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ABSTRACT
This paper proposes a new evolutionary strategy – called Evolu-
tionary Abduction (EVA) - designed to target a class of problems
called Combinatorial Causal Optimization Problems (CCOP). In a
CCOP, the goal is to find combinations of causes that best explain
or predict an effect of interest. EVA is inspired by abduction, a
powerful form of causal inference employed in many artificial intel-
ligence tasks. EVA defines a set of abductive operators to repeatedly
construct hypothetical cause-effect instances, and then automati-
cally assesses their plausibility as well as their novelty with respect
to already known instances. Experiments confirm that, given a
background knowledge, EVA can construct better hypotheses for a
given effect, outperforming alternative strategies based on common
metaheurstics previously used for CCOP.

CCS CONCEPTS
•Computingmethodologies→Discrete space search; •Math-
ematics of computing→ Combinatorial optimization.
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1 INTRODUCTION
A recently presented class of optimization problems is Combinato-
rial Causal Optimization Problems (CCOP) [12]. A CCOP formulates
the causal inference problem of finding the best explanatory causes
for an effect as an optimization task, in which searching for a so-
lution means hypothesizing a suitable set of causes for the effect
of interest. The problem has been addressed by customizing con-
ventional metaheuristics with promising results. However, given
the nature of the task (i.e., causal inference), this paper takes a
different perspective. I hereafter propose a new strategy inspired
by abduction, called Evolutionary Abduction (EVA).
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Abduction is a powerful form of causal reasoning frequently
employed in everyday common-sense reasoning and as first step of
scientific reasoning [11], [6]. Abductive reasoning infers possible
causes for a given effect, by advancing hypotheses or generating new
ideas outside the given facts [4]. As such, abduction is said to be an
ampliative form of inference, as it is able to enlarge our knowledge,
but uncertain, because its inferences are more susceptible to error
than deductive and inductive ones, and need to be “validated”.

EVA mimics the process of actively searching for explanations
for a given observation, by generating hypotheses for plausible
causes of an effect, exploiting both an experience-based knowledge
and the ontological knowledge a human has about the phenomena
in explanation. Like it happens in human abductive reasoning, it is
generally not known whether the hypothseized explanations (i.e,.
solutions) are admissible beforehand, but the hypotheses need to
be assessed for their plausibility based on background knowledge.
Only plausible explanations survive and are proposed as solutions.

EVA defines three operators to mimic and automate the most
common patterns of abduction [13], which ultimately lead to con-
struct cause-effect combinations as solutions to CCOP. These are
then automatically assessed for their plausibility by exploiting the
background knowledge stored as an archive of past observations.

EVA is experimented on four real-world datasets, having a num-
ber of variables (namely, co-occurring causes for a given effect)
that ranges from 9 to 27. Results demonstrate the potential of EVA:
using a small fraction (10%) of the datasets as knowledge base,
EVA significantly outperforms four alternative metaheuristics pre-
viously used for CCOP. The code, datasets, and the Appendix are
at: https://github.com/rpietrantuono/MOEVA/

2 CAUSAL OPTIMIZATION
Hereafter, I recall the Combinatorial Causal Optimization Problem
formulation [12]. In a CCOP, the goal is to find a proper set of causes
Ai (or explanations or hypotheses) for a given set of effects Bj that
minimize (maximize) one or more objectives. Causes and effects are
abstractions of phenomena/events regarding any element of interest
i ∈ U , whereU is the domain of the problem to be solved (i.e., the set
of elements possibly involved in the inference). Specifically: causes
and effects are literals, namely atomic formulae or their negation
(a.k.a. atoms). In first-order logic, atoms correspond to predicate
symbols together with their arguments, and a cause-effect pair to
infer is a clause conveniently represented as a rule Bj ← Ai .

