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Abstract Steady flow takes place into a three-dimensional partially saturated porous medium where,
due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as
random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific
flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above
the water table. The simple expressions (most of which in closed form) of the second-order moments per-
taining to the FVs allow one to follow the transitional behavior from the zone close to the water table
(where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In par-
ticular, it is shown how the stationary limits (and the distance from the water table at which stationarity is
attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure
head hWi has been also computed, and it is expressed as hWi5W0ð11wÞ, being w a characteristic heteroge-
neity function which modifies the zero-order approximation W0 of the pressure head (valid for a vadose
zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e.,
close (near field) and away (far field) from the water table, are derived into a very general manner, whereas
the transitional behavior of w between the near/far field can be determined after specifying the shape of
the various input soil properties. Besides the theoretical interest, results of the present paper are useful for
practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how
it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the
vadose zone close to the water table) which is generally very difficult to access by direct inspection.

1. Introduction

Soil hydraulic properties, such as saturated conductivity, water retention, and relative conductivity have been
largely considered as well-defined properties of the unsaturated porous formations [see, e.g., Hillel, 1998]. How-
ever, in the majority of the hydrological applications, unsaturated flows take place in a complex environment
(often termed as vadose zone) whose setup changes erratically, thus undermining any attempt to characterize
within a deterministic framework the flow (and transport) properties. Such a setup shows discrete and/or contin-
uous variations over several scales, thus making hydraulic properties to do likewise. On the other side, owing to
several logistic and economic limitations, hydraulic properties can be measured only at a limited number of posi-
tions where their values depend upon the size of the sample(s) as well as the procedure of measurement. Infer-
ring parameters at points where measurements are not available entails a random error [Sinsbeck and
Tartakovsky, 2015]. In addition to this, measured values are biased by experimental errors. As matter of fact, these
errors and uncertainties render the hydraulic parameters RSFs, and the corresponding flow-equations stochastic.

It is a common tenet that an appropriate tool to deal with this uncertainty is the geostatistical
approach [Rubin, 2003]. Thus, measurements of the hydraulic parameters are regarded as samples of
random fields, which in turn are characterized by a multivariate probability density function (or alterna-
tively by ensemble moments). If the statistical properties of the hydraulic parameters can be inferred
from measurements, the stochastic flow-equations can be solved either analytically [e.g., Severino and
Indelman, 2004; Severino et al., 2006, 2012a] or numerically [e.g., Severino and Bartolo, 2015] by Monte
Carlo simulations (MCs), and results analyzed in a statistical sense [Severino et al., 2007]. MCs are concep-
tually simple, and they have the advantage to be applicable to a large variety of configurations [see,
e.g., Barajas-Solano and Tartakovsky, 2016]. However, MCs pose a number of serious drawbacks and
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limitations. Indeed, to account for high-frequency fluctuations of the input RSFs, very fine numerical
grids are required. As a consequence, each realization (sampling) may result computer-demanding,
especially when one deals with three-dimensional flows. In addition, even if MCs converge after a suffi-
ciently large number of runs, there is not a systematic procedure to ascertain whether to consider con-
clusive (and therefore completed) the MCs (a deep discussion upon these issues can be found in
Jankovic et al. [2003]; Russo et al. [2009]).

To avoid the lack of accuracies attached to the MCs, analytical approaches have been also developed
[see, e.g., Severino, 2011a, and references therein]. Unlike MCs, analytical methods enable one: (i) to
compute the fluctuations of the FVs, and subsequently to obtain (by ensemble averaging) the various
(cross)covariances, or (ii) to end up with deterministic equations which are solved for the (cross)covar-
iances. This second avenue (which will be adopted in the present study) is also known as the method
of moments’ equation (MME). The applicability of analytical methods generally relies upon some
assumptions, the most relevant of which are: (i) unbounded flow-domain, and (ii) gravity-dominated
mean flow [see, e.g., Yeh et al., 1985; Russo, 1993; Severino and Santini, 2005; Severino et al., 2009]. In
particular, the latter assumption implies that the mean pressure-head is constant within the flow-
domain. However, assuming that gravity is the only driving force for the mean flow is sometimes too
limiting, especially when one is interested in the flow’s behavior close to the water table where, as it is
well known, the mean pressure-head is not constant. This renders the problem more difficult, and it is
not surprising that very few analytical studies have been carried out toward such a direction. From the
stand point of the applications, solving the unsaturated flow in the vicinity of the groundwater is even
more important. In fact, in the majority of the cases the water table is located at depths which are
completely unaccessible, therefore rendering direct inspection impossible (or extremely time-
consuming and expensive). Within such a picture, the use of a reliable model connecting information
that can be easily acquired at the soil surface to those at the very deep (difficult to access) locations
becomes of paramount relevance.

One of the first attempt to account for the impact of the water table upon the FVs’ behavior is from
Andersson and Shapiro [1983] who analyzed the spatial distribution of the water content in a one-
dimensional domain by means of both analytical methods (small perturbations) and MCs. They found
that the distance from the water table to the region of ‘‘stationarity’’ depends upon the soil properties
as well as the flux at the soil surface. However, in the study of Andersson and Shapiro [1983] only the
saturated hydraulic conductivity Ks was regarded as a RSF. The pressure-head behavior under the same
conditions of the previous study was analyzed by Indelman et al. [1993] who adopted the model of
Gardner [1958] for the relative conductivity Kr. In the region of nonstationarity, the variance of the
pressure-head was found sensitive to both the mean flow conditions and to the spatial variability of
the soil hydraulic properties. Tartakovsky et al. [1999] developed an alternative methodology based
upon the Kirchhoff’s transformation which enables one to avoid (or delay) any approximation proce-
dure. In order to fully take advantage of the Kirchhoff transformation, Tartakovsky et al. [1999]
regarded the a-parameter as a random constant. Then, by dealing with a one-dimensional domain and
vertical flow conditions, Tartakovsky et al. [1999] derived analytical solutions for the covariance and the
second-order correction to the pressure-head. A similar analysis in a three-dimensional formation, rely-
ing upon MCs, has been conducted by Russo and Fiori [2008], who showed that when the water table is
located at a sufficiently large depth from the soil surface, one can delineate a region where flow is
essentially gravity-dominated (and concurrently the FVs are stationary).

In the present paper, we solve unsaturated steady flow in three-dimensional bounded heterogeneous
formations by means of analytical tools, and we aim at computing second-order moments of the FVs.
More precisely, we employ a general perturbation procedure to achieve simple (closed-form) results
relating into a straightforward manner the statistical structure of the input soil properties to the spatial
distribution of the FVs in the vicinity of the water table. The paper is organized as follows: we begin by
formulating the mathematical problem in the context of a stochastic framework (section 2), and derive
second-order moments for the FVs (sections 3–4). The model is calibrated against to a recently con-
ducted flow experiment in the vadose zone (section 5), and subsequently it is used to grasp the behav-
ior of the FVs in the close vicinity of the water table (section 6). We end up with concluding remarks
(section 7).
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2. Mathematical Statement of the Problem

Unsaturated steady flow takes place in a three-dimensional domain X which is horizontally unbounded,
and vertically delimited by the position of the water table (z 5 0) and the soil surface (z 5 L), i.e.,

X5fx � ðx; y; zÞ : ðx; yÞ � xh 2 R2; 0 � z � Lg (1)

(Figure 1). The governing equations are: (i) the Buckingham-Darcy (constitutive) law, and (ii) the mass-
balance law

qðxÞ52K Wð Þr z1Wð Þ; r � qðxÞ50; (2)

respectively. In equation (2), q � ðqx ; qy ; qzÞ> is the specific flux, W � WðxÞ is the pressure-head, and K � K
ðWÞ is the pressure-dependent hydraulic conductivity. Boundary conditions are determined by physical pro-
cesses at the soil surface and water table. Thus, let q0 denote a prescribed (negative for infiltration) vertical
flux at the soil surface (z 5 L) (as determined either by the rainfall or by the irrigation). This gives rise to a
boundary condition:

KðWÞ 11
@

@z
W

� �
jz5L52q � ez52q0 ; (3)

being ez � ð0; 0; 1Þ the vertical unit pointing outward vector (Figure 1). Generally, flows occurring in the
uppermost soil are largely transient as consequence of the high variability of the atmospheric conditions.
However, in the close vicinity of the water table the dependence of flow with time results of negligible impact
[Wang et al., 2009]. More precisely, Russo and Fiori [2008] have demonstrated that, when the water table is
deep, the vadose zone can be conceptually decomposed into two distinct zones: a highly transient near-
surface zone, and a deeper one where practically steady state flow conditions occur. Within such a zone, an
equivalent constant flux q0 (obtained by averaging the cumulative flux of the net applied water over the rele-
vant time period) provides a good approximation of the cumulative water flux arriving to the water table.

