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Abstract
Pairwise interactions are critical to collective dynamics of natural and technological systems.
Information theory is the gold standard to study these interactions, but recent work has identified
pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual
information and transfer entropy. These pitfalls have prompted the introduction of intrinsic
mutual information to precisely measure information flow. However, little is known regarding the
potential use of intrinsic mutual information in the inference of directional influences to diagnose
interactions from time-series of individual units. We explore this possibility within a minimalistic,
mathematically tractable leader–follower model, for which we document an excess of false
inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding
is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same
sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection
of the null-hypothesis of independence.

1. Introduction

Information theory [1] has emerged as a powerful framework to study causal relationships underpinning the
collective dynamics of complex systems. Without the need of a mathematical model to be identified or
experimental manipulations to be conducted, information theory allows for deciphering the strength and
direction of interactions between coupled units from mere experimental observations of their dynamics. For
example, through the lens of information theory, researchers have clarified the differences between
anatomical and functional networks in the brain [2, 3], quantified the role of media and policy on human
decision-making [4, 5], identified physical pathways underlying climate change across the globe [6, 7], and
detected leaders in groups of animals [8–10].

Most of these efforts rely on the notion of transfer entropy, formulated by Schreiber two decades ago to
study pairwise, asymmetric interactions between coupled dynamical systems [11]. In its classical incarnation,
transfer entropy measures the extent to which knowledge about the present state of a dynamical system
(source) helps reduce the uncertainty in the prediction of the future of another dynamical system from its
present (target). Transfer entropy can be readily calculated from raw time-series [12], as its computation only
requires the determination of the joint probability mass function for the present and future of the target and
the present of the source. Likewise, hypothesis-testing with transfer entropy is easy to perform [13, 14]; for
example, permutation tests can be implemented to assess whether transfer entropy is different from zero
with a given confidence level, so that the null-hypothesis of independence of the target from the source can
be rejected.
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Over the years, the seminal work of Schreiber has been extended along several threads that have made
transfer entropy ubiquitous among theorists and practitioners. For example, Sun and Bollt have successfully
addressed multivariate interactions in network systems, building on the notion of conditional transfer
entropy [15]. Runge et al introduced the notion of momentary information transfer, which excludes
misleading influence of autodependency to better detail the coupling strength between the units [16].
Likewise, Staniek has tapped into symbolic dynamics to improve the robustness of transfer entropy-based
inference, especially when dealing with short time-series [17]. Despite this growing body of sound
methodological efforts and successful applications to real datasets, there are still open questions about the
theoretical interpretation and practical use of transfer entropy.

The work of James et al has brought an important critique to transfer entropy, by offering concrete
examples of systems with exclusive OR interactions that defeat one’s intuition [18]. Specifically, the authors
point at potential ‘interpretational errors, some quite subtle . . . including overestimating flow,
underestimating influence, and more generally misidentifying structure when modeling complex systems as
networks with edges given by transfer entropies.’ At the core of the critique is the impossibility to
mechanistically associate transfer entropy between two dynamical systems with the information flow or
transfer between them.

Building on this key limitation, James et al [19] have recently detailed information flow within a pair of
dynamical systems, distinguishing multiple, co-existing modalities of information flow that have been
erroneously compounded in the literature. Among them, ‘intrinsic information flow’ pertains to the
predictive power that the present of the source alone has on the target’s future, independent of the target’s
present: this quantity is what is routinely referred to as information flow (but seldom precisely measured). To
quantify intrinsic information flow, the authors propose a cryptographic flow ansatz, which hypothesizes
intrinsic flow to be equivalent to the secret key agreement between the two systems [20]. Such an ansatz is
practically determined using an easy-to-compute upper bound, called intrinsic mutual information. The use
of intrinsic mutual information in the study of leader–follower interactions has been explored by Sattari et al
[21]. Through computer simulations of pairs and groups of self-propelled Vicsek-like particles [22], the
authors have offered an important insight into information flow in collective dynamics, without the
confounding effects that are brought about by classical information-theoretic metrics, such as transfer
entropy.

While intrinsic mutual information constitutes a breakthrough in the quantification of information flow,
its use as a tool for the inference of directional interactions has never been explored. Will the accurate
quantification of information flow offered by intrinsic mutual information translate into an improved ability
to detect directional influence? In this paper, we seek to provide an answer to this question through an
integrated numerical and theoretical effort on the relationship between intrinsic mutual information and
classical information-theoretic metrics (time-delayed mutual information and transfer entropy) to support
hypothesis-testing in the inference of directional interactions.

We use a Boolean model of leader–follower interactions to compute exact, asymptotic expressions for
information-theoretic metrics, which mitigate numerical artifacts related to the estimation of probability
density functions from time-series. Similar to prior work on minimalistic models of collective dynamics
[23–25], the model comprises a pair of directionally coupled Boolean units (a leader and a follower), subject
to different intrinsic noises. The leader changes its state due to added noise, irrespective of the follower, while
the follower responds to both the added noise and the leader. Upon gaining insight into the Boolean model,
we examine simulation results from the modified Vicsek model by Sattari et al [21] to probe the generality of
our claims and understand how the performance of the information-theoretic metrics vary with the size of
the probability space where the inference is performed.

2. Results

2.1. Background on information-theoretic metrics for causal analysis
The most basic information-theoretic tool to study causal relationships between two dynamical systems is
based on mutual information [1] (see section 4 for further details). Specifically, given two stationary, discrete
stochastic processes {Yt}t∈Z⩾0

and {Zt}t∈Z⩾0
, their (one-step) time-delayed mutual information is

MIZ→Y = I(Zt;Yt+1) =
∑

yt+1∈Y
zt∈Z

Pr(Yt+1 = yt+1,Zt = zt) log2
Pr(Yt+1 = yt+1|Zt = zt)

Pr(Yt+1 = yt+1)
. (1)

Here, ‘Pr’ indicates the probability of an event; capital, lower case, and calligraphic letters are used for
random variables, realizations, and sample spaces, respectively; commas are used for conjugation (logical
AND); vertical bars are for conditioning of random variables; and semicolons are utilized to separate random
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variables when computing their mutual information I. To simplify the notation and avoid the excessive use of
parentheses, we adopt the following operator precedence (high to low): ‘comma,’ ‘semicolon,’ and ‘vertical
bar.’

