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Let C : f = 0 be a reduced curve in the complex projective 
plane. The minimal degree mdr(f) of a Jacobian syzygy for 
f , which is the same as the minimal degree of a derivation 
killing f , is an important invariant of the curve C, for instance 
it can be used to determine whether C is free or nearly free. 
In this note we study the relations of this invariant mdr(f)
with a decomposition of C as a union of two curves C1 and 
C2, without common irreducible components. When all the 
singularities that occur are quasihomogeneous, a result by 
Schenck, Terao and Yoshinaga yields finer information on this 
invariant in this setting. Using this, we give some geometrical 
criteria, the first ones of this type in the existing literature as 
far as we know, for a line to be a jumping line for the rank 

* Corresponding author.
E-mail addresses: dimca@unice.fr (A. Dimca), giovanna.ilardi@unina.it (G. Ilardi), 

gabriel.sticlaru@gmail.com (G. Sticlaru).
1 This work has been partially supported by the Romanian Ministry of Research and Innovation, CNCS 

- UEFISCDI, grant PN-III-P4-ID-PCE-2020-0029, within PNCDI III.
https://doi.org/10.1016/j.jalgebra.2022.10.019
0021-8693/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2022.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.10.019&domain=pdf
mailto:dimca@unice.fr
mailto:giovanna.ilardi@unina.it
mailto:gabriel.sticlaru@gmail.com
https://doi.org/10.1016/j.jalgebra.2022.10.019


78 A. Dimca et al. / Journal of Algebra 615 (2023) 77–102
Quasihomogeneous singularity 2 vector bundle of logarithmic vector fields along a reduced 
curve C.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let S = C[x, y, z] be the polynomial ring in three variables x, y, z with complex coeffi-
cients. We denote by ∂x, ∂y, ∂z the partial derivations with respect to x, y, z respectively. 
Let Der(S) = {∂ = a∂x + b∂y + c∂z : a, b, c ∈ S} be the free S-module of C-derivations 
of the polynomial ring S.

Definition 1.1. Let g ∈ S be a polynomial. The S-module D(g) of derivations of S
preserving the principal ideal (g) ⊂ S is by definition

D(g) = {∂ ∈ Der(S) : ∂g ∈ (g)}.

Moreover, the S-module D0(g) of derivations of S killing the polynomial g is by definition

D0(g) = {∂ ∈ Der(R) : ∂g = 0}.

When g is a homogeneous polynomial, then both modules D(g) and D0(g) are graded 
S-modules and one has

D(g) = D0(g) ⊕ S(−1) · E,

where E = x∂x + y∂y + z∂z denotes the Euler derivation. The curve Cg : g = 0 in P 2 is 
said to be free if D(g) or, equivalently, D0(g) is a free graded S-module.

Note that D0(g) can be identified with the S-module of all Jacobian relations for g, 
namely to

AR(g) = {(a, b, c) ∈ S3 : agx + bgy + cgz = 0},

where gu = ∂ug, for u = x, y, z. An important numerical invariant associated to a reduced 
curve C : f = 0 in the projective plane P 2 is the minimal degree of a derivation killing f
or, equivalently, the minimal degree of a Jacobian relation (syzygy) for f . This is defined 
by

mdr(f) = min{s ∈ N : D0(f)s �= 0} = min{s ∈ N : AR(f)s �= 0}.

It can be used for instance to characterize the free or the nearly free curves, see (2.4) and 
(2.5) below. In this note we study the relations of this invariant with a decomposition 
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of C as a union of two curves C1 : f1 = 0 and C2 : f2 = 0, without common irreducible 
components. In particular, we would like to relate r = mdr(f) = mdr(f1f2) to rj =
mdr(fj) for j = 1, 2. The case when C1 is a line arrangement and C2 is a line was 
studied in detail in [2].

In section 2 we recall some basic notations and facts, for instance the definition of the 
Jacobian module N(f) and of free, nearly free and plus one generated curves which play 
a key role in this paper.

Then we consider in section 3 the case when C2 is a line and C1 is any reduced curve, 
not having C2 as a component. We study in Theorem 3.3 the behavior of our invariant 
mdr(f) when C2 is a member of a pencil of lines in P 2, under the assumption that we 
know not only r1, but also a non trivial derivation in D0(f1)r1 . Several examples are 
given in section 4.

We study in section 5 the general case of two curves C1 and C2, and get bounds for 
r = mdr(f) in terms of the degrees dj = deg(fj) and of the invariants rj for j = 1, 2, 
see Theorem 5.1. As an example, we discuss in Proposition 5.5 all the possibilities when 
both C1 and C2 are smooth conics.

Finally, in section 6, we assume that all the singularities of C1 and C are quasiho-
mogeneous and that C2 is a smooth curve (most of the time C2 is also supposed to be 
rational). Under this assumption, we may use a key result by Schenck, Terao and Yoshi-
naga, see [25], to get finer information on r. Our Theorem 6.2 gives a description of the 
cohomology exact sequence associated to the short sheaf exact sequence obtained in [25], 
paying special attention to the description of the morphisms between the corresponding 
cohomology groups.

This approach was already used in [25] to relate the freeness of C1 to the freeness 
of C. Here we show that even when the curve C1 is not free, one can obtain valuable 
information on r using this approach. This idea works best when the Jacobian module 
N(f1) is small, and this explains why we consider mostly free and nearly free curves C1. 
Sometimes the determination of r is rather easy, using just the knowledge of the numerical 
invariant r1, as in most examples in section 6. In Example 6.16 we present a situation 
where one needs to use the morphisms in the exact sequence given by Theorem 6.2, 
namely the multiplication by f2

2 between the two Jacobian modules N(f1) and N(f). 
As a by-product, under the assumption for this final section, we get lower bounds on the 
number of points in the intersection C1 ∩C2 in terms of r1 when the curve C1 is free or 
nearly free and C2 is either a line or a smooth conic, see Corollary 6.6 and Corollary 6.9.

The study of the jumping lines of the rank 2 vector bundle T 〈C〉 of logarithmic 
vector fields along a reduced curve C is a classical subject in Algebraic Geometry, see 
for instance [15,16,24]. At the end of the paper we give some geometrical criteria, the 
first ones of this type in the existing literature as far as we know, for a line L in P 2 to be 
a jumping line for the vector bundle T 〈C〉, see Theorem 6.19 and Example 6.20 where 
this is applied to Thom-Sebastiani curves.

We would like to thank Laurent Busé, Piotr Pokora, Ştefan Tohăneanu and Masahiko 
Yoshinaga for useful discussions related to this paper.
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2. Prerequisites

In this section we recall some basic facts, see for instance [5,12]. For any degree e
reduced homogeneous polynomial g ∈ Se, let N(g) = Ĵg/Jg be the Jacobian module of 
g, with Jg the Jacobian ideal of g in S, spanned by the partial derivatives gx, gy, gz of 
g, and Ĵg the saturation of the ideal Jg with respect to the maximal ideal m = (x, y, z)
in S. We set n(g)j = dimN(g)j , Tg = 3(e − 2) and recall that we have

n(g)0 ≤ n(g)1 ≤ . . . ≤ n(g)�Tg
2 �−1 ≤ n(g)�Tg

2 � ≥ n(g)�Tg
2 �+1 ≥ . . . ≥ n(g)Tg

. (2.1)

For a reduced curve Cg : g = 0, we consider the following invariants

σ(Cg) = min {j : n(g)j �= 0} = indeg(N(f)) and ν(Cg) = max {n(g)j}j .

The self duality of the graded S-module N(g) implies n(g)j = n(g)Tg−j , for any integer 
j, see [26]. In particular n(g)k > 0 exactly when σ(Cg) ≤ k ≤ Tg − σ(Cg).