The literals are the decision variables (DV), xi (i = 1, ...,n = |U |).
Each xi takes values in a non-empty discrete set representing its
domain, Di . For instance, a decision variable xi in a medical dataset
can represent a blood analysis parameter, taking values from a
discrete set Di={M,C}: “M: moderately over-threshold”, “C: critically
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over-threshold”. The set of (discrete) DVs X = {x1, ...,xn } is the
union of two non-empty disjoint subsets related by a causality
relationship (

c
−→)1: Xs , that is the set of causes (named sources), and

Xt , the set of effects to be explained (named targets):X = Xs ∪Xt =

{xs1 , ...,xsj ;xtj+1 , ...,xtn }, and: ∀xs ∈ Xs , ∃xt ∈ Xt : xs
c
−→ xt .

Each source (target) variable {xs1 , . . . ,xsj } ({xtj+1 , . . . ,xtn }) takes
values in the respective discrete set: Ds = {Ds1 , . . .Dsj } (Dt =

{Dtj+1 , . . .Dtn }). A CCOP is expressed as follows:

Maximize π (x),ν (x)
C = (Ck ,Cu ) = (ck1 , . . . , ckq ; cuq+1 , . . . , cul )

x = (xs ;xt ) = (xs1 , . . . ,xsj ;xtj+1 , . . . ,xtn ) ∈ Ω (1)

• Ω = {Ds∪Dt }
n is the decision space, the set of all possible values

that decision variables can take. In the abduction metaphor, Ω
represents the ontological knowledge (or ontology) of the domain,
namely all the causes and effects that can concur to the inference.
• x is a candidate solution. A solution proposes an explanation for
the effect(s) in xt by potential cause(s) in xs (with 1 ≤ |xs |, |xt | ≤
n). Finding a solution means finding suitable combinations of
causes and effects that meet the constraints.
• C is the set of constraints. Constraints are split as known and
unknown (Ck , Cu ). The former are evaluated during the search
by the algorithm (e.g., causes that cannot occur together). The
latter encode sets of constraints not necessarily known a pri-
ori: because of this, proposed solutions can be just hypotheses
(like in abductive reasoning) and need to be assessed for their
plausibility, as they could violate the unknown constraints.
• π , ν . A solution is characterized by a plausibility and a novelty
score, π (x) and ν (x), which are the objective functions (π : Ω →
Π ⊆ R and ν : Ω → N ⊆ R, with Π and N taking values in
[0; 1]). To assess π (x) and ν (x), a CCOP requires the use of a
knowledge base KB, i.e., a set of cause-effect combinations (i.e.,
{xs1 , ...,xsj }, {xtj+1 , ...,xtn }) already observed, representing the
experience-based knowledge with respect to which plausibility
and novelty of generated solutions are assessed.

3 PATTERNS OF ABDUCTION
Following [13], we distinguish factual from creative abduction, in
turn classified in analogical and hypothetical cause abduction:

Factual abduction: both the effect and the abduced causes are
singular facts and abduction is driven by known implicational laws
going from causes to effects. The set of possible combinations of
causes can be generated by backward-chaining inference. In this
form, abduction has been studied in detail in AI [8].

Analogical abduction: it abduces a partially new hypothesis
by projecting knowledge from previous situations in the domain
under analysis. The process involves a conceptual abstraction and
a mapping between a source context (about which the agent has
knowledge) and the target context (in which the agent is trying to
draw inferences). Both factual and analogical abduction use a form
of experience-based knowledge – the former about the problem to
solve (what we called KB), the latter also about an external (source)
context from which the analogies are drawn.

1A causality relation holds if the values of one – the cause - can determine or contribute
to the other – the effect.