Mutual information of the pair (Zt,Yt+1) amounts to the reduction of uncertainty in the future state of Y
(that is, Yt+1) given the knowledge of the present state of Z (that is, Zt). Being symmetric by construction,
MIZ→Y will also correspond to the reduction of uncertainty in Zt given the knowledge of Yt+1. Importantly, a
nonzero value of time-delayed mutual information can be registered even if the future state of Y is not
directly influenced by the present state of Z, but their dynamics contain memory of their past states [21].
This drawback is resolved by transfer entropy, defined as the mutual information between Zt and Yt+1,
conditional on Y t , namely,

TEZ→Y = I(Zt;Yt+1|Yt) =
∑

yt,yt+1∈Y
zt∈Z

Pr(Yt+1 = yt+1,Zt = zt,Yt = yt) log2
Pr(Yt+1 = yt+1|Zt = zt,Yt = yt)

Pr(Yt+1 = yt+1|Yt = yt)
. (2)

Rephrasing James et al [19], transfer entropy is sensitive to both intrinsic dependencies between Zt and
Yt+1, as well as the dependencies induced by Y t . To filter the latter dependencies and precisely measure
information flow, Sattari et al [21] proposed the use of intrinsic mutual information from Z to Y, defined as

IMIZ→Y = inf


∑

yt,yt+1∈Y
zt∈Z

Pr(Yt+1 = yt+1,Yt = yt,Zt = zt)

× log2
Pr(Yt+1 = yt+1|Yt = yt,Zt = zt)

Pr(Yt+1 = yt+1|Yt = yt)
: Pr(Yt+1,Zt,Yt)

=
∑
yt∈Y

Pr(Yt+1,Zt,Yt = yt)Pr(Yt|Yt = yt)

 . (3)

Here, Yt is an auxiliary variable taking values in Y and related to Y t by means of the conditional
probability Pr(Yt|Yt)—taking the form of an unknown (finite or infinite) |Y|× |Y|matrix. Computing the
infimum over all possible conditional probabilities Pr(Yt|Yt), intrinsic mutual information avoids including
influence coming from the present state of both Z and Y when predicting the future state of Y.

Intrinsic mutual information has its theoretical roots in cryptography, whereby it can be viewed as an
upper bound for the information shared by Zt and Yt+1 that cannot be reconstructed or derived by Y t . The
definition of intrinsic mutual information begets the following, intuitive, inequalities:

0⩽ IMIZ→Y ⩽ I(Zt;Yt+1)

IMIZ→Y ⩽ I(Zt;Yt+1|Yt),
(4)

thereby implying that

IMIZ→Y ⩽min
{
TEZ→Y,MIZ→Y

}
. (5)

There is not an obvious relationship between time-delayed mutual information and transfer entropy: any
of them can be larger than the other, since conditioning is not a subtractive operation. Intrinsic mutual
information would reduce to time-delayed mutual information if the minimization process yielded a
constant Yt, whereas it would be equivalent to transfer entropy in the case of Yt = Yt [21].

Albeit intrinsic mutual information has been shown to be more accurate in measuring information flow
compared to transfer entropy [19, 21], this does not necessarily imply that it is a better instrument for
inferring causal relationships. Indeed, a key step in the application of information-theoretic constructs to
causal inference is hypothesis-testing, which requires contrasting observed values against data obtained
under the null hypothesis of independence. In what follows, we clarify the relationship between intrinsic
mutual information and the classical metrics of information flow on a minimalistic model of coupled
Boolean units. For this model, all the information-theoretic quantities can be exactly computed, thereby
enabling a comparison between time-delayed mutual information, transfer entropy, and intrinsic mutual
information in terms of their ability to detect leader–follower interactions.
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2.2. Boolean leader–follower model
Let us consider two Boolean random processes XL

t and XF
t , describing the state of the leader and follower,

respectively. Their dynamics is given by

XL
t+1 =

{
XL
t , with probability (1− ηL),

1−XL
t ,with probability ηL,

XF
t+1 =

{
XF
t , with probability (1− ηF)(1−w)+ |1−XL

t −XF
t |w,

1−XF
t ,with probability ηF(1−w)+ |XL

t −XF
t |w,

(6)

where 0< ηL < 1, 0< ηF < 1, and 0⩽ w⩽ 1. Similar to the coupling of Vicsek-like models [21, 22], the gain
w identifies the tendency of the follower to replicate the behavior of the leader at the previous time-step, with
w= 1 corresponding to the deterministic dynamics XF

t+1 = XL
t and w= 0 to XF

t+1 being independent of X
L
t .

Likewise, the parameters ηL and ηF capture the strength of the added noise in Vicsek-like models. Parameter
ηL is the probability that the leader changes state in one time-step, whereas ηF is the probability that the
follower changes state in the absence of coupling, that is, when w= 0.

The schematic in figure 1(A) shows how model (6) can be adapted to mimic the four interaction types
considered in the paper by Sattari et al [21] that employed a modified Vicsek model, by means of a suitable
selection of the noise parameters ηL and ηF. Indeed, the leader (follower) will have a natural tendency to
change state or remain in the same state depending on ηL (ηF) being greater or smaller than 1/2, respectively.
This memory can be visualized as two self-loops of weight |1/2− ηL| and |1/2− ηF| for the leader and
follower, respectively. Different from the leader, the follower dynamics is not only controlled by the intrinsic
noise parameter. The follower changes its state also in response to the leader in the form of a tendency to
copy the previous state of the leader that is modulated by w. Particular instances of the model, where the
agents have no memory of their past state (ηL and/or ηF equal to 1/2), can be then represented with the
absence of one or both self-loops.

Next, we formulate the system dynamics in terms of an ergodic, four-state Markov chain, for which we
compute the stationary distribution in closed-form.

2.2.1. Transition matrix
The states of the leader and follower at time t+ 1 only depend on their state at time t, and therefore we can
describe the time evolution of system (6) as a first-order homogeneous Markov chain with four states,
defined as 1≡ (XL

t = 0,XF
t = 0), 2≡ (XL

t = 0,XF
t = 1), 3≡ (XL

t = 1,XF
t = 0), and 4≡ (XL

t = 1,XF
t = 1). We

denote with P ∈ R4×4 the transition probability matrix of the Markov chain, where its element ij is the
probability that the chain takes the jth value at the next time-step given that the current value is the ith one.

