pollution has a dispersion effect; it follows that the results are analogous to those found
in Lange and Quaas (2007); instead, when the damaging effect of pollution emitted in one
location mostly involves a different location, pollution represents an agglomeration force,
confirming van Marrewijk’s (2005) considerations. Finally, when transboundary pollution is
asymmetric, new equilibrium configurations could emerge.

In Martínez-García et al. (2022), pollution effects are again local. In their contribution
pollution,which increases production, builds up as a stock in each region and it is only partially
absorbed by the natural environment. In their CP framework, the agricultural sector has been
removed. This eliminates the dispersion force originating from the demand of immobile
agricultural workers. Martínez-García et al. (2022) explore the processes concerning factor
migration and the regional stocks of pollution. The ensuing three-dimensional dynamics,

1 In theKrugman (1991) core-peripherymodel, only one factor, industrialworkers, enters in themanufacturing
production process both as fixed and variable component. Industrial workers are mobile, while agricultural
workers are immobile. In the footloose entrepreneur variant (developed by Ottaviano, 2001, and Forslid and
Ottaviano, 2003) the fixed factor component is represented by skilled workers (entrepreneurs); and the variable
component is represented by unskilled workers (workers). Only the entrepreneurs are allowed to move across
regions.
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which is framed in continuous time, may exhibit ‘pollute-and-flee’ cycles according to which
in a first phase population and industry agglomerates in one region and in a second phase, as
the stock of pollution increases locally affecting negatively welfare, the migration process is
reverted.2

In all these contributions factor-owners and firms are tied together. Therefore households
and firmsmobility are not separate processes. Borck et al. (2010) explore the joint determina-
tion of industry location and residence choice as independent processes. In their analysis they
consider three cases concerning interregional populationmobility: (1) prohibitive commuting
costs; (2) zero commuting costs; (3) positive but not prohibitive commuting costs. For the last
two cases, Borck et al. (2010) show the possibility of equilibria with separation between the
locations of production and residence. In their analysis, however, industry location and resi-
dence decisions are not taken simultaneously but in separate phases. The resulting dynamics
is not dissimilar from standard NEG models. Moreover, they do not consider the role of
environmental issues.

In the NEG literature only a few contributions explore households residence choices
and firms mobility decisions as separate processes and how these processes are affected by
environmental issues. Examples are Rauscher (2009) and Rauscher and Barbier (2010). In
Rauscher (2009) firms and households location decisions are taken separately: firms location
is driven by factor remunerations, while households residence choices (in the absence of
commuting costs) are driven by utility levels. As in previous contributions households utility
levels include a negative externality induced by local industrial pollution emissions. More-
over, in his model, due to the assumption of quasilinear preferences, the demand function
does not include the price index (excluding cross-elasticity effects). As a consequence, the
dispersion force originating from local market competition is weaker. 3 Depending on pollu-
tion damages different types of stationary equilibria are possible, some of them characterized
by the separation between residents and industrial production. Moreover, ‘chase-and-flee’
cycles could emerge according to which households escape from the more agglomerated
region searching for a cleaner environment and firms going after the larger market follow
consumers. Rauscher and Barbier (2010) use a similar analytical structure dealing with the
relationship between industrial agglomeration and biodiversity conservation.

In this paper we provide a rigorous dynamic analysis of a model similar to Rauscher
(2009) aiming at clarifying the impact of pollution damage on the dynamics of firms and
households location decisions in a two-region spatial economy. With respect to Rauscher
(2009), two are the distinguishing features of our analysis: first, we differentiate between two
types of households, while in Rauscher (2009) all households are identical. Entrepreneurs
(or skilled workers) endowed with human capital and (unskilled) workers endowed with
labour. Entrepreneurs do not necessarily work where they live. We assume that they can
travel to work with zero commuting costs or, equivalently, that they are allowed to work at
distance. (Unskilled) workers are employed and live in the same place, supplying locally a
given amount of the factor. They do not commute and are only allowed to work in presence.
They are employed and live in the same place. We consider these different levels of mobility
and of distance working as a stylized fact that we would like to take on board. On a more
technical note, we adopt a footloose entrepreneur framework, that allows us to derive several

2 There are other contributions in the NEG literature that deal with environmental issues. These are mainly
focussing on the role of environmental policies and / or are at the crossroad between new economic geography
and urban economics. For example, see Zeng and Zhao (2009), Gaigné et al. (2012), Borck and Pflüger (2019),
Pflüger (2021).
3 Rauscher (2009) demand functions for manufacturing varieties include neither the price index nor the
consumer income. As a consequence, also the market size effect is somehow dampened.
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analytical results (see below). Second, the dynamics involving firms and households mobility
is framed in a two-dimensional (2D) discrete time framework.

We analyze the 2D discrete time dynamics involved by the NEG framework adopted
employing the theory of dynamical systems. More specifically, using the corresponding
mathematical terminology, the dynamics that we study are defined by a 2D piecewise smooth
map T with natural constraints 0 and 1 for the twomain variableswhich are the regional shares
ofmobile households population (i.e. the entrepreneurs) and firms. Depending on parameters,
this map can have attracting fixed points, cycles, closed invariant curves as well as chaotic
attractors, and these attractorsmay coexist. In case ofmultistability, quite intermingled basins
of attraction increase complexity and uncertainty of the dynamics. In the paper, we show that
besides the core-periphery fixed points, map T can have interior symmetric and asymmetric
fixed points, as well as border fixed points. For all these fixed points, we obtain analytically
stability conditions and describe their possible bifurcations. In particular, we give conditions
of supercritical, subcritical and degenerate pitchfork bifurcations of the symmetric fixed
point, and of its Neimark-Sacker bifurcation leading to an attracting closed invariant curve
(with periodic or quasiperiodic dynamics). For the description of degenerate bifurcations
we refer to Sushko and Gardini (2010). By means of 1D and 2D bifurcation diagrams we
investigate bifurcation scenarioswhich can be observed under variation of parameter(s). From
the nonlinear dynamics perspective, the map is interesting because due to its nonsmoothness,
topological attractors may coexist with invariant sets which are attracting in Milnor sense
only (see Milnor, 1985). Specifically, we study parameter regions where the core-periphery
fixed points are saddles, but they have basins of attraction of positive measure. Similar
phenomena also occur in other NEG models, see e.g. Commendatore et al. (2015a, b, 2021).
Moreover, these fixed points can coexist with other attracting fixed points, attracting closed
invariant curves or with chaotic attractors. One more nonstandard phenomena caused by the
nonsmoothness of map T is a transformation of the attracting in Milnor sense core-periphery
fixed points into superstable (in topological sense) fixed points, forwhich the related condition
is obtained analytically.

The remainder of the paper is organized as follows: in Sect. 2, we lay down the structure
of the economic model; in Sect. 3, we derive the short-run equilibrium solutions; in Sect.
4, we explore the dynamic properties of the model. In particular, we derive the long-run
equilibrium solutions, corresponding to the fixed points of the 2D piecewise smooth map T ;
we verify when these fixed points exist and study their local stability properties. We also look
at the global dynamics properties of map T . Finally, we provide an economic interpretation
of the results. Section 5 concludes.

2 The economic model

2.1 General set-up

The model setting involves two symmetric regions, region 1 and region 2 ; two sectors,
agriculture (A) and manufacturing (M); and two factors of production, labour (L) and human
capital (H ).

Two types of households live in the economy: (unskilled) workers (L) – endowed with
labour – and skilled workers / entrepreneurs (E) – endowedwith human capital (H ).Workers
reside where they work, provide labour locally to A and M and are equally spread between
the regions. Thus, L/2 is the number of workers located in each region. Entrepreneurs may
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work and live in different locations (and we disregard commuting costs between the regions
or, equivalently, we assume that theymaywork at distance), allocating their endowment of H
between the regions. Human capital is specific toM . E is the overall number of entrepreneurs
and H is the overall endowment of capital. Thus, H/E is the endowment of human capital
of each entrepreneur. Moreover, λ is the share of entrepreneurs dwelling in region 1 (1 − λ

in region 2).
In the A sector perfect competition prevails. By choosing the homogeneous good A as the

numéraire, from market equilibrium, it follows that workers’ wage is equal to 1. Moreover,
the A-good is traded without incurring trade costs.