Algorithm 1: Evolutionary Abduction
1 P 0

F /A/H← getRandomPop(); ▷ PF /A/H : short for PF , PA , PH
2 evaluatePop(P 0

F /A/H ); ▷ Plausibility evaluation of all solutions

3 evaluatePopConstraints(P 0
F /A/H ); ▷Novelty ev. of all solutions

4 S0
F /A/H , T 0

F /A/H ← getAllSourcesTargets(P 0
F /A/H );

▷Get all different source/target values from current population
5 while stopping conditions are not satisfied do

▷ Three sequential loops, cycling on PF , PA , PH ; t starts from 1
6 for i=1 to |P tF /A/H | do
7 xi,t ← select_solution(P tF /A/H , KBA);
8 yi,t ← apply_operator(xi,t , P tF /A/H , S tF /A/H , T t

F /A/H );
9 evaluate(yi,t ); ▷ Plausibility evaluation

10 evaluateConstraints(yi,t ); ▷Novelty evaluation
11 P t+1

F /A/H ← P t+1
F /A/H ∪ (yi,t );

12 QF /A/H ← nextPopulation(P tF /A/H ∪ P
t+1
F /A/H );

▷Merge population and offspring by non-dominated sorting
13 t ← t + 1; P tF /A/H ← QF /A/H ;
14 S tF /A/H , T t

F /A/H ←getAllSourcesTargets(P tF /A/H );

15 P ← P tF ∪ P
t
A ∪ P

t
H ; return R ← getRankedSolutions(P );

Algorithm 2: factual_operator(x , S,T )
Input :x, the selected solution; S /T , all distinct sources/targets in the

current population; ηF , Novelty index; γF , Change index
1 t← selectTarget(T );
2 x’ = {x, t }; ▷ initialize x’ with the same sources as x , and target t
3 c ← Rand(1, ηF ); ▷Number of changes
4 for i=1 to c do
5 a ← Rand(add, modify, delete) ▷Action to apply
6 if a=add then
7 s ← selectSource(ηF ); ▷ ηF : Prob to select from S or from KB
8 addSource(x’, s );

9 if a=modify then
10 removeSource(x’); s ← selectSource(ηF ); addSource(x’, s );

11 if a=delete then
12 removeSource(x’);

13 return x’;

Hypothetical cause abduction: this is the most fundamental
kind of creative abduction, where we abduce that one or more in-
tercorrelated phenomena are the effect of a hypothetical (unobserv-
able) cause or common cause. One postulates a new unobservable
without exploiting analogies. This includes the “pure speculation”
process that sometimes lead to find a solution serendipically. Unlike
factual and analogical abduction, this abduction does not presup-
pose any experience-based knowledge, but just knowledge about
the phenomenon in explanation,what we called the ontology, Ω.

4 EVOLUTIONARY ABDUCTION
To solve a CCOP, EVA keeps an archive of known solutions (KB),
and a second archive called analogical KB (KBA), used by an ana-
logical reasoning operator. Algorithm 1 reports the main steps:
Initialize. Initially, three sets of solutions (named sub-populations)
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are created by selecting random values for each variable xi in s
and in t from their domains Di and that satisfy the known con-
straints Ck . These represent solutions from the factual, analogical
and hypothetical cause abduction. Plausibility and novelty of these
sub-populations are then evaluated (line 2-3).
Apply operators. At every iteration, a selection operator and a spe-
cific abduction operator (i.e.: factual, analogical or hypothetical cause
operator, mimicking the three abduction patterns) are applied to the
corresponding sub-population (lines 7-12). Selection takes a solution
x from the sub-population; the abduction operator builds a new
solution x’ starting from x. The three sequential loops generate the
offpsring sub-populations, evolving independently.
Merge. The current and offspring populations are merged by a
crowding distance criterion [5] (line 13). All non-dominated fronts
Fi are obtained from the union of current and offspring population
by the fast non-dominated sort algorithm. Then, until the popula-
tion is filled, the crowding distance is calculated in each Fi and the
corresponding solutions are included in the population.
Plausibility and Novelty evaluation
Plausibility. When a solution is proposed by an operator, its plau-
sibility needs to be assessed. Plausibility is the degree to which a
hypothesised solution is judged as realistic. Typically, our judge-
ment depends on whether we recognize “parts” of the hypothesis
in what we already observed. The plausibility score exploits this
notion: whenever we detect co-occurrences of (subsets of) causes
and effects of the hypothesised solution xj in KB at least once, we
increase our belief about its plausibility. Specifically:

Definition 1 (k-degree (δk )). The k-degree of xj (δk (xj )) is the
number of distinct k-tuples of the source variables set s (with k ≤
|s|) that occurred at least once in KB along with the target t .