For brevity, we detail how entry 11 of P is computed; other entries are analogously obtained. By
definition,

P11 = Pr(XL
t+1 = 0,XF

t+1 = 0|XL
t = 0,XF

t = 0) = Pr(XL
t+1 = 0|XL

t = 0)Pr(XF
t+1 = 0|XL

t = 0,XF
t = 0)

= (1− ηL)
(
(1− ηF)(1−w)+w

)
, (7)

where we have used the property that the next state of the leader is independent of the current state of the
follower, and the property that the next states of the leader and follower are independent upon conditioning
on their current states. Ultimately, we establish

P=


(1− ηL)g1−ηF (1− ηL)fηF ηLg1−ηF ηLfηF

(1− ηL)gηF (1− ηL)f1−ηF ηLgηF ηLf1−ηF

ηLf1−ηF ηLgηF (1− ηL)f1−ηF (1− ηL)gηF

ηLfηF ηLg1−ηF (1− ηL)fηF (1− ηL)g1−ηF

 (8)

where we have introduced the notations fη = η(1−w) and gη = fη +w. Obviously, all the rows of P sum to
one.

2.2.2. Stationary probability distribution
Since none of the elements of P is zero, all the states are aperiodic and positive recurrent, that is, the Markov
chain is ergodic [26]. The unique stationary distribution,

πLF∞(i, j) = lim
t→+∞

Pr(XL
t = i,XF

t = j) (9)

4
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Figure 1. Information-theoretic analysis of model (6). Panel (A) shows a schematic of the model for different combination of the
leader and follower parameters ηL and ηF. Panels (B)–(E) report time-delayed mutual information, transfer entropy, and intrinsic
mutual information (black solid line, red solid line, and green dashed line, respectively) from leader to follower for model (6) as
functions of the coupling gain w for four pairs of noise parameters ηL and ηF: B, ηL = 0.95 and ηF = 0.05; C, ηL = 0.5 and
ηF = 0.5; D, ηL = 0.5 and ηF = 0.05; and E, ηL = 0.95 and ηF = 0.5. Panel (F) reports time-delayed mutual information from
follower to leader for model (6) as a function of the coupling gain w for the same four pairs of noise parameters ηL and ηF: solid,
ηL = 0.95 and ηF = 0.05; dashed, ηL = 0.5 and ηF = 0.5; dotted-dashed, ηL = 0.5 and ηF = 0.05; and dotted, ηL = 0.95 and
ηF = 0.5. Note that in B the green curve is superimposed to the black one for low values of w and to the red one for large values of
w; in C, all curves are indistinguishable; in D, the black and dashed green curves are indistinguishable; in E, the red and green
curves are indistinguishable; and in F, dashed and dotted-dashed curves are identically zero. We remark that transfer entropy and
intrinsic mutual information from follower to leader are identically zero.

for all i, j ∈ {0,1}, can be computed as the left eigenvector with unitary eigenvalue of P [26], normalized such
that its elements sum to 1. Therefore, we determine

πLF∞(0,0) = πLF∞(1,1) =
a+w− 2ηLw

2(2a+w− 2ηLw)
, (10a)

πLF∞(0,1) = πLF∞(1,0) =
a

2(2a+w− 2ηLw)
, (10b)

5
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where a= ηF + ηL − 2ηFηL − ηFw+ 2ηFηLw.
From equation set (10), it follows that the stationary probabilities for the leader and follower are all equal

to 1/2, whereby πLF∞(i,0)+πLF∞(i,1) = πLF∞(0, i)+πLF∞(1, i) = 1/2 for all i ∈ {0,1}, similar to a Vicsek model
for which none of the agents has a preferential heading direction.

2.3. Information-theoretic metrics
From the transition matrix (8) and its stationary distribution (10), we compute the stationary joint
probability distributions limt→+∞Pr(XF

t+1,X
L
t ,X

F
t ) and limt→+∞Pr(XL

t+1,X
L
t ,X

F
t ). The calculation uses the

definition of conditional probability so that, for example,

Pr(XF
t+1,X

L
t ,X

F
t ) = Pr(XF

t+1|XL
t ,X

F
t )Pr(X

L
t ,X

F
t ). (11)

Herein, the conditional probability on the right-hand-side of the equation is obtained from matrix (8),
upon marginalizing with respect to the state of the leader at t+ 1, that is,

Pr(XF
t+1 = xFt+1|XL

t = xLt ,X
F
t = xFt ) = Pr(XL

t+1 = 0,XF
t+1 = xFt+1|XL

t = xLt ,X
F
t = xFt )

+Pr(XL
t+1 = 1,XF

t+1 = xFt+1|XL
t = xLt ,X

F
t = xFt ). (12)

Complete expressions are reported in table 1 and utilized to compute closed-form, asymptotic
expressions of classical information-theoretic quantities (time-delayed mutual information and transfer
entropy) and of intrinsic mutual information as functions of the coupling gains between the unites and the
strengths of the added noises.

2.3.1. Classical metrics
The computation of time-delayed mutual information from leader to follower (MIL→F) and vice versa
(MIF→L) can be undertaken from (1), using the expressions in table 1. Therein, the conditional probabilities
should be written using the definition of conditional probability as Pr(XF

t+1 = xFt+1|XL
t = xLt ) = Pr(XF

t+1 =
xFt+1,X

L
t = xLt )/Pr(X

L
t = xLt ) and similarly for the follower-to-leader interaction. Then, any of the

probabilities appearing in the expression of time-delayed mutual information can be retrieved from table 1
through marginalization; for example,

Pr(XF
t+1 = xFt+1,X

L
t = xLt ) = Pr(XF

t+1 = xFt+1,X
L
t = xLt ,X

F
t = 0)+Pr(XF

t+1 = xFt+1,X
L
t = xLt ,X

F
t = 1). (13)

Likewise, transfer entropy from leader to follower (TEL→F) and vice versa (TEF→L) can be calculated
via (2), by replacing for the joint distributions in table 1.

In figures 1(B)–(E), we display time-delayed mutual information and transfer entropy from leader to
follower as functions of the coupling gain w for four pairs of noise parameters ηL and ηF that exemplify
interaction types from figure 1(A). In agreement with numerical results on the modified Vicsek model by
Sattari et al [21], we observe the following. First, in the presence of a self-loop for the follower (figures 1(B)
and (D)), time-delayed mutual information can be less than transfer entropy. This surprising finding is
related to the onset of a synergistic information flow, whereby simultaneous knowledge about the present of
the leader and follower improves the predictive power about the future of the follower, compared to mere
access to the present of the follower. Second, in the absence of self-loops in both the leader and the follower
(figure 1(C)), time-delayed mutual information and transfer entropy are equivalent, which is due to the lack
of memory in the dynamics. Third, in the presence of a self-loop only for the leader, transfer entropy is less
than time-delayed mutual information (figure 1(E)), in agreement with one’s intuition about the role of
transfer entropy in mitigating redundant information from the follower’s own dynamics.