In theM sectormonopolistic competition prevails. The production of one of the N varieties
of the M-good requires a fixed amount F of human capital and ς units of labour for each
additional unit. The cost of trading the M-good between the regions takes the usual iceberg
form: τ > 1 units of the good should ship from one region to deliver 1 unit of the good in the
other region. Each firm produces a single variety, thus N = H/F is also the overall number
of firms. N1 is located in region 1 and N2 in region 2, with N = N1 + N2. We denote by
η the share of human capital allocated in region 1 (1 − η in region 2). Thus N1 = ηH/F
corresponds to the number of firms located in region 1 and N2 = (1−η)H/F to the number
of firms located in region 2. It follows that η is also the share of firms located in region 1
(1 − η in region 2).

2.2 Consumption

2.2.1 General utility function

The representative consumer utility function is:

u(cM , cA, ε) = υ(cM , cA) − D(ε) (1)

The component υ(cM , cA) describes the choice between the manufacturing good and the
agricultural good, where cM is the consumption of a composite of manufacturing good
varieties and cA is the consumption of the agricultural good. The component D(ε) is additive
and describes the negative impact on utility of industrial pollution emissions, ε. We are
assuming that pollution emissions do not affect the enjoyment of the other goods. That is,
there is not a ‘distaste effect’ of pollution on consumption.

2.2.2 Damage function

Weuse the followingdamage function,which specifies how total damage, caused by industrial
emissions ε, affects consumer’s utility (see Rauscher, 2009):

D(ε) = δε1+z

1 + z
(2)

where δ ≥ 0 represents the intensity of the pollution effect on utility and z > 0 shapes the
damage function. Let ε > 0 and δ > 0, we have that: D′ = δεz > 0, D′′ = zδεz−1 > 0 and
D′′′ = z(z−1)δεz−2 ≥ (< 0) f or z ≥ (< 1). From the last expression, themarginal damage
function D′ is convex, concave or linear depending on z > 1, z < 1 or z = 1, respectively.
Typically in environmental economics D′ ≥ 0 is the standard assumption. As in Rauscher
(2009), we consider also the case of a concave marginal damage function, this will allow us
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to focus on the impact of the damage function curvature on the dynamic properties of the
model.

Notice that, as in other contributions (see Lange & Quaas, 2007, and Rauscher, 2009) we
assume that pollution originates only from the industrial sector, does not accumulate over
time and has only local effects.

2.2.3 Individual consumer maximization problem

The utility component concerning the choice between manufacturing varieties and the agri-
cultural good, υ(cM , cA), is quasilinear with the manufacturing good component represented
by a monotonic transformation of a CES:

υ(cM , cA) = cM + cA (3)

where

cM = θ
σ

σ − 1

(
N∑
i=1

c
σ−1
σ

i

)
(4)

and where ci corresponds to the consumption of variety i , with i = 1, ..., N . Moreover,
θ > 0 and σ > 1.

The budget constraint of a representative consumer (worker or entrepreneur) corresponds
to:

N∑
i=1

pi ci + pAcA = Y + pAcA (5)

where pi corresponds to the price of variety i , with i = 1, ..., N , pA is the price of the A-good
and cA is a given endowment of the A-good. In this expression,

∑N
i=1 pi ci and pAcA represent

the expenditures for the manufacturing varieties and for the agricultural good, respectively;
Y the consumer (worker or entrepreneur) income and pAcA the value of her endowment of
the A-good.

Solving the utility maximization problem subject to the budget constraint, after choosing
the agricultural good as the numéraire, pA = 1, we obtain:

ci = α

pσ
i

where we set α = θσ . Note that, since we are not yet considering production location, we
are not distinguishing in this expression between the price of a variety produced locally and
the price of an imported variety.

2.3 Production

The structure of production follows the footloose entrepreneur framework (see Ottaviano,
2001, and Forslid & Ottaviano, 2003) according to which the mobile factor (human capital)
enters in the production only as the fixed component. The profit of a representative firm is

π = pq − (ςqwL + Fw)

where q is the output, ς , as specified above, is the variable input requirement, F is the fixed
amount of human capital required for production, wL is the unskilled workers nominal wage
and w is the human capital remuneration.

123



Annals of Operations Research

Wenow introduce geography and symmetric firms behavior. Considering that from perfect
competition in the agricultural market:wL = pA = 1, profits of a representative firm located
in region 1 or in region 2 are given by:

π1 = p11Q11 + p12τQ12 − [ς(Q11 + τQ12) + Fw1] (6)

π2 = p22Q22 + p21τQ21 − [ς(Q22 + τQ21) + Fw2] (7)

where pi j is the “mill” price (i.e., which excludes transport costs) applied in region j by a
firm located in region i , Qi j is the quantity sold in region j by a firm located in region i , with
i, j = 1, 2;4 and where, as mentioned above, τ > 1 represents iceberg trade costs and, for
future reference, φ = τ 1−σ , represents trade freeness, with 0 ≤ φ < 1.

The market equilibrium conditions in the manufacturing goods markets are:

Q11 = c11

(
L

2
+ λE

)
; Q12 = c12

(
L

2
+ (1 − λ)E

)

Q21 = c21

(
L

2
+ λE

)
; Q22 = c22

(
L

2
+ (1 − λ)E

)

To simplify the notation we set ς = σ−1
σ

. Then, we replace the above conditions into the
expressions for the regional profits and taking into account that prices at destination include
trade costs:5

c11 = α p−σ
11 , c12 = α p−σ

12 τ−σ (8)

c21 = α p−σ
21 τ−σ , c22 = α p−σ

22 , (9)

we obtain the following profit maximizing (mill) prices: pi j = 1 with i, j = 1, 2.

2.4 Pollution

Assumed that pollution is proportional to production: for each unit of output ψ units of
pollution are emitted. Then, the quantity of emissions in the two regions is equal to:

ε1 = ψN1Q1 (10)

ε2 = ψN2Q2 (11)

where Q1 = Q11 + τQ12 and Q2 = τQ21 + Q22.

4 Note that in the NEG literature more often are used prices at delivery which includes transport costs rather
than prices at the origin or “mill” prices (this distinction is equivalent to that between FOB (“free-on-board”)
and CIF (“cost-insurance- and -freight”) prices used in international economics. Defining p̃12 = p12τ and
p̃21 = p21τ Eqs. (6) and (7) correspond to:

π1 = p11Q11 + p̃12Q12 − [ς(Q11 + τQ12) + Fw1]
π2 = p22Q22 + p21τQ21 − [ς(Q22 + τQ21) + Fw2]

5 Referring also to the previous footnote, in these expressions, we have taken into consideration that the price
at destination (CIF price) for a variety produced in region i and purchased in region j is: p̃i j = pi j τ , with
i, j = 1, 2 and i �= j .
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3 Short-run equilibrium

A short-run equilibrium is such that goods and factors markets are simultaneously in equi-
librium for a given spatial distribution of households and firms as determined by λ and
η, respectively. In the following, we identify regional human capital remunerations and
entrepreneurs indirect utilities that ensure such an equilibrium. As we shall see, the remu-
neration and utility differentials are at the core of the long-run dynamics.

3.1 Human capital regional remunerations

From the zero profit conditions (obtained by setting π1 = 0 and π2 = 0 in (6) and (7)), after
replacing for the profit maximizing prices, we obtain the short-run equilibrium values for the
regional human capital remunerations:

w1 = 1

σ F
Q1 = α

σ F

[
L

2
+ λE + φ

(
L

2
+ (1 − λ)E

)]
(12)

w2 = 1

σ F
Q2 = α

σ F

[
φ

(
L

2
+ λE

)
+ L

2
+ (1 − λ)E

]
(13)

The terms in square brackets indicate the market size that determines not only human
capital remunerations but also output levels of single firms. Note that due to transport costs
market size depends upon the regional distribution of the consumers, i.e. upon λ.