Then, the plausibility π (xj ) of xj = {s, t } with p = |s| is:

π (xj ) =
∑p
k=1 δk (xj )∑p
k=1 (

p
k)
=

∑p
k=1 δk (xj )

2p−1 (2)

which is the ratio of all k-tuples of s, excluding the 0-tuple, that
occurred at least once in KB along with t over all the possibilities.2
Novelty. Hypothesised solutions need to be plausible but also dif-
ferent from those already observed, to avoid convergence towards
solutions already present in KB. Therefore, their novelty with re-
spect to the KB is considered, measured as Jaccard similarity:

Definition 2 (Novelty). The novelty ν (xj ) of a solution xj is given
by the minimum dissimilarity of xj with respect to all solutions
xh in KB, thus: ν (xj ) = 1 −maxh (J (xj , xh )), where: xh ∈ KB, with
h = 1 to |KB |, J (·, ·) is the Jaccard similarity coefficient.

Operators. Selection is always done with the Deb’s version of
Binary Tournament [5]. The other operators are:

Factual abduction. Algorithm 2 takes: a solution x, chosen by
select_factual; all the different (source and target) variables’
values that are in the current population (S and T ). To build the
new solution x’, first a target t is selected from T . Selection takes
two targets randomly, and selects the one with greatest “support”
(number of occurrences in KB), with ties broken randomly. As for
2 The so-defined π (.) is biased toward small solutions, as the denominator is expo-
nential with p . To account for this, π (.) is scaled by a factor p/a (if p ≤ a) or a/p (if
p > a), where p is the solution size and a is the average size of solutions in the KB .

Algorithm 3: analogical_operator(x , P , S,T )
Input :x, the selected solution (from KBA), P , population; S /T , all

distinct sources/targets in the current pop.; ηA , Novelty index
1 t← selectTarget(T );
2 [p , vд , σMд ] = extractConstraints();

▷ Extract #sources (p), #sources per group (vд ), σMд per group
3 for i=1 to p do
4 s ← selectSource(ηA); ▷ ηA : Prob. to select from S or from Ω

5 addSource(x’, s );

6 while (vд and σMд constraints are not satisfied) do
7 replaceSource(x’); ▷Adjust the solution to meet constraints

8 return x’;

the sources, the same sources of x are initially used (line 2). The
operator applies three types of changes to the sources: add, modify
or delete actions. Two parameters to regulate the extent of changes
and the desired novelty are used: a change index γF > 0 (integer)
and a novelty index, ηF ∈ [0; 1] (double). The number of changes c
to apply are selected randomly, with c ∈ [1;γF ]. The action (add,
modify or delete) is selected randomly with equal chance (line 5).
In case of add or modify, the new source is selected from S or from
KB (with probability ηF and 1−ηF , respectively). Sources selection
(lines 7, 11, 14) is done by a variable-level binary tournament.

Analogical abduction Alg. 3 selects x from KBA. To build a
new solution x’ from x, a target t from T is first selected like in
factual abduction. Then, it builds the set of sources, coupled with
t trying to have the same structural features as the sources in x
(extractConstraint). EVA defines three constraints requiring x’
to have progressively stronger similarities with x: the cardinality
constraint requires that the number of sources of x’ is the same
as x; the group membership constraint assumes that sources can
be grouped in homogeneous subsets, and requires x’ to have the
same number of subsets with the same cardinalities as x; the ordinal
constraint, requires that x’ has the same number of subsets with
the same maximum k-degree:M(q)= arg maxk δk (q), with q ⊆ s.