Although the pressure head may fluctuate in the zone close to the water table, the numerical analysis of
Russo and Fiori [2008] demonstrates that, when the water table is located at sufficiently large depth from
the soil surface, a steady spatially uniform head is worth to reconstruct not only the flow regime but also
the mass arrivals at the groundwater. Such an approximation applies to very general vadose zones (i.e., of
largely different textures) in the presence or absence of vegetation (see discussion in Russo and Fiori
[2009]). Thus, we assume that the water table (z 5 0) is at rest, and it separates the unsaturated zone
(W < 0) from the phreatic one (W > 0). Before proceeding further, it is worth also clarifying why, for the
present study, the capillary fringe can be neglected. Thus, its thickness is significant when the water
table: (i) largely fluctuates in the time [Li and Yeh, 1998], and (ii) when the water table is shallow [Gillham,
1984]. In addition, such fluctuations are particularly relevant in the coarser soils, and in this case they sig-
nificantly affect the flow and transport regimes [Russo and Fiori, 2009]. However, under steady state con-
ditions (which apply in the present study), the situation is completely reversed, since in the structureless
sandy soils (like the one considered in the sequel), the water’s raise due to the capillarity-mechanism is

highly contrasted by the macropores
[e.g., Zhang and Winter, 1998; Zhang,
2002]. Hence, a boundary condition at
the water table reads as:

W xð Þjz5050: (4)

In order to solve the system of the two
equation (2), a functional dependence
for K � K Wð Þ must be specified. Several
models for K are available in the litera-
ture [e.g., Brooks and Corey, 1964;
Mualem, 1976; Van Genuchten, 1980]. In
the context of the present study, we
shall adopt the exponential model of
Gardner [1958]:

Figure 1. Sketch of a flow taking place into a vadose zone delimitated at the
bottom (z 5 0) by the water table and at the top (z 5 L) by the soil surface.
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K Wð Þ � Ks KrðWÞ; KrðWÞ5exp aWð Þ; (5)

where Ks and a are the saturation conductivity and a pore-size distribution parameter, respectively. Gener-
ally, other conductivity curves have been proved to better reproduce the hydrological soil behavior. How-
ever, such curves require a very detailed characterization which is typically carried out at laboratory scale
[Romano et al., 2011]. Instead, at formation (and even larger) scales the uncertainty of the soil hydraulic
properties and the limitations of the in situ sampling devices do not allow gaining a very detailed resolution
of the conductivity curve. Thus, owing to these limitations (and wishing to reduce the computational
burden), we have adopted [similarly to Indelman et al., 1993; Tartakovsky et al., 1999, 2004; Severino and
Tartakovsky, 2015] the Gardner’s model. Last, the main difference between the Gardner’s and any other
model is at the saturation, i.e., W � 0. Instead, for W < 0 (which in the vadose zone is the rule rather than
the exception) the hydraulic response of the Gardner’s model does not significantly differ from that of any
other ones [see, e.g., Comegna et al., 1996; Tartakovsky et al., 2003].

Due to their erratic variations [see, e.g., White and Sully, 1992; Russo and Bouton, 1992; Severino et al., 2003,
2010; Fallico et al., 2016; Severino et al., 2016a], the log-transformed parameters f5ln a and Y5ln Ks are
modeled as stationary RSFs. As a consequence, their geometric means: aG5exp hfi and KG5exp hYi are con-
stant with zero-mean fluctuations, i.e., hf0i5f2hfi50 andhY 0i5Y2hYi50. Since the conductivity curve (5)
depends upon the two RSFs Ks and a, the cross covariance CYf has to be provided, as well. In line with field-
data [see e.g., Rubin, 2003], we assume that covariances of the RSFs have axisymmetric structure, i.e.,

Cc xh; zð Þ5r2
c qh

xh

Ic

� �
qv

z
kcIc

� �
c5Y; Yf; f (6)

being Ic and kc the horizontal integral scale and the anisotropy-ratio, respectively. The asymmetric (spatial)
structure (6) is rather general feature accounting for the typical statistical anisotropies of a vadose zone (a
wide survey can be found in Rubin [2003]). We adopt a21

G and KG as scales for the length and the flux,
respectively. As a consequence, equation (2) write as (for simplicity we retain the same notations):

qðxÞ52exp Y 0ð Þexp Wexp f0ð Þ½ �r z1Wð Þ

r � qðxÞ50:

(
(7)

Due to the random nature of Y 0 and f0, the system (7) becomes stochastic, and we aim at computing the statis-
tical moments of the FVs. To solve (7), we expand W; q; exp ðY 0Þ and exp ðf0Þ in asymptotic-series as follows

W5W01W11W21 . . . ; q5qð0Þ1qð1Þ1qð2Þ1 . . . ; exp ðY 0Þ511
Y 0

1!
1

Y 02

2!
1 . . . ; exp ðf0Þ511

f0

1!
1

f02

2!
1 . . .

(8)

The nonlinear term f ðW; f0Þ � exp Wexp f0ð Þ½ � appearing into the first of (7) is likewise expanded up to the
second-order, i.e.,

f ðW; f0Þ5f ðW0; 0Þ1 1
1!

@

@W1
f ðW; f0ÞjðW0;0ÞW1ðxÞ1

@

@f0
f ðW; f0ÞjðW0;0Þf

0ðxÞ
� �

1
@

@W2
f ðW; f0ÞjðW0;0ÞW2ðxÞ

1
@

@f02
f ðW; f0ÞjðW0;0Þf

02ðxÞ1 1
2!

@

@W1
f ðW; f0ÞjðW0;0ÞW1ðxÞ1

@

@f0
f ðW; f0ÞjðW0;0Þf

0ðxÞ
� �ð2Þ

1 . . . :

(9)

To compute the first-order derivatives of f ðW; f0Þ at the right-hand side of (9), we employ the chain-rule of
derivation, i.e.,

@

@W1
f ðW; f0ÞjðW0;0Þ5

d
dW

f ðW; f0Þ � @W
@W1

� �
ðW0;0Þ

5 exp ðf0Þf ðW; f0Þ � 1½ �ðW0 ;0Þ5KrðW0Þ; (10a)

@

@f0
f ðW; f0ÞjðW0;0Þ5

df ðW; f0Þ
dexp ðf0Þ �

@exp ðf0Þ
@f0

� �
ðW0;0Þ

5 Wf ðW; f0Þ � 1
1!

� �
ðW0;0Þ

5W0ðzÞ KrðW0Þ; (10b)

@

@W2
f ðW; f0ÞjðW0;0Þ5

d
dW

f ðW; f0Þ � @W
@W2

� �
ðW0;0Þ

5 exp ðf0Þf ðW; f0Þ � 1½ �ðW0;0Þ5KrðW0Þ; (10c)
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@

@f02
f ðW; f0ÞjðW0 ;0Þ5

df ðW; f0Þ
dexp ðf0Þ �

@exp ðf0Þ
@f02

� �
ðW0;0Þ

5 Wf ðW; f0Þ � 1
2!

� �
ðW0;0Þ

5
1
2

W0ðzÞ KrðW0Þ; (10d)

where hereafter we shall set: KrðW0Þ � exp W0ð Þ. The second-order derivatives are computed by means of
(10a)–(10b), the final result being:

@2

@W2
1

f ðW; f0ÞjðW0;0Þ5
@

@W1

@

@W1
f ðW; f0Þ

� �
ðW0;0Þ

5 exp ðf0Þ @

@W1
f ðW; f0Þ

� �
ðW0;0Þ

5KrðW0Þ; (11a)

@2f ðW; f0Þ
@W1@f

0 jðW0;0Þ5
@

@W1

@

@f0
f ðW; f0Þ

� �� �
ðW0;0Þ

5
@

@W1
Wf ðW; f0Þ½ �

� �
ðW0;0Þ

5

5 f ðW; f0Þ @W
@W1

1W
@

@W1
f ðW; f0Þ

� �
ðW0;0Þ

5f ðW0; 0Þ1W0
@

@W1
f ðW; f0Þ

� �
ðW0;0Þ

5KrðW0Þ1W0KrðW0Þ;
(11b)

@2

@f02
f ðW; f0ÞjðW0;0Þ5

@

@f0
@

@f0
f ðW; f0Þ

� �
ðW0;0Þ

5W0
@

@f0
f ðW; f0Þ

� �
ðW0;0Þ

5W2
0 KrðW0Þ: (11c)

To summarize, the asymptotic-expansion of the constitutive-law reads as:

qðxÞ52KrðW0Þr z1W0ðzÞ1W1ðxÞ1W2ðxÞ1 . . .½ � 11Y 0ðxÞ1 1
2

Y 02ðxÞ1 . . .

� �
3

11W2ðxÞ1W1ðxÞ1W0ðzÞf0ðxÞ1W1ðxÞf0ðxÞ1
W0ðzÞ

2
f02ðxÞ1 1

2
W1ðxÞ1W0ðzÞf0ðxÞ½ �21 . . .

� �
:

(12)

We wish to note that a more general result, i.e., accounting for any functional shape Kr � KrðWÞ, can be
found in Indelman et al. [1993]. However, for the functional model (5) one easily recovers from Indelman
et al. [1993] the same linearized expression (12).