The form of the minimal graded free resolution for the Milnor algebra M(g) = S/Jg
is

0 → ⊕m−2
i=1 S(−ei) → ⊕m

i=1S(1 − e− d′i) → S3(1 − e) → S, (2.2)

with e1 ≤ e2 ≤ . . . ≤ em−2 and 1 ≤ d′1 ≤ d′2 ≤ · · · ≤ d′m. In this case the curve Cg is 
said to be an m-syzygy curve with exponents (d′1, . . . , d′m). The first degree rg = d′1 is 
denoted by mdr(g) and is the minimal degree of a Jacobian relation (syzygy) for g. It 
follows from [20, Lemma 1.1] that one has

ej = e + d′j+2 − 1 + εj ,

for j = 1, . . . , m − 2 and some integers εj ≥ 1. The minimal resolution of N(g) obtained 
from (2.2), by [20, Proposition 1.3], is

0 → ⊕m−2
i=1 S(−ei) → ⊕m

i=1S(−�i) → ⊕m
i=1S(d′i − 2(e− 1)) → ⊕m−2

i=1 S(ei − 3(e− 1)),

where �i = e + d′i − 1. It follows that

σ(Cg) = 3(e− 1) − em−2 = 2(e− 1) − d′m − εm−2. (2.3)

The following are important special cases, see [1,11,12]. Here τ(Cg) is the total Tjurina 
number of the curve Cg, which is the same as the degree of the Jacobian ideal Jg.

(1) Cg is a free curve if and only if m = 2 and d′1 +d′2 = e −1. In this case ν(Cg) = 0 and 
N(g) = 0. The degrees (d′1, d′2) are the exponents of the free curve Cg. Moreover, a 
reduced curve Cg is free if and only if
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τ(Cg) = (e− 1)2 − rg(e− rg − 1), (2.4)

see [7,17].
(2) Cg is a nearly free curve if and only if m = 3 and d′1 + d′2 = e, d′3 = d′2. In this case 

ν(Cg) = 1 and σ(Cg) = e + d′1 − 3. The degrees (d′1, d′2) are the exponents of the 
nearly free curve Cg. Moreover, Cg is nearly free if and only if

τ(Cg) = (e− 1)2 − rg(e− rg − 1) − 1, (2.5)

see [7].
(3) Cg is a plus one generated curve if and only if m = 3 and d′1 + d′2 = e, d′3 > d′2, 

see [1] for the case Cg a line arrangement and [12] for the general case. In this case 
ν(Cg) = d′3 − d′2 + 1 and σ(Cg) = 2e − d′3 − 3.

3. Adding a line to a reduced curve

Consider a reduced plane curve C1 : f1 = 0 of degree d1 in P 2 such that mdr(f1) = r1. 
Let L be a line in P 2, which is not an irreducible component of C1 and consider the curve 
C = C1 ∪ L : f = 0. Then C has degree d = d1 + 1, and we denote r = mdr(f). In this 
section we analyze the relation between r and r1, starting with the following result.

Proposition 3.1. With the above notation, one has r1 ≤ r ≤ r1 + 1.

Proof. Choose a coordinate system on P 2 such that the line L is given by z = 0, and 
hence f = zf1. Let

afx + bfy + cfz = 0 (3.1)

be a Jacobian syzygy of minimal degree r for f , and

a1f1x + b1f1y + c1f1z = 0 (3.2)

a Jacobian syzygy of minimal degree r1 for f1. Note that one has

fx = zf1x, fy = zf1y and fz = zf1z + f1 = 1
d1

xf1x + 1
d1

yf1y + d

d1
zf1z. (3.3)

Using (3.1) we get

azf1x + bzf1y + c(zf1z + f1) = 0,

and hence the polynomial c is divisible by z, so we can write c = zc′. Indeed, note that 
f1 is not divisible by z by our assumptions. With this notation, and using (3.3), we get 
after division by z the following equation.
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(a + 1
d1

c′x)f1x + (b + 1
d1

c′y)f1y + d

d1
c′zf1z = 0. (3.4)

This implies r1 ≤ r. Similarly, using (3.2) and (3.3) we get

(d1a1z − c1x)fx + (d1b1z − c1y)fy + c1d1zfz = 0. (3.5)

Note that this is a non trivial syzygy, namely one cannot have

d1a1z − c1x = d1b1z − c1y = c1d1z = 0.

This implies r ≤ r1 + 1. �
Remark 3.2. With the above notation, if z divides c1, the coefficient of f1z in (3.2), then 
all the coefficients in (3.5) are divisible by z, and hence after simplification by z we get 
r = r1 in this case. When dimD0(f1)r1 > 1, there is a choice of the syzygy (3.2) within 
a linear system, and some choices may be better than others, i.e. for the good ones z
divides c1, see Example 4.4 below for such a situation.

To say more about the value of r, it is convenient to look not only at a single line 
L, but at all the lines in a pencil. The pencil we consider is formed by all the lines in 
P 2 passing through a point p ∈ P 2, which may or may not be on the curve C1. We 
choose a coordinate system on P 2 such that p = (1 : 0 : 0), hence a line in the pencil 
has the equation Lu : sy + tz = 0 for some u = (s : t) ∈ P 1. Assume that (3.1) and 
(3.2) are minimal degree Jacobian syzygies for f = (sy + tz)f1 and respectively for f1, 
with respect to this coordinate system. Note that the coefficients a1, b1, c1 are known 
and independent of u, since they depend only on C1 and the choice of the coordinate 
system. Let

r = d′1(f) ≤ d′2(f) ≤ · · · ≤ d′m(f)

be the degrees of a minimal set of generators for AR(f) coming from the resolution 
(2.2) of the Milnor algebra M(f), which depend in general on u, see Example 4.2 below. 
Elementary computations similar to those done above yield the following syzygy

Aufx + Bufy + Cufz = 0, (3.6)

where Au = d(sy + tz)a1 − x(sb1 + tc1), Bu = d(sy + tz)b1 − y(sb1 + tc1) and finally 
Cu = d(sy + tz)c1 − z(sb1 + tc1). Using this syzygy, we can prove the following result.

Theorem 3.3. With the above notation, if sy + tz is a factor of sb1 + tc1, then r = r1. If 
sy + tz is not a factor of sb1 + tc1, then either

(1) r = r1 + 1, or
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(2) r = r1 and d′2(f) ≤ r + 1.

Moreover, the case (2) is impossible when 2r1 < d1 − 1, or when 2r1 = d1 − 1 and C is 
not free.

Proof. The first claim is obvious. Indeed, when sy + tz is a factor of sb1 + tc1, the 
coefficients Au, Bu and Cu can be divided by sy+tz, and the syzygy (3.6) yields a syzygy 
of degree r1. Since r ≥ r1 by Proposition 3.1, we get r = r1. Assume now that sy + tz is 
not a factor of sb1 + tc1. Then we claim that the syzygy (3.6) is primitive, i.e. it is not a 
multiple of a syzygy of strictly lower degree. In other words, we have to show that Au, Bu

and Cu have no common factor in this case. Note that yAu−xBu = d(sy+tz)(ya1−xb1), 
zAu − xCu = d(sy + tz)(za1 − xc1) and zBu − yCu = d(sy + tz)(zb1 − yc′1. Let D be a 
common irreducible factor of Au, Bu and Cu, supposed to be a homogeneous polynomial 
of degree > 0. It is clear that D cannot be sy + tz, since sy + tz is not a factor of 
sb1 + tc1. Hence D has to divide the polynomials m12 = ya1 −xb1, m13 = za1 −xc1 and 
m23 = zb1 − yc1. Recall now the construction of the Bourbaki ideal B(C1, ρ′1) associated 
to the curve C1 and to the minimal degree syzygy ρ′1 given by (3.2), as described in 
[13, Section 5]. It follows that the Bourbaki ideal B(C1, ρ′1) is contained in the principal 
ideal generated by D. This is a contradiction, since the Bourbaki ideal B(C1, ρ′1) defines 
a subscheme which is either empty (when C1 is a free curve), or zero-dimensional, see 
[13, Theorem 5.1].