Hypothetical cause abduction This operator acts exactly as
the factual operator (Alg. 2), but considers Ω rather thanKB in order
to possibly select a new, unseen, source. As consequence, these
solutions have higher novelty compared to the factual operator
but lower plausibility. The indexes in this case will be γH > 0 and
ηH ∈ [0; 1], playing the same role of γF and ηF in Alg. 2.

5 EVALUATION
Datasets. We used the same datasets used in [12]: the Primary
Tumor dataset [15] (18 variables, 339 entries). The ASRS dataset
about avionics accidents [12], [1] (28 variables, 4,470 entries). The
Diabetes dataset with diabetes information of 70 patients [9] (14
variables, 3,640 entries). The Nursery dataset, with data about appli-
cations for nursery schools [10] (9 variables, 12,960 entries). In all
the cases, one variable is the effect to predict, the others are possible
causes. We set: |KB |=10% and |KBA | = 2.5% of total entries.
Baselines. We compare EVA against the four MOEAs used in
the CCOP work [12]. They are variants of conventional MOEAs
customized to solve a CCOP: NSGA-II [14], OMOPSO [14], SMS-
EMOA [2], SPEA2 [16]. For details on customizations see [12].
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Table 1: Results: +,≈,− indicates that EVA is statistically better, equivalent or worse than the compared algorithm.

Dataset Metric EVA (Best) EVA (Worst) NSGA-II OMOPSO SMS-EMOA SPEA2

TUMOR
HV 5.18e-012.4e−02 5.02e-014.9e−02(≈) 1.24e-012.5e−03(+) 3.58e-026.4e−02(+) 9.84e-022.5e−02(+) 1.23e-012.6e−02(+)

IGD 1.42e-046.3e−04 1.46e-045.0e−04(≈) 2.51e-041.1e−04(≈) 2.43e-035.8e−04(+) 8.86e-048.8e−04(+) 2.51e-047.5e−04(≈)

d̄ ; d∗ 1.43e-01; 1.11e-01 1.45e-01 (≈); 8.50e-02 (≈) 8.60e-01 (+); 8.33e-01 (+) 8.30e-01 (+); 7.88e-01 (+) 8.21e-01 (+); 7.95e-01 (+) 8.51e-01 (+); 8.17e-01 (+)

ASRS
HV 8.08e-013.7e−02 7.96e-012.5e−02(≈) 5.68e-018.0e−02(+) 4.58e-013.2e−02(+) 5.17e-017.6e−02(+) 5.29e-011.0e−01(+)

IGD 8.02e-041.4e−05 8.80e-049.2e−04(≈) 3.56e-037.9e−04(+) 4.70e-037.8e−04(+) 5.38e-033.4e−03(+) 3.69e-031.2e−03(+)

d̄ ; d∗ 3.09e-01; 2.27e-01 4.18e-01 (+); 2.72e-01 (≈) 9.14e-01 (+); 8.33e-01 (+) 9.05e-01 (+); 8.32e-01 (+) 8.75e-01 (+); 8.47e-01 (+) 9.10e-01 (+); 8.35e-01 (+)

MEDICAL
HV 7.44e-015.6e−03 7.18e-014.6e−03(≈) 5.69e-015.0e−03(+) 5.20e-012.9e−02(+) 5.52e-013.3e−02(+) 5.55e-011.5e−02(+)

IGD 8.02e-051.1e−06 2.08e-043.9e−06(+) 5.19e-047.9e−06(+) 1.24e-033.2e−04(+) 8.30e-043.9e−04(+) 9.26e-044.2e−04(+)

d̄ ; d∗ 3.36e-01; 0e+00 3.45e-01 (≈); 0e+00 (≈) 7.39e-01 (+); 4.43e-01 (+) 7.12e-01 (+); 3.61e-01 (+) 4.19e-01 (+); 3.38e-01 (+) 7.37e-01 (+); 4.32e-01 (+)

