A family of surfaces with $p_{g}=q=2, K^{2}=7$ and Albanese map of degree 3

Roberto Pignatelli*1 and Francesco Polizzi**2
${ }^{1}$ Dipartimento di Matematica, Università di Trento, Via Sommarive, 14 I-38123 Trento (TN), Italy
${ }^{2}$ Dipartimento di Matematica e Informatica, Università della Calabria, Cubo 30B, 87036 Arcavacata di Rende (Cosenza), Italy

Received 10 May 2016, revised 29 September 2016, accepted 10 October 2016
Published online 8 July 2017

Key words Surface of general type, Albanese map, triple cover
MSC(2010) 14J29
We study a family of surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$, originally constructed by Cancian and Frapporti by using the Computer Algebra System MAGMA. We provide an alternative, computer-free construction of these surfaces, that allows us to describe their Albanese map and their moduli space.

C 2016 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

In recent years, the work of several authors on the classification of irregular algebraic surfaces (that is, surfaces S with $q(S)>0$) produced a considerable amount of results, see for example the survey papers [2], [19] for a detailed bibliography on the subject.

In particular, surfaces of general type with $\chi\left(\mathcal{O}_{S}\right)=1$, that is, $p_{g}(S)=q(S)$ were investigated. For these surfaces, [11, Théorème 6.1] implies $p_{g} \leq 4$. Surfaces with $p_{g}=q=4$ and $p_{g}=q=3$ are nowadays completely classified, see [3], [10], [13], [26]. On the other hand, for the the case $p_{g}=q=2$, which presents a very rich and subtle geometry, we have so far only a partial understanding of the situation; we refer the reader to [23], [24], [25] for an account on this topic and recent results.

As the title suggests, in this paper we consider a family \mathcal{M} of minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$. The existence of such surfaces was originally established in [7] with the help of the Computer Algebra System MAGMA [6]; the present work provides an alternative, computer-free construction of them, that allows us to describe their Albanese map and their moduli space.

Our results can be summarized as follows, see Theorem 3.7.
Main Theorem. There exists a 3-dimensional family \mathcal{M} of minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$ such that, for all elements $S \in \mathcal{M}$, the canonical class K_{S} is ample and the Albanese map $\alpha: S \rightarrow A$ is a generically finite triple cover of a principally polarized abelian surface (A, Θ), simply branched over a curve D_{A} numerically equivalent to 4Θ having an ordinary sextuple point and no other singularities. The family \mathcal{M} provides a generically smooth, irreducible, open and normal subset of the Gieseker moduli space $\mathcal{M}_{2,2,7}^{\text {can }}$ of canonical models of minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$.

In particular, this means that \mathcal{M} provides a dense open set of a generically smooth, irreducible component of $\mathcal{M}_{2,2,7}^{\text {can }}$. Furthermore, denoting by \mathcal{M}_{2} the coarse moduli space of curves of genus 2 , there exists a quasi-finite, surjective morphism $\varsigma: \mathcal{M} \rightarrow \mathcal{M}_{2}$ of degree 40 (see Proposition 3.9).

Let us explain now how the paper is organized. In Section 2 we explain our construction in detail and we compute the invariants of the resulting surfaces (Proposition 2.5); moreover we study their Albanese map, giving a precise description of its image and of its branch curve (Proposition 2.8). It is worth pointing out that the general surface S contains no irrational pencils (Proposition 2.9).

[^0]Section 3 is devoted to the study of the first-order deformations of the surfaces in \mathcal{M} and to the description of the corresponding subset in $\mathcal{M}_{2,2,7}^{\text {can }}$. A key point in our analysis is showing that for all elements in $S \in \mathcal{M}$ we have $h^{1}\left(S, T_{S}\right)=3$, see Proposition 3.6.

Since the degree of the Albanese map is in this case a topological invariant (Proposition 3.1), it follows that these surfaces lie in a different connected component of the moduli space than the only other known example with the same invariants, namely the surface with $p_{g}=q=2$ and $K^{2}=7$ constructed in [28], whose Albanese map is a generically finite double cover of an abelian surface with polarization of type (1, 2), see Remark 3.8. Hence the family \mathcal{M} provides a substantially new piece in the fine classification of minimal surfaces of general type with $p_{g}=q=2$.

Notation and conventions. We work over the field \mathbb{C} of complex numbers. By surface we mean a projective, non-singular surface S, and for such a surface K_{S} denotes the canonical class, $p_{g}(S)=h^{0}\left(S, K_{S}\right)$ is the geometric genus, $q(S)=h^{1}\left(S, K_{S}\right)$ is the irregularity and $\chi\left(\mathcal{O}_{S}\right)=1-q(S)+p_{g}(S)$ is the Euler-Poincaré characteristic.

If C is a smooth curve, we identify $\operatorname{Pic}^{0}(C)$ with the Jacobian variety $J(C)$ by means of the canonical isomorphism provided by the Abel-Jacobi map, see [5, Theorem 11.1.3]. Furthermore, we write $\operatorname{Sym}^{n}(C)$ for the n-th symmetric product of C.

Given a finite group G acting on a vector space V, we denote by V^{G} the G-invariant subspace.

2 The construction

Let V_{2} and V_{3} be the two hypersurfaces of \mathbb{P}^{3} defined by

$$
\begin{equation*}
V_{2}:=\left\{x_{2} x_{3}+r\left(x_{0}, x_{1}\right)=0\right\}, \quad V_{3}:=\left\{x_{2}^{3}+x_{3}^{3}+s\left(x_{0}, x_{1}\right)=0\right\} \tag{2.1}
\end{equation*}
$$

where $r, s \in \mathbb{C}\left[x_{0}, x_{1}\right]$ are general homogeneous forms of degree 2 and 3 , respectively. Then $C_{4}:=V_{2} \cap V_{3}$ is a smooth, canonical curve of genus 4 . Denoting by ξ a primitive third root of unity, we see that C_{4} admits a free action of the cyclic group $\langle\xi\rangle \cong \mathbb{Z} / 3 \mathbb{Z}$, defined by

$$
\begin{equation*}
\xi \cdot\left[x_{0}: x_{1}: x_{2}: x_{3}\right]=\left[x_{0}: x_{1}: \xi x_{2}: \xi^{2} x_{3}\right] \tag{2.2}
\end{equation*}
$$

and the quotient $C_{2}:=C_{4} /\langle\xi\rangle$ is a smooth curve of genus 2.
Proposition 2.1 All étale Galois triple covers of a smooth curve of genus 2 can be obtained in this way.
Proof. Let C_{2} be any smooth curve of genus 2 and choose any étale $\mathbb{Z} / 3 \mathbb{Z}$-cover $c: C_{4} \rightarrow C_{2}$. Thus C_{4} is a smooth curve of genus 4 and we can choose a fixed-point free automorphism $\varphi: C_{4} \rightarrow C_{4}$ generating the Galois group of the cover.

The curve C_{4} cannot be hyperelliptic, otherwise its ten Weierstrass points would be an invariant set by any automorphism, which is