2.1. The Leading-Order Approximation
At the zero-order the system (7) writes as

qð0ÞðxÞ52KrðW0Þr z1W0ð Þ

r � qð0ÞðxÞ50
) r � KrðW0ÞrW0½ �1 @

@z
KrðW0Þ50

(
(13)

with the following boundary conditions:

W0 xð Þjz5050; KrðW0Þ 11
@

@z
W0

� ����
z5L

52q0: (14)

To solve the boundary-value problem (13)–(14), we employ a modified Kirchhoff transformation

FðxÞ5exp
z
2

	 
ðW0

21
ds KrðsÞ5exp

z
2

	 

KrðW0Þ (15)

[Severino and Tartakovsky, 2015] to map the second of (13) into an Helmholtz-type equation

r2FðxÞ2 1
4
FðxÞ50; (16)

whereas the boundary-conditions (14) become:

FðxÞjz5051;
@

@z
FðxÞ1 1

2
FðxÞ

���
z5L

52q0exp L=2ð Þ: (17)

Skipping the straightforward algebraic derivations, one ends up with

qð0Þ5q0 ez; W0 zð Þ5ln 2q0 12jexp 2zð Þ½ �f g; j511q21
0 : (18)

Note that the zero-order terms qð0Þ and W0 are function of the vertical coordinate z solely, since the bound-
ary conditions (17) do not depend upon the planar coordinate xh � ðx; yÞ 2 R2. Moreover, one can easily
check that: 0 � 2q0 12jexp 2zð Þ½ � � 1 (it is reminded that 21 � q0 � 0, and concurrently 21 < j � 0),
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therefore implying that W0 2 �21; 0 � [Severino and Coppola, 2012]. Finally, away from the water table it
yields: W0 � ln 2q0ð Þ � W0ð1Þ, in agreement with previous studies dealing with an unbounded flow-
domain [see, e.g., Russo, 1993; Severino and Santini, 2005; Severino et al., 2009]. In the Figure 2, the leading
order pressure W0ðzÞ relative to its far field W0ð1Þ has been depicted along z aG for several values of the
normalized flux q0=KG. The high sensitivity of W0 to the infiltrating flux q0 is clearly seen. In particular, the
smaller q0=KG, the larger the distance (from the water table z 5 0) of attainment the far field, and vice versa.

2.2. The First-Order Approximation
At the first order the mass-conservation and the constitutive law write as

r � qð1ÞðxÞ50; qð1ÞðxÞ52KrðW0ÞrW1ðxÞ1q0 W1ðxÞ1Y 0ðxÞ1W0ðzÞ f0ðxÞ½ �ez; (19)

where we have accounted for the fact that 2KrðW0Þrðz1W0Þ � q0ez . By combining equation (19), one
obtains the governing equation for the fluctuation W1 of the pressure-head, i.e.,

r Kr W0ð ÞrW1ðxÞ½ �2q0
@

@z
W1ðxÞ5q0

@

@z
Y 0 xð Þ1W0 zð Þf0 xð Þ½ � (20)

which, due to the deterministic nature of the pressure head at the water table, is solved with zero-boundary
conditions.

Equation (20) represents the starting point to obtain the statistical moments of interest. In particular,
moments can be computed by either solving for W1 (and subsequently averaging) or via the MME. In the
present study, it was found easier in terms of mathematical derivations to follow this second avenue. Note
that for large z it yields KrðW0Þ � 2q0, and one recovers from (20) the same equation of Severino and Santini
[2005] valid for an unbounded domain.

2.3. The Second-Order Approximation
The second-order correction to the flux is derived similarly to the previous case, the final result being:

r � qð2ÞðxÞ50; qð2ÞðxÞ52KrðW0ÞrW2ðxÞ1q0W2ðxÞez2KrðW0Þ W1ðxÞ1Y 0ðxÞ1W0ðzÞ f0ðxÞ½ �rW1ðxÞ1

1q0
1
2

W1ðxÞ1W0ðzÞf0ðxÞ½ �21W1ðxÞY 0ðxÞ1W1ðxÞf0ðxÞ1
1
2

Y 02ðxÞ1W0ðzÞY 0ðxÞf0ðxÞ1
W0ðzÞ

2
f02

� �
ez:

(21)

Figure 2. The normalized leading order pressure head W0ðzÞ=W0ð1Þ as function of the scaled depth z aG , and different values of the non-
dimensional flux q0=KG .
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Elimination of qð2Þ into (21) leads to the following equation for the second-order approximation W2 of the
pressure-head:

r � KrðW0Þ zð ÞrW2 xð Þ½ �2q0
@

@z
W2 xð Þ5q0

@

@z
L2 xð Þ2L02 xð Þ; (22)

where we have set

L2 xð Þ � W1 xð ÞY 0 xð Þ1W0 zð ÞY 0 xð Þf0 xð Þ1 1
2

W0 zð Þf02 xð Þ1W1 xð Þf0 xð Þ1 1
2

Y 02 xð Þ1

1
1
2

W1 xð Þ1W0 zð Þf0 xð Þ½ �22q21
0 KrðW0Þ W1 xð Þ1Y 0 xð Þ1W0 zð Þf0 xð Þ½ � @

@z
W1 xð Þ;

(23)

L02 xð Þ � Kr W0ð Þrh W1 xð Þ1Y 0 xð Þ1W0 zð Þf0 xð Þ½ �rhW1 xð Þf g; rh �
@

@x
;
@

@y

� �
: (24)

It is important to notice that, since all the RSFs appearing into (24) are stationary in horizontal plane, it
results hL02 xð Þi50.

3. Second-Order Moments of the Pressure-Head

Before proceeding with the derivation of the second-order moments of W, it is worth noting that, due to
the linear dependence (see equation (20)) of W1 upon Y 0 and f0 in the plane of isotropy, the various
moments will result stationary RSFs there. Furthermore, since we are interested in the unsaturated flow
close to the water table (z 5 0), we can regard the soil surface (z 5 L) sufficiently far away from such a zone,
so that one can let L!1. Note that this latter assumption does not modify the leading-order expressions
(18) of the FVs. In addition, away from the water table z 5 0 the lower boundary condition does not impact
anymore, and consequently the FVs tend to become stationary, unless the upper boundary condition (i.e.,
the soil’s surface) is approached (in this latter case the flow would again result nonstationary).

We start from the two-point covariances CWc x; x0ð Þ whose governing equation is obtained by multiplying
(20) by c evaluated at x0 6¼ x and averaging, i.e.,

L CWc x; x0ð Þ5q0
@

@z
CYc x2x0ð Þ1W0 zð ÞCfc x2x0ð Þ
� �

; L � r Kr W0ðzÞ½ �rf g2q0
@

@z
(25)

where, by virtue of the stationarity of the soil-properties, we have set hY 0ðxÞ cðx0Þi � CYc x2x0ð Þ and simi-
larly for hf0ðxÞ cðx0Þi. Hereafter, we shall assume that the ensemble average hAi of any RSF A is inter-
changeable with its spatial counterpart A, i.e., hAi ’ A (ergodic hypothesis). We also adopt in the sequel
the following convention: Yc � Y for c5Y , and fc � f for c5f. To facilitate the successive derivations, it is
useful to introduce the transformation

CWc x; x0ð Þ5 ffiffiffiffiffiffiffiffiffi
2q0
p exp 2z=2ð Þ

Kr W0ðzÞ½ � U x; x0ð Þ (26)

which converts (25) into an Helmholtz-type problem:

r2U x; x0ð Þ2 1
4

U x; x0ð Þ52
ffiffiffiffiffiffiffiffiffi
2q0
p

exp
z
2

	 
 @
@z

CYc x2x0ð Þ1W0 zð ÞCfc x2x0ð Þ
� �

: (27)

For the sake of simplicity, we limit to quote the final result

CWc rh; z; z0ð Þ5g zð Þ
ð1

0
dk kJ0ðkrhÞ

ð1
0

dn vc nð Þ d
dn

exp
n
2

� �
Gb z; nð Þ

� �
; gðzÞ � exp ð2z=2Þ

12jexp ð2zÞ (28)

vc nð Þ5rYc ~qhðkIYcÞqv
n2z0

�kYc

� �
1rfc ~qhðkIfcÞW0ðnÞ qv

n2z0

�kfc

� �
; (29)

Gb z; nð Þ5b21 exp 2
z1n

2
b

� �
2exp 2

jz2nj
2

b

� �� �
; b5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114k2
p

(30)

and address the interested reader to Appendix A for details. In equation (28) J0 is the zero-order Bessel
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function of the first kind, rh is the magnitude of the vector ðx2x0; y2y0Þ, and �kl � kl Il (no summation-con-
vention). The expression (28) is a general representation of the cross-covariances CWc , and its computation
is achieved by carrying out two quadratures. The cross-variance rWcðzÞ is derived by setting rh 5 0 and
z � z0 into (28).

The head covariance CW is obtained multiplying (20) by W1 x0ð Þ, and averaging:

L CW x; x0ð Þ5q0
@

@z
CWY x0; xð Þ1W0 zð ÞCWf x0; xð Þ½ �: (31)

Notice that the cross-covariances CcW x; x0ð Þ were replaced by CWc x0; xð Þ since maintaining the order
between x and x0 is crucial due to the nonstationarity of CcW along the depth. The solution for CW is
achieved similarly to the previous case, and the final result is (Appendix A):

CWðrh; z; z0Þ5g zð Þg z0ð Þ
ð1

0
dk k J0 k rhð Þ

ð1
0

ð1
0

dn dg R n; gð Þ @2

@n@g
exp

n1g
2

� �
Gb z; nð ÞGb z0; gð Þ

� �
(32)

R n; gð Þ5r2
Y IY ~qhðkIYÞqv

n2g
�kY

� �
1rYfIYf ~qhðkIYfÞ W0ðnÞ1W0ðgÞ½ �qv

n2g
�kYf

� �
1

1r2
f If ~qhðkIfÞW0ðnÞW0ðgÞqv

n2g
�kf

� �
:

(33)

Likewise, the head variance r2
W � r2

WðzÞ is obtained by setting rh 5 0, and z � z0 into (32).