NURSERY
HV 8.95e-017.2e−03 8.94e-017.8−03(≈) 6.25e-011.5e−02(+) 6.20e-011.5e−02(+) 6.25e-011.3e−02(+) 6.25e-011.2e−02(+)

IGD 8.05e-054.8e−06 1.16e-048.2e−05(+) 1.54e-041.7e−04(+) 5.92e-045.0e−04(+) 2.26e-032.1e−03(+) 1.69e-042.1e−03(+)

d̄ ; d∗ 1.27e-02; 0e+00 1.27e-02 (≈); 1.46e-01 (+) 7.37e-01 (+); 5.55e-01 (+) 7.30e-01 (+); 5.53e-01 (+) 5.65e-01 (+); 5.53e-01 (+) 7.25e-01 (+); 5.55e-01 (+)

Metrics. We use the Hypervolume (HV) [17] (reference point p =
(0, 0), worst plausibility and novelty); the Inverted Generational
Distance (IGD) [3] (with the reference front R computed as union
of the reference fronts of compared algorithms); a Distance metric
d , with which the generated solutions q ∈ Q are compared against
solutions in the test set z ∈ Z to assess how much they are close to
at least one real occurrence. We use the minimum Jaccard distance:
dmin (q) = minz∈Z (d(q, z)). A small dmin tells that the agent has
built a solution similar to a real occurrence. We report the average
d̄ = avд(dmin (q)) and minimum d∗ =min(dmin (q)) over q ∈ Q .
Setting. To consider EVA in its best andworst configuration, we run
a 3 × 3 grid search on 10 repetitions: we consider 3 configurations
of hyperparameters (< η ·,γ · >= (< 0.1, 3 >, < 0.5, 5 >, < 0.9, 7 >),
representing Low, Medium and High novelty, and 3 population
sizes, |P | = (15, 30, 60). Two configuration are considered for each
datasets, producing the best (B) and worst (W) distances (results in
Appendix). The following results are under these settings (B/W).

The setting for the baseline MOEAs is the default one as provided
by the used framework (jMetal) [7] (Appendix, Sec. 2). The number
of evaluations is the same as the CCOP work [12], K = 20, 000. The
generations д depends on the population size |P | (in turn depending
on the B/W configuration), as K = |P | × д. We run 30 repetitions.
Results. Table 1 reports the median and IQR of HV, IGD, d̄ , and d∗.
The best ones are highlighted gray. The statistical comparison is by
the Wilcoxon rank sum test (α = .05), with Benjamini-Hochberg
correction for multiple-comparison protection. As main findings: i)
EVA’s improvement is largely confirmed over all the metrics and
datasets, and with a large gap. Besides EVA, NSGA-II gives, in terms
of HV and IGD, the second best values in most cases. Looking at the
dataset, we notice a low HV in TUMOR (despite the good distances)
due to a scarce diversity of produced solutions. ii) Considering the
distances, all the baselines are significantly worse than EVA; the
best second values of d̄ are produced by SMS-EMOA, while the
best second values of d∗ are produced by OMOPSO. Thus, SMS-
EMOA had better average performance, while OMOPSO had better
smallest-distance solutions (i.e., the close-to-real solutions are fewer
but are closer). iii) Conventional MOEAs are inadequate to give
close-to-real solutions, especially for complex problems (in ASRS,
EVA largely outperforms). The gap is significant almost always. iv)
A final remark about NSGA-II: although very far from EVA, it gives
many solutions with good d̄ , but not in terms of dmin ; this partly
explains the larger HV/IGD than the others, but worse distances.

6 CONCLUSION
This article introduced EVA, a new algorithm for evolutionary com-
putation inspired by abductive inference. EVA is a first step toward
a better understanding of how mimicking human reasoning can
support in creating algorithms for solving optimization problems.
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