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ABSTRACT 

 

In this research the potential of the PRISMA hyperspectral 

sensor in comparison with multispectral data (Sentinel-2 MSI 

and Landsat 8 OLI) was assessed for predicting soil moisture. 

To this aim, PRISMA, Sentinel-2 and Landsat 8 spectra, 

resampled according to the spectral bands of each sensor, 

were simulated from a laboratory soil spectral library. 

The soil samples used to create the spectral library were 

collected from different agricultural areas in Central and 

Southern Italy. Partial Least Square Regression (PLSR), the 

Normalized Soil Moisture Index (NSMI) and the Soil 

Moisture Gaussian Model (SMGM) were employed to 

calibrate soil moisture (SM) estimation models from the 

resampled spectra. The prediction accuracy of SM estimation 

was assessed from statistical metrics. 

The best accuracies in retrieving SM were obtained by PLSR 

using data resampled at PRISMA spectral resolution. A 

preliminary test of the application of the calibrated models 

was carried out using real PRISMA and Sentinel-2 data. 

 

Index Terms— soil moisture, PRISMA, PLSR, SMGM, 

spectral library, hyperspectral 

 

1. INTRODUCTION 

 

Remote sensing approaches for soil moisture (SM) retrieval 

have shown continuous progress in recent years, both for 

optical, thermal infrared, and microwave systems [1], [2]. 

Remotely sensed SM has potential applications in hydrology 

and agricultural water management, offering spatially 

continuous observations of SM over vast zones. In this 

regard, spatialized satellite-based observations can be 

complementary to point soil moisture measurements 

collected in situ. 

Concerning optical remote sensing, which would offer a 

higher spatial resolution, as compared to microwave and 

thermal infrared remote sensing, some studies have proposed 

and tested a variety of indices for assessing SM [1]. 

Multivariate chemometric and machine learning methods 

have been also proposed for modeling SM relationships with 

remote sensing data [3]. 

With the current and upcoming availability of hyperspectral 

satellites data with high signal to noise ratio, such as 

PRISMA [4], EnMAP [5] and CHIME [6] there are real 

opportunities to improve the methods to estimate SM from 

optical sensors. Indeed, the retrieval of topsoil properties in 

agricultural areas, is an important application domain of these 

new generation spaceborne hyperspectral sensors, for the 

improvement of agricultural and environmental management 

of soils. The retrieval of stable soil properties such as texture 

and soil organic carbon, is hampered by the confounding 

effect of soil moisture [7]. Therefore, methods to quantify soil 

moisture in bare soils, from optical data, are valuable as they 

could be incorporated in topsoil properties retrieval 

algorithms for these sensors. 

In this study, we calibrated SM estimation models by making 

use of a specifically developed soil spectral library. We 

considered two approaches: (i) using PLSR to model SM 

from laboratory and resampled hyperspectral (PRISMA) and 

multispectral (Sentinel-2 and Landsat 8) datasets; and (ii) 

estimating soil moisture content exploiting spectral features 

via a Soil Moisture Gaussian Model (SMGM) applied to the 

laboratory dataset and to the dataset resampled at PRISMA 

resolution. We assess and compare the prediction accuracy 

for both approaches. 

 

2. MATERIALS AND METHODS 

 

A specific soil spectral library was set-up, for the purpose of 

calibrating soil moisture retrieval models, therefore including 

a good diversity of soils in terms of physical and chemical 

characteristics: clay [5-80%], sand [5-93%], soil organic 

matter [0.4-6%], CaCO3 [0-22%]. The soil samples were 

collected in different agricultural fields in Central and 

Southern Italy, in the areas of Maccarese (41°52’ N, 12°14′ 

E, 8 m a.s.l.), Castelluccio (42°49’ N, 13°12’E, 1338 m a.s.l.) 

and Pignola (40°33’ N, 15°45’E, 788 m a.s.l.). 