Therefore the syzygy (3.6) is indeed primitive. It follows that either r = r1 + 1, or 
r = r1 and d2(f) ≤ r + 1. Note that in this latter case we have

d1 = d− 1 ≤ d′1(f) + d′2(f) ≤ r1 + r1 + 1 = 2r1 + 1.

Indeed, recall that d −1 = d′1(f) +d′2(f) exactly when C is free, and d −1 < d′1(f) +d′2(f)
otherwise, see for instance [27]. �
Proposition 3.4. With the notation from Theorem 3.3, we have the following equivalent 
properties.

(1) sy + tz is a factor of sb1 + tc1 for infinitely many u = (s : t) ∈ P 1;
(2) sy + tz is a factor of sb1 + tc1 for all u = (s : t) ∈ P 1;
(3) the reduced curve C1 : f1 = 0 is the union of the curve h = 0 with a pencil of lines 

g = 0 passing through the point p = (1 : 0 : 0).

Proof. The fact that (2) implies (1) is clear. First we show that (1) implies (3). Note 
that sy+ tz is a factor of sb1 + tc1 for infinitely many u = (s : t) ∈ P 1 if and only if there 
is a polynomial h of degree r1 − 1 such that b1 = yh and c1 = zh. Replacing these values 
in (3.2) we conclude that f1x is divisible by h, say f1x = hg, with deg g = d1 − r1 ≥ 1. 
If we divide the syzygy (3.2) by h, we get
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a1g + yf1y + zf1z = 0 (3.7)

or, equivalently,

a1g + d1f1 − xf1x = 0. (3.8)

It follows that g is a common factor of f1 and f1x. To conclude the proof of the implication 
(1) =⇒ (3) we use the following result, communicated to us by Laurent Busé.

Lemma 3.5. With the above notation, assume that g = G.C.D.(f1, f1x) has degree ≥ 1. 
Then g is a homogeneous polynomial in y and z only, and

f1(x, y, z) = g(y, z)h(x, y, z),

for some homogeneous polynomial h ∈ S. In geometric terms, the reduced curve C1 :
f1 = 0 is the union of the curve h = 0 with a pencil of lines g = 0 passing through the 
point p = (1 : 0 : 0).

Proof. Let A be an irreducible common factor of f1 and f1x, such that f1 = AU for 
U ∈ S. This implies f1x = AxU + AUx, and hence, if Ax �= 0, then A has to divide 
U . Indeed, A cannot divide Ax since degAx < degA. But this contradicts the fact that 
C1 : f1 = 0 is a reduced curve. Hence Ax = 0, in other words A is a homogeneous 
polynomial in y and z only. Since g is a product of such polynomials, the claim is 
proved. �

Finally we show that (3) implies (2). Assume that g = G.C.D.(f1, f1x) has degree 
≥ 1, then one can define a1 using the above equation (3.8). Then, if we multiply the 
equation (3.7) by h = f1xg

−1, we get a primitive syzygy of the form (3.2), where b1 = yh

and c1 = zh. �
4. Examples

Example 4.1. Assume C1 is an irreducible nodal curve and Lu : sy+ tz = 0 is a line such 
that C = C1 ∪ Lu is nodal. Then it is known that r1 = d1 − 1 and r = d − 2 = d1 − 1, 
see [10,18]. Note that one has in this case d2(f) = r + 1, see [10, Theorem 4.1]. Hence 
the case (2) of Theorem 3.3 might occur.

Example 4.2. Consider the rational cuspidal curve C1 : f1 = xyd1−1 + zd1 = 0, d1 ≥ 3, 
which is nearly free, and Lu : sy + tz = 0 a line passing through the singular point 
p = (1 : 0 : 0). Then the syzygy (3.2) becomes

(d1 − 1)xf1x − yf1y = 0.
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Hence sb1 + tc1 = −sy is divisible by sy + tz only for (s : t) = (1 : 0) and for (s : t) =
(0 : 1), and we get in these cases r = r1 = 1 using Theorem 3.3 as we see now. The curve 
C ′ : f = xyd1 + yzd1 = 0 corresponding to (s : t) = (1 : 0) is free, the two generating 
syzygies being

(d1)2xfx − d1yfy + zfz = 0

and

d1z
d1−1fx − yd1−1fz = 0

satisfying d′1(f) + d′2(f) = 1 + (d1 − 1) = d − 1. The curve C ′′ : f = xyd1−1z + zd1+1 = 0
corresponding to (s : t) = (0 : 1), is nearly free with exponents d′1(f) = 1, d′2(f) =
d′3(f) = d −1. Indeed, note that the curve C ′′ has two singularities, namely p = (1 : 0 : 0)
and q = (0 : 1 : 0). The singularity at q is a simple node A1, and the singularity at p is 
given in local coordinates y′ = y/x and z′ = z/x by (y′)d1−1z′ + (z′)d1+1 = 0. This is a 
quasi homogeneous singularity, with weights wt(z′) = d−1 and wt(y′) = d1[(d1 − 1)d]−1. 
It follows that

τ(C ′′, p) = μ(C ′′, p) = d2 − 3d + 1

and hence the total Tjurina number of C ′′ is given by

τ(C ′′) = τ(C ′′, q) + τ(C ′′, p) = d2 − 3d + 2.

The fact that C ′′ is nearly free follows now from (2.5).
For d1 ≥ 4 and for Lu : y + z = 0, we have r = r′ + 1 = 2 by Theorem 3.3, since 

2r1 < d1 − 1 in this case. The corresponding curves Cu are again nearly free, but this 
time with exponents d′1(f) = 2, d′2(f) = d′3(f) = d − 2. To see this, one notes that 
a curve Cu in this family has two singularities, a node and a semi quasi homogeneous 
singularity (Cu, p) : g(y′, z′) = g0(y′, z′) + g+(y′, z′) = 0, where g0 is quasi homogeneous 
and g+(y′, z′) is the sum of two monomials of strictly higher degree. Working in the 
Milnor algebra M(g0), we see that the Tjurina algebra of g is isomorphic to the quotient 
M(g0)/(yd1). This implies that

μ(Cu, p) = (d1)2 − d1 − 1 and τ(Cu, p) = (d1 − 1)2 + 1.

It follows that τ(Cu) = (d1 − 1)2 + 2 = (d − 2)2 + 2 = (d − 1)2 − 2(d − 3) − 1, showing 
that Cu is nearly free by (2.5).

Example 4.3. Let C1 : f1 = (y2−2xy+z2)(y2+4xy+z2) = 0, be the union of two smooth 
conics tangent at one point p = (1 : 0 : 0) and meeting transversely at q± = (0 : 1 : ±i). 
Then using Singular we see that r1 = 2 and a minimal degree derivation is given by
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∂′ = xz∂x − yz∂y + y2∂z.