3.2 Entrepreneurs regional indirect utilities

From (1) and (3), the utility enjoyed by a representative entrepreneur living in region 1 or in
region 2 is

u1(cM,1, cA, ε1) = cM,1 + cA − D(ε1)

u2(cM,2, cA, ε2) = cM,2 + cA − D(ε2)

where from (4),

cM,1 = θ
σ

σ − 1

(
N1c11

σ−1
σ + N2c21

σ−1
σ

)
cM,2 = θ

σ

σ − 1

(
N1c12

σ−1
σ + N2c22

σ−1
σ

)
and from (2),

D(ε1) = δε1+z
1

1 + z

D(ε2) = δε1+z
2

1 + z

Replacing for utility maximizing consumption, considering (8) and ( 9) and that pi j = 1
(i, j = 1, 2), α = θσ , N1 = η H

F and N2 = (1 − η) HF , the indirect utilities correspond to

u1 = α
σ

σ − 1

H

F
(η + φ(1 − η)) + cA − δε1+z

1

1 + z
(14)
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u2 = α
σ

σ − 1

H

F
(φη + 1 − η) + cA − δε1+z

2

1 + z
(15)

Note that the first component of the indirect utilities (referring to the consumption of the
manufacturing good) depends also on the distribution of firms between the region. The higher
the share of locally available variants (that do not involve transport cost and, therefore, are
cheaper), the higher the utility. We refer to this as cost of living effect.

Using the budget constraint (5) solved for cA; and expressions (10), (11), (12), (13), ( 14)
and (15), we obtain

u1 = H

E
w + cA + α

1

σ − 1

H

F
(η + φ(1 − η)) − δ

1 + z
(ηHσψw1)

1+z

u2 = H

E
w + cA + α

1

σ − 1

H

F
(φη + (1 − η)) − δ

1 + z
((1 − η)ψHσw2)

1+z

wherew = ηw1 + (1−η)w2 represents the average remuneration of a unit of human capital.

4 Dynamics

4.1 Themap

The map summarizing the dynamic model is given below in Eq. (16). It is two-dimensional
(2D for short) and it explains how the shares of mobile households (λ) and firms (η) locate
between the two regions. The dynamics follows amechanism similar to the replicator dynam-
ics, which is widely used in evolutionary game theory and which is standard in NEG models
(see e.g. Weibull 1995, and Fujita et al. 1999). The share of households living in region 1
(and in region 2) changes on the basis of a comparison between the utility enjoyed in region
1, u1, and the average utility enjoyed across the economy, u. The corresponding expression
is

f (λ, η) = λ (1 + γλ�(λ, η))

where�(λ, η) = u1−u
u , u = λu1+(1−λ)u2 and γλ is the speed of adjustment: the higher γλ,

the stronger households react to differences in regional utility levels. Similarly, the share of
human capital allocated by entrepreneurs in region 1 (and in region 2), determining at the same
time the shares of firms located in each region, is modified following a comparison between
human capital remuneration in region 1, w1, and the average human capital remuneration
across the economy, w. The corresponding expression is

g(λ, η) = η
(
1 + γη�(λ, η)

)
where �(λ, η) = w1−w

w
, w = ηw1 + (1 − η)w2 and, again, γη denotes the corresponding

speedof adjustment.After introducing the usual constraints on shares,we express the dynamic
model as a 2D piecewise smooth map T : U → U , U = [0, 1] × [0, 1] ⊂ R

2:

T : (λ, η) → (F(λ, η),G(λ, η)) (16)

where

F(λ, η) =
⎧⎨
⎩
0 if f (λ, η) ≤ 0
f (λ, η) if 0 < f (λ, η) < 1
1 if f (λ, η) ≥ 1
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G(λ, η) =
⎧⎨
⎩
0 if g(λ, η) ≤ 0
g(λ, η) if 0 < g(λ, η) < 1
1 if g(λ, η) ≥ 1

4.2 Fixed points

As it usually occurs in the NEGmodels with constraints on the shares, the fixed points of the
map T can be classified into two groups, namely, border and interior fixed points. The first
group is associated with the borders of the unit square U and includes

(1) the corner points of U , called core-periphery (CP) fixed points, CP00 = (0, 0), CP11 =
(1, 1), CP01 = (0, 1), CP10 = (1, 0), which obviously always exist; in our case, at the
fixed points CP00 and CP11 there is no separation between households and firms, while
at CP01, CP10 there is a separation;

(2) fixed points belonging to the interior of the borders of U ; as we show below, map T can
have border fixed points, say B and B ′ (which are necessarily symmetric to each other)
belonging to the interior of horizontal borders of U : B ∈ {(λ, η) : 0 < λ < 1, η = 1}
and B ′ ∈ {(λ, η) : 0 < λ < 1, η = 0}.
The second group of the fixed points of T is related to the interior of U and includes

(3) interior symmetric fixed point, say, S = (0.5, 0.5);
(4) interior asymmetric fixed points, say I and I ′; below we show that if they exist, they

necessarily belong to the vertical segment {(λ, η) : λ = 0.5, 0 < η < 1}, that is, λ = 0.5
at both fixed points.
Now let us give more details starting from the interior fixed points, namely the fixed
points, S, I and I ′. From f (λ, η) = λ, g(λ, η) = η, we get that an interior fixed point
satisfies {

w1(λ) = w2(λ)

u1(λ, η) = u2(λ, η)

The first equation corresponds to

αE(1 − φ)

σ F
(2λ − 1) = 0

and it is obviously solved by λ = 0.5. Therefore an interior fixed point must necessarily lie
on the vertical segment {(λ, η) : λ = 0.5, 0 < η < 1}. By setting λ = 0.5 into the second
equation, we obtain

(2η − 1)κ1 − δ
κ1+z
2

[
η1+z − (1 − η)1+z

]
1 + z

= 0 (17)

where

κ1 = αH(1 − φ)

F(σ − 1)
> 0, κ2 = 1

2

ψH(1 + φ)(E + L)

F
> 0

One of the solutions of (17) is clearly η = 0.5, that leads to the interior symmetric fixed point
S = (0.5, 0.5) (which always exists). Suppose now that η �= 0.5. If z is a natural number,
then the Eq. (17) can be written as

(2η − 1)

[
κ1 − δ

1 + z
κ1+z
2

z∑
n=0

ηz−n(1 − η)n

]
= 0 (18)
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• If z = 1, then the Eq. (18) becomes

(2η − 1)

(
κ1 − δ

κ2
2

2

)
= 0

and if κ1 − δ
κ22
2 �= 0, then only the symmetric fixed point exists, while if κ1 − δ

κ22
2 = 0,

i.e. δ = 2κ1
κ22

, then any point of the segment {(λ, η) : λ = 0.5, 0 < η < 1} is a fixed

point (as we discuss later, this case corresponds to a degenerate pitchfork bifurcation of
the fixed point S).

• If z = 2, 3, ... , then the η-coordinates of the interior fixed points I and I ′, say, η = η∗
and η = 1− η∗, correspond to the two real solutions that satisfy Eq. (18) when η �= 0.5,
which exist only when

δ < δ = 2zκ1

κ1+z
2

(19)

In fact, aswe show inAppendix, the condition δ = δ is related to a (supercritical) pitchfork
bifurcation of S leading to two interior fixed points I and I ′.Moreover, the η-coordinates
of I and I ′ belong to the unit interval, that is, 0 < η∗ < 1, if δ is sufficiently close to δ.

As we report later, it holds for δ > δ̃2, where the condition δ = δ̃2 is associated with a
border transcritical bifurcation at which I and I ′ merge with B and B ′, respectively, see
(21). That is, in this case, the existence condition for I and I ′ is δ̃2 < δ < δ.

• If z is not a natural number, the fixed points I and I ′ can be found numerically only.