From the follower to the leader, transfer entropy is always zero, since the follower does not provide any
predictive power about the future state of the leader once the present state of the leader is known. On the
other hand, time-delayed mutual information can be different from zero due to the shared history of the
follower and the leader. In figure 1(F), we report time-delayed mutual information from the follower to the
leader for the same cases considered in figures 1(B)–(E). Predictably, without a self-loop in the leader,
time-delayed mutual information is zero: the leader does not have a memory and, as such, no information is
shared in a common history with the follower.

Finally, we comment that the role of the coupling gain is non-trivial. While time-delayed mutual
information seems to increase with the coupling gain for different choices of the noise parameters, transfer
entropy could decrease for sufficiently large values of w, as in figure 1(B). In such a case, the follower will
tend to systematically replicate the behavior of the leader, whose dynamics is, however, evolving in response
to its own history. As a result, the information flow from the leader to the follower could be hindered by
larger values of w. Compact expressions for time-delayed mutual information and transfer entropy are in

6
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Table 1. Stationary joint probability distribution of XF
t+1, X

L
t , and XF

t and of X
L
t+1, X

L
t , and XF

t for the computation of closed-form,
asymptotic expressions of information-theoretic metrics for model (6).

(xFt+1,x
L
t ,x

F
t ) Pr(XF

t+1 = xFt+1,X
L
t = xLt ,X

F
t = xFt )

(0,0,0),(1,1,1) g1−ηFπ
LF
∞(0,0)

(0,0,1),(1,1,0) gηFπ
LF
∞(0,1)

(0,1,0),(1,0,1) f1−ηFπ
LF
∞(0,1)

(0,1,1),(1,0,0) fηFπ
LF
∞(0,0)

Pr(XL
t+1 = xLt+1,X

L
t = xLt ,X

F
t = xFt )

(0,0,0),(1,1,1) (1− ηL)π
LF
∞(0,0)

(0,0,1),(1,1,0) (1− ηL)π
LF
∞(0,1)

(0,1,0),(1,0,1) ηLπ
LF
∞(0,1)

(0,1,1),(1,0,0) ηLπ
LF
∞(0,0)

general not feasible; second-order Taylor expansions in terms the noise parameters are presented in the
supplementary note 1.

2.3.2. Intrinsic mutual information
Obviously, intrinsic mutual information from follower to leader is zero (IMIF→L), since transfer entropy is
zero and intrinsic mutual information cannot be larger than transfer entropy. The computation of intrinsic

mutual information from leader to follower (IMIL→F) requires an auxiliary stochastic process {XF
t }t∈Z⩾0,

which is univocally related to {XF
t }t∈Z⩾0 via

Pr(X
F
t = 0|XF

t = 0)≡ α,

Pr(X
F
t = 0|XF

t = 1)≡ β,
(14)

where α,β ∈ [0,1] are the parameters upon which conditional mutual information is optimized.

Next, we can easily compute the joint distribution Pr(XF
t+1,X

L
t ,X

F
t ) in terms of α, β, and values listed in

table 1. For completeness, we report the resulting joint distribution in table 2. Following analogous steps to

transfer entropy computation, but using table 2, we obtain I(XF
t+1;X

L
t |X

F
t ) as a function of α and β. By taking

the minimum over α and β in the compact unit square, we calculate intrinsic mutual information.
Results in figures 1(B)–(E) indicate that intrinsic mutual information is very well approximated by the

minimum between time-delayed mutual information and transfer entropy for any selection of the noise
parameters. Only in figure 1(B), where time-delayed mutual information and transfer entropy cross for a
coupling of w= 0.776, we observe a narrow window of the coupling gain in which intrinsic mutual
information is lower than both the classical metrics (for w ∈ [0.770,0.780], intrinsic mutual information is
within 0.008, or 2.4%, from the minimum of the other two classical metrics). As such, intrinsic mutual
information equals time-delayed mutual information in the presence of a self-loop for the follower and
absence of a self-loop for the leader or in the presence of both self-loops, provided the coupling gain is
sufficiently weak. It is equal to transfer entropy in the absence of a self-loop for the follower or in the
presence of both self-loops, provided the coupling gain is sufficiently strong. When both self-loops are
absent, intrinsic mutual information is equal to time-delayed mutual information and transfer entropy. We
stress that these conclusions are not affected by numerical artifacts in the estimation of the probability mass
functions, whereby they rely on closed-form, asymptotic expressions of all the information-theoretic metrics.

2.4. Statistical inference
Here, we explore the feasibility of employing intrinsic mutual information for the inference of the directional
coupling between the units and contrast its performance with time-delayed mutual information and transfer
entropy. We utilize the time-series of the two units (leader and follower) to estimate all the joint probability
distributions in the information-theoretic metrics (1)–(3). Without a priori knowledge of which is the leader
and which is the follower, we calculate the information-theoretic metrics between the two units. These
numerical values are contrasted with their corresponding null distribution in the absence of any interaction
between the units (that is, w= 0), to decide whether a directional coupling exists or not, at a given
confidence level. The null distributions are estimated by simulating model (6) for N repetitions each of
length T. Should one not have access to the ground true mathematical model of the time-series, as in most of
the practical applications, they could generate their null distributions through shuffling. We illustrate this
possibility in the supplementary note 2.
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Table 2. Stationary joint probability distribution of XF
t+1, X

L
t , and X

F
t for the computation of closed-form, asymptotic expressions of

intrinsic mutual information for model (6).

(xFt+1,x
L
t ,x

F
t ) Pr(XF

t+1 = xFt+1,X
L
t = xLt ,X

F
t = xFt )

(0,0,0) αg1−ηFπ
LF
∞(0,0)+βgηFπ

LF
∞(0,1)

(0,0,1) (1−α)g1−ηFπ
LF
∞(0,0)+ (1−β)gηFπ

LF
∞(0,1)

(0,1,0) αf1−ηFπ
LF
∞(0,1)+βfηFπ

LF
∞(0,0)

(0,1,1) (1−α)f1−ηFπ
LF
∞(0,1)+ (1−β)fηFπ

LF
∞(0,0)

(1,0,0) αfηFπ
LF
∞(0,0)+βf1−ηFπ

LF
∞(0,1)

(1,0,1) (1−α)fηFπ
LF
∞(0,0)+ (1−β)f1−ηFπ

LF
∞(0,1)

(1,1,0) αgηFπ
LF
∞(0,1)+βg1−ηFπ

LF
∞(0,0)

(1,1,1) (1−α)gηFπ
LF
∞(0,1)+ (1−β)g1−ηFπ

LF
∞(0,0)