Then the equation sy + tz of a line L passing through the tangency point p divides

sb1 + tc1 = y(ty − sz)

if and only if either (s : t) = (1 : 0) or (s : t) = (1 : ±i).
The case (s : t) = (1 : 0) corresponds to a common tangent y = 0 to the two conics 

at p. Using Singular, we see that the corresponding curve

C : f = yf1 = y(y2 − 2xy + z2)(y2 + 4xy + z2) = 0

is free with exponents (2, 2), in particular r = 2 = r1 as predicted by Theorem 3.3.
The case (s : t) = (1 : ±i) corresponds to a line joining the tangency point p to one 

of the two nodes q± of C1. Using Singular, we see that the corresponding curve

C : f = (y ± iz)f1 = (y ± iz)(y2 − 2xy + z2)(y2 + 4xy + z2) = 0

is nearly free with exponents (2, 3), in particular, again r = 2 = r1 as predicted by 
Theorem 3.3.

Finally, to see what happens when sy + tz does not divide sb1 + tc1 = y(ty − sz), 
namely when the line through p is general, we consider the special case (s : t) = (1 : 1). 
Using Singular, we see that the corresponding curve

C : f = (y + z)f1 = (y + z)(y2 − 2xy + z2)(y2 + 4xy + z2) = 0

is a maximal Tjurina curve of type (d, r) = (5, 3), see [14] for the definition and the 
properties of such curves, and in particular C has exponents (3, 3, 3, 3). Hence r = 3 =
r1 +1. Note that we can show that for any line L : sy+ tz = 0 with t �= 0, the singularity 
of C at p is of type D6. Indeed, it follows easily that this singularity is semi weighted 
homogeneous of type (2, 1; 5), where wt(y) = 2 and wt(z) = 1. The claim follows using 
[6, Corollary (7.39)]. In particular, when sy+tz does not divide sb1+tc1 = y(ty−sz), we 
always have τ(C) = 10, since there are 4 nodes A1 on C in addition to the D6 singularity.

Example 4.4. Let C1 : f1 = (y2 − xz)2 + y2z2 + z4 = 0 be the curve considered in [12, 
Example 4.1]. This curve is plus one generated with exponents (d′1, d′2, d′3) = (2, 2, 3), in 
particular dimD0(f1)2 = 2. If we choose the right element in D0(f1)2, namely

∂′ = (2xy + 3yz)∂x + (xz + 2z2)∂y − yz∂z,

then z divides the coefficient of ∂z, and it follows that r = r1 = 2 by Theorem 3.3.
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5. The general case: the union of two curves

Let C1 : f1 = 0 and C2 : f2 = 0 be two reduced curves in P 2, without common 
irreducible components. We denote dj = deg fj and rj = mdr(fj) for j = 1, 2. Consider 
now the union of the two curves C : f = f1f2 = 0, and let d = d1 + d2 = deg f and 
r = mdr(f).

Theorem 5.1. With the above notation, one has the following.

(1) If δ1 ∈ D0(f1), then

δ = f2δ1 −
δ1(f2)

d
E ∈ D0(f),

where E = x∂x + y∂y + z∂z denotes the Euler derivation. In particular

r ≤ min{r1 + d2, r2 + d1}.

(2) D0(f) ⊂ D(f1) ∩D(f2). More precisely, for δ �= 0, one has δ ∈ D0(f) if and only if 
δ can be written in a unique way in the form

δ = h

d1
E + δ1 = − h

d2
E + δ2,

where h ∈ S and δj ∈ D0(fj) are non-zero derivations. In particular

r ≥ max{r1, r2}.

Proof. To prove (1), first we check that δ(f) = 0. Then we note that δ �= 0 if δ1 �= 0. 
Indeed, if δ1(f2) = 0, then clearly δ = f2δ1 �= 0. When δ1(f2) �= 0, note that

δ(f1) = d1f1δ1(f2)
d

�= 0.

The last claim follows by noting that if δ1 is a homogeneous derivation then also δ is a 
homogeneous derivation. Moreover, the roles played by f1 and f2 are symmetric.

To prove (2), start with δ ∈ D0(f) and hence

δ(f) = f2δ(f1) + f1δ(f2) = 0.

If δ(f1) = 0, then δ(f2) = 0 and hence δ ∈ D0(f1) ∩D0(f2). If δ(f1) �= 0, then f2 divides 
the product f1δ(f2). Since f1 and f2 have no common factor by our assumptions, it 
follows that f2 divides δ(f2), hence δ ∈ D(f2). This is possible only if δ ∈ D(f1) as well. 
It follows that we can write δ ∈ D0(f) in the form
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δ = hjE + δj

where hj ∈ S and δj ∈ D0(fj). Clearly δj �= 0, since otherwise δ(f) �= 0. Then δ(f1) =
d1h1f1 and δ(f2) = d2h2f2. It follows that

0 = δ(f) = δ(f1)f2 + f1δ(f2) = f1f2(d1h1 + d2h2).

Then one implication in the claim follows by taking h = d1h1 = −d2h2. The other 
implication is obvious. �
Remark 5.2. The inequality r ≥ max{r1, r2} was already noticed in [4, Proposition 3.2. 
(ii)], where the S-module D0(g) = AR(g) is denoted by Syz(Jg) and mdr(g) is denoted by 
indeg(Syz(Jg)). Note also that in [4] one works over the polynomial ring in n-variables 
with coefficients in an arbitrary infinite field. The corresponding result for a product 
f = f1f2 · . . . · fm of m ≥ 2 forms in n-variables is considered in [4, Proposition 3.5]. 
Interesting information on the invariant indeg(Syz(Jf )) when C : f = 0 is the union of 
several smooth plane curves meeting transversally is given in [28, Proposition 3.6].

Corollary 5.3. With the above notations, r = mdr(f) is the minimal integer s such that 
either D0(f1)s ∩D0(f2)s �= 0, or D0(f1)s + D0(f2)s contains a non-zero multiple of the 
Euler derivation E.

Proof. The first case corresponds to h = 0 in Theorem 5.1 (2), while the second case 
corresponds to h �= 0. �
Example 5.4. Let C1 : f1 = x2 + y2 − z2 = 0 and C2 : f1 = x2 + y2 − 4z2 = 0 be two 
smooth conics with 2 tacnodes as in Proposition 5.5 (3). Hence d1 = d2 = 2, r1 = r2 = 1. 
Note that y∂x−x∂y ∈ D0(f1)1 ∩D0(f2)1. Therefore, according to Corollary 5.3 we have 
r = 1, see also Proposition 5.5, (3).

Consider next the case C1 : f1 = xyz = 0 and C2 : f2 = xy + yz + xz = 0. Then C2 is 
a smooth conic circumscribed in the triangle C1. Using Singular, we see that r = 2 and 
D0(f)2 is spanned by

δ = 2x(y − z)∂x − y(3y + 2z)∂y + z(2y + 3z)∂z

and

δ′ = x(3x + 4y − 2z)∂x − y(2x + 6y + 2z)∂y + z(−2x + 4y + 3z)∂z.

Then δ(f1) = xyz(y + 3z) = d2h2f1, which implies h = −d2h2 = −(y + 3z). Similarly 
δ′(f1) = xyz(−x + 2y − z) = d2h2f1, which implies that in this case h = −d2h2 =
x − 2y + z. It follows that in this case D0(f1)2 ∩D0(f2)2 = 0. Therefore, both situations 
may occur in Corollary 5.3. The fact that r = 2 in this case is discussed from another 



A. Dimca et al. / Journal of Algebra 615 (2023) 77–102 89
view-point, without the use of Singular, in Example 6.12. The curve C has three D4
singularities and hence τ(C) = 12. Using the characterization of free curves in (2.4), it 
follows that C is a free curve.

Let C1 and C2 be smooth conics, hence d1 = d2 = 2 and r1 = r2 = 1. For C = C1∪C2, 
Theorem 5.1 gives us 1 ≤ r ≤ 3. We have the following precise result.