4. Higher-Order Correction of the Mean Pressure-Head

To compute the higher-order correction hWi5W01hW2i of the mean head, one has to solve the equation
(22) for the second-order correction W2. Like before, such a task is easily achieved by means of the transfor-
mation W2ðxÞ5

ffiffiffiffiffiffiffiffiffi
2q0
p exp 2z=2ð Þ

Kr W0ðzÞ½ � U2ðxÞ which casts (22) into an Helmholtz equation, i.e.,

r2U22
1
4

U252
ffiffiffiffiffiffiffiffiffi
2q0
p

exp
z
2

	 
 @

@z
L2 xð Þ2q21

0 L02 xð Þ
� �

: (34)

Taking the ensemble average into (34) provides the equation for hU2i, i.e.,

d2

dz2
hU2 zð Þi2 1

4
hU2 zð Þi52

ffiffiffiffiffiffiffiffiffi
2q0
p

exp
z
2

	 
 d
dz
hL2 zð Þi; (35)

hL2 zð Þi5 1
2

r2
Y 1W0ðzÞrYf1

W0ðzÞ
2

11W0ðzÞ½ �r2
f1rWYðzÞ1 11W0ðzÞ½ �rWfðzÞ1

1
1
2

r2
WðzÞ2

1
q0

KrðW0Þ
1
2

d
dz

r2
WðzÞ1hY 0ðxÞ

@

@z
W1ðxÞi1W0ðzÞhf0ðxÞ

@

@z
W1ðxÞi

� �
;

(36)

where we have accounted for the fact that hL02ðxÞi50. Notice that, due to the stationarity of the term L2 in
the horizontal-plane (see equation (23)), the function hU2i (and concurrently hW2i) depends upon the depth
z, solely. A similar conclusion was drawn both by Zhang and Winter [1998] via extensive MCs, and by [Indel-
man et al., 1993] by means of analytical tools. Thus, solving for hU2i and back substitution leads to

hW2 zð Þi5 1
fjðzÞ

hL2ð1Þi½12exp ð2zÞ�2exp ð2zÞ
ðz

0
dnexp ðnÞ hL2ðnÞi

� �
; fjðzÞ512jexp ð2zÞ: (37)

It is convenient to represent the mean pressure-head as hWðzÞi5W0ðzÞ1hW2 zð Þi5W0ðzÞHðzÞ, where we
have set HðzÞ511wðzÞ with

wðzÞ5 hW2 zð Þi
W0ðzÞ

5q0
exp 2W0ðzÞ½ �

W0ðzÞ
exp ð2zÞ

ðz

0
dnexp ðnÞ hL2ðnÞi2hL2ð1Þi½12exp ð2zÞ�

� �
: (38)

The utility of such a representation is that hWi is expressed via the product between W0 (valid for a homo-
geneous formation) and a characteristic function H which ‘‘modifies’’ W0 according to the medium’s hetero-
geneity. One advantage related to the representation hWðzÞi5W0ðzÞHðzÞ is that it is instrumental to
identify the statistical properties of a vadose zone. Indeed, once hWi has been estimated by the
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measurements of the pressure-heads at different locations, one can identify the statistical parameters per-
taining to the RSFs Y; Yf, and f by matching against to it.

The general expression of the normalized correction w allows one to investigate the flow behavior in the
near and far field. More precisely, at large depths one has wð1Þ50, and concurrently
hWð1Þi � W0ð1Þ½11wð1Þ�5ln ð2q0Þ, which coincides with the result obtained by Russo [1993], and
Severino and Santini [2005] in the case of an unbounded domain. Instead, at the water table (z 5 0) it is eas-
ily shown from (38) (we omit the algebraic derivations) that: wð0Þ5½hL2ð1Þi2hL2ð0Þi�=j <1, and there-
fore we recover that: hWð0Þi � W0ð0Þ 11wð0Þ½ �50. This result is explained by noting that the boundary
condition at z 5 0 requires a fixed head, and thus the heterogeneity does not affect the value of the
pressure-head there (see also discussion in Severino and Coppola [2012]). These two asymptotics can be use-
ful: (i) in the practical applications (to design proper sampling-strategies), and (ii) in the modeling aspects
(to validate more involved numerical codes).

5. Calibration Versus Validation

We wish here to illustrate the application/use of the theoretical results obtained so far. In particular, it is
seen that a relatively large number of input parameters, i.e., geometric means of the saturated conductivity
and the alpha-parameter as well as the related (cross)-covariances, has to be preliminarily selected. While
the statistical characterization of Y and f has been largely discussed and assessed (see e.g., the survey
exploited in Rubin, [2003], and references therein), the cross-correlation Y–f is still a matter of debate, and it
deserves a thorough analysis. To this end, we refer to a recently conducted unsaturated flow experiment in
a field [Severino et al., 2010, 2016a, 2016b], which is described briefly herein with special care to the identifi-
cation of the statistical quantities which are relevant for the present study.

The field is located at the Ponticelli-site (Naples, Italy). The soil texture was analyzed by sampling at several
(randomly selected) locations across the field. The resulting structure is that of a typical ‘‘andosol’’: a struc-
tureless sand with a small (lesser than a coarse-textured soil) bulk density .5ð1:060:1Þ g=cm3 [Terribile
et al., 2007; Comegna et al., 2013]. Prior to any analysis concerning the spatial distribution, it is instrumental
to examine the measurements of Y and f by means of conventional (univariate) statistics.

5.1. Univariate Analysis of Y and f
The saturated conductivity Ks was measured (by a permeameter working at constant head) upon �80 samples
taken at two depths along a transect 50 m-long (1:25 m horizontal step) excavated parallel to the experimental
site. The measure of a was instead acquired in the field by means of an internal test drainage (a general description
about such a test as well as the identification procedure can be found in Severino et al. [2003]; G�omez et al., [2009]).
More precisely, the field was pounded by applying water in excess of the infiltration rate. After 2 days of continuous
ponding (when steady state conditions were almost reached) water’s application was halted, and monitoring initi-
ated. This latter consisted of simultaneous measurements of the water content # and the pressure head W (taken
by TDR-probes and tensiometers, respectively) at three depths, z50:30; 0:60; 0:90 m (from the soil surface), along
the transect. Monitoring was interrupted 77 days later, when drainage was evolving too slowly to make it impossi-
ble to further collect significantly different pairs of ð#;WÞ. The experimental hydraulic conductivity curve K ðexÞ

� K ðexÞ Wð Þ was determined by following the method suggested by Basile et al. [2003]. Hence, the value of a was
determined by matching the theoretical curve Kr � KrðWÞ (second of equation (5)) against to K ðexÞðWÞ divided by
the Ks-value measured upon the sample taken at the same depth (details can be found in Comegna et al. [2006]).

The empirical (symbols) cumulative dis-
tribution function (CDF) of Y � ln Ks

(blue) and f � ln a (red) along with the
theoretical (continuous) fitted normal
CDFs are shown in the Figure 3. The
observed good agreement between
empirical and theoretical CDFs is quan-
titatively confirmed by the Kolmogorov-
Smirnov test (Table 1). To summarize,
both f and Y can be considered as

Table 1. Estimates of the: (i) Mean, (ii) Standard Deviation, and (iii) Coefficient
of Variation Together With the D -Test of Normal (Null) Hypothesisa

Statistics Y � ln Ks f � ln a

Mean 2.30 23:31
Standard deviation 1.38 2:76 � 1021

Coefficient of variation 6:01 � 1021 8:35 � 1022

D -test ð0:895Þ? 0.882 0.715

aFor comparison purposes, the reference value at the 5%-level of confi-
dence is in the circular brackets. Values of Ks and a are expressed in cm=h and
cm21.
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normally distributed with the lat-
ter exhibiting a larger variability
than the former. It is worth not-
ing that the intervals of ð5%Þ-
confidence of the quantity
ru=luð Þ2 (being u either Ks or a)

as determined (i) by the raw u-
data, and (ii) by the expression
exp r2

ln u

� �
21 (which is known to

apply to log-normally distributed
random variables) are:

Thus, the overlapping between
the intervals of confidence fur-
ther demonstrates that the log-
transforms of Ks and a can be
regarded (up to the experimen-
tal errors) as normally distrib-
uted random variables.

In order to investigate possible
scale-issues, the saturated conduc-
tivity Ks was measured in the field

(Auger-hole device), as well. The intervals of 5%-confidence (see Table 2) for the estimates of the mean and vari-
ance of Y � ln Ks demonstrate that there is no statistical difference between the characterization of Y at laboratory
and at field scale. This is explained by recalling that the sampling volume of the Auger-hole device is approximately
of the same size (details are in Severino et al. [2010]) of the soil samples (see also discussion in Fallico et al. [2016]).
The usefulness of using laboratory Ks-measurements stems from the fact that these were more numerous than
those at field scale (Table 3).