Now let us turn to the border fixed points. Considering first the interior of the vertical
borders of U , that is, {(λ, η) : λ = 0, 0 < η < 1} and {(λ, η) : λ = 1, 0 < η < 1},
we get that the condition w1(λ) = w2(λ) is never satisfied for λ = 1 or λ = 0,
thus, no fixed point can exist located on these borders. For an economic intution (which
applies also to the impossibility of an interior equilibrium with asymmetric shares of
households, that is, outside the segment λ = 0.5) note that the regional remunerations of
human capital (see Eqs. (12) and (13)) depend upon the regional distribution of demand,
weighted by the transport cost. If demand is concentrated in one region, λ = 0 or λ = 1,
or asymmetrically distributed, firms are faced with different demand conditions, which
necessarily translates into different remunerations. Demand conditions are only equal,
if demand is symmetrically distributed between the two regions, i.e. for λ = 0.5. Then,
considering the interior of the horizontal borders of U , by setting η = 1 (η = 0) in the
condition u1(λ, η) = u2(λ, η), we solve for the λ-coordinates of two border asymmetric
fixed points B = (λ∗∗, 1) and B ′ = (1 − λ∗∗, 0) :

λ∗∗ = 1

2
+ κ3

((
κ1

1 + z

δ

) 1
1+z 1

κ2
− 1

)

1 − λ∗∗ = 1

2
− κ3

((
κ1

1 + z

δ

) 1
1+z 1

κ2
− 1

)

where

κ3 = 1 + φ

1 − φ

(
E + L

2E

)
>

1

2

It can be shown that the existence conditions of B and B ′, i.e. 0 < λ∗∗ < 1, are satisfied
for δ̃3 < δ < δ̃1, more precisely,
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• 0.5 < λ∗∗ < 1, for δ̃3 < δ < δ̃2 < δ̃1, where

δ̃1 = (1 + z)κ1

(
κ3

κ2(κ3 − 0.5)

)1+z

(20)

δ̃2 = (1 + z)κ1

(
1

κ2

)1+z

(21)

δ̃3 = (1 + z)κ1

(
κ3

κ2 (κ3 + 0.5)

)1+z

(22)

• 0 < λ∗∗ < 0.5 for δ̃3 < δ̃2 < δ < δ̃1, and
• λ∗∗ = 0.5 for δ = δ̃2. In this way, at δ = δ̃1 it holds that λ∗∗ = 1, that is, B = CP11 (and

B ′ = CP00), while at δ = δ̃3 it holds that λ∗∗ = 1, that is, B = CP01 (and B ′ = CP10).
These conditions are related to border transcritical bifurcations at which the border fixed
points B and B ′ appear / disappear merging with the related CP fixed points, changing
their stability (in the horizontal direction). At δ = δ̃2, one more border transcritical
bifurcation occurs at which the interior fixed points I and I ′ appear / disappear merging
with B and B ′, respectively, changing their stability (in the vertical direction).

Note that

dλ∗∗

dδ
= −δ− 2+z

1+z

1 + z
κ3δ̃

1
1+z
2 < 0

for δ �= 0. This means that when firms are agglomerated in one region, households are
attracted by the region with no industry as the damage from pollution increases.

A detailed local stability analysis of the fixed points of map T is presented in Appendix.
The bifurcation conditions, that we will use in our numerical analysis, are the following:

(1) the conditions δ = δ and δ = δNS, given in (19) (see also (30)) and (29), respectively,
are related to pitchfork and Neimark-Sacker bifurcations of the fixed point S;

(1) the condition δ = δ̃2,where δ̃2 is given in (20), is associated with a border transcritical
bifurcation (in the vertical direction) of the fixed points B and B ′;

(2) the condition δ = δ̃3, where δ̃3 is given in (22), corresponds to a border transcritical
bifurcation (in the horizontal direction) of the fixed points CP00 and CP11.

4.3 Numerical analysis

We complete the exploration of the properties of fixed points of map T with the help of
numerical simulations. For the parameter values

σ = 3, E = 1, H = 1, L = 2, F = 0.05, α = 0.1, ψ = 1, γλ = 2, γη = 2, cA = 0.1
(23)

we plot in Fig. 1 the bifurcation curves obtained above in the (φ, δ)-parameter plane for
z = 0.5 in (a), z = 1 in (b) and z = 2 in (c). In these figures, the curve defined by δ = δ̃3
is marked by BT (CP) being associated with a border transcritical bifurcation of the fixed
points CP00 and CP11; the curves defined by δ = δ and δ = δNS , confining the stability
domain of the fixed point S and denoted PF(S) and NS(S), respectively, are related to the
pitchfork and Neimark-Sacker bifurcations of the fixed point S; the curve denoted BT (B)

and defined by δ = δ̃2 is associated with the border transcritical bifurcation of the fixed
points B and B ′. In the following, we use the results of the stability analysis of the fixed
points presented in Appendix.
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Fig. 1 Bifurcation curves of the fixed points of map T in the (φ, δ) -parameter plane for z = 0.5 in (a), z = 1
in (b) and z = 2 in (c). The other parameter values are as in (23)

Fig. 2 Basins of attraction of the fixed points (a) CP00 and CP11, (b) S, B and B′. Here z = 0.5, φ = 0.3
and (a) δ = 0.1; (b) δ = 0.1325. The other parameter values are fixed as in (23)

In fact, the fixed points CP00 and CP11 are locally stable for 0 ≤ δ < δ̃3, i.e., below the
curve BT (CP) (see Fig. 1). Their basins of attraction are separated by the stable invariant
manifold of the saddle fixed point S (see an example in Fig. 2a). At δ = δ̃3, the fixed points
CP00 andCP11 lose stability (in the horizontal direction) via a border transcritical bifurcation
leading to two attracting border fixed points, B and B ′, respectively. Their basins are also
separated by the stable invariant manifold of S. These fixed points are stable for δ̃3 < δ < δ̃2,
i.e. between the curves BT (CP) and BT (B). Concerning the interior symmetric fixed point
S, it is stable for δ < δ < δNS, that is between the curves PF(S) and NS(S).

The pitchfork bifurcation of S is subcritical for z < 1 (as e.g., in Fig. 1a where z = 0.5).
In this case, crossing PF(S) for increasing δ, the fixed point S becomes stable while two
interior saddle fixed points, I and I ′ are born. Since δ < δ̃2,

6 that is, the curves PF(S)

is below the curve BT (B), in the region between these curves three attracting fixed points
coexist, namely, S, B and B ′. Their basins are separated by the stable invariant manifolds
of the saddle fixed points I and I ′ (see an example in Fig. 2b). For further increasing δ, a
reverse border transcritical bifurcation occurs at which I collides with B and I ′ with B ′,
and after this bifurcation the fixed points I and I ′ disappear while the border fixed points B
and B ′ become saddles. This sequence of bifurcations is also illustrated in Fig. 3 presenting
a bifurcation diagram varying δ in the range 0.08 < δ < 0.2 fixing φ = 0.3. The related
parameter path in shown in Fig. 1a by a red arrow.

6 Note that δ = δ̃2
2z
1+z , thus δ ≥ (<)̃δ2 for z ≥ (<) = 1.
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Fig. 3 Bifurcation diagram (a) δ vs λ and η; (b) δ vs λ; (c) δ vs η. Here z = 0.5, φ = 0.3 and 0.08 < δ < 0.2
(see the parameter path indicated in Fig. 1a by red arrow). The other parameter values are as in (23)

Fig. 4 Basins of attraction of the fixed points (a) B and B′, (b) I and I ′. Here z = 2, φ = 0.3 and (a) δ = 0.03;
(b) δ = 0.04. The other parameter values are fixed as in (23)

If z = 1, the pitchfork bifurcation of S is degenerate (the curves PF(S) and BT (B)

coincide, see Fig. 1b), and at the bifurcation value any point of the segment {(λ, η) : λ =
0.5, 0 ≤ η ≤ 1} is fixed.

For z > 1, the pitchfork bifurcation of S is supercritical (as in Fig. 1c where z = 2). In the
region between the curves between BT (CP) and BT (B) map T has attracting border fixed
points B and B ′ whose basins are separated by the stable invariant manifold of saddle fixed
point S (an example is shown in Fig. 4a). Crossing BT (B) for increasing δ, a border trans-
critical bifurcation of B and B ′ transforms them into saddles and leads to interior attracting
fixed points I and I ′ (see Fig. 4b). As δ is further increased, at δ = δ, (i.e., crossing the curve
PF(S)), a reverse supercritical pitchfork bifurcation occurs due to which the fixed points I
and I ′ disappear merging with the symmetric interior equilibrium S gaining stability. This
sequence of bifurcations is illustrated in Fig. 5 presenting a bifurcation diagram varying δ in
the range 0 < δ < 0.08 fixing φ = 0.3. The related parameter path in shown in Fig. 1c by a
red arrow.

Finally, at δ = δNS (crossing the curve NS(S), see Fig. 1), the fixed point S loses stability
via a Neimark-Sacker bifurcation. This bifurcation leads to the appearance of an attracting
closed invariant curve with periodic or quasiperiodic dynamics on it. In the next section we
consider several examples of dynamics of map T for δ > δNS .
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4.4 Global dynamics

In Fig. 6a we the present bifurcation structure in the (φ, δ) -parameter plane of map T for
z = 0.5. In this figure, the white region is related to either quasiperiodic, or periodic or
chaotic dynamics with possibly coexisting attractors. Some periodicity tongues issuing from
the Neimark-Sacker bifurcation curve can be better seen in the inset which shows the marked
windowmagnified (periods of the corresponding cycles are indicated by numbers). In Fig. 6a
one more curve denoted C is shown associated with a vertical asymptote λ = λa of function
f (λ) given in (31) in Appendix, which for parameter values above C belongs to the unit
interval. This curve is defined by the condition of vanishing denominator of f (λ) at λ = 1,
that leads to the condition u1(1) = 0. Below we discuss the dynamic effects of crossing this
curve. Neimark-Sacker bifurcation of the fixed point S is illustrated in Fig. 6b by means of
a 1D bifurcation diagram plotting δ versus λ fixing φ = 0.15 and varying δ in the range
0.37 < δ < 0.42. In this diagram, several periodicity regions can be seen, in particular, the
biggest one corresponding to a 14-cycle which in its turn also undergoes a Neimark-Sacker
bifurcation leading to 14 -cyclic attracting closed invariant curves.

Several properties are worth to be commented. The first one is related to the symmetry of
the map T with respect to the point S, according to which any invariant set A of T is either
itself symmetric with respect to S (e.g., an even period cycle may be symmetric), or there
must exist one more invariant set A′ which is symmetric to A. It follows that cycles of odd
periods must exist in pairs and, as an example, basins of two coexisting 15-cycles are shown
in yellow and blue in Fig. 7.

Figure 7b which is an enlargment of the window indicated in Fig. 7a, illustrates one more
property of map T , related to its piecewise smooth definition with flat branches. One can see
that besides the two attracting 15-cycles, also the fixed points CP00 and CP11 are attractors
of map T with their basins of attraction shown in violet and green. However, we know that
these fixed points are saddles for the considered parameter values, being locally repelling in
the horizontal direction and attracting in the vertical direction. For the fixed point CP11 this
fact is illustrated in Fig. 8 by the related 1D maps denoted Tη=1(λ) in (a) and Tλ=1(η) in
(b) to which map T is reduced on the invariant borders {(λ, η) : η = 1, 0 ≤ λ ≤ 1} and
{(λ, η) : λ = 1, 0 ≤ η ≤ 1}, respectively. The same property holds for the fixed point CP00
on the invariant borders {(λ, η) : η = 0, 0 ≤ λ ≤ 1} and {(λ, η) : λ = 0, 0 ≤ η ≤ 1}. In

Fig. 5 Bifurcation diagram (a) δ vs λ and η; (b) δ vs λ; c δ vs η. Here z = 2, φ = 0.3 and 0 < δ < 0.08 (see
the parameter path indicated in Fig. 1(c) by red arrow). The other parameter values are as in (23)
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Fig. 6 (a) Bifurcation structure in the (φ, δ) -parameter plane of map T for z = 0.5. An inset shows the
marked window magnified. (b) 1D bifurcation diagram δ versus λ for φ = 0.15 and 0.37 < δ < 0.42. The
other parameter values are fixed as in (23)

Fig. 7 (a) Basins of two attracting symmetric 15-cycles coexisting with attracting (in Milnor sense) fixed
points CP00 and CP11 are shown in yellow, blue, violet and green, respectively. (b) A magnified window
indicated in (a) where the basins of CP00 and CP11 are more visible. Here z = 0.5, φ = 0.15, δ = 0.412 and
other parameter values are as in (23).

Fig. 8 1D maps Tη=1(λ) in (a) and Tλ=1(η) in (b) at z = 0.5, φ = 0.15, δ = 0.412. Other parameter values
are as in (23)
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Fig. 9 (a) A part of the phase plane of map T where basins of attracting (in Milnor sense) fixed points CP00
and CP11 are shown in violet and green, respectively, and basin of the chaotic attractor is shown in gray; (b)
basins of attracting fixed points CP00 and CP11. Here z = 0.5, φ = 0.15, and δ = 0.417 in (a), δ = 0.45 in
(b). The other parameter values are fixed as in (23)

fact, initial points belonging to the violet and green basins are eventually attracted to CP00
and CP11, respectively, due to the flat branches of map T , that makes these fixed points
attracting in Milnor sense. It is worth to emphasize that in any neighborhood of CP00 and
CP11 there are points attracted by other attractors. For other analyses of similar attractors in
NEG models we refer to Commendatore et al. (2015a, b, 2021).

A closed invariant curve (with periodic or quasiperiodic dynamics) born due to aNeimark-
Sacker bifurcation of S can be destroyed leading to chaos. Several mechanisms of such a
destruction are described, e.g. in Aronson et al. (1982). An example of a chaotic attractor
coexistingwith attracting (inMilnor sense) fixed pointsCP00 andCP11 is presented in Fig. 9a.
In this figure, a part of the phase plane is shown where it can be seen that this chaotic attractor
is near to a contact with its basin boundary. In fact, for further increasing δ such a contact
occurs, after which the chaotic attractor disappears (it is transformed into a chaotic repellor)
leaving two attractors, CP00 and CP11, whose basins are very intermingled. An example is
shown in Fig. 9b. However, in this figure the fixed pointsCP00 andCP11 are already attracting
in topological sense (i.e., each of these fixed points has an attracting neighborhood) since the
related parameter point is above the curve C . As illustrated in Fig. 10a, the parameter point
(φ, δ) = (0.15, 0.417) (as in Fig. 9a) is below the curve C, so that the vertical asymptote
λ = λa of function f given in (31) is still outside the unit interval (see Fig. 10a), and
the fixed point λ = 1 of map Tη=1(λ) is left-side repelling. In contrast, parameter point
(φ, δ) = (0.15, 0.45) (as in Fig. 9b) is above the curve C, and the asymptote λ = λa of
f is already inside the unit interval (see Fig. 10b). As a result, the fixed point λ = 1 of
map Tη=1(λ) is both-side superstable. However, this map is no longer continuous on the unit
interval as it is in the former case.

To end our discussion of the dynamics of map T at z = 0.5, we show in Fig. 11 a time
path for different attractors: an invariant curve in (a), a cycle in (b) and a chaotic attractor in
(c). We found, in simulations not presented here, similar time paths for other values of the
parameter z (in particular, for z = 1 and z = 2).

The basic bifurcation scenario for z = 2 observed after a Neimark-Sacker bifurcation
is qualitatively similar to the one described above for z = 0.5. After a Neimark-Sacker
bifurcation of the fixed point S an attracting closed invariant curve is born and then it is
destroyed that leads to chaos, moreover, attractors associated with this scenario may coexist
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Fig. 10 Functions f (λ) (in black) and Tη=1(λ) (in red) and their vertical asymptote. Here z = 0.5, φ = 0.15,
and δ = 0.417 in (a), δ = 0.45 in (b). The other parameter values are fixed as in (23)

Fig. 11 Time paths followed by the share of mobile households (entrepreneurs), λ, in red and the share of
firms, η, in black; for z = 0.5, φ = 0.15 and (a) δ = 0.38, (b) δ = 0.412, (c) δ = 0.417. The other parameter
values are as in (23)

with attracting fixed points CP00 and CP11. Figure 12a shows the bifurcation structure in the
(φ, δ)-parameter plane, and in Fig. 12b a 1D bifurcation diagram is presented illustrating
the dynamics of map T after the Neimark-Sacker bifurcation of the fixed point S. Note that
the related parameter path (marked in Fig. 12a by a red arrow) is above the curve C , that is,
interior attractors of T coexist with attracting fixed points CP00 and CP11. Two examples are
shown in Fig. 13: in (a) basins of coexisting attracting closed invariant curve and fixed points
CP00 and CP11, and in (b) basins of CP00 and CP11.

4.5 Economic interpretation

In NEGmodels two types of countervaling dynamic forces are at work: spatial agglomeration
and dispersion forces. Typically, in NEG models, which are mostly one-dimensional and set
in continuous time, these forces are mainly considered when operating at the symmetric
equilibrium. A crucial difference compared with the standard NEG analysis is that in the
current set-up it is possible to distinguish which specific forces affect industry location and
residence choices. The Jacobian (see expression (24) in the Appendix) nicely allows to
disentangle the agglomeration and dispersion forces at work:

J =
[
1 + γλ

∂�(λ,η)
∂λ

γλλ
∂�(λ,η)

∂η

γηη
∂�(λ,η)

∂λ
1 + γη

∂�(λ,η)
∂η

]
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Fig. 12 (a) Bifurcation structure in the (φ, δ)-parameter plane of map T for z = 2. (b) 1D bifurcation diagram
δ versus λ for φ = 0.3 and 0.09 < δ < 0.113 (the related parameter path is marked by red arrow in (a)). The
other parameter values are fixed as in (23)

Fig. 13 (a) Basins of coexisting attracting closed invariant curve and fixed points CP00, CP11 are shown in
gray, yellow and blue, respectively. (b) After a contact with its basin boundary the interior attractor disappears,
leaving only attracting fixed points CP00, CP11. Here z = 2, φ = 0.3, δ = 0.11 in (a) and δ = 0.12 in (b).
The other parameter values are fixed as in (23)

For the symmetric equilibrium S of the current model we have:

∂�(λ, η)

∂λ

∣∣∣∣
λ=0.5, η=0.5

= −δ

(0.5κ2)1+z

κ3

κ4 − δ
(0.5κ2)1+z

1+z︸ ︷︷ ︸
indirect pollution e f f ect (−)

∂�(λ, η)

∂η

∣∣∣∣
λ=0.5, η=0.5

=
κ1

κ4 − δ
(0.5κ2)1+z

1+z︸ ︷︷ ︸
cost o f living e f f ect (+)

−2δ
(0.5κ2)1+z

κ4 − δ
(0.5κ2)1+z

1+z︸ ︷︷ ︸
direct pollution e f f ect (−)

∂�(λ, η)

∂λ

∣∣∣∣
λ=0.5, η=0.5

=
1

κ3︸︷︷︸
market si ze e f f ect (+)
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∂�(λ, η)

∂η

∣∣∣∣
λ=0.5, η=0.5

= 0︸︷︷︸
market competi tion e f f ect (0)

According to these expressions at the symmetric equilibrium, the agglomeration forces are
spurred by the market size effect, according to which firms are attracted by larger markets
and by the cost of living effect, according to which households prefer to live where the
availability of the good varieties is larger. Concerning the dispersion forces, the competition
effect, according to which firms prefer to locate where the competition is less fierce, is not
operative, since demand cross elasticities are nil. In passing, we notice that in Rauscher
(2009) there is a further dispersion force operating at the symmetric equilibrium, involving
households, according to which a higher share of households λ determines higher local prices
by increasing demand. When δ > 0, pollution introduces additional dispersion forces, since
households prefer a less polluted environment. In the current set-up two pollution effects
are present: 1) a direct pollution effect, which operates via η: when the number of firms
increases the amount of local pollution increases as well; 2) an indirect pollution effect,
which operates via λ: when the number of households increases, the market size increases,
production increases and pollution increases (this indirect effect of pollution is missing in
Rauscher 2009).

These forces also allow an economic interpretation of a "chase-and-flee" dynamics that
may involve firms and households: If the symmetric equilibrium is shocked by an exoge-
nous relocation of households towards region 1 (λ increases), firms will follow (market size
effect), but some of the households will flee (because of the indirect pollution effect). With a
higher number of firms in region 1, households experience a cost of living effect (attracting
households to region 1) and a direct pollution effect (driving households away from region
1). Depending upon parameters (see below), the net effect may be negative, the market size
in region 1 shrinks and firms follow households towards region 2. With a sufficiently strong
shock, the dynamics may leave the basin of attraction of the symmetric equilibrium and a
new long-run pattern is established.7 It is interesting to compare the forces operating at the
symmetric equilibrium with those working at a border equilibrium, in wich all firms are
agglomerated in one region (in the following we assume this to be region 1), but households
are regionally dispersed. The dynamics of the households (captured in the first line of the
Jacobian J ) is still governed by an indirect pollution effect, by the cost of living effect and
by the direct pollution effect. However, the forces impacting upon firm location (captured
in the second line of the Jacobian J ) do change. Firms are agglomerated in the region in
which the remuneration of human capital is higher; there is no factor price equalisation at
border equilibria and firms’ decisions are not “at the margin”. In this situation, a marginal
relocation of households (change in λ) is too small to trigger a relocation of firms – thus, we

do not observe a market size effect, ∂�(λ,η)
∂λ

∣∣∣
λ=λ∗∗, η=1

= 0. Only a bigger shock in λ may

trigger a movement. Consider now a shock in η that induces some firms to move to the other
region with the lower remuneration rate. While this does not change the remuneration rates

7 Considering for example the case of Fig. 2b, a sufficiently large shock could shift the dynamics from the
basin of attraction of the symmetric equilibrium S to the basin of attraction of the border equilibrium B. If
the relocation of households in region 1 is sufficiently large, due to the market size effect, all firms will move
sooner or later to region 1. Initially, as the number of firms located in region 1 increases, households move
back to region 2 since the pollution effect is larger than the cost of living effect. However, when the number
of firms increases sufficiently, the cost of living effect begins to overcome the pollution effect and households
move to region 1. In the new equilibrium B all firms are located in region 1 and a share of households larger
than a half but smaller than one lives in region 1. The utility level of households is the same in both regions
with a lower cost of living compensating for more pollution in region 1. Moreover, due to the larger market
size, firms have no incentive to relocate in region 2.
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themselves (there still is no competition effect), the average remuneration of human capital
declines, and the region with the higher remuneration appears more attractive. In that case,
∂�(λ,η)

∂ η

∣∣∣
λ=λ∗∗, η=1

= w2(λ)
w1(λ)

− 1 < 0, which contributes to stabilize the border equilibrium.

In the following, we discuss the transition process between stationary equilibria forced
by the increase in the paremeter δ (representing the impact of pollution on utility). For an
economic interpretation of the local bifucation analysis, explaining the effect of pollution
on the transition between stationary equilibria, we start from CP11 and see what happens by
increasing δ. The same conclusions apply by symmetry, ifwe start fromCP00.When δ = 0 the
agglomeration forces prevail over the dispersion forces and CP11 is attracting due to the fact

that 1) the utility differential (u1(1, 1)−u2(1, 1)) is positive and
∂�(λ,η)

∂λ

∣∣∣
λ=1, η=1

< 0 and 2)

the wage differential is positive (w1(1)−w2(1)) and
∂�(λ,η)

∂η

∣∣∣
λ=1, η=1

< 0. This implies that

households are attracted where utility is higher and firms are attracted where the market size
is larger. By increasing δ the pollution effect becomes active and dispersion forces increases
(in particular, utility is decreasing in region 1 since all production is located in that region). As
δ crosses the value δ = δ̃3, CP11 (and by symmetry CP00) becomes unstable and the border
equilibrium B (and by simmetry B ′) becomes stable. As the impact of pollution increases
(both direct and indirect effect are higher), some of the households start to move from region
1 to region 2 ( dλ∗∗

dδ
< 0) and this reduces local emissions in region 1, by reducing the size of

the market in that region, balancing the higher δ. Utility in region 2 is also decreasing with
λ∗∗ (because the average income is decreasing in both regions), however in that region utility
decreases less. Indeeed, along B (and B ′) the utility in the two regions converge. Concerning
firms, we have still that the wage differential (w1(λ

∗∗, 1) − w2(λ
∗∗, 1)) is positive , since

λ∗∗ > 0.5, and ∂�(λ,η)
∂η

∣∣∣
λ=λ∗∗, η=1

< 0. Therefore, there is not yet an incentive for firms to

move to the other region. The economy starts to experience separation between the location
of firms and households.

As δ is further increased, three possible results may occur depending on the value of z:
Case 1 (see also Fig. 3): z < 1, when δ crosses δ = δ, the unstable interior asymmetric

equilbria I (and symmetrically I ′) emerges. We have seen that the stable manifolds of I and
I ′ separate the basins of attraction of B and B ′ from that of the interior symmetric equilibrium
S. By starting from the border equilibrium B some perturbation may lead to the symmetric
equilibrium S characterised by a completely different spatial industrial distribution. Since
the basins of attraction of the border asymmetric equilibria shrink by increasing δ, the size of
the shock needed to switch from B (or B ′) to S becomes smaller and smaller as the intensity
of pollution increases.

These basins of attraction disappear as δ crosses δ = δ̃2 (at which λ∗∗ = 0.5, i.e. the
households are equally split between the regions) after which S is the only stable equilibrium.
At the symmetric interior equilibrium, firms and households are equally split between region
1 and region 2. Firms and households are again concentrated in the same place. At the
symmetric equilibrium, the forces governing the dynamics are those specified above.

Concerning global dynamics, looking at the range of values of δ above δ = δNS two
features are worth mentioning from an economic point of view:

A) Persistent “chase -and-flee” dynamics. As explained above, this is followed by firms
and households, and by the shares λ and η, with firms, attracted by the size of the market,
moving to the region where the number of households is higher and households, attracted
by the less polluted environment (net of the less favourable cost of living), migrating to
the region where the number of firms is smaller. Fig. 11 shows three possible time paths
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depending on the value of δ. In Fig. 11a, δ is slightly above δNS and the shares λ and η

fluctuate regularly along an invariant closed curve with η following with some lags λ; In Fig.
11b, the value of δ is such that the shares move along one of the two coexisiting 15-period
cycles. What can be noticed in this case is that many households remain in the same region
for some periods before moving abruptly to the other region, while firms relocation process
is smoother; finally, in Fig. 11c, δ is such that λ and η move along a chaotic attractor, here
the number of periods in which almost all households live in the region with less pollution
extends and the switch to the region with less firms concentration is more abrupt.

B) The existence of coexisting attractors and that of complex basins bounduaries. Figure
9 illustrates very clearly the relevance of this aspect that the dynamic process can take. Due
to the existence of very intermingled basins of attraction, very small differences in λ and
/ or η may lead to different long-run attractors, involving alternative cyclical time paths
for firms and households (even though qualitatively similar) or complete concentration and
agglomeration in one of the two regions.

5 Conclusions

We presented a NEG model, in which manufacturing uses entrepreneurs / skilled workers
(owning human capital) and unskilled workers and generates local pollution (that does not
accumulate), households enjoy utility from consuming all commodities (locally and imported
variants) and suffer from local pollution, and households are split into two groups: unskilled
workers that cannot migrate and work where they live; and skilled workers that can live
and work in different locations (allowing for costless commuting or, in alternative, distance
working) and choose also where to live.

The model is of the footloose entrepreneur variant, but involves two dynamic equations:
the standard one governing the residence choice of skilled households, and another one
governing where human capital is used in production. The current paper focussed on analytic
results. However, many of the results are interesting from an economic perspective and lead
into several policy issues:

We found a verywide range different fixed point constellations, involving also asymmetric
interior fixed points. From an economic perspective, these aremuchmore plausible than fixed
points involving symmetric location or full agglomeration, as is typically found in NEG
models.

We also found multiple, coexisting attractors. Though typical for NEG models, the per-
vasiveness of this phenomenon in our model is surprising. From an economic perspective,
it underlines the fragility of spatial patterns of production, pollution and residence choice;
small shocks can profoundly alter the long-run spatial patterns, that are not easily reversible.
‘Lock-in’ and path dependence are phenomena important not only in NEG, but in particular
also in connection with environmental issues. First numerical explorations indicate that the
utility levels are different in the different types of coexisting equilibria. This opens up room
for policy interventions. However, a systematic policy analysis goes well beyond the scope
of this paper.

We were also able to analytically describe many cyclical solutions giving rise to a ‘flee-
and-chase’ pattern. Interestingly enough, we not only found strict periodic cyclical solutions
which are always a bit implausible (given the irregularly fluctuating pattern of economic time
series), but also cycles, which show the much more plausible pattern of irregular cyclicity,
such as cycles generated by a Neimark-Sacker bifurcation and also chaotic attractors.
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The analysis is suggestive for many interesting policy extensions. First, note that the dif-
ferent equilibria involve different utility levels for different groups. Utility for high-qualified
workers will be equalized between the two regions via the migration process. Low quali-
fied workers cannot move away from polluting manufacturing; their utility is not equalized
between regions (and will also differ from the utility of high-qualified workers). Therefore,
a first policy question concern the comparison of these equilibria. In addition, the different
equilibria involve different regional distributions of production and consumption and thus
different trade volumes. One might also be interested in how much pollution is actually
incorporated in trade (if the location of residence and production differ) and one might like
to extend the model to account for pollution generated by these trade flows. What are the
policy options that could be taken on board in amodel extension?Direct taxation of pollution,
public spending for abatement and protection as well as tariffs accounting for pollution con-
tained in trade flows. From the economic policy point of view, there are plenty of interesting
questions, which we leave for future research.

Concerning the point of view of dynamical systems theory, we left for future work a more
detailed investigation of the global dynamics depending on other parameters as well as basin
structure of coexisting attractors, especially those which are attracting in Milnor sense.
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Appendix

In this Appendix we present the local stability analysis of the fixed points of map T .
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The Jacobian of the map T given in (16) is:

J =
[
1 + γλ

∂�(λ,η)
∂λ

γλλ
∂�(λ,η)

∂η

γηη
∂�(λ,η)

∂λ
1 + γη

∂�(λ,η)
∂η

]
(24)

Symmetric fixed point
The Jacobian (24) evaluated at the fixed point S = (0.5, 0.5) is

J (S) =
⎡
⎣ 1 − γλ

δ 1
2κ3

(0.5κ2)1+z

κ4− δ
1+z (0.5κ2)

1+z γλ
0.5κ1−δ(0.5κ2)1+z

κ4− δ
1+z (0.5κ2)

1+z

γη
1
2κ3

1

⎤
⎦ (25)

where κ4 = cA + Hα(1+φ)[(σ−1)(E+L)+σ E]
2EFσ(σ−1) > 0. Trace and determinant are equal to

det J (S) = 1 − γλ

1

2κ3

[
δ(1 − γη) (0.5κ2)1+z + 0.5γηκ1

κ4 − δ
1+z (0.5κ2)1+z

]

tr J (S) = 2 − γλ

1

2κ3

δ (0.5κ2)1+z

κ4 − δ
1+z (0.5κ2)1+z

The local stability conditions are

1 − det J (S) > 0 (26)

1 + tr J (S) + det J (S) > 0 (27)

1 − tr J (S) + det J (S) > 0. (28)

When δ = 0 it holds

det J (S) = 1 − γλγη

κ1

4κ3κ4
< 1

tr (S) = 2.

This implies that condition (26) is always satisfied, while condition (28) is never satisfied.
That is, as in Rauscher (2009), when there is no pollution (or it has no impact on utility), the
interior symmetric fixed point is never stable.

Let δ > 0. If δ < δd and γη ≤ 1, where δd = κ4(1+z)
(0.5κ2)1+z , condition (26) is always satisfied.

Instead if δ < δd and γη > 1, condition (26) can be written as:

δ < δNS = γη

2(γη − 1)

κ1

(0.5κ2)1+z (29)

If δ > δd and γη ≤ 1, condition (26) is never satisfied. Instead if δ > δd and γη > 1 ,
condition (26) can be written as:

δ > δNS

When condition (26) is violated, a Neimark-Sacker bifurcation of S occurs.
If (δ − δd)(8κ3 − (z + 1) (γη − 2)γλ) < 0, condition (27) can be written as:

δ < δF = (1 + z)
0.5γλγηκ1 − 8κ3κ4

(0.5κ2)1+z [γλ(γη − 2)(1 + z) − 2κ3]
If (δ − δd)(8κ3 − (z + 1) (γη − 2)γλ) > 0, condition (27) can be written as:

δ > δF
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When this condition is violated a flip bifurcation of S occurs.
If δ < δd , condition (28) can be written as

δ >
2zκ1

κ1+z
2

= δ (30)

Instead, if δ > δd , condition (28) corresponds to

δ < δ

When condition (28) is violated a pitchfork bifurcation of S occurs.
Comparing (26) and (28) when γη > 1, we have that if δ < δd , these conditions are

simultaneously satisfied for δ < δ < δNS . Instead, if δ > δd , these conditions cannot hold
simultaneously, since δNS > δ.

Interior Asymmetric fixed points
For δ = δ and z > 1(< 1) a supercritical (subcritical) pitchfork bifurcation of the symmetric
fixed point S takes place leading for decreasing δ (for increasing δ) to two asymmetric stable
(unstable) fixed points I and I ′. If z = 1 the pitchfork bifurcation is degenerate. Local
stability properties of the fixed points I and I ′ for the case z = 2 are analyzed below in this
Appendix.

Border and core-periphery fixed points
Let map T reduced to the invariant border {(λ, η) : 0 ≤ λ ≤ 1, η = 1} be denoted
by Tη=1(λ). Its dynamics at this border is determined by the equation

f (λ, 1) = f (λ) = λ

(
1 + γλ(1 − λ)

u1(λ) − u2(λ)

λu1(λ) + (1 − λ)u2(λ)

)
(31)

where
u1(λ) = w1(λ) HE + cA + α

σ−1
H
F − δ

1+z (Hσw1(λ))1+z ,

u2(λ) = w1(λ) HE + cA + α
σ−1

H
F φ.

If | f ′(λ∗∗)| < 1,where f ′(λ∗∗) = 1−γλλ
∗∗(1−λ∗∗)

(
δσ E(σHw1(λ

∗∗))z
u1(λ∗∗)

)
, the fixed point

λ∗∗ of f is stable. We have that border fixed point B = (λ∗∗, 1) can lose stability (in the
horizontal direction) via a border transcritical bifurcation at δ = δ̃3 exchanging stability with
CP11 and at δ = δ̃1 exchanging stability with CP01. By symmetry, B ′ is stable within the
interval δ̃3 < δ < δ̃1 exchanging stability with CP00 at δ = δ̃3 and with CP10 at δ = δ̃1.

Indeed, moving on to the entire domain of the map T , the Jacobian (24) evaluated at the
border fixed point B is a diagonal matrix with the two eigenvalues lying along the main
diagonal. These are

1 − γλλ
∗∗(1 − λ∗∗)δ

1
1+z

κ2

κ3

[κ1(1 + z)] z
1+z

u1(λ∗∗, 1)
< 1 for 0 < λ∗∗ < 1

that is for δ̃3 < δ < δ̃1, and

1 − γη

κ0(2λ∗∗ − 1)

u1(λ∗∗, 1)
< 1 for λ∗∗ > 0.5

that is for δ < δ̃2. By symmetry, the same applies to B ′. Notice also that when δ = 0, it holds
that f (λ) has no interior fixed point. Therefore, B and B ′ do not exist when δ = 0.
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The border fixed points B and B ′ can also lose stability via a flip bifurcation. It occurs
when

γλ = γ̃λ = 2

(
u1(λ∗∗)

δσ E(σHw1(λ∗∗))z

)

For what is concerning the core-periphery fixed points, the Jacobian (24) evaluated at the
core-periphery fixed point CP11 is an upper triangular matrix with the two eigenvalues lying
along the main diagonal. These are:

1 − γλ

δ̃3 − δ

δ̃3

κ1

u1(1, 1)
< 1 for δ < δ̃3

1 − γη

1

κ3 + 0.5
< 1 always

Therefore, CP11 (and by symmetry CP00) can lose stability only along the horizontal direc-
tion when δ > δ̃3. Regarding the core-periphery fixed points with separation, the Jacobian
evaluated at CP01 is also an upper triangular matrix with the two eigenvalues lying on the
main diagonal. These are

1 − γλ

δ − δ̃1

δ̃1

κ1

u2(0, 1)
< 1 for δ > δ̃1

1 + γη

1

κ3 − 0.5
> 1 always

Therefore, CP01 (and by symmetry CP10) loses stability along the horizontal direction when
δ < δ̃1 and it is always unstable along the vertical direction.

Asymmetric interior fixed points for z = 2
We consider the fixed point I , then by symmetry the same results apply to I ′.
The Jacobian (24) evaluated at the asymmetric interior fixed point I = (0.5, η∗) is

J (I ) =
⎡
⎣ 1 − γλ

4u∗ δ
κ1+z
2
κ3

[
(η∗)1+z + (1 − η∗)1+z

] − γλ

4u∗
[
δ
(
κ1+z
2

[
(η∗)z + (1 − η∗)z

]) − 2κ1
]

2γηη∗(1−η∗)

κ3
1

⎤
⎦

where u∗ = κ4 − κ1
2

1+φ
1−φ

+ α 1
σ−1

H
F (η∗ + φ(1 − η∗)) − δ

1+z (η∗κ2)1+z .
Let z = 2. The above Jacobian becomes

J (I ) =
[
1 − γλ

4u∗
9κ1−2δκ32

κ3

γλ

4u∗
(
δκ3

2 − 4κ1
)

2γηη∗(1−η∗)
κ3

1

]

where u∗ = κ4 − κ1
2

1+φ
1−φ

+ α 1
σ−1

H
F (η∗ + φ(1 − η∗)) − δ

3 (η∗κ2)3 and

η∗ = 1

2
+

√
3δκ3

2 (4κ1 − δκ3
2 )

2δκ3
2

1 − η∗ = 1

2
−

√
3δκ3

2 (4κ1 − δκ3
2 )

2δκ3
2

Notice that the asymmetric solutions are real and distinct and 1
2 < η∗ < 1 for 3κ1

κ32
= δ̃2 <

δ < 4κ1
κ32

= δ .
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The stability conditions are:

1 − det J (I ) > 0 (32)

1 + tr J (I ) + det J (I ) > 0 (33)

1 − tr J (I ) + det J (I ) > 0 (34)

To verify when these conditions hold we proceed as follows. Condition (32) corresponds to:

2κ6
2 (γη − 1)δ2 − κ1κ

3
2 (14γη − 9)δ + 24κ2

1γη

4δκ3
2κ3u∗ > 0

The sign of this expression depends on that of the numerator. For γη > 1(< 1) the numerator
in this expression corresponds to a parabola with a minimum (maximum). The intersection

points of this parabola with the horizontal axis are δa = κ1
κ32

14γη−9−
√(

γη− 3
2

)(
γη− 27

2

)
γη−1 and

δb = κ1
κ32

14γη−9+
√(

γη− 3
2

)(
γη− 27

2

)
γη−1 . Looking at the numerator, we can say that:

1. When γη > 27
2 it is positive for δ < δa and for δ > δb, with δa < δb < δ.

2. When γη = 27
2 it is positive for δ �= δa = δb = 18κ1

5κ32
< δ.

3. When 3
2 < γη < 27

2 it is positive for any δ.

4. When γη = 3
2 it is positive for δ �= δa = δb = 6κ1

κ32
> δ.

5. When 1 < γη < 3
2 it is positive for δ < δa and for δ > δb, with δ < δa < δb.

6. When γη = 1 it is positive for δ > 24κ1
5κ32

> δ.

7. When 0 < γη < 1 it is positive for δb < 0 < δ < δ < δa .

From points 1-7 we conclude that, when γη < 27
2 condition (32) is satisfied as long as δ < δ

and when γη ≥ 27
2 it is satisfied for δb < δ < δ.

Condition (33) corresponds to:

4 − γλ

9κ1 − 2δκ3
2

2κ3u∗ − γλγη

(4κ1 − δκ3
2 )(3κ1 − δκ3

2 )

2δκ3
2κ3u∗ > 0

Noticing that from the inequalities δ̃2 < δ < δ it follows (4κ1 − δκ3
2 )(3κ1 − δκ3

2 ) < 0,
condition (33) holds when

γη > γ A
ηFl = δκ3

2

[
8κ3u∗ − γλ(9κ1 − 2δκ3

2 )
]

γλ(4κ1 − δκ3
2 )(3κ1 − δκ3

2 )

Finally, condition (34) corresponds to:

γλγη(4κ1 − δκ3
2 )(3κ1 − δκ3

2 )

2δκ3
2κ3u∗ < 0

This condition holds when δ̃2 < δ < δ. At δ = δ̃2 the fixed points I and I ′ lose stability and
disappear via a border transcritical bifurcation, while at δ = δ they disappear via a reverse
pitchfork bifurcation.
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