Proposition 5.5. The two conics C1 and C2 can be in one of the following four situations.

(1) |C1 ∩ C2| = 4, and then all the intersection points are nodes for C. In this case 
r = 2.

(2) |C1 ∩ C2| = 3, and then one intersection point is a tacnode and the other two 
intersection points are nodes for C. In this case r = 2.

(3) |C1 ∩ C2| = 2. Then the two intersection points are either two tacnodes for C, and 
in this case r = 1 and the curve C is nearly free with exponents (1, 3), or a node A1
and a singularity A5 for C, and in this case r = 2 and the curve C is nearly free 
with exponents (2, 2).

(4) |C1 ∩ C2| = 1, and then the intersection point is a singularity A7 for C, r = 1 and 
C is a free curve.

Computations with Singular suggest that in case (1) the curve C = C1 ∪ C2 is a 
4-syzygy curve with exponents (2, 3, 3, 3), and in case (2) the curve C = C1 ∪ C2 is a 
plus one generated curve with exponents (2, 2, 3).

Proof. The claim (1) follows from [10, Theorem 4.1]. For the claim (2) we use the in-
equalities involving r and the Tjurina number τ(C) due to du Plessis and Wall, see [17]. 
In case (2) we have τ(C) = 5. We know that

5 = τ(C) ≥ (d− 1)(d− 1 − r) = 3(3 − r).

This implies r ≥ 2. For r = 3 we also have

5 = τ(C) ≤ (d− 1)(d− 1 − r) + r2 −
(

2r − d + 2
2

)
= 3,

a contradiction. So the only possibility is r = 2. In case (3), when the contact between 
C1 and C2 consists of two tacnodes, using the results in [22], we see that a pair of conics 
in this situation is projectively equivalent to a pair of conics of the form

C1 : f1 = x2 − y2 − z2 = 0 and C2 : f1 = x2 − y2 − kz2 = 0, (5.1)

with k ∈ C∗, k �= 0. We have τ(C) = 6, and the same approach as in Example 5.4 gives 
r = 1 in this case. Since we have τ(C) = 6 in this case, the equality
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τ(C) = (d− 1)(d− 1 − r) + r2 − 1,

holds, and it follows from (2.5) that C is nearly free. Assume now that the smooth conics 
C1 and C2 have a contact of type A5 at (0 : 0 : 1). Choosing the coordinates, we may 
assume that C1 : f1 = yz − x2 = 0. Then it is easy to see that the other conic has an 
equation of the form C2 = f2 = yz − x2 + a · xy + b · y2 = 0 for some a ∈ C∗ and b ∈ C. 
Since τ(C) = 6, we get as above r ≤ 2. To show that r > 1 one can use Theorem 5.1
(2), since we have a simple description of D(f1)1. We see that δ1(f2) /∈ C · f2, for any 
δ1 ∈ D0(f1)1. It follows that r = 2 and we get the nearly freeness of C as above.

In the case (4), it follows from [3, Proposition 1.3], that the equations of the two 
conics can be chosen as follows

C1 : f1 = x(x + y) + yz − a · y2 = 0 and C2 : f2 = x(x + y) + yz + a · y2 = 0

for some a ∈ C∗. It follows that (f1)x = (f2)x, (f1)z = (f2)z, δ = (f1)z∂x − (f1)x∂z ∈
D0(f1)1 ∩ D0(f1)1 �= 0, and hence r = 1. Moreover, the freeness of C follows from 
[7,17]. �
Example 5.6. Let C1 : f1 = (x2 + y2 − z2)(x2 + y2 − 4z2) = 0 be the union of two 
smooth conics with 2 tacnodes as in Proposition 5.5 (3). Hence d1 = 4, r1 = 1. Let 
C2 : f2 = (x − z)(3y2 − (x + 2z)2) = 0 be the union of 3 lines, forming a triangle which 
is inscribed in the conic C2 and circumscribed to the conic C1. Then d2 = 3, r2 = 1. For 
C = C1 ∪C2, Theorem 5.1 gives us 1 ≤ r ≤ 3. Using Singular we see that r = 3, see also 
Example 6.13 below for a different approach. In fact, C is a free curve with exponents 
(3, 3) as follows from (2.4), see also [8].

6. The case of quasihomogeneous singularities

Consider the sheafification

EC := ˜AR(f) = ˜D0(f)

of the graded S-module AR(f) = D0(f), which is a rank two vector bundle on P 2, see 
[26] for details. Moreover, recall that

EC = T 〈C〉(−1), (6.1)

where T 〈C〉 is the sheaf of logarithmic vector fields along C as considered for instance 
in [19,21,9]. One has, for any integer k,

H0(P 2, EC(k)) = D0(f)k and H1(P 2, EC(k)) = N(f)k+d−1, (6.2)



A. Dimca et al. / Journal of Algebra 615 (2023) 77–102 91
where d = deg(f), for which we refer to [26, Proposition 2.1]. Return now to the setting 
of the previous section, where C = C1 ∪C2 and f = f1f2, and recall the following result, 
see [25, Theorem 1.6 and Remark 1.8].

Theorem 6.1. With the above notation, assume that C2 is an irreducible curve, and that 
all singularities of C1, C2 and C are quasihomogeneous. If C1 ∩ C2 is contained in the 
smooth part of C2, then there is an exact sequence of sheaves on P 2 given by

0 → EC1(1 − d2)
f2−→ EC(1) → i2∗F → 0

where i2 : C2 → P 2 is the inclusion and F a torsion free sheaf on C2. Moreover, when 
C2 is smooth, then one has F = OC2(−KC2 −R), where KC2 is the canonical divisor on 
C2 and R is the reduced scheme of C1 ∩ C2.

For simplicity, in this note we consider only the case C2 smooth. If we set

OC2(1) = i∗2OP2(1),

then one can write OC2(1) = OC2(D), where the divisor D corresponds to the intersection 
of a line in P 2 with the curve C2, and hence degD = d2. With this notation, by tensoring 
the above exact sequence with OP2(k − 1), for any integer k, we get the exact sequence

0 → EC1(k − d2)
f2−→ EC(k) → i2∗OC2(−KC2 −R + (k − 1)D) → 0. (6.3)

By taking the corresponding long cohomology sequence and using (6.2), we get the 
following result.

Theorem 6.2. With the above notation, assume that C2 is a smooth curve, and that all 
singularities of C1 and C are quasihomogeneous. Then there is an exact sequence for any 
integer k given by

0 → D0(f1)k−d2

φk−→ D0(f)k → H0(C2,OC2(−KC2 −R + (k − 1)D)) →

→ N(f1)k−d2+d1−1
ψk−→ N(f)k+d−1 → H1(C2,OC2(−KC2 −R + (k − 1)D)),

where the morphism φk : D0(f1)k−d2 → D0(f)k is given by

φk(δ1) = f2δ1 −
δ1(f2)

d
E

for δ1 ∈ D0(f1) and ψk is induced by the multiplication by f2
2 . In particular, if

(k + 2)d2 < d2
2 + |R|,

then the morphism φk is an isomorphism and ψk is a monomorphism.
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Proof. The exact sequence above is part of the long cohomology exact sequence associ-
ated to the exact sequence of sheaves (6.3). It remains to explain the claims about the 
morphisms φk and ψk. Using the identification D0(g) = D(g)/SE, valid for any homo-
geneous polynomial g ∈ S, it is shown in [25] that the morphism EC1(1 − d2) → EC(1)
is induced by the multiplication by f2. In terms of the modules D0(g), this is precisely 
the mapping D0(f1)(−d2) → D0(f) given by