Likewise, the support volumes attached to the devices (i.e., time domain reflectometry, and piezometers)
used in situ to detect the pairs ðh;WÞ at the several locations are approximately of the same size of the soil
samples taken from the site [see Comegna et al., 2013]. As a consequence, the measurements of the a-
parameter can be regarded de facto as local ones (comparable with those of Ks at laboratory scale). Of
course, matters would result completely different if one aims at inferring the statistics of a (or of any other
random variable) by using the ensemble average of the flow variables [see, e.g., Severino et al., 2003]. In this
case, due to the completely different size of the involved volume support, the comparison between local
and field scale measurements should also account for the proper upscaling [see, e.g., Russo, 2003; Severino
and Santini, 2005; Severino and Coppola, 2012].

To investigate whether f and Y can be considered cross-correlated, we have used the Student’s t test with
t ’ rfY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn22Þ=ð12r2

fYÞ
q

, being rfY the estimate of the correlation coefficient, i.e.,

rfY �
rfY

rf rY
’

X
i

ðfi2
�fÞðYi2�Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

f2
i

 ! X
i

Y2
i

 !vuut
50:143; ði51; � � � ; 82Þ: (39)

Since it yields t 5 1.292 (n 5 82), the null hypothesis (H0: qfY � 0) cannot be rejected till to the 10% of confi-
dence (it is remained that 1:292 ’ t0:10). The residuals ðf0; Y 0Þ along with the regression-line and the 95%

confidence-limits are displayed in Figure 4. The weak
correlation, which is detected at a first glance (by the
modest slope of the regression-line), is also con-
firmed by the Fisher-test (p -value �5:72 %). How-
ever, for the experiment at stake, such a correlation
is not statistically significative (at the 5% of confi-
dence). The same findings were observed into similar

Figure 3. Cumulative distribution functions of measured (symbols) Y � ln Ks (blue) and
f � ln a (red). Continuous lines represent the respective fitted theoretical CDFs. The satu-
rated conductivity Ks and the a-parameter are expressed in cm=h and cm21, respectively.

Table 2. Intervals of (5%)-Confidence of ru=luð Þ2 as Deter-
mined by the u-Data, and by the Expression exp r2

ln u

� �
21

ðru=luÞ2 ln Ks ln a

u-data 0; 697; 2; 32½ � 5; 27; 10; 4½ � � 1022

exp r2
ln u

� �
21 1; 59; 9; 85½ � 5; 38; 10; 5½ � � 1022
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previous studies [Wierenga et al., 1991;
Russo and Bouton, 1992; Russo et al.,
1997].

More generally, even if a positive correla-
tion may result important for the vari-
ance of the unsaturated conductivity
K � KðWÞ [see, e.g., Russo et al., 1997], it

is worth noting here that, into studying the impact upon the flow and transport processes, one can still
regard (along the lines suggested by Russo and Bouton [1992]) Y � ln Ks and f � ln a as uncorrelated ran-
dom fields (the weak positive correlation notwithstanding). More important is the fact that in coarser-
textured soils (like the one at the Ponticelli site) the cross correlation is found of scarce importance [see,
e.g., Ragab and Cooper, 1993a, 1993b; Tartakovsky et al., 1999]. Finally, in the case of the Ponticelli site, the
a-parameter can be regarded as a given constant (see below), and this further underpins the neglect of the
Y– f correlation. Thus, for all these reasons we feel comfortable disregarding the cross correlation between
Ks and a.

Though our general theory allows one dealing with a variance of f of the same order of that of Y, the soil
properties of the Ponticelli site (see Table 1) show that r2

f=r
2
Y 5O 1022

� �
, and therefore one can disregard

the variability of the former as compared with that of the latter. This is tantamount to assume a everywhere
equal to aG. Hence, we can limit our analysis to the zero-order approximation in rf, and to the second-order
approximation in rY.

5.2. Spatial Heterogeneity-Structure of Y
The problem of quantifying the spatial structure (autocorrelation) of Y is rather complicated, even when
measurements are numerous. The procedure should involve several steps: (i) an hypothesis about the
functional model of the covariance, (ii) estimates of the parameters of such a model, and (iii) a model val-
idation test [see, e.g., Russo and Bouton, 1992; Russo et al., 1997]. The problem of selecting the most
appropriate model remains to some extent in the realm of the practical applications [Rubin, 2003]. The
prevailing approach is the pragmatic one: select a model for its practicality/versatility as well as its per-
formance in similar situations, determine the parameter(s), and check subsequently its usefulness by
matching against to real data. Thus, by adopting this stand point, and in line with the model structure
(6), for the horizontal autocorrelation (for simplicity hereafter denoted by qh) we select the Gaussian
model, i.e.,

qhðxhÞ � exp 2p
xh

2 I

	 
2
� �

(40)

(with IY � I). Hence, the horizontal integral scale was estimated by considering the two sampling depths,
separately (Figure 5). The results were nevertheless quite similar leading to I � 20 m. Note that the rela-
tively large value of the horizontal integral scale I is not surprising due to the stratified nature of the vadose
zone at stake, and it significantly differs from its other counterparts [e.g., Russo and Bouton, 1992; Russo
et al., 1997]. It has to be noted that, given the ratio L=I ’ ð50 mÞ=ð20 mÞ between the transect length-scale
L and I, the flow domain cannot be regarded ‘‘into a strict sense’’ as ergodic. In fact, only when the flow
domain is large enough with respect to the integral scales of the RSF, the spatial average of the single (avail-
able) realization can be replaced with the ensemble mean. Otherwise, the spatial average is only an esti-
mate of the ensemble mean, which in turn is affected by uncertainty. In particular, for a domain of finite
size such an uncertainty increases with both the coefficient of variation and the size of the integral scales of
the spatially variable hydraulic properties.

However, a previous study conducted by Comegna and Basile [1994] about the spatial distribution of the
soil hydraulic properties in the same site (and involving a much larger domain) has led to a similar statistical
characterization. Thus, given this extra information, we feel comfortable about the fact that the domain at
the Ponticelli site can be regarded as approximately ergodic. Last, as it will be clearer later on, the good
matching between theoretical and experimental values provides (among the others) a posteriori justifica-
tion of the presumed ergodicity (the numerous approximations, source of uncertainties, and measurement-
errors notwithstanding).

Table 3. Intervals of 5%-Confidence for the Estimates of the Mean and
Variance of Y at Laboratory and Field Scale

Scale hYi r2
Y Number of Data

Laboratory 199; 261ð Þ � 1022 142; 267ð Þ � 1022 82
Field 227; 293ð Þ � 1022 150; 287ð Þ � 1022 70
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To complete the spatial charac-
terization of Y at the Ponticelli
site, the vertical autocorrelation
(hereafter denoted by qv) has to
be identified. However, the
scarce availability of Ks-meas-
urements along the vertical
does not enable one to identify
qv by the same procedure
which we used for the horizon-
tal autocorrelation. Thus, we
used geological information to
gain insight about the shape of
qv. More precisely, the analysis
of the texture suggests that the
soil is a sedimentary structure-
less sand [Severino et al., 2010].
This is also confirmed by the
geological pattern of the forma-
tion: subsequent depositions of
different (erupted) materials
[Comegna et al., 2010], and

therefore the soil can be sought as a collection of sedimentary lenses each one exhibiting different Y-values
from one lense to the other. This is a typical feature of those formations where the vertical correlation scale is
found to be much lesser than the horizontal one [Russo and Bresler, 1981]. In this case the soil property is charac-
terized by a complete lack of vertical correlation, thus authorizing to replace the vertical autocorrelation with a
Dirac distribution, i.e., qv � d. Such an approximation (also known as d-correlation) was adopted in previous
studies pertaining to both the vadose zone [e.g., Indelman et al., 1993; Severino and Santini, 2005; Severino and
Coppola, 2012], and the aquifers [e.g., Fiori et al., 1998; Indelman and Dagan, 1999; Severino, 2011b; Severino et al.,
2012b; Severino and Bartolo, 2015]. We apply the statistical characterization obtained by dealing with the first
meters to the entire flow domain (�40 m). Such a choice is justified on the basis of the available geological

Figure 4. Residuals of Y versus residuals of f. The linear regression and the associated 95%
confidence-limits are represented by solid and dashed lines, respectively.

Figure 5. Horizontal autocorrelation function for the log-conductivity Y. Symbols pertain to the measured values, whereas the continuous
line refers to the Gaussian model (40) with I � 20:5 m.
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information [Terribile et al., 2007]
suggesting that the soil at
stake can be thought as a con-
tinuous sequence of thin strati-
fied (mainly erupted) materials
of the same type of those
detected at the shallow depths.
At any rate, from a general point
of view, it is reminded that any
statistical characterization of the
soil’s hydraulic properties based
upon shallow measurements is
not enough for the entire flow
domain. A rigorous (methodolog-
ical) approach would require a
dense sampling campaign at all
the depths (similarly to Russo and
Bouton [1992]; Russo et al. [1997]).