Based on the theoretical predictions for time-delayed mutual information, transfer entropy, and intrinsic
mutual information in figures 1(B)–(F), we focus the inference effort on the case considered in figures 1(B)
and (F) (ηL = 0.95 and ηF = 0.05), which displays the richest dependence of intrinsic mutual information on
the coupling gain. We consider three different values of w (0.1, 0.5, and 1); for each value, we run model (6)
for T= 2000, compute information-theoretic metrics, and contrast their values with the null
distributions—we denote as FIMI, FTE, and FMI the cumulative null distributions of intrinsic mutual
information, transfer entropy, and mutual information, respectively. We reject the hypothesis of w= 0 with a
significance level of 0.05, which corresponds to cut-off values for time-delayed mutual information, transfer
entropy, and intrinsic mutual information of MI95 = 1.58× 10−4, TE95 = 2.31× 10−3, and
IMI95 = 1.55× 10−4, respectively, see figure 2(A). For each value of w, we perform N = 1000 simulations
and we evaluate the false negatives (number of simulations in which we fail to reject the null hypothesis of
absence of interaction of the leader on the follower) and false positives (number of simulations in which we
reject the null hypothesis of absence of interaction of the follower on the leader). A more comprehensive
analysis for different values of w from 0.1 to 1 in steps of 0.1 is reported in the supplementary note 3.

Simulation results indicate sensitivity—defined as the true positive rate—at the perfection level of all the
information-theoretic metrics with respect to the inference of the directional interaction from the leader to
the follower (false negative rate of zero for all values of w). Specificity—defined as the true negative rate—is
more problematic and highly different among the information-theoretic metrics, as illustrated in figure 2(B).
Independent of the value of w, transfer entropy yields the best inferences with a false positive rate of about
5%, a much better performance compared to intrinsic mutual information, which begets a rate of about
48%. For all values of w, time-delayed mutual information offers unacceptable results, where it erroneously
misclassifies the entirety of the observations (similar results are found for different values of w, see
supplementary note 2).

2.4.1. Explaining the excess of false positives
The inadequacy of time-delayed mutual information in identifying the directionality of the interaction
between leader and the follower should have been anticipated, given that the dynamics of both units contains
information about their past for the selected leader–follower configuration in figure 1(A). The asymptotic
time-delayed mutual information is different from zero in both directions, thereby challenging statistical
inference of a directional interaction. The higher false positive rate of intrinsic mutual information
compared to transfer entropy is somewhat surprising, given that intrinsic mutual information was originally
intended to better quantify information flow than the classical information-theoretic metrics.

The explanation for this counter-intuitive result largely has its roots in the fact that, for most parameter
combinations, intrinsic mutual information corresponds to the minimum between transfer entropy and
mutual information, as shown in figures 1(B)–(F). Put simply, intrinsic mutual information suffers from the
sins of time-delayed mutual information. Under the assumption that intrinsic mutual information is the
minimum of time-delayed mutual information and transfer entropy, we have

FIMI(x) = FTE(x)+Pr(TE> x,MI⩽ x), (15)

where x is the generic value of intrinsic mutual information and we considered that the event
{min(TE,MI)⩽ x} is the union of the disjoint events {TE⩽ x} and {TE> x}∩ {MI⩽ x}. Likewise, by
accounting for {min(TE,MI)⩽ x} to be the union of the disjoint events {MI⩽ x} and
{MI> x}∩ {TE⩽ x}, we establish

FIMI(x) = FMI(x)+Pr(TE⩽ x,MI> x). (16)

8
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Figure 2. Statistical inference through information-theoretic metrics on time-series from model (6). Panel (A) depicts the null
cumulative distributions of time-delayed mutual information (black solid line), transfer entropy (red solid line), and intrinsic
mutual information (green dashed line) obtained by simulating N= 1000 iterations, each T= 2000 times-steps long, of the
Boolean leader–follower model in (6) for ηL = 0.95, ηF = 0.05, and w= 0. The green and black lines are practically
superimposed and visually indistinguishable. MI95, TE95, and IMI95 are the cut-off values for time-delayed mutual information,
transfer entropy, and intrinsic mutual information, respectively, computed as the 95th percentile of their null cumulative
distributions. Panel (B) shows the rate of false positives (detection of a link from follower to leader) as a function of the coupling
gain w. Each value is obtained by classifying interactions in N= 1000 time-series of a leader–follower pair with ηL = 0.95 and
ηF = 0.05, with each time-series being T= 2000 time-steps long. Black, red, and green bars correspond to time-delayed mutual
information, transfer entropy, and intrinsic mutual information, respectively.

These two equalities together imply that FIMI(x)⩾max{FTE(x),FMI(x)}. Hence, the cut-off value for
intrinsic mutual information cannot be larger than those for mutual information and transfer entropy, that
is, IMI95 ⩽min{MI95,TE95} as illustrated in figure 2(A). Noting that FMI(x)> FTE(x) for all values of x (so
that IMI95 < TE95), we identify the following three modalities by which intrinsic mutual information would
yield different inferences than those of transfer entropy:

(1) IMIF→L = TEF→L and IMI95 < IMIF→L ⩽ TE95. In this case, intrinsic mutual information would reject
the null hypothesis and it would yield a false positive, whereas transfer entropy would correctly infer the
absence of a causal link from the follower to the leader, as illustrated in figure 3(A);

(2) IMIF→L =MIF→L, IMIF→L > IMI95, and TE
F→L ⩽ TE95. Also in this case, intrinsic mutual information

would yield a false positive, whereas transfer entropy would correctly identify a negative, see figure 3(B);
and

(3) IMIF→L =MIF→L, IMIF→L ⩽ IMI95, and TE
F→L > TE95. Different from Cases 1 and 2, intrinsic mutual

information would correctly infer the absence of a causal link from the follower to the leader, as
illustrated in figure 3(C).

Case 3 is then the only case in which intrinsic mutual information could outperform transfer entropy in
filtering a spurious interaction. The possibility of this case to occur is related to time-delayed mutual
information being able to filter the spurious link, which is never registered for any parameter combination.
Cases 1 and 2 are prevalent in our study, due to the much fatter tail of the null distribution of transfer
entropy compared to intrinsic mutual information, thereby explaining the excess of false positives when
using intrinsic mutual information rather than transfer entropy (48% against 5%).