φ : δ1 �→ δ = f2δ1 −
δ1(f2)

d
E,

as constructed in Theorem 5.1. To explain the formula for ψk, consider the diagram of 
graded S-modules

0 D0(f1)(−d2)

φ

ι
S3(−d2)

φ

∇f1
Jf1(d1 − d2 − 1)

f2
2

0

0 D0(f) ι
S3 ∇f

Jf (d− 1) 0

Here ι are the obvious inclusions, φ is the morphism defined above and its extension to a 
map Der(S)(−d2) = S3(−d2) → Der(S) = S3 given by the same formula, ∇f : S3 → Jf
is the map (a, b, c) �→ afx + bfy + cfz and similarly for ∇f1, while

f2
2 : Jf1(d1 − d2 − 1) → Jf (d− 1)

is the multiplication by f2
2 . A simple computation shows that this diagram is com-

mutative. Since N(f1) = Ĵf1/Jf1 and N(f) = Ĵf/Jf , it follows that the morphism 

N(f1)k−d2+d1−1
ψk−→ N(f)k+d−1 induced by the long cohomology exact sequence, and 

hence coming from φ, is nothing else but multiplication by f2
2 . The final inequality says 

that

deg(−KC2 −R + (k − 1)D) < 0,

and so the claim follows from the exact sequence. To see this, recall that

degKC2 = 2gC2 − 2 = d2
2 − 3d2,

where gC2 is the genus of the smooth curve C2. �
Remark 6.3. The formula for ψk given in Theorem 6.2 implies the following fact: for any 
h ∈ Ĵf1 , one has f2

2h ∈ Ĵf . When C1 is a smooth curve, then Ĵf1 = S and this situation 
occurs already in [4, Proposition 3.2. (i)], where S is the polynomial ring in n-variables 
with coefficients in an arbitrary infinite field.
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Corollary 6.4. With the above notation, assume that C2 is a smooth curve, and that all 
singularities of C1 and C are quasihomogeneous. Let R be the reduced scheme of C1∩C2. 
If

|R| > (r1 + 1)d2,

then r = r1 + d2. This applies in particular when C2 is a generic curve and r1 �= d1 − 1.

Proof. The hypothesis |R| > (r1 + 1)d2 implies that the inequality

(k + 2)d2 < d2
2 + |R|

holds for all k ≤ r1 + d2 − 1. Using Theorem 6.2 and the definition of r1, it follows that 
D0(f)k = 0 for all k ≤ r1 + d2 − 1. The exact sequence in Theorem 6.2 also implies 
that D0(f)r1+d2 �= 0, which proves our claim. When C2 is a generic curve, then C1 ∩C2

consists of d1d2 nodes for C and the claim is clear. �
Example 6.5. Let C1 be a reduced curve satisfying r1 �= d1 − 1 and such that all the 
singularities of C1 are quasihomogeneous. Then for any point p /∈ C1 and any line C2

through p such that C2 meets transversally C1 at smooth points, one has r = r1 +1. The 
claim follows from Corollary 6.4, since d2 = 1 and C1 ∩C2 consists of d1 nodes for C in 
this case. This result should be compared to Theorem 3.3. Moreover, Example 4.1 shows 
that the restriction r1 �= d1 − 1 is necessary. If we take p ∈ C1, then the condition that 
(C, p) is quasihomogeneous limits drastically the choices for the line C2 passing through 
p. Consider the rational cuspidal curve C1 : f1 = xyd1−1 + zd1 = 0, with d1 > 2. We 
have seen in Example 4.2 that, if we take C2 to be the line through the singular point 
p = (1 : 0 : 0) given by y = 0 or z = 0, then (C, p) is quasihomogeneous, and r = r1 in 
these two cases. In fact, in these cases |R| = 1 and Corollary 6.4 does not apply. When C2

is given by sy+ tz = 0 with st �= 0, then the singularity (C, p) is not quasihomogeneous, 
as we have seen in Example 4.2 for the case s = t = 1.

Assume from now on that |R| ≤ (r1 + 1)d2, or equivalently (k + 2)d2 ≥ d2
2 + |R| and 

set

k0 = d2 − 2 +
⌈
|R|
d2

⌉
.

To simplify the discussion, we also assume that C2 is a smooth rational curve, hence 
d2 ∈ {1, 2}. It follows that k0 is the smallest integer k such that H0(C2, OC2(−KC2 −
R + (k − 1)D)) �= 0. If we assume in addition that C1 is a free curve, then N(f1) = 0
and Theorem 6.2 implies the following.
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Corollary 6.6. With the above notation and assumptions, if in addition C1 is a free curve 
and C2 is rational, then |R| ≤ (r1 + 1)d2 implies k0 ≥ r1 and

r1 ≤ r = k0 ≤ r1 + d2 − 1.

In particular, |R| > (r1 + 1)d2 − d2
2, that is we have the following cases.

(1) Let C1 : f1 = 0 be a free curve and L be a line such that C1 and C1 ∪ L have only 
quasihomogeneous singularities. Then

|C1 ∩ L| > r1 = mdr(f1).

(2) Let C1 : f1 = 0 be a free curve and Q be a smooth conic such that C1 and C1 ∪ Q

have only quasihomogeneous singularities. Then

|C1 ∩Q| > 2r1 − 2, where r1 = mdr(f1).

Proof. Note that r ≥ r1 implies k0 ≥ r1, which yields in particular the last claim. �
When C2 is a line, then r = r1 and |R| = r1 + 1 in these conditions, a known result 

when C1 is a line arrangement, see for instance [2, Theorem 3.6 (2)].

Example 6.7. Consider C1 : xyz(x − y)(y − z)(x − z) = 0, which is free with d1 = 6 and 
r1 = 2. Let C2 be a general conic passing through 2 triple points and 2 double points 
of C1, for instance C2 : x2 + z2 − xy − yz = 0. Then d2 = 2, r2 = 1 and |R| = 6. 
Corollary 6.6 implies r = k0 = 3. It follows that the curve C is free with exponents 
(3, 4) by (2.4). Indeed, this curve C has 3 nodes, 4 ordinary triple points and 2 ordinary 
quadruple points, hence τ(C) = 37.

The application to the exact sequence (6.3) to study free curves goes back to [25]. 
Now we show that this sequence gives valuable information even when C1 is not a free 
curve. We start with the case C2 is a line, hence we have to decide by Proposition 3.1
or by Theorem 3.3 whether r = r1 or r = r1 + 1.

Corollary 6.8. With the above notation, assume that C2 is a line and that all singularities 
of C1 and C are quasihomogeneous. Let R be the reduced scheme of C1 ∩ C2. If

|R| ≤ r1 + 1,

then there is the following exact sequence

0 → D0(f)r1 → H0(C2,OC2(r1 + 1 − |R|)) → N(f1)r1+d1−2 → N(f)r1+d2+d−2 → 0.
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Proof. The proof is as above, using Theorem 6.2 for k = r1 and the fact that 
H1(C2, OC2(�)) = 0 if � ≥ 0. �
Corollary 6.9.

(1) Let C1 : f1 = 0 be a nearly free curve and L be a line such that C1 and C1 ∪L have 
only quasihomogeneous singularities. Then

|C1 ∩ L| ≥ r1 = mdr(f1).

(2) Let C1 : f1 = 0 be a nearly free curve and Q be a smooth conic such that C1 and 
C1 ∪Q have only quasihomogeneous singularities. Then

|C1 ∩Q| ≥ 2r1 − 1, where r1 = mdr(f1).