With the input parameters and
the autocorrelation functions
identified so far, we are in posi-
tion to compute the (cross)-var-
iances rWY and r2

W . By omitting
the (very lengthy) algebraic der-
ivations, the final result is:

rWY zð Þ5rWY 1ð Þ
FWYðzÞ

fjðzÞ
; r2

W zð Þ5r2
W 1ð Þ

FWðzÞ
f 2
j ðzÞ

(41)

FWYðzÞ512
Kð2zÞ
Kð0Þ ð112pz2Þ1 2z

Kð0Þ exp ð2zÞ; (42)

FWðzÞ512
Kð2zÞ
Kð0Þ 112pz½12exp ð2zÞ�f g1 2

Kð0Þ ½exp ð2zÞ2exp ð22zÞ�; (43)

being K að Þ5exp 11 pað Þ2
4p

h i
erfc 11pa

2
ffiffi
p
p

	 

, whereas rWY 1ð Þ52

Kð0Þ
2 k Ir2

Y and r2
W 1ð Þ5

Kð0Þ
2 k ðIrYÞ2 are the far

field (large z) values of (41). Note that we have set kY � k, for simplicity. It is seen that the functions xWYðzÞ
� rWY zð Þ=rWY 1ð Þ and xWðzÞ � r2

W zð Þ=r2
W 1ð Þ are weights driving the transition (see Figure 6) of the

(cross)variance (41) from the water table, where xWYð0Þ5xWð0Þ50, to the far field, where
xWYð1Þ5xWð1Þ51. Note that the rate of the transition from the water table to the far field with the infil-
tration flux q0 is regulated by the term fj � fjðzÞ, solely. Due to its multiplicative structure, the quantity j
exp ð2zÞ is significantly different from zero only when z 	 1, i.e., close to the water table. To the contrary,
away from the water table (i.e., z 
 1) one has fj � 1, in agreement with Severino and Santini [2005].

We are now in position to com-
plete the characterization of
the heterogeneity structure of
the field at stake by identifying
the anisotropy ratio k by means
of the variance r2

W of the pres-
sure head. This implies that the
steady state W-measurements
are required, and therefore
before going further it is worth
exploiting the experimental

Figure 6. Dependence of the weight-functions (horizontal axe) xWY –xW upon the depth z
(normalized by a21

G 527:4 cm). The parameter j associated to the infiltrating non
dimensional flux (q0524:21 � 1022) is j511q21

0 5222:8.

Table 4. Steady-State Values of the Experimental Spatial: (i) Mean, W , of the Pressure
Head; (ii) Cross-Variance, �rWY ; (iii) Head-Variance, �r2

W ; and (iv) Number of Samples, N, at
the Three Sampling Depths Lying at: (i) z540:020:9539:1m (the Deepest), (ii) z540:02

0:6539:4m (Intermediate), and (iii) z540:020:9539:7m (the Shallowest) Above the
Water Table Which Is 40 m Deepa

z ð2Þ W ð2Þ �rWY ð2Þ �r2
W ð2Þ N

145 23.60 26:88 � 1022 7.60 35
144 22.87 29:55 � 1022 12.3 37
143 22.52 21:30 � 1021 15.5 36

aMoments, i.e., �rWY – �r2
W , and depths, i.e., z, have been made dimensionless by adopt-

ing a21
G 527:4 cm as length scale.
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data set which has been used for such a
purpose. Indeed, during another stage of
the experimental campaign (aiming to
monitor a solute transport process), the
plot was irrigated (4:2 � 1021 cm=h) until
stationary (steady) values of the pressure
head W (and water content, as well) were
detected at the sampling depths along
the trench. By this time, pressure-head
values were read at the tensiometers

along the trench, and the statistical (dimensionless) moments, which are of interest for the present study,
are summarized in the Table 4.

Since the sampling depths lie very far from the water table (details are in the caption of Table 4), it yields
from Figure 6 that xWðzÞ ’ xWð1Þ � 1, and concurrently one can use the asymptotic value of the head
variance to estimate the anisotropy ratio k. The legitimacy of using the asymptotic r2

W 1ð Þ for calibration
purposes is corroborated by the fact that the far field W0ð1Þ of the mean head lies within the interval of
confidence of the mean pressure-heads (Table 5). The anisotropy ratio k is approximately 2:4 � 1023. It is
interesting to note that such an estimate implies that Iv5k I � 5 cm, a value which is in line with the geo-
logical information [Comegna et al., 2010] about the thickness of the strata, i.e., Oð10 cmÞ, detected at the
experimental site.

In the Figure 7 we have depicted the far field value of the pressure-head variance (continuous red line) as
calibrated by means of the experimental (red symbols) values. In the same figure, we also compare the far
field cross variance (continuous black line) against to the experimental (black symbols) values which were
not used for the above calibration. Note that the deviations of the experimental far field rWY and r2

W from
their theoretical (i.e., constant) counterparts lie within the errors of measurements of the tensiometers
[Comegna et al., 2006, 2010]. Thus, the matching between theoretical and experimental rWY represents a
satisfactory validating benchmark.

After determining all the relevant quantities required by the flow model, we are in position to make predic-
tions upon the behavior of the FVs in the close vicinity of the water table. To this end, we wish to point out
here that direct measurements would have been tremendously time consuming and expensive, and most

Table 5. Lower, i.e., W lower � W2�rW=
ffiffiffiffi
N
p

, and Upper, i.e., Wupper �
W1�rW=

ffiffiffiffi
N
p

, Limit of the Interval of Confidence of the Mean Pressure Head
as Determined From Data at the Three Sampling Depths (Table 2), Along
With the Asymptotic Mean Value W0ð1Þ � ln 2q0ð Þ5ln ð4:21 � 1022Þa

z W lower W0ð1Þ Wupper

145 24.1 23.2 23.1
144 23.5 23.2 22.3
143 23.2 23.1 21.9

aPressure-head values and depths have been made dimensionless by
adopting a21

G 527:4 cm as length scale.

Figure 7. Distribution of the cross-variance rWY (black), and the head-pressure variance r2
W (red) along the depth z (from the water table).

Symbols refer to the experimental measurements, whereas continuous lines pertain to the far field values of (41).
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of them probably even impossible since the water table is 40 m deep. This further underpins the usefulness
of our model to predict the behavior of flow (and transport) variables by relating shallow measurements
(which can be carried out with a relatively ease) to depths of the vadose zone which are practically
unaccessible.

6. Discussion

We wish to illustrate how the developed stochastic model can be used to grasp the behavior of the flow
variables close to the water table. The input parameters are those determined by the set of real data per-
taining to the Ponticelli site (Naples, Italy).

Due to its importance in the applications (e.g., quantifying the recharge of the aquifers and/or determining
the solute mass arrivals at the water table), we mainly concentrate the present discussion upon the uncer-
tainty qualification of flux q along the depth z. To compute the variance of this latter, the starting point is
the first-order approximation (19), which is rewritten here as

qð1ÞðxÞ ’ 2KrðW0ÞrW1ðxÞ1q0 W1ðxÞ1Y 0ðxÞ½ �ez; (44)

to account for the approximations which we have shown to be valid for the Ponticelli-site. To derive the var-
iance of the flux in the horizontal plane, we take advantage from the stationarity of the flow variables there.
Thus, we write the horizontal component qð1Þh of the fluctuation (44) by means of its spectral (Fourier trans-
form) representation, i.e.,

qð1Þh ðxh; zÞ5J KrðzÞ
ð

dk
2p

k ~W1ðk; zÞ exp ð2J k � xhÞ (45)

being

~W1ðk; zÞ52q0
exp ð2z=2Þ

KrðzÞ

ð1
0

dn ~Y
0ðk; nÞ d

dn
exp

n
2

� �
Gbðz; nÞ

� �
(46)

the horizontal (2D) Fourier transform of the pressure-head fluctuation. For ease of notation, we have set
KrðW0Þ � KrðzÞ. Taking the square of (45), and accounting for the property

h~Y 0ðk1; z1Þ ~Y
0ðk2; z2Þi52pk r2

Ydðk11k2Þ~qhðk2Þdðz12z2Þ (47)

leads (after introducing polar coordinates) to:

r2
qh
ðzÞ5k q0rYð Þ2exp ð2zÞ

ð1
0

dk k3~qhðkÞ Gbðz; zÞ; (48)

Gbðz; fÞ �
ð1

0
dn

d
dn

exp
n
2

� �
Gbðz; nÞ

� �
d

dn
exp

n
2

� �
Gbðf; nÞ

� �
: (49)

Note that, due to the stationarity of the flux in the isotropy (horizontal) plane, the variance (48) does
not depend upon xh. To compute Gbðz; zÞ, we preliminarily note that upon integrating by parts in (49) it
yields

Gbðz; fÞ52

ð1
0

dnexp
n
2

� �
Gbðz; nÞ

d2

dn2 exp
n
2

� �
Gbðf; nÞ

� �
: (50)

Then, by recalling that Gbðf; nÞ is such that d2

dn2 Gbðf; nÞ2 b2

4 Gbðf; nÞ5dðn2fÞ, one has

d2

dn2 exp
n
2

� �
Gbðf; nÞ

� �
5exp

n
2

� �
b211

4
Gbðf; nÞ1

d
dn

Gbðf; nÞ1dðn2fÞ
� �

; (51)

and therefore substitution into the last of (50) gives

Gbðz; fÞ52exp ðfÞGbðz; fÞ2
b211

4

ð1
0

dnexp ðnÞGbðz; nÞGbðf; nÞ2
ð1

0
dnexp ðnÞGbðz; nÞ

d
dn

Gbðf; nÞ: (52)