2.4.2. Extension to the modified Vicsek model
The proposed minimalistic Boolean model offers insight into the root causes for the superior performance of
transfer entropy compared to intrinsic mutual information as a tool to infer leader–follower directional
interactions. To support the generality of our findings, we now consider a leader–follower pair in the
modified Vicsek model [27] as in Sattari et al [21]. Here, a leader particle L and a follower particle F move in
a square domain of size l× l with periodic boundary conditions, and their planar positions at time t ∈ Z⩾0

are described by the complex numbers rLt and rFt , respectively.
The two particles move at a constant speed, and the heading of the leader θLt at time t influences the

heading of the follower θFt+1 at the next time-step when their distance is within a unitary interaction distance,
according to the following equation:

θLt+1 = arg
(
exp(ıθLt wLL)

)
+ψL

t , (17a)
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Figure 3. Explanation for the excess of false positives using intrinsic mutual information for the inference of directional
interactions from time-series from model (6). In all panels, we present the null cumulative distributions for time-delayed mutual
information (black solid line), transfer entropy (red solid line), and intrinsic mutual information (green dashed line) from 1000
simulations, each T= 2000 times-steps long, of the Boolean leader–follower model (6) for ηL = 0.95, ηF = 0.05, and w= 0. The
green and black lines are practically superimposed and visually indistinguishable. MI95, TE95, and IMI95 are the cut-off values for
time-delayed mutual information, transfer entropy and intrinsic mutual information, respectively, computed as the 95th
percentile of their null cumulative distribution functions. Panels (A)–(C) correspond to Cases 1, 2, and 3, respectively, which
identify the modalities by which intrinsic mutual information and transfer entropy yield different inferences for the possible link
from follower to leader.

θFt+1 = arg
(
exp(ıθFt wFF)+wLFIt exp(ıθLt )

)
+ψF

t , (17b)

rit+1 = rit + sexp(ıθit), i ∈ {L,F}. (17c)

Here, It is an indicator function that is 1 if |rLt − rFt |⩽ 1, and 0 otherwise; ı is the imaginary unit; ψL
t and ψ

F
t

are the additive noises affecting the heading of the particles, chosen to be independent uniformly distributed
random variables in [−η/2,η/2], with η > 0; s> 0 is the common speed of all the particles, which corresponds
to the number of interaction radii that are travelled in one time-step; wLL ∈ {−1,1} and wFF ∈ {−1,1}
define the dynamics of the leader and follower, respectively (for example, in the absence of noise, if wLL = 1,
the leader would not change its heading, whereas if wLL =−1 if it would flip its heading at every time-steps);
and wLF ⩾ 0 weighs the influence the leader’s current heading has on the next heading of the follower.
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Figure 4. Inferring directional interactions in the modified Vicsek model (17) for l= 2, s= 0.3, η= 0.1, wLL =−1, and wFF = 1.
Rate of false negatives (link from leader to follower undetected, panel (A) and false positives (detection of a link from follower to
leader, panel (B) as functions of the coupling gain wLF from the leader to the follower. Each point is obtained by classifying
interactions in N= 100 time-series of a leader–follower pair, with each time-series being T= 2000 time-steps long. The
time-series of the leader and follower are discretized with either two, three, or four equally-spaced bins to estimate joint
probability distributions in the information-theoretic metrics (1)–(3). Black, red, and green bars correspond to time-delayed
mutual information, transfer entropy, and intrinsic mutual information, respectively. Panels (C)–(E) depict the null cumulative
distributions of time-delayed mutual information (black solid line), transfer entropy (red solid line), and intrinsic mutual
information (green dashed line) obtained from 1000 simulations, each T= 2000 time-steps long, of the leader follower Vicsek
model (17) for wLF = 0, and discretizing the time-series of the leader and follower into either two, three or four bins. MI95, TE95,
and IMI95 are the cut-off values for time-delayed mutual information, transfer entropy, and intrinsic mutual information,
respectively, computed as the 95th percentile of their null cumulative distributions. In panel (D), the green and black lines are
practically superimposed and visually indistinguishable.

We report simulation results for l= 2, s= 0.3, η= 0.1, wLL =−1, and wFF = 1. In this case, the leader
would tend to flip its heading at every time-step, while the follower would tend to maintain its heading,
thereby mimicking the case of the Boolean model in figure 1(B). By varying the coupling wLF, we modulate
the influence of the heading on the follower. For wLF = 0.1, the follower is only marginally affected by the
heading of the leader in its update process. For wLF = 1, the follower equally weights its heading and the
heading of the leader in its update process.

For each value of wLF, we perform N = 100 repetitions for initial headings randomly selected in [−π,π],
and initial position in the unit radius at the center of the square domain. For each repetition, we estimate TE
and IMI from the leader to the follower and vice versa. The conditional probabilities in equations (1)–(3) are
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computed by discretizing the time-series of the heading so to obtain b equally-spaced bins, with b being equal
to 2, 3 or 4. To detect interaction between the particles, we then compare the observed values of MI, TE, and
IMI with the corresponding null distributions obtained by simulating the model for N = 1000 repetitions
each of length T= 2000 for wLF = 0, that is, in the absence of coupling between the leader and the follower.

Our results on the modified Vicsek model confirm the inadequacy of time-delayed mutual information
and the superiority of transfer entropy to intrinsic mutual information in identifying directional
interactions, see figures 4(A) and (B). For all values of the coupling gain from the leader to the follower, and
for both numbers of bins, we observe a rate of false positives and/or of false negatives higher than 50%.
Although transfer entropy and intrinsic mutual information exhibit comparable levels of sensitivity for
different values of the coupling gain from the leader to the follower and different number of bins, their
specificity can be dramatically different. With respect to sensitivity, for the lowest coupling value (wLF = 0.1),
intrinsic mutual information yields a slightly larger fraction of false negatives (30% against 26% for b= 2,
52% against 26% for b= 3, and 44% against 19% for b= 4). As the coupling increases, the accuracy of the
inference obtained through intrinsic mutual information improves, reaching the same levels of transfer
entropy, with no false negatives for wLF = 1. With respect to specificity, performance is highly related to the
number of bins used in the discretization of the time-series. For coarse binning, the specificity of the
inference considerably deteriorates when choosing intrinsic mutual information over transfer entropy (when
wLF = 1, the false positive rate is 56% against 1% for b= 2, and 14% against 2% for b= 3). Predictably,
reducing the coupling from the leader to the follower mitigates the difference in the specificity of the two
inferences (when wLF = 0.1, the false positive rate is 28% against 4% for b= 2, and 3% against 8% for b= 3),
due to the weaker interaction between the units. A finer binning reduces the gap between the two metrics,
whereby we register perfect specificity of both transfer entropy and intrinsic mutual information for b= 4.