Field campaigns for collecting soil samples in the 0 - 10 cm 

depth layer were performed over the test sites. In the 

laboratory, after air-drying and sieving at 2 mm, a subsample 

was employed for wet analyses in the laboratory and another 

subsample for spectroscopy measurements. These 

subsamples were placed in labeled small aluminum bowls, 

5606978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022

IG
AR

SS
 2

02
2 

- 2
02

2 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-6
65

4-
27

92
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
46

83
4.

20
22

.9
88

37
16

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on December 27,2023 at 07:17:54 UTC from IEEE Xplore.  Restrictions apply. 



previously painted in black on the interior. They were then 

thoroughly wetted by carefully pouring water at the edges. 

Reflectance measurements were performed in a dark room, 

using an Analytical Spectral Device (ASD) Field Spec Fr Pro 

covering the 350 – 2500 nm range, equipped with a contact 

probe with an internal illumination source. The 

measurements were performed at different dates during the 

natural soil drying process. At the time of each spectral 

measurement, the sample weight was recorded. At the end of 

the measurement cycle, the samples were oven-dried, and the 

dry weight was recorded, in order to back-calculate the 

gravimetric soil moisture for each spectral measurement. The 

protocol used for the measurements strictly followed the 

Internal Soil Standard (ISS) approach detailed in [8] and [9]. 

From the laboratory spectral data, four different datasets were 

obtained: (i) the full spectral data provided by the 

spectroradiometer (ASD), (ii) spectra resampled according to 

the PRISMA hyperspectral sensor bands (PRISMA), (iii) 

spectra resampled according to the Sentinel-2 MSI bands 

(Sentinel-2), and (iv) spectra resampled to the Landsat 8 OLI 

bands (Landsat-8). 

SM estimation models were calibrated using Partial Least 

Square Regression (PLSR). A subset of 75% of the data was 

used for calibration of the model, whereas 25% was used for 

validation. The subsets were obtained by using a k-means 

spectral sampling procedure in the R package prospectr. The 

following spectral pre-treatments were tested: Savitzy-Golay 

(SG), standard normal variate (SNV), standard normal variate 

detrend (SNV-detrend), first derivative (FD), and conversion 

to absorbance (ABS). 

For the calculation of normalized difference features, the 

Normalized Soil Moisture Index (NSMI) was calculated 

based on the normalized difference values of the wavelengths 

1800 and 2119 nm [10]. Subsequently, following the 

approach by [11], SM content was estimated through fitting 

an inverted Gaussian function to the continuum in soil 

spectra, using the SMGM function from the hsdar package in 

R. The SMGM estimates the water content by fitting a 

Gaussian function to the continuum points of the spectra in 

the spectral region between approximately 1500 to 2500 nm. 

This approach could only be employed for hyperspectral 

laboratory and resampled PRISMA datasets. 

The metrics used for the assessment of the models included 

relative bias (rBias), coefficient of determination (R2), root 

mean squared error (RMSE) and relative RMSE (rRMSE), 

ratio of performance to deviation (RPD) and ratio of 

performance to inter-quartile range (RPIQ). 

A preliminary validation test was carried out using real 

PRISMA and Sentinel-2 data, obtained during a ground 

campaign carried out at Braccagni (Grosseto, Central Italy) 

on June 4th 2021, in which gravimetric soil moisture was 

measured on the same day as the satellites overpass. Airborne 

AVIRIS-NG data were also acquired on the same day. 

 

3. RESULTS AND DISCUSSION 

 

The results of the estimation of SM from laboratory (LAB) 

and resampled PRISMA, Sentinel-2 MSI and Landsat 8 OLI 

based on PLSR models are presented in Table 1. 

Table 1. Results of soil moisture estimation from PLSR on the validation 

subset for lab spectra resampled to the different sensor bands.  

Sensor n. comp. 
rBias R2 RMSE rRMSE RPD RPIQ 

[%] [-] [-] [%] [-] [-] 

LAB (ASD) 11 0.26 0.93 0.06 4 3.79 6.47 

PRISMA 10 -0.69 0.91 0.06 5 3.19 5.07 

Sentinel-2 6 1.85 0.64 0.12 11 1.64 2.88 
Landsat 8 4 4.87 0.70 0.11 9 1.75 3.07 

In the absence of noise, the spectra resampled to PRISMA 

bands had significantly better results than those resampled to 

multispectral sensors. Results for the PRISMA data ranged 

from 0.92 to 0.95 for r and from 0.06 to 0.07 for RMSE, 

considering the different applied pre-treatments. The best 

pre-treatment, reported in Table 1, was for SNV. These 

results are in the same range as the ASD laboratory spectra 

delivering an r ranging from 0.92 to 0.96 and an RMSE at the 

level of 0.06 - 0.08. 

For the multispectral datasets, Sentinel-2 MSI showed worse 

results than Landsat, with an R2 of 0.64 and an RMSE equal 

to 0.12. However, Landsat data showed a higher bias. 

Looking at the scatterplots of the predictions (Fig. 1) it is 

apparent that for the multispectral datasets there is an 

overestimation for low-medium SM values and an 

overestimation for high SM values. This does not appear for 

PRISMA and ASD spectra. 

 

 

(a) 
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Figure 1. SM model predictions for PRISMA (a), Sentinel-2 (b) and 

Landsat-8 (c) resampled datasets with PLSR. 

Table 2 presents the results obtained using the NSMI for all 

datasets. 

Table 2. Results of soil moisture estimation using the Normalized Soil 

Moisture Index from linear regression models applied to the validation 

subset for lab spectra resampled to the different sensor bands. 

Sensor 
Bias R2 r Signif. RMSE rRMSE MAE RPD RPIQ 

[%] [-] [-] [-] [-] [%] [%] [-] [-] 

ASD 1 0.84 0.92 ** 0.09 7 29.60 2.38 4.12 

PRISMA 0 0.80 0.90 ** 0.09 6 30.15 2.27 4.11 

Sentinel-2 0 0.72 0.85 ** 0.12 10 37.37 1.81 3.43 
Landsat 8 -2 0.70 0.84 ** 0.11 9 38.29 1.81 2.95 

There results were slightly worse than those obtained by 

PLSR for the hyperspectral datasets, but slightly better for the 

multispectral datasets. However, by looking at the 

scatterplots (not shown here for space reasons) it was still 

apparent that in the multispectral datasets there was a similar 

behavior as that observed for PLSR, which did not appear for 

hyperspectral datasets. 

The estimation models based on SMGM methods for both 

laboratory and PRISMA (Table 3) resampled data display a 

lower estimation accuracy than that of the PLSR based 

models. In this case, an overestimation occurred at low SM 

values and an underestimation for high SM values (Figure 2). 

Haubrock et al. [10], following the same SMGM approach 

while estimating SM of field-collected samples from 

laboratory spectral measurements, found similar results (R2 

of 0.61) with NSMI combining reflectance values at 1800 and 

2119 nm. 

Table 3. Estimation accuracy of soil moisture models derived from 

laboratory and PRISMA resampled spectra in SMGM estimation models. 

Sensor 
Bias R2 r Signif. RMSE rRMSE MAE 

[%] [-] [-] [-] [-] [%] [%] 

ASD 3 0.59 0.77 ** 0.12 10 39.84 

PRISMA 1 0.54 0.73 ** 0.14 11 41.67 
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Figure 2. Soil moisture predictions for laboratory (a), and PRISMA (b) 

resampled dataset in SMGM estimation models. 

The preliminary applications with real PRISMA and 

Sentinel-2 data seemed encouraging. However, during the 

field sampling date, the soil surface was rather dry and a 

wider range of soil moisture observations would be required 

for a more in-depth assessment of the applicability of the 

models calibrated on the spectral soil library to real data. 

 

4. CONCLUSION 

 

This work investigates the potential of the recently launched 

hyperspectral satellite PRISMA for the estimation of SM by 

using PLSR and SMGM models. 

We compared the estimation accuracy using resampled 

spectra according to spectral characteristics of the 

multispectral (Landsat 8 and Sentinel-2) and the 

hyperspectral (PRISMA) satellite imagers. We concluded 

that hyperspectral characteristics of the satellite mission can 

improve the estimation of SM as compared to the current 

multispectral imagers, especially using multivariate 

calibration techniques such as PLSR. 
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