The function Gbðz; zÞ is now computed by taking the limit f! z into (52), i.e.,
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Gbðz; zÞ5 lim
f!z
Gbðz; fÞ52exp ðzÞGbðz; zÞ2 b211

4

ð1
0

dnexp ðnÞG2
bðz; nÞ2

1
2

ð1
0

dnexp ðnÞ d
dn

G2
bðz; nÞ; (53)

and carrying out integration by parts in the last integral, to have

Gbðz; zÞ52exp ðzÞGbðz; zÞ2 b221
4

ð1
0

dnexp ðnÞG2
bðz; nÞ: (54)

Evaluation of the straightforward integral on the right hand side of (54) leads to

Gbðz; zÞ5 1
2

exp ðzÞ½b1222exp ð2bzÞ�2bexp ð2bzÞf g: (55)

Hence, the variance (48) reads as

r2
qh
ðzÞ5r2

qh
ð1ÞxqhðzÞ; xqhðzÞ � 12exp ð2zÞ12z

ð4p2z216p21ÞKð2zÞ12ð122pzÞexp ð2zÞ
141ð6p21ÞKð0Þ ; (56)

being r2
qh
ð1Þ5 p

8 141ð6p21ÞKð0Þ½ �k q0 rYð Þ2 the far field (large z). Like above, it is seen (Figure 8) that the

function xqh � xqhðzÞ is a depth-dependent weight describing the transition of r2
qh
ðzÞ from the water table,

where xqhð0Þ � 0, till to its far field, corresponding to xqhð1Þ � 1. It is interesting to note that r2
qh
6¼ 0 (for

z> 0) although the mean flux is purely vertical everywhere in the flow domain. This is due to the fact that,

unlike the mean, the fluctuation of the flux (and therefore the variance) has a three-dimensional structure.

Instead, the vanishing of r2
qh

at the water table (z 5 0) is explained by the deterministic nature of the head

there which requires ~W1ðk; 0Þ � 0 (see (45)–(46)).

The variance r2
qz
� hqð1Þ2z i of the vertical flux is computed by the same token. Thus, starting from the

fluctuation

qð1Þz ðxÞ52KrðzÞ
@

@z
W1ðxÞ1q0 W1ðxÞ1Y 0ðxÞ½ �; (57)

the variance of the vertical flux reads as

Figure 8. Dependence of the weight function xqh � xqh ðzÞ (horizontal axe) upon the dimensional depth z (vertical axe).
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r2
qz
ðzÞ5K 2

r ðzÞh
@

@z
W1ðxÞ

@

@z
W1ðxÞi1q2

0 r2
Y 12 rWYðzÞ1r2

WðzÞ
� �

22 q0 KrðzÞ
1
2

d
dz

r2
WðzÞ1hY 0ðxÞ

@

@z
W1ðxÞi

� �
:

(58)

To compute the two still left ensemble averages, we make use of the spectral representation of (46), i.e.,

W1ðxh; zÞ �
ð

dk
2p

exp ð2J k � xhÞ ~W1ðk; zÞ5gðzÞ
ð1

0
dn
ð

dk
2p

exp ð2J k � xhÞ ~Y
0ðk; nÞ d

dn
exp

n
2

� �
Gbðz; nÞ

� �
(59)

leading to

D @
@z

W1ðxÞ
@

@z
W1ðxÞ

E
5k r2

Y g2ðzÞ L2ðzÞ!ðz; fÞ12LðzÞ @
@f

!ðz; fÞ1 @2

@z@f
!ðz; fÞ

� �
f�z

(60)

hY 0ðxÞ @
@z

W1ðxÞi5
k r2

Y

4 fjðzÞ
FðzÞ; (61)

FðzÞ5 41Kð2zÞ2Kð0Þ½ �LðzÞ1p 112z12pz2
� �

Kð2zÞ1Kð0Þ
� �

2ð112pzÞexp ð2zÞ25; (62)

where LðzÞ � d
dz ln gðzÞ½ �52

11jexp ð2zÞ
2½12jexp ð2zÞ�, and !ðz; fÞ �

Ð1
0 dk k qhðkÞ Gbðz; fÞ. It is therefore clear that the

crux of the matter to derive the variance (58) is the computation of the !-function as well as its derivatives.
With the details in Appendix B, equation (58) reads as

r2
qz
ðzÞ

ðq0 rYÞ2
5112

rWYðzÞ
r2

Y
1

r2
WðzÞ
r2

Y
11fjðzÞ

d
dz

ln r2
WðzÞ

� �
2

k
8

4L2ðzÞ!1ðzÞ14LðzÞ!2ðzÞ1!3ðzÞ24FðzÞ
� �

; (63)

being the !i-functions given in equations (B6 and B7) of Appendix B. In particular, the far and near field of
r2

qz
are:

r2
qz
ð1Þ

ðq0 rYÞ2
512

k
4

1117p1
3
2
ð2p22p11ÞKð0Þ

� �
;

r2
qz
ð0Þ

ðq0 rYÞ2
512

k
4

142pKð0Þ½ �; (64)

respectively. It is seen that r2
qz
ð1Þ < r2

qz
ð0Þ which is due to the fact that at the groundwater (z 5 0) particles

move much more freely (due to the absence of retention there) as compared with the unsaturated zone,

Figure 9. Normalized variance r2
qz
ðzÞ=r2

qz
ð1Þ of the vertical specific flux as a function of the (dimensional) depth from the water table

under a few values of the dimensionless infiltration rate q0. Thick dot-line pertains to the normalized infiltration rate during the experiment
at the Ponticelli site.

Water Resources Research 10.1002/2017WR020554

SEVERINO ET AL. NONSTATIONARY UNSATURATED STEADY FLOWS 6703



and concurrently par-
ticles experience larger
deviation from the
mean vertical velocity,
therefore giving rise to
a larger variance. The

normalized variance r2
qz

ðzÞ=r2
qz
ð1Þ of the verti-

cal specific flux along z
(expressed in m) is
depicted in the Figure
9. Close to the water
table the fluctuation

Wð1Þ of the pressure
head undergoes to the
largest variations, as
it is clearly detected
by the pattern of xW

in the Figure 6, and
concurrently so does
(see (44)) the fluctua-

tion qð1Þz � qz2qð0Þz . This
explains why the major
source of uncertainty

(i.e., large r2
qz

) of the vertical flux is concentrated next above the water table. Such an out-coming is also in

agreement with the large time limit of the numerical results of Ferrante and Yeh [1999]. Furthermore, it is
worth reminding that the infiltrating flux q0 is the upper boundary condition that, being at z !1, does not
significantly impact the behavior of the variance of the vertical specific flux at z 5 0. This explains the scarce

sensitivity of r2
qz

to the infiltrating flux q0 close to the water table (see also the discussion in Wang et al.

[2009]. To quantify the distortion effect upon the mean head hWi as determined by the heterogeneity of the

Ponticelli’s soil, in the Figure 10 we have depicted the quantity wðzÞ=r2
Y versus the (dimensional) depth from

the water table. Results show that w decreases with decreasing q0. In particular, the result:

wð0Þ52r2
Y

k
2j

pKð0Þ1 11j
12j

� �
> wð1Þ � 0 (65)

(it is reminded that j � 0) is explained by the fact that close to the water table the pressure head attains
the highest values, and therefore w results larger than its far field. It is worth reminding that a utility of the
definition (38) is that one can filter out from the second-order correction hW2ðzÞi the impact of the zero-
order one W0, this latter being highly sensitive to the influx q0 (see Figure 2), and concurrently w accounts
exclusively for the heterogeneity of the vadose zone. This explains the slight dependence of w � wðzÞ (Fig-
ure 10) upon the magnitude q0. Of course, to recover the effective dependence of hW2ðzÞi upon the infiltra-
tion flux, the depth, and the medium’s heterogeneity, one has to consider the product wðzÞW0ðzÞ.

The distance at which stationarity is reached is roughly 3 m, similarly to r2
qz

(see Figure 9). An analogous
conclusion was achieved by Zhang and Winter [1998]. An important (often overlooked) question is about
the asymptotic nature of the perturbation expansions (8). In fact, for the perturbation expansion hWi5W01

hW2i to be asymptotic, it is necessary that hW2i 	 W0, a condition which, from equation (38), is equivalent
to w	 1. Hence, it is seen (Figure 10) that w=r2

Y �1022 (any z and q0), and therefore, as far as the heteroge-
neity of Y is accounted for, our solution for hWi is accurate till to r2

Y 5Oð1Þ. In other words, although the per-
turbation expansion (8) is nominally restricted to mildly heterogeneous vadose zones, it works de facto
quite well for relatively highly heterogeneous unsaturated porous formations (in analogy to what is
observed in the aquifers, see e.g., Fiori et al. [2010]). Similar conclusions were drawn by Tartakovsky et al.
[1999] for a one-dimensional vadose zone.

Figure 10. Distribution of the scaled head-factor wðzÞ=r2
Y as computed from (38), and accounting for

the data of the Ponticelli site along the dimensional depth z from the water table (z 5 0), and a few
values of the dimensionless infiltration rate q0. Thick dot-line pertains to the normalized infiltration
rate (i.e., q0524:21 � 1022) during the experiment at the Ponticelli site.
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7. Conclusions

We have developed a stochastic model for three-dimensional steady flows in the vadose zone accounting
for the presence of the water table. The system the governing equations is solved at first-order of approxi-
mation in the variances of the log-transforms of: (i) the saturated conductivity Ks, and (ii) the a-
parameter of the Gardner [1958] model. Very general expression of the statistical (second-order)
moments of the pressure head and specific flux are then obtained. These moments are expressed
into analytical (closed form) expression which can be easily evaluated once the statistical structure of
the above soil parameters is specified. One of the main result of the present paper is the general
representation hWi5W0ðzÞHðzÞ with HðzÞ511wðzÞ. The term w has been derived in a closed form
which is easily evaluated after specifying the shape of the various correlation functions (6). In partic-
ular, it is shown that at large distances one has wð1Þ50, and concurrently hWð1Þi � ln ð2q0Þ, which
coincides with the result valid for an unbounded vadose zone. Instead, at the water table it yields
wð0Þ <1, and therefore we recover hWð0Þi � 0, that is understandable due to the deterministic
nature of the pressure head at the water table. The overall utility of the proposed model is that it
enables one to assess, into a simple and quick manner, the impact of the water table upon the non-
stationary behavior of the FVs, by providing, in particular, explicit relationships between the input
parameters and the model output.

Besides the general relevance, results of the present paper are shown to be useful toward the practical
applications. Indeed, the model is tested against a recently conducted flow experiment in the vadose zone
[Comegna et al., 2010; Severino et al., 2010, 2016a]. We use independent (no calibration) univariate analysis
to identify the mean, and variance of Y5ln Ks and f5ln a. In particular, the significantly small (�2 orders of
magnitude) variance of f as compared with that of Y authorizes limiting our analysis to the zero-order
approximation in rf , and to the second-order approximation in rY. By using the same data set, we deter-
mine the horizontal integral scale I pertaining to Y, whereas to identify the anisotropy ratio k we have used
three batteries of (shallow) steady state measurements of the pressure head W. To check the reliability of
the estimated value of k, we have compared the experimental cross-variance W–Y as determined by inde-
pendent (i.e., not used for calibration purposes) data against to the theoretical asymptotic cross-variance
rWYð1Þ. The very satisfactory comparison (combined with prior geological information) with the measure-
ments corroborates the achieved results.

Once the input soil properties are identified, we have analyzed the flow behavior close to the water table.
The listed below major conclusions were achieved:

1. the infiltrating flux q0 and the integral scaleIimpact the stationary values of the specific flux ðqh; qzÞ>,
whereas they have a limited influence upon the distance from the water table at which such stationary
values are attained;

2. from the application point of view, one can estimate the thickness of the flow domain where the
nonstationary is dominant by means of a 1-D Richards equation (i.e., valid for the vertical mean pressure
head hWi).

Although we have limited the discussion to the data of the Ponticelli’s experiment, the vadose zone flow
model derived in the present study is rather general. Thus, one can assess the impact of: (i) the spatial vari-
ability of the f-parameter, (ii) the cross-correlation Y– f that in some circumstances may result relevant [see,
e.g., Russo et al., 1997], and (iii) the various correlation length scales. These studies are topics of ongoing
researches. Finally, we also hope that our results will be beneficial for other theoretical/experimental studies
dealing with flow (and transport) under similar conditions.

Appendix A: Derivation of CWc and CW

We preliminarily switch into (27) to the new variable rh5xh2x0h � ðx2x0; y2y0Þ 2 R2, and subsequently
take the (2-D) Fourier transform: ~f kð Þ5ð2pÞ21 Ð drh exp jk � rhð Þf rhð Þ in the horizontal plane rh 2 R2, to
have:

Lk2 ~Uðk; z; z0Þ52
ffiffiffiffiffiffiffiffiffi
2q0
p

exp
z
2

	 
 d
dz

�rYc ~qhðkIYcÞ qv
z2z0

�kYc

� �
1�rfc W0ðzÞ ~qhðkIfcÞqv

z2z0

�kfc

� �� �
(A1)
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where we have set La � d2

dz2 2 a1 1
4

� �
; �rgc � rgcIgc, and �kgc � kgcIgc ðg5Y; fÞ. Thus, in the mixed domain

fðk; zÞ : k 2 R2; z � 0g the resulting ODE is solved by the Green function (30), solution of the problem:
Lk2 Gbðz; z0Þ5dðz2z0Þ, to end up (after integrating by parts) with

~CWc k; z; z0ð Þ5g zð Þ
ð1

0
dn �rYc ~qhðkIYcÞqv

n2z0

�kYc

� �
1�rfc W0ðnÞ ~qhðkIfcÞqv

n2z0

�kfc

� �� �
d

dn
exp

n
2

� �
Gb z; nð Þ

� �
:

(A2)

In order to calculate the inverse of (A2) we need to evaluate the following integral:

IðrÞ5
ð

dk
2p

exp 2jk � rð ÞsðkÞ; (A3)

being s any integrable function depending only upon the modulus of the wave number k. Thus, we
first adopt polar coordinates: k cos h; sin hð Þ, and subsequently choose the polar axis k in the direction of
r, so that k � r5k rcos h. By noting that

Ð 2p
0 dhexp 2jk rhcos hð Þ52pJ0 k rð Þ, (A3) writes as IðrÞ5Ð1

0 dk k J0 k rð Þ sðkÞ. This together with (A2) leads to (28).

To compute the head-covariance CW, we proceed into a similar manner. Thus, we first apply the transforma-
tion (26) (with CWc replaced by CW) to convert (31) into the following:

r2Uðx; x0Þ2 1
4

Uðx; x0Þ52
ffiffiffiffiffiffiffiffiffi
2q0
p

exp
z
2

	 
 @
@z

CWY x0; xð Þ1hW zð ÞiCWf x0; xð Þ½ �: (A4)

Then, we apply the 2-D Fourier transform to (A4) and solve for the Fourier transform of the function U (we
omit the straightforward derivations). Hence, the Fourier transform ~CWðk; z; z0Þ5 ffiffiffiffiffiffiffiffiffi

2q0
p exp ð2z=2Þ

Kr ½W0ðzÞ�
~Uðk; z; z0Þ

of the head-covariance reads as

~CW k; z; z0ð Þ5g zð Þ
ð1

0
dn ~CWY k; z0; nð Þ1W0 nð Þ~CWf k; z0; nð Þ
� � d

dn
exp

n
2

� �
Gb z; nð Þ

� �
: (A5)

Substitution of (A2), and taking the inverse Fourier-transform of (A5), leads to (32).

Appendix B: Computation of the Variance r2
qz

of the Vertical Flux

To this aim, we preliminary observe that

@

@f
Gbðz; fÞjf�z5

1
4

2b21ð Þexp ð2zbÞ2 exp ðzÞ
4b

b216b221 b223b12
� �

exp ð2zbÞ
� �

(B1)

@2

@z@f
Gbðz; fÞjf�z5

1
8

b322b212b22
� �

exp ð2zbÞ1

2
exp ðzÞ

8b
b412b314b214b2222 2b322b214b21

� �
exp ð2zbÞ

� �
:

(B2)

The derivatives (B1)–(B2) have been obtained (we omit the very lengthy algebraic derivations) by: (i) differ-
entiating (52), (ii) accounting for (54), and (iii) making use of the straightforward identities

2
@

@z
Gbðz; nÞ5

@

@n
Gbðz; nÞ1exp 2

1
2
ðz1nÞb

� �
; (B3)

2
@2

@z@n
Gbðz; nÞ5

b2

4
Gbðz; nÞ1d n2zð Þ2 b

2
exp 2

1
2
ðz1nÞb

� �
: (B4)

By recalling that: (i) !ðz; fÞ �
ð1

0
dk k qhðkÞ Gbðz; fÞ, (ii) @

@f !ðz; fÞ �
ð1

0
dk k qhðkÞ @

@f Gbðz; fÞ and (iii)

@2

@z@f !ðz; fÞ �
ð1

0
dk k qhðkÞ @2

@z@fGbðz; fÞ, one ends up (after taking the limit f! z, and carrying out the

quadrature over k) with

!ðz; fÞjf�z52
1
2

exp ðzÞ!1ðzÞ;
@

@f
!ðz; fÞjf�z52

1
4

exp ðzÞ!2ðzÞ;
@2

@z@f
!ðz; fÞjf�z52

1
8

exp ðzÞ!3ðzÞ (B5)
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!1ðzÞ5pð2pz222z11ÞKð2zÞ2pKð0Þ12exp ð2zÞ2ð2pz21Þexp ð22zÞ23; (B6)

!2ðzÞ5ðp21ÞKð0Þ2ð2p2z222pz1p21ÞKð2zÞ1ð4pz21Þexp ð22zÞ22ðpz11Þexp ð2zÞ17; (B7)

!3ðzÞ5 6p214p21ð ÞKð0Þ2 8p4z428p3z314p2 6p21ð Þz226p 2p11ð Þz16p222p21½ �Kð2zÞ1

1 8p3z314p2z212pð10p11Þz12p11½ �exp ð22zÞ28 2p2z212p11ð Þexp ð2zÞ114p111:
(B8)
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