Similar to the Boolean model, the difference in specificity should be sought in the relationship between
intrinsic mutual information, transfer entropy, and time-delayed mutual information. We confirm that
intrinsic mutual information is also well-approximated by the minimum between transfer entropy and
time-delayed mutual information, whereby numerical values of intrinsic mutual information and the
minimum of the other two classical metrics are statistically indistinguishable at a confidence level of 0.05
across 99.7% of the 900 cases (3 parameter values× 3 numbers of bins× 100 repetitions) reported in
figure 4, see section 4 and supplementary note 4. Likewise, the cumulative null distribution of time-delayed
mutual information is always above that of transfer entropy, see figures 4(C) and (D). As a result, the same
three cases identified for the Boolean model in figure 3 are possible, and the extent to which intrinsic mutual
information under-performs transfer entropy relates to instances of Case 3 being outnumbered by instances
of Cases 1 and 2. The lowest specificity of intrinsic mutual information is registered when the false positive
rate of time-delayed mutual information is larger than 50%; this corresponds to the occurrence of only
0.25% instances of Case 3.

3. Discussion

Intrinsic mutual information has been recently proposed as a precise measure of information flow in
complex systems [19], bearing important insight into collective behavior [21]. Rephrasing the words of
James et al [19], given two stochastic processes X and Y, there is an intrinsic information flow from X to Y
when the past of X is individually predictive of the future of Y. Such an intrinsic information flow is not
exactly quantified by transfer entropy, which also incorporates synergistic information flow, that is, the
reduction of uncertainty about the future of Y by the simultaneous knowledge of the present state of X and
Y. Likewise, it is not captured by time-delayed mutual information, which will also incorporate shared
information flow, that is, when the past of X is predictive of the present of Y in the same manner as the past
of Y. Intrinsic mutual information is an easy-to-compute upper bound for intrinsic information flow, which,
different from transfer entropy, is free from contributions related to synergistic information. Whether
intrinsic mutual information can be used for hypothesis-testing and inference of directional interactions
between units from their time-series has never been attempted. In this study, we provide an answer to this
question through closed-form results on a minimalistic Boolean model that captures salient features of
leader–follower dynamics and simulation results on the modified Vicsek model by Sattari et al [21].

Our theoretical and computational results do not point at a practical advantage of intrinsic mutual
information versus transfer entropy in the inference of pairwise interactions. Surprisingly, we observe that
the precise quantification of information flow through intrinsic information does not bestow any advantage
with respect to transfer entropy in both sensitivity and specificity. None of the considered scenarios, let them
be simulations of the Boolean model or of the modified Vicsek model, offers evidence in favor of a
performance improvement attained through the use of intrinsic mutual information. As such, care should be
placed when employing intrinsic mutual information in the discovery of causal relationships. The
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simultaneous consideration of synergistic and intrinsic information flows by transfer entropy seems to offer
a more reliable basis to minimize false positives and negatives compared to intrinsic mutual information.

While the Vicsek model is the most widespread choice for the study of collective dynamics from biology
to swarm robotics [28], its general mathematical treatment is difficult, if not impossible. In its basic
incarnation, the model leads to state-dependent, switched, nonlinear, stochastic dynamics that preclude the
exact quantification of any information-theoretic quantity. Working with a Boolean model helps clarify two
main aspects that would remain opaque from a mere computational endeavor. First, we determine under
which condition (intrinsic noises and coupling gain) intrinsic mutual information reduces to any of the
classical information-theoretic metrics (time-delayed mutual information and transfer entropy), offering
further backing to the critique of transfer entropy by James et al [18] and reinforcing numerical predictions
by Sattari et al [21]. We highlight a complex dependence of intrinsic mutual information on the system
dynamics, whereby we demonstrate that intrinsic mutual information depends on added noise and on the
strength of the coupling gain in a complex, nonlinear fashion. As a first approximation, intrinsic mutual
information equals the minimum between time-delayed mutual information (compounding intrinsic and
shared information flows) and transfer entropy (compounding intrinsic and synergistic information flows).
This result suggests that shared and synergistic information flows do not coexist for the considered Boolean
model, except for a narrow window of coupling gains.

Second, we pinpoint at the modalities by which intrinsic mutual information offers reduced performance
in the inference of directional interactions compared to transfer entropy. While intrinsic mutual information
and transfer entropy display similarly high sensitivity, intrinsic mutual information has considerably lower
specificity. Low specificity of intrinsic mutual information can be traced back to the same sins of
time-delayed mutual information, whose null distribution has a slimmer tail compared with that of transfer
entropy, thus favoring the rejection of the null-hypothesis. Since intrinsic mutual information can be
approximated as the minimum between time-delayed mutual information and transfer entropy, the tail of its
null distribution will be at least as slim as that of time-delayed mutual information. When intrinsic mutual
information coincides with transfer entropy (null synergistic information flow), it may happen that intrinsic
mutual information would score a false positive, despite transfer entropy being capable of filtering a spurious
interaction from the leader to the follower. When intrinsic mutual information is equal to time-delayed
mutual information (null shared information flow), one cannot exclude the possibility that intrinsic mutual
information would outperform transfer entropy. However, this would rely on mutual information exhibiting
adequate specificity, a rare possibility throughout our statistical analysis. As a result, we warn prudence with
the use of intrinsic mutual information as a tool for the discovery of directional interactions.

Several prior studies have pointed at the merit of exact results on information-theoretic metrics [25,
29–34]. The use of exact theoretical values rather than their statistical estimates alleviates the dependence of
any claim on the statistical methods adopted for estimation and brings to light the specific role of model
parameters on any information-theoretic metric. For example, Smirnov [30] computed closed-form results
of transfer entropy over a class of benchmark systems (autoregressive processes and Markov chains),
demonstrating typical factors that may lead to spurious couplings in real-world applications. Hahs and
Pethel [31] have established closed-form results for transfer entropy for autoregressive processes with
multiple timetags. Novelli et al [34] and Goodman and Porfiri [33] independently demonstrated the
dependence of transfer entropy on topological properties of network nodes within theoretical studies of a
linearly coupled Gaussian model and a Boolean system, respectively. Boolean models have been further
investigated in a sequence of studies by some of these authors and others [25, 29, 32].