Proof. The proof is as above, using Theorem 6.2 for k = r1 − 1 and the fact that 
dimH(C2, OC2(�)) ≥ 2 > ν(C1) = 1 if � ≥ 1. For d2 = 2, we use the stronger fact that 
σ(C1) = d1 + r1 − 3. �
Example 6.10. Let C1 be a nearly free curve having only quasihomogeneous singularities. 
Let C2 be a line such that |R| = r1, the minimal possible value, and C = C1 ∪ C2 has 
again only quasihomogeneous singularities. Then in the exact sequence of Corollary 6.8
we have

dimH0(C2,OC2(r1 + 1 − |R|)) ≥ 2 = dimH0(C2,OC2(1)) > dimN(f1)r1+d1−2 = 1.

The last equality follows from the equality σ(C1) = d1 + r1 − 3, see [11, Corollary 2.17]. 
This implies r = r1 in this situation.

A first explicit example of such a situation is provided by the curves C1 discussed in 
Example 4.2 with the line C2 given by y = 0 or z = 0, when r1 = 1.

A second example is provided by the quartic with 3 cusps

C1 : x2y2 + y2z2 + x2z2 − 2xyz(x + y + z) = 0,

which is nearly free with r1 = 2, see [11, Example 2.13] and C2 : z = 0, a line joining 
2 cusps. The curve C has in this case one cusp A2 and two D5 singularities, hence has 
only quasihomogeneous singularities. Since |R| = 2 = r1, the above discussion applies 
and it follows that r = r1 = 2. Using [7,17], it follows that the obtained quintic curve

C : x2y2z + y2z3 + x2z3 − 2xyz2(x + y + z) = 0,

is free with exponents (2, 2).
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As a third example, consider C1 to be the union of two smooth conics tangent to each 
other in two points, as in Proposition 5.5. Let C2 be the line joining these two points. 
Then C has two D6 singularities, 2 = |R| > r1 = 1. Hence Corollary 6.8 cannot be used to 
conclude. Note that using the equation (5.1), we see that y∂x+x∂y ∈ D(f1)1∩D(f2)1 �= 0, 
and hence r = 1. Using [7] it follows that this curve C is nearly free with exponents (1, 4).

Here is the version of Corollary 6.8 when C2 is a smooth conic. Here we know already 
that r1 ≤ r ≤ r1 + 2 by Theorem 5.1.

Corollary 6.11. With the above notation, assume that C2 is a smooth conic and that all 
singularities of C1 and C are quasihomogeneous. Let R be the reduced scheme of C1∩C2. 
If

|R| ≤ 2(r1 + 1),

then there is the following exact sequences.

0 → D0(f)r1 → H0(C2,OC2(2r1 − |R|)) → N(f1)r1+d1−3 → N(f)r1+d2+d−3

and

0 → D0(f)r1+1 → H0(C2,OC2(2r1 + 2 − |R|)) → N(f1)r1+d1−2 → N(f)r1+d2+d−2 → 0.

Proof. Use Theorem 6.2 for k = r1 and for k = r1 + 1. �
Example 6.12. Consider next the case C1 : f1 = xyz = 0 and C2 : f2 = xy+ yz+xz = 0. 
Then C2 is a smooth conic circumscribed in the triangle C1, as in the second part of 
Example 5.4. In this case r1 = 1 and |R| = 3, hence we can apply Corollary 6.11. The 
first exact sequence implies that D0(f)1 = 0, and the second exact sequence implies that

dimD0(f)2 = 2 = dimH0(C2,OC2(1))

since C1 is a free curve, and hence N(f1) = 0.

Example 6.13. Let C1 : f1 = (x −z)(3y2−(x +2z)2)(x2+y2−4z2) = 0 be a smooth conic 
Q circumscribed in a triangle Δ as in Example 6.12. Let C2 : f2 = (x2 + y2 − z2) = 0
be a conic inscribed in the triangle Δ and tangent to the conic Q in two points. Then 
d2 = 2, r2 = 1. In this case r1 = 2 and |R| = 5, hence we can apply Corollary 6.11. The 
first exact sequence implies that D0(f)2 = 0, and the second exact sequence implies that

dimD0(f)3 = 3 = dimH0(C2,OC2(1))

since C1 is a free curve, and hence N(f1) = 0.
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Example 6.14. Let C1 be a nearly free curve having only quasihomogeneous singularities. 
Let C2 be a smooth conic such that either |R| ≤ 2r1−1 or |R| = 2r1+1 and C = C1∪C2
has again only quasihomogeneous singularities. Then, when |R| = 2r1−1, we get exactly 
as in Example 6.10 that r = r1. Assume now that |R| = 2r1 + 1. In the first exact 
sequence of Corollary 6.11 we have

H0(C2,OC2(2r1 − |R|)) = H0(C2,OC2(−1)) = 0,

and hence D0(f)r1 = 0. In the second exact sequence of Corollary 6.11 we have

2 = dimH0(C2,OC2(2r1 + 2 − |R|)) = H0(C2,OC2(1)) > dimN(f1)r1+d1−3 = 1.

The last equality follows from the equality σ(C1) = d1 + r1 − 3, see [11, Corollary 2.17]. 
This implies r = r1 + 1 in this situation.

To have an explicit example, we consider again the quartic C1 with 3 cusps from 
Example 6.10, and take now C2 to be a smooth generic conic passing through the 3 
cusps, then the resulting curve C will have 3 D5 singularities and 2 nodes A1. It follows 
that |R| = 5 = 2r1 +1. It follows that in this case r = r1 +1 = 3. As an explicit example, 
one can take

C : (xy + yz + xz)(x2y2 + y2z2 + x2z2 − 2xyz(x + y + z)) = 0,

which is a plus one generated curve with exponents (3, 3, 4).

Example 6.15. Let C1 be a nearly free curve having only quasihomogeneous singulari-
ties. Let C2 be a smooth conic such that |R| = 2r1 + 2. In the first exact sequence of 
Corollary 6.11 we have

dimH0(C2,OC2(2r1 − |R|)) = dimH0(C2,OC2(−2)) = 0,

and in the second exact sequence of Corollary 6.11 we have

dimH0(C2,OC2(2r1 + 2 − |R|)) = dimH0(C2,OC2) = 1.

If N(f1)r1+d1−2 = 0, then we have r = r1+1. We consider the following explicit situation. 
Let C1 : f1 = x2y2 + z4 − xz3 − 2xyz3 = 0, which has an A4-singularity at p = (0 : 1 : 0)
and an A2-singularity at q = (1 : 0 : 0). Then C1 is a nearly free curve with d1 = 4
and r1 = 2, see [11, Example 2.13]. Let C2 : xy + yz + xz = 0 be a smooth conic, 
passing transversely through p and q and meeting C1 transversally at another 4 points. 
It follows that |R| = 2 + 4 = 6 = 2r1 + 2 and C has 4 nodes A1, one D5 singularity and 
one D7-singularity in all. Note that

σ(C1) = d1 + r1 − 3 = Tf1/2 = 3.
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This implies that N(f1)4 = 0, exactly what we need to conclude that r = r1 + 1 = 3.

Example 6.16. We end with an example in order to conclude via Corollary 6.11 we need 
to analyze the morphism

N(f1)r1+d1−3
f2
2−→ N(f)r1+d−1.

