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Abstract: Caesarean section (CS) rate has seen a significant increase in recent years, especially in
industrialized countries. There are, in fact, several causes that justify a CS; however, evidence is
emerging that non-obstetric factors may contribute to the decision. In reality, CS is not a risk-free
procedure. The intra-operative, post-pregnancy risks and risks for children are just a few examples.
From a cost point of view, it must be considered that CS requires longer recovery times, and women
often stay hospitalized for several days. This study analyzed data from 12,360 women who underwent
CS at the “San Giovanni di Dio e Ruggi D’Aragona” University Hospital between 2010 and 2020 by
multiple regression algorithms, including multiple linear regression (MLR), Random Forest, Gradient
Boosted Tree, XGBoost, and linear regression, classification algorithms and neural network in order
to study the variation of the dependent variable (total LOS) as a function of a group of independent
variables. We identify the MLR model as the most suitable because it achieves an R-value of 0.845, but
the neural network had the best performance (R = 0.944 for the training set). Among the independent
variables, Pre-operative LOS, Cardiovascular disease, Respiratory disorders, Hypertension, Diabetes,
Haemorrhage, Multiple births, Obesity, Pre-eclampsia, Complicating previous delivery, Urinary and
gynaecological disorders, and Complication during surgery were the variables that significantly
influence the LOS. Among the classification algorithms, the best is Random Forest, with an accuracy
as high as 77%. The simple regression model allowed us to highlight the comorbidities that most
influence the total LOS and to show the parameters on which the hospital management must focus
for better resource management and cost reduction.

Keywords: machine learning; caesarean section; length of stay

1. Introduction

In the last few years, one of the main relevant procedures is the Caesarean section
(CS), which is the one used to deliver a foetus. It involves making an initial incision in the
abdomen (laparotomy) and a subsequent one in the uterus (hysterectomy) [1]. Despite being
a surgical procedure, the CS rate has increased in recent years, especially in industrialized
countries [2]. For example, in the United States, it is the most commonly performed surgery,
involving about one million women, with a rate of 31.9% [3]. In turn, there was a volume
of hospitalizations for CS in Italy equal to 131,390 in 2020, a slight decrease compared to
the previous year. [4] Regarding primary CS, the frequency is almost stable, from a median
value of 23.6% in 2015 to 22.0% in 2020 [4]. Campania has the highest rate of CS among
Italian regions, with a percentage of 58.4%. Additionally, in private hospitals that perform
fewer than 500 deliveries annually, this rate was found to be as high as 84.4% [5].

Although efforts are underway to reduce the CS rate, experts do not predict a signif-
icant decline for at least a decade or two [6]. In fact, there are several causes that justify
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a CS. Previous perineal trauma, cardiac or pulmonary disease, placental abruption, and
umbilical cord prolapse are just a few examples of causes that justify its use [7,8]. However,
evidence is emerging that non-obstetric factors may contribute to the decision [9,10]. Scien-
tific advances, as well as legislative and social changes, have affected the attitude towards
CS. The increase in CS rates is attributed to various psychosocial factors, such as maternal
anxiety about a delivery, a preference for CS without medical indication, a rising number
of older first-time mothers, and the perception that the procedure is free of risks [11]. In
reality, CS is not a risk-free procedure. Intraoperative risks, such as infections, organ injury
or transfusion, thromboembolic complications, or risks for a subsequent pregnancy, such
as placenta previa or infertility, are possible complications. Children are also at risk of
bronchial asthma, type 1 diabetes mellitus, or allergic rhinitis [12–15]. In 2010, the World
Health Organization (WHO) stated that CS compared to vaginal delivery (VD), is associated
with a higher risk for the mother and baby and, therefore, should be performed only in
cases of extreme necessity [16].

It should be considered that CS requires longer recovery times, and women often
remain hospitalized for several days [17]. Hospital length of stay (LOS) is often used as a
quality indicator for healthcare processes. For example, introducing a faster clinical care
pathway jointly reduces the length of hospital stay (LOS) and hospitality expenses, as
shown in [18]. Ferraro et al. [19], on the other hand, utilize the Lean Six Sigma approach
to analyze the impact of healthcare-associated infections using LOS as a control variable.
Strategies need to be implemented to objectively study healthcare processes [20–22] or
support resource management to contain costs in an increasingly business-like healthcare
system [23–26]. In procedures such as childbirth, expenditure items are mainly associated
with the hospitalization of the mother and child, the use of neonatal intensive care, and the
type of delivery [27]. Early discharge after childbirth has become an increasingly common
practice. Early discharge is defined as when the LOS is less than 2 days for natural delivery
and 4 days after CS [28,29]. Being able to standardize LOS can help not only to keep
expense items constant but also to support scheduling and planning activities, which are
particularly important for elective surgery. For these reasons, it becomes strategic to know
the variables that influence LOS.

In this work, an extensive predictive analysis is conducted to model the LOS of women
who underwent CS at the “San Giovanni di Dio e Ruggi D’Aragona” University Hospital.
Different machine learning algorithms have been applied to address both regression and
classification tasks, and results were systematically analyzed and compared in terms of
performance metrics in order to find the most suitable approach to model the LOS, which
represents a primary and among the most relevant indicator of the service quality in health-
care organizations. The study mainly contributes to the investigation and identification of
the most promising clinical and organizational decision-support strategies based on the
use of artificial intelligence tools in clinically relevant settings. Indeed, the ability to select
the most valuable and powerful algorithms to predict LOS in advance, with an acceptable
and tolerable margin of error, might be a useful tool for improving the management of
costs and complexity in hospitals as well as for evaluating proper resource usage and
allocation. At the same time, however, the strategies should be easy to be implemented in
healthcare structures and should rely on readily available data such as those collected in
electronic health records or administrative databases. In this regard, this work proposes
and investigates data mining strategies based on using standardized and computationally
efficient machine learning methods that can be fed with data and information available
in the most widespread healthcare information systems. This study extends a previously
published study [30] in which MLR was used to build a preliminary model based on
a limited number of years (2019–2020) and on a limited number of variables with an
R2 value of 0.925. In particular, a more detailed analysis of comorbidities will allow a better
classification and understanding of the factors that most influence total LOS.
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Related Works

Innovation in the field of data analysis techniques, which achieved high performances
in different domains [31–36], had a significant impact on healthcare.

These tools, despite the problems related to security due to the particular field of
application [37], starting with applications such as the analysis of biomedical data [38–40]
or support for the diagnosis and treatment of diseases [41], are also spreading in hospital
resource management and more generally in healthcare management. Ponsiglione et al. [42],
for example, use a Finite-State Machine to investigate the phenomenon of drop-out from
Medical Examinations. Huyen et al. [43], on the other hand, use both an autoregressive
integrated moving average (ARIMA) model and a geographic information system (GIS) to
analyze hospital-cost payments of patients treated as a function of geographic area from a
teaching hospital in Vietnam.

Optimizing costs and health care also involves optimizing processes and, thus, patient
flow within the hospital [44].

In the context of CS, these techniques have been successfully implemented in different
aspects. Chai et al. [45] use the DMAIC cycle and Lean Six Sigma methodology to identify
causes and thus reduce the rate of CSs, while Verhoeven et al. [46] use logistic regression-
based models to discriminate whether or not to perform CS from induced labor. The
review conducted by Deng et al. [47] shows us that logistic regression models are the most
widely used models in the literature to study and predict VD after CS, using predictors
such as body mass index, previous vaginal delivery, and maternal age. As performed by
Ehrenberg et al. [48], model predictors could also be used to identify major risk factors to
analyze the impact of Diabetes or Obesity on the risk of performing CS.

Returning to the topic of our work, the study of LOS, several works have been con-
ducted in Italy. Scala et al. [49], for example, use multiple linear regression and classification
algorithms to predict the LOS of patients who accessed the hospital for a lower limb fracture,
while Olivato et al. [50] use machine learning algorithms to assess the LOS of hospitalized
patients with COVID-19.

As for CS, except for the one conducted by our research team [30,51] on a small number
of variables and years of observation, we are not aware of any other work to date.

2. Materials and Methods

This study analyzed data from 12,360 women who underwent CS at the “San Giovanni
di Dio e Ruggi D’Aragona” University Hospital between 2010 and 2020, extracted from
the QuaniSDO information system, which is in use for the computerization of hospital
discharge forms. In particular, the following variables were extracted:

• Age;
• Date of admission, discharge, and CS procedure;
• Primary and secondary diagnoses;
• Diagnosis-related group (DRG);

Through a study of the DRGs, it was possible not only to discriminate the CS from the
VD but also to identify the presence or absence of complications during the procedure. From
the study of principal and secondary diagnoses, major comorbidities and conditions were
extracted, and the dataset was divided into multiple subgroups of patients with similar
conditions. From date extraction, total LOS (the dependent variable) and the Pre-operative
LOS were calculated. After this preliminary elaboration, the independent variables of the
model were as follows:

I. Age;
II. Pre-operative LOS,

III. Thyroid disorder (yes/no);
IV. Cardiovascular disease (yes/no);
V. Abnormal foetus (yes/no);

VI. Respiratory disease (yes/no);
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VII. Hypertension (yes/no);
VIII. Diabetes (yes/no);

IX. Haemorrhage (yes/no);
X. Brain and retinal disorders (yes/no);

XI. Multiple births (yes/no);
XII. Obesity (yes/no);

XIII. Amniotic fluid disorders (yes/no);
XIV. Stillborn (yes/no);
XV. Pre-eclampsia (yes/no);

XVI. Tumour (yes/no);
XVII. Complicating previous delivery (yes/no);

XVIII. Urinary and gynaecological disorders (yes/no);
XIX. Complication during surgery (yes/no).

Figure 1 shows the characterization of the categorical variables in the dataset.
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2.1. Regression Models

IBM SPSS (Statistical Package for Social Science) ver. 20 and KNIME Analytics Plat-
form ver. 4.3.2 were used to implement Regression models. A multiple linear regression
(MLR) model was built with IBM SPSS. Before implementing and evaluating the perfor-
mance of the model, it is necessary to verify six preliminary hypotheses, i.e., the linearity
relationship between dependent variable (total LOS) and independent variables (Age,
Pre-operative LOS, Thyroid disorder, Cardiovascular disease, Abnormal foetus, Respira-
tory disease, Hypertension, Diabetes, Haemorrhage, Brain and retinal disorders, Multiple
births, Obesity, Amniotic fluid disorders, Stillborn, Pre-eclampsia, Tumour, Complicating
previous delivery, Urinary and gynaecological disorders, Complication during surgery),
absence of multicollinearity and outliers and some properties of the residues. If these
hypotheses are verified, it is possible to proceed with the use of a linear model for problem
characterization. KNIME Analytics Platform is instead used to test additional regressive
algorithms. Random Forest (RF) is an algorithm for supervised learning that leverages
the combination of multiple learning algorithms to enhance its performance. Although
the resulting model is both powerful and precise, there is a considerable likelihood of
overfitting. Gradient Boosted Tree (GBT) is a statistical learning algorithm that operates
without a fixed set of parameters and can be employed for both regression and classification
problems. Similar to RF, it creates a decision model that consists of a sequence of basic
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forecasting models, usually decision trees. These models are incrementally integrated into
each step to improve the output of the prior Weak Learner. The XGBoost algorithm is a
gradient-boosting technique that can be applied to predictive regression modeling. As with
the previously mentioned algorithms, it involves the iterative incorporation of decision
trees to enhance the accuracy of the previous model. Furthermore, the XGBoost algorithm
utilizes any differentiable loss function and a gradient descent optimization algorithm for
fitting models. Consequently, the method is termed “gradient boosting” because it aims
to minimize the loss gradient during model fitting. Logistic Regression (LR) is a model
building a linear relationship between the input and output variables. There are various
approaches to training the linear regression equation using data, with the most prevalent
method being ordinary least squares. This approach entails estimating the coefficients’
value from the data available during the learning process. For each artificial intelligence
model, a partition of 80% was employed to create the training dataset, while the remaining
20% was allocated for the test set.

2.2. Classification Algorithms and Neural Network

Another way to investigate total LOS is through the implementation of classification
algorithms. To do so, it is necessary to define the dependent variable not continuously but
through homogeneous classes. In accordance with the literature [28,29], the total LOS was
divided into three classes as follows:

- Group 0: 0–4 days;
- Group 1: 5–6 days;
- Group 2: LOS > 6 days.

Google Colaboratory (Colab) Cloud Platform [52] was chosen for the implementation.
The selected classification algorithms are Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP).

DT puts simple decision trees at the basis of the classification process, which is then
improved by more complex algorithms such as RF, discussed extensively in the previous
section. In contrast, a different approach is used by SVM, NB, and MLP. SVM bases the
classification process on finding the best hyperplane for data separation, while NB is a
statistical classifier based on Bayes’ theorem, albeit assuming the simplifying assumption of
class conditional independence as the basis. Finally, MLP is a feed-forward neural network
supplement composed of neurons called perceptrons that receive weighted features as
input and, through activation functions, produce the output. Learning, in this case, consists
of adjusting these weights with the goal of minimizing a specific parameter, which in this
case is the mean square error. In addition to these algorithms, Voting Classifier (VC) was
used to combine performance and obtain a better classifier. To do this, a majority policy is
implemented; that is, the predicted value from at least 3 classifiers will be associated.

For the implementation of the algorithms, it was decided to make a partition with 80%
of the data for the training set and 20% for the test set. However, this partitioning is not
static. Using CrossValidator belonging to the scikit-learn library used to design artificial
algorithms, which have been above defined, the dataset was partitioned into N = 10 pairs
of separate datasets (training, test) to analyze the effectiveness of models according to
a predefined set of parameters. The performance of the models will be identified as the
average of the values obtained on the single partition. In addition to this, GridSearchCV
tool was used for optimization of hyperparameters of the selected algorithms. This makes
it possible to adjust the parameters to the particular data set. Table 1 shows the parameters
that were arbitrarily selected for the above-defined artificial intelligence models.

Lastly, MatLab version R2020a was used to implement the neural network (NN). The
network implemented was a 2-layer feed-forward network with two different transfer
functions. In the hidden layer, there was a sigmoid transfer function, while in the output
layer a linear transfer function. In addition, in the hidden level, the number of hidden
neurons was ten. Figure 2 shows the network architecture.
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Table 1. Hyperparameter selection for each artificial intelligence model.

Algorithms Hyperparameters

SVM ‘kernel’:(‘linear’, ‘rbf’), ‘C’:[1, 10, 100], cv = 10

RF ‘n_estimators’: [5, 10, 15, 20], ‘max_depth’: [2, 5, 7, 9], cv = 10

DT ‘max_depth’:range(3,20), cv = 10

MLP
‘hidden_layer_sizes’: [(50,50,50), (50,100,50), (100,)],

‘activation’: [‘tanh’, ‘relu’], ‘solver’: [‘sgd’, ‘adam’], ‘alpha’:
[0.0001, 0.05],’ learning_rate’: [‘constant’,’adaptive’], cv = 10

NB ‘var_smoothing’: np.logspace(0,−9, num = 100), cv = 10

VC ‘voting technique’: (‘hard’, ‘soft’)
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Figure 2. Artificial neural network architecture.

The Levenberg–Marquardt algorithm was used for the training. In fact, this algorithm
is recommended for most problems, requiring more memory but less time. The training
stops automatically when there is an increase in the mean square error of the validation
samples. Training continues until the validation error increases consecutively for six
iterations. The dataset has been split into three sub-sets: training (70%), validation (15%),
and test (15%).

3. Results

After preliminary processing of the dataset to obtain the set of independent variables,
The hypotheses for employing the multiple linear regression (MLR) model were validated
by examining the linear relationship between the dependent variable and the independent
variables using appropriate scatter plots, such as the one depicted in Figure 3.
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In this case, the linear relationship is clearly evident, also in agreement with the
definition of total LOS. This type of plot did not allow evaluation of the effect generated by
the simultaneous interaction of multiple input variables.

As for the residues, their independence was verified through the Durbin–Watson test.
The result, 1.853, is contained within the acceptance range of (1.5; 2.5) required by the test.
As for the variance, on the other hand, its constant trend is verified through the creation of
a scatter plot showing the “standardized expected value regression” on the x-axis and the
“standardized residual regression” on the y-axis.

In Figure 4, the data are randomly distributed around zero. It was shown that the
assumption of homoscedasticity is not violated. Finally, the normality of the distribution
was always verified graphically using the Quartile–Quartile plot shown in Figure 5.
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The majority of the points were situated near the solid line, representing the ideal trend,
with only a few outliers that did not affect the model’s goodness of fit. To ensure the absence
of multicollinearity, two parameters—Tolerance and Variance Inflation Factor (VIF)—were
utilized, both of which are dependent on the correlation between the i-th independent
variable and the others. Cook’s distance was also calculated for each observation to verify
that there were no outliers that could impact the estimation of the model parameters.

In Table 2, multicollinearity was confirmed to be absent as the VIF values were consis-
tently under 10 and the Tolerance values were consistently above 0.2. Cook’s distance, on
the other hand, was less than 1 for each of the 12,360 observations, guaranteeing the absence
of outliers. After this phase, the MLR model was implemented, and its performances are
shown in Table 3.
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Table 2. Tolerance and Variance Inflation Factor for the multiple linear regression model.

Independent Variable Tolerance VIF

Age 0.966 1.035
Pre-operative LOS 0.927 1.079
Thyroid disorder 0.988 1.012

Cardiovascular disease 0.969 1.032
Abnormal foetus 0.977 1.023

Respiratory disease 0.990 1.010
Hypertension 0.952 1.051

Diabetes 0.922 1.084
Haemorrhage 0.968 1.034

Brain and retinal disorders 0.989 1.011
Multiple births 0.926 1.080

Obesity 0.955 1.047
Amniotic fluid disorders 0.938 1.067

Stillborn 0.984 1.016
Pre-eclampsia 0.924 1.082

Tumour 0.993 1.007
Complicating previous delivery 0.876 1.141

Urinary and gynaecological disorders 0.988 1.013
Complication during surgery 0.774 1.291

Table 3. Effectiveness performance of the multiple linear regression model.

R R2 R2 Adjusted Std. Error of the Estimate

MLR Model 0.936 0.876 0.876 1.618

Even on a dataset consisting of several observations and different independent vari-
ables, the excellent performance of the MLR model is demonstrated by an R2 parameter
above the limit value of 0.5. Table 4 shows the calculated coefficients and the result of the
t-test. The significance level chosen is 0.05, and the purpose is to highlight which variables
significantly influence the output.

From Table 4, it is highlighted that the variables that most influence total LOS were
Pre-operative LOS Cardiovascular disease, Respiratory disorders, Hypertension, Diabetes,
Haemorrhage, Multiple births, Obesity, Pre-eclampsia, Complicating previous delivery,
Urinary and gynaecological disorders and Complication during surgery. Among these, the
highest coefficient is associated with Pre-operative LOS.

Table 5 shows the effectiveness performances of other regression models in terms of
R2 and Root Mean Squared Error.
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Table 4. Coefficients and results of t-test for the multiple linear regression model.

Variable

Unstandardized
Coefficients

Standardized
Coefficients

Beta
t p-Value

B Std. Error

(Constant) 3.352 0.085 - 39.655 0.000
Age 0.006 0.003 0.008 2.383 0.017

Pre-operative LOS 0.989 0.004 0.912 277.175 0.000
Thyroid disorder 0.149 0.284 0.002 0.524 0.600

Cardiovascular disease 0.841 0.160 0.017 5.245 0.000
Abnormal foetus −0.090 0.073 −0.004 −1.236 0.217

Respiratory disease 3.643 0.383 0.030 9.503 0.000
Hypertension 0.397 0.092 0.014 4.321 0.000

Diabetes −0.383 0.138 −0.009 −2.766 0.006
Haemorrhage 1.222 0.164 0.024 7.475 0.000

Brain and retinal disorders 0.030 0.187 0.001 0.162 0.872
Multiple births 0.368 0.083 0.015 4.412 0.000

Obesity 0.826 0.147 0.018 5.617 0.000
Amniotic fluid disorders 0.008 0.049 0.001 0.168 0.867

Stillborn −0.238 0.194 −0.004 −1.225 0.221
Pre-eclampsia 1.165 0.114 0.034 10.247 0.000

Tumour 0.326 0.214 0.005 1.524 0.127
Complicating previous delivery −0.110 0.033 −0.011 −3.302 0.001

Urinary and gynaecological disorders 0.481 0.100 0.015 4.790 0.000
Complication during surgery 0.535 0.047 0.041 11.392 0.000

Table 5. Effectiveness performances of each regression model.

LR RF GBT XGBoost

R2 0.839 0.705 0.844 0.838
Root Mean Squared Error 1.522 2.595 1.495 1.524

GBT achieved the highest performance among the tested algorithms with an R2 value
of 0.844, followed by LR with 0.839, XGBoost with 0.838, and finally, RF with 0.705.

After completing the study with the regression models, we moved on to the imple-
mentation of the classification models. Table 6 shows the results in terms of accuracy and
the optimized parameters for the particular dataset used.

Table 6. Best parameters.

Algorithms Accuracy Best Parameters

RF 0.77 ‘max_depth’: 9, ‘n_estimators’: 10

MLP 0.74
‘activation’: ‘tanh’, ‘alpha’: 0.0001,

‘hidden_layer_sizes’: (50, 100, 50), ‘learning_rate’:
‘adaptive’, ‘solver’: ‘adam’

NB 0.74 var_smoothing = 0.004

SVM 0.75 ‘C’: 1, ‘kernel’: ‘linear’

DT 0.76 ‘max_depth’: 8

VC 0.77 ‘voting technique’: hard, ‘weights’: None

In terms of accuracy, the best algorithm is RF, followed by DT. Ultimately, decision
trees proved to be the best in predicting total LOS. Even VC could not improve performance
by establishing in definitive what RF is the best algorithm. Table 7 shows the additional
parameters for the best algorithm.
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Table 7. Precision, Recall, and F1-score of the best algorithm.

Algorithms Class Precision Recall F1-Score

RF

0 0.76 0.97 0.86

1 0.80 0.25 0.38

2 0.76 0.70 0.73

The results by individual class showed that the worst results were obtained in the
intermediate class. In contrast, excellent results were obtained for class 0 and class 2. This
finding is not insignificant as class 0 is the most representative of the sample (N = 7834),
while class 2 is the most critical for healthcare management as it encloses women with
prolonged hospitalization. The same result is shown graphically with the ROC curves in
Figure 6.
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As anticipated, the minor area with respect to the black characteristic of “no benefit”
was precisely that associated with class 1. However, the micro and macro average values
showed an area above 0.7. Feature importance permutation was used to evaluate the effect
of the independent variables on classification. This procedure consists of evaluating the
performance of the algorithm by going to corrupt any of the independent variables one by
one. Figure 7 shows how much the accuracy is lowered due to the corruption of a specific
independent variable.

The graph shows that the only significant effect is related to Pre-operative LOS, which
is part of the overall LOS by definition. Other effects, albeit insignificant, are associated
with Multiple Births, Complications from previous delivery, and Complications during
surgery. Lastly, the NN Fitting was implemented. Table 8 shows the results obtained.

As regards the MSE, Figure 8 illustrates the training process and the error of the
proposed artificial neural network by displaying the trend curves of the MSE as a function
of the epochs (Figure 8a) and the histogram of error distribution (Figure 8b) for both
training, validation, and test subsets.

Figure 8a shows how the training of the proposed artificial neural network with the
best performance, in terms of MSE, obtained after 9 epochs, where each of the three curves
(for train, test, and validation subsets) reach the best value of the MSE, equal to 2.96,
following a similar trend. Figure 8b shows the error histogram of the implemented model,
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where the highest bars are narrowly distributed around the zero-error (solid line) with a
moderately long right tail on a limited number of instances.
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Figure 9 shows the regression plots from the implemented regression model based on
the proposed artificial neural network for both training, validation, and test subsets.
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The scatter plots in Figure 9 display the predicted LOS values on the y-axis against
the actual LOS values on the x-axis for both the training, test, validation subsets as well
as for the and overall dataset. The linear fitting curve (solid line) is also reported for
each plot along with the identity line (dashed line), representing the optimal agreement
between real and predicted data. As can be observed, the obtained linear fitting curves are
close to the identity line, with correlation coefficients (R) equal to 0.94, 0.93, and 0.92 for
training, validation, and test data, respectively, and with the overall R of the model equal
to 0.94, thereby indicating the quality of the artificial neural network and its promising
predictive power.

4. Discussion

In this paper, data on CSs at the “San Giovanni di Dio e Ruggi d’Aragona” University
Hospital were analyzed. In particular, the information of 12,360 women who had a CS
in the years 2010–2020 was extracted from the QuaniSDO information system. Starting
from a restricted set of variables, such as Age, DRG, Date of admission, Date of CS, and
Date of discharge, the dependent variable (total LOS) and independent variables (Age, Pre-
operative LOS, Thyroid disorder, Cardiovascular disease, Abnormal foetus, Respiratory
disease, Hypertension, Diabetes, Haemorrhage, Brain and retinal disorders, Multiple
births, Obesity, Amniotic fluid disorders, Stillborn, Pre-eclampsia, Tumour, Complicating
previous delivery, Urinary and gynaecological disorders, Complication during surgery)
were obtained. From these, an MLR model was constructed to provide the hospital with a
tool to first determine the LOS based on the variation in one or more independent variables.
The resulting model produced an R2 value of 0.876. The good performances are in line
with the results already obtained on a sample based on 1817 women undergoing CS in the
years 2019–2020. In this case, in fact, the model obtained had an R2 value of 0.925, showing
a slight worsening given by the inclusion of a large number of observations and, thus, a
more dense subdivision of the sample. Other regression algorithms were tested to increase
the terms of comparison. GBT achieved the best outcome (R2= 0.844) among the tested
algorithms. However, it still did not outperform the MLR model, which is ultimately the
most appropriate model for data processing.

The classification algorithms were evaluated based on their ability to predict the length
of hospital stay (LOS) classes. Among these algorithms, RF achieved the highest accuracy
of 77%. Furthermore, RF performed particularly well in predicting class 0, which includes
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women with shorter hospital stays, and class 2, which is all women with prolonged hospital
stays, with an F1-score exceeding 0.70. It can be observed that, compared to other machine
learning algorithms [53–55], RF proved to be a most promising family of classifiers in
different classification and regression tasks, generating accurate forecasts and enabling
higher model interpretability, especially on a large dataset, exceeding the predictive power
of decision trees. However, despite being among the most versatile classifiers and capable
of achieving good performances on datasets with different properties and problems at
various complexity levels, the literature does not fully agree on the overall superiority of
RF [56]. Indeed, in accordance with the literature, in the present study, the RF algorithm
was only slightly superior to other methods in the classification task, and it showed the
lowest performances in the regression task.

Lastly, NN fitting was used to analyze the dataset. Compared with the value of R
obtained from the MLR model, a higher value was obtained with the NN for training and
a lower value, albeit slightly, for the validation and test sets. The decrease can easily be
justified by dividing the sample into multiple sets, ultimately demonstrating the good
performance of the model.

Finally, the application of the t-test allowed the highlighting of the independent vari-
ables that significantly affect the independent variable. Pre-operative LOS, Cardiovascular
disease, Respiratory disorders, Hypertension, Diabetes, Haemorrhage, Multiple births,
Obesity, Pre-eclampsia, Complicating previous delivery, Urinary and gynaecological dis-
orders, and Complication during surgery were the variables for which a p-value was less
than the threshold value of 0.05. The permutation feature importance associated with the
best classification algorithm, on the other hand, showed a significant influence only of
Pre-operative LOS, while smaller effects were observed for the following predictors: Multi-
ple births, Complicating previous delivery, and Complication during surgery. Apart from
Pre-operative LOS, whose link with LOS is easily explained, the effect of other variables
has also already been highlighted in the literature. Cegolon et al. [57], for example, in
their study also conducted on the Italian territory, show through the implementation of
regression models the effect that multiple births and previous delivery have on hospital
stay by type of CS. Blumenfeld et al. [58], on the other hand, show how women who have
perioperative complications register, in addition to various clinical consequences, the need
to stay longer in the hospital.

This study, already in its current state, has several strengths. A large number of patients
and readily available clinical and demographic variables—being linked to the hospital
discharge form—are included, and different analysis tools are tested, adding classification
algorithms and neural networks to the classic regression models. This allows us not only to
understand which clinical variables impact LOS but also to have predictive tools that can
help healthcare management in planning and cost containment operations [59].

However, this study is not without its limitations. In particular, no methodologies
were adopted to balance the dataset regarding the presence/absence of the comorbidities
included in the study; in addition, the degree of complexity for these variables was not
discussed as it does not have access to medical records, VDs were not included, and finally,
the study, although supported by other evidence in the literature being monocentric, does
not allow generalization of the results obtained.

5. Conclusions

This study analyzed the data of 12360 women who underwent CS at “San Giovanni
di Dio e Ruggi d’Aragona” University Hospital of Salerno (Italy). A comprehensive
set of independent variables was created to provide a more detailed description of the
patients’ clinical conditions, which were used to examine the total LOS. MLR model, four
different regression algorithms, five different classification algorithms, and a neural network
were tested.

An application so interesting to healthcare management lends itself to several future
developments. First, VD could also be analyzed, observing a greater number of years and
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variables even through the combined analysis of multiple health facilities similar in the
territory and population area.
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VD Vaginal Delivery
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SVM Support Vector Machine
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