The study is not free of limitations. First, we presently lack of a general form for the cumulative
distribution of conditionally independent variables for hypothesis-testing. As such, claims regarding
superiority of transfer entropy against intrinsic mutual information in terms of specificity are based on
numerical estimations of null distribution, conducted for specific parameter choices. Some work has been
conducted in this direction [35], but available approximations are based on low-order Taylor expansions that
do not consider the temporal structure of the time-series, thereby hindering their application to the problem
of leader–follower interactions between systems with memory; see section 4 and supplementary note 5. Such
a drawback is also at the core of the second, main limitation of this study: the lack of a comparison between
the inferences of transfer entropy and intrinsic mutual information beyond coarse-grained dynamics for the
modified Vicsek model. In fact, the present comparison is limited to discretizing the heading of the particles
with at most four bins. Such a computation required about one hundred hours on a state-of-the-art
machine, and computational time would scale exponentially with the number of bins. Access to a
closed-form approximation for the null distributions of all the salient information-theoretic quantities for
coarse- and fine-grained dynamics would address this issue.

Despite these two main limitations, our work brings forward important insight into the use of the novel
concept of intrinsic mutual information as an inference tool of pairwise interactions underpinning collective
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dynamics. Transfer entropy has been, rightfully, criticized for its inability to detail information flow between
coupled units [18, 19, 21]—a task that is seamlessly accomplished through the use of intrinsic mutual
information. Yet, accomplishing this task may not translate into an improved statistical inference, especially
with respect to specificity. Perhaps, this is one of the few cases in which Voltaire’s famous aphorism applies:
‘perfect is the enemy of good.’

4. Materials andmethods

4.1. Intrinsic mutual information
For a discrete random variable Y, the uncertainty associated with Y is quantified by its (Shannon) entropy
[1]

H(Y) =−
∑
y∈Y

Pr(Y= y) log2Pr(Y= y). (18)

Given another discrete random variable Z, the joint entropy of the pair (Y,Z) is

H(Y,Z) =−
∑

y∈Y,z∈Z
Pr(Y= y,Z= z) log2Pr(Y= y,Z= z), (19)

whereas the entropy of Y conditional to Z is

H(Y|Z) =−
∑

y∈Y,z∈Z
Pr(Y= y,Z= z) log2Pr(Y= y|Z= z). (20)

Note that the above definitions imply that H(Y|Z) =H(Y,Z)−H(Z).
Mutual information between Y and Z is defined as

I(Y;Z) =H(Z)−H(Z|Y) =−
∑
y∈Y
z∈Z

Pr(Y= y,Z= z) log2
Pr(Y= y|Z= z)

Pr(Y= y)
. (21)

By definition, mutual information is symmetric, whereby from the definition of conditional probability
Pr(Y= y|Z= z) = Pr(Y= y,Z= z)/Pr(Z= z), so that one obtains that the right-hand-side of (21) is equal
to I(Z;Y). Furthermore, both entropy and mutual information are non-negative from Jensen inequality [1].

Next, given a third random variableW, we introduce conditional mutual information I(Y;Z|W) as the
mutual information between Y and Z conditional toW. This quantity is expressed as

I(Y;Z|W) =
∑

y∈Y,z∈Z
w∈W

Pr(Y= y,Z= z,W= w) log2
Pr(Z= z|Y= y,W= w)

Pr(Z= z|W= w)
. (22)

Surprisingly, conditioning is not a subtractive operation so that conditioning on a third variable can
increase information shared: it is possible that I(Y;Z|W)> I(Y;Z). This phenomenon is known as
conditional dependence [36] and a specific example based on exclusive OR logic has been proposed by Sattari
et al [21] (therein, Y and Z are independent, but givenW they become related in a deterministic manner).

In other words, conditional mutual information ‘is sensitive to both intrinsic dependencies between Y
and Z , as well as dependencies induced byW ’ [19]. A way to filter dependencies induced byW is to utilize
the notion of intrinsic (conditional) mutual information between Y and Z when givenW by Maurer and
Wolf [20],

I(Y;Z ↓W) = inf

{
I(Y;Z|W) such that Pr(Y,Z,W) =

∑
w∈W

Pr(Y,Z,W= w)Pr(W|W= w)

}
. (23)

Here,W is an auxiliary variable taking values inW and related toW by means of the conditional
probability Pr(W|W)—taking the form of an unknown (finite or infinite) |W|× |W|matrix. Intrinsic
mutual information is the infimum of I(Y;Z|W) over all possible random variables that can be generated
fromW through Pr(W|W). WhenW is a constant (Pr(W|W) corresponding to a matrix with all zeros but a
column of ones) andW is identical toW (Pr(W|W) corresponding to the identity matrix), intrinsic mutual
information reduces to mutual information and conditional mutual information, respectively [21].

Intrinsic conditional mutual information has been used in cryptography as an upper bound for the secret
key rate of transmission between a pair of sender/receiver having access to Y and Z against an adversary
having access toW. In other words, the secret key is the maximum rate at which the sender/receiver can agree
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on a secret S so that the information that can be obtained on S fromW is arbitrarily small. The definition of
intrinsic mutual information begets the following, intuitive, inequalities:

0⩽ I(Y;Z ↓W)⩽ I(Y;Z) (24a)

I(Y;Z ↓W)⩽ I(Y;Z|W). (24b)

4.2. Relationship between information-theoretic metrics in the modified Vicsek model
The closed-form, asymptotic expressions of time-delayed mutual information, transfer entropy, and intrinsic
mutual information for the Boolean model (6) indicate that for a wide range of parameters, intrinsic mutual
information coincides with the minimum of time-delayed mutual information and transfer entropy. Such a
claim is at the core of our explanation for reduced specificity of intrinsic mutual information when
compared to transfer entropy.

We numerically verified whether this claim would also hold true for the modified Vicsek model (17). For
low (wLF = 0.1), medium (wLF = 0.5), and high (wLF = 1) values of the coupling from the leader to the
follower, we numerically estimated time-delayed mutual information, transfer entropy, and intrinsic mutual
information, which, in turn, required the estimation of the probability density functions in
equations (1)–(3), respectively. For each parameter value, these estimations were performed on N = 1000
time-series of leader and follower, each T= 2000 time-steps long. To account for the finiteness of the
time-series, we associated with each point-estimate an interval at a confidence level of 0.05. Specifically, for
each of the three information-theoretic measures, the width of the interval was selected as the 95th percentile
of the cumulative null distribution obtained from simulating the case wLF = 0.

Overall, we found that the confidence interval for intrinsic mutual information overlaps with (at least
one of) that of transfer entropy and mutual information in 99.6% of the cases, whereby intrinsic mutual
information is statistically indistinguishable from the minimum between transfer entropy and mutual
information. This result is robust to different choices of the coupling gains wLF and number of bins b, see
supplementary material.
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