Let C1 : f1 = (x2 − 2xz + y2)(x2 + 2xz + y2) = 0, hence C1 is a pair of smooth conics 
tangent at one point, as in Proposition 5.5 (2). This curve C1 is a plus one generated 
curve with exponents (2, 2, 3). Hence d1 = 4 and r1 = 2. Let C2 : x2 + y2 − 4z2 = 0, a 
circle tangent to each circle in C1 at one point and passing through the 2 nodes of C1. 
Hence C has 3 singularities A3 and 2 singularities D4. It follows that |R| = 4 = 2r1. In 
the first exact sequence of Corollary 6.11 we have

dimH0(C2,OC2(2r1 − |R|)) = dimH0(C2,OC2) = 1,

and dimN(f1)r1+d1−3 = 2. More precisely, a basis of N(f1)r1+d1−3 is given by the 
monomials xyz and xz2. A computation using Singular shows that the kernel of the 
morphism

N(f1)r1+d1−3
f2
2−→ N(f)r1+d−1

is 1-dimensional, generated by xyz − xz2. As a result D0(f)2 = 0. In the second exact 
sequence of Corollary 6.11 we have

dimH0(C2,OC2(2r1 + 2 − |R|)) = dimH0(C2,OC2(2)) = 3

and dimN(f1)r1+d1−2 = 1. Therefore we have r = r1 + 1 = 3. A computation with 
Singular shows that C is a plus one generated curve with exponents (3, 3, 4).

6.17. An application to the jumping lines of the rank 2 vector bundle EC1

For a reduced plane curve C and a line L in P 2, the pair of integers (dL1 (C), dL2 (C))
such that dL1 (C) ≤ dL2 (C) and EC |L � OL(−dL1 (C)) ⊕OL(−dL2 (C)) is called the (ordered) 
splitting type of EC along L, see for instance [23]. For a generic line L0, the corresponding 
splitting type (dL0

1 (C), dL0
2 (C)) is known to be constant, see [23, Definition 2.2.3 and 

Lemma 3.2.2]. A line L in P 2 is called a jumping line for EC or, equivalently, for T 〈C〉, 
if

dL0
1 (C) − dL1 (C) > 0.

The following result relates the splitting type of EC along a line L : αL = 0, to the 
Lefschetz properties of the Jacobian module N(f) with respect to the multiplication by 
αL, see [13, Proposition 4.1].
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Proposition 6.18. For any reduced curve C : f = 0 and any line L : αL = 0 in P 2, we 
have dL1 (C) = min{mdr(f), k(f, L)}, where

k(f, L) = min{k ∈ N : N(f)k+d−2
·αL→ N(f)k+d−1 is not injective }.

Using this result, we give now an easy geometric way to check that a line is a jumping 
line, under some conditions.

Theorem 6.19. Let C1 : f1 = 0 be a reduced curve and C2 : f2 = 0 be a line in P 2. Assume 
that all the singularities of C1 and of C = C1 ∪ C2 are quasihomogeneous, and let R be 
the reduced scheme of C1∩C2. If |R| < r1 +1, then for any k satisfying |R| −1 ≤ k < r1, 
the morphism

ψ′
k : N(f1)k+d1−2

f2−→ N(f1)k+d1−1

is not injective and one has

dC2
1 (C1) = k(f1, C2) ≤ |R| − 1.

Moreover, if one of the following two conditions holds

(1) either 2r1 < d1, or
(2)

2r1 ≥ d1 and |R| − 1 <

⌊
d1 − 1

2

⌋
,

then C2 is a jumping line for the rank two vector bundle EC1 .

Proof. Note that the condition k ≥ |R| − 1 implies that

H0(C2,OC2(−KC2 −R + (k − 1)D)) = H0(C2,OC2(k + 1 − |R|)) �= 0

in the exact sequence from Theorem 6.2. On the other hand, the condition k < r1 implies 
that D0(f)k = 0. Hence, using Theorem 6.2, we see that the morphism

ψk : N(f1)k+d1−2
f2
2−→ N(f)k+d1 ,

is not injective. To prove our claim, it is enough to show that

kerψk ⊂ kerψ′
k.

Let h ∈ kerψk be (the representative of) some element in this kernel. This means that 
f2
2h ∈ Jf , in other words there is a derivation δ ∈ Der(S) such that
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f2
2h = δ(f) = f2δ(f1) + f1δ(f2).

Since f1 and f2 have no common factor, this means that δ(f2) is divisible by f2, say 
δ(f2) = f2g for some g ∈ S. Dividing the above relation by f2 we get

f2h = δ(f1) + f1g,

which implies f2h ∈ Jf1 . Hence h ∈ kerψ′
k as we claimed. Now we prove the final claims 

in Theorem 6.19. Since we know that ψ′
k is not injective for |R| − 1 ≤ k < r1, it follows 

by Proposition 6.18 that

dC2
1 (C1) = k(f1, C2) ≤ |R| − 1.

Assume now 2r1 < d1. First note that the curve C1 cannot be a free curve in view of 
Corollary 6.6 (1) saying that in this case |R| > r1. If C1 is a nearly free curve, then the 
exponents r = d′1 ≤ d′2 verify d′1 + d′2 = d1, and hence the condition 2r1 < d1 implies 
d′1 < d′2. Using for instance [13, Example 4.8] we see that in this case dL0

1 (C1) = r1. 
The same equality holds for all the other non free reduced plane curves C1 satisfying 
2r1 < d1, see [13, Corollary 4.5]. This fact implies that C2 is a jumping line for EC1

in the case (1). The claim in case (2) follows from [13, Corollary 4.6 and Example 4.8]. 
Indeed, these results imply that we have

dL0
1 (C1) =

⌊
d1 − 1

2

⌋
when 2r1 ≥ d1. �
Example 6.20. Let C1 : f1 = 0 be a Thom-Sebastiani plane curve, i.e. a curve such 
that f1(x, y, z) = g(x, y) + zd1 , where g is a homogeneous polynomial of degree d1 in 
S′ = C[x, y]. Assume that

g = �k1
1 · · · �km

m ,

where the linear forms �j ∈ S′ are distinct and m ≥ 2. It follows that C1 is a 3-syzygy 
curve with exponents r1 = d′1 = m − 1 and d′2 = d′3 = d1 − 1 for m ≥ 3 and C1 is nearly 
free with exponents r1 = d′1 = 1 and d′2 = d1 − 1 for m = 2, see [12, Example 4.5].

Assume first that 2(m −1) < d1 and take the line C2 to be given by one of the factors 
of g, say C2 : f2 = �1 = 0. Then it is easy to check that all the singularities of C1 and of 
C = C1 ∪ C2 are quasihomogeneous. To do this, one can assume that �1 = x and hence 
R is the point (0 : 1 : 0). It follows that |R| = 1 < r1 + 1, and Theorem 6.19 (1) implies 
that the line C2 is a jumping line for EC1 and moreover

dC2
1 (C1) = k(f1, C2) = 0.
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Note that the inequality dC2
1 (C1) = k(f1, C2) ≥ 0 holds in general, see for instance [13, 

Proposition 2.5].
If we assume now that 2(m − 1) ≥ d1 ≥ 3, then we get the same result using Theo-

rem 6.19 (2). In this way we have found out m jumping lines �j = 0 for j = 1, . . . , m for 
the vector bundle EC1 .

Recall that when C1 is a free curve, then all the lines L in P 2 are not jumping lines for 
the vector bundle EC1 . With this in mind, the following result, which is a reformulation 
of Theorem 6.19, can be regarded as a generalization of Corollary 6.6 (1).

Corollary 6.21. Let C1 : f1 = 0 be a reduced curve and L be a line in P 2, which is not 
a jumping line for the vector bundle EC1 . Let d1 = deg(f1) and r1 = mdr(f1). If all the 
singularities of C1 and of C1 ∪ L are quasihomogeneous, then

|C1 ∩ L| > dL1 (C1) =
{
r1 if 2r1 < d1,⌊
d1−1

2
⌋

if 2r1 ≥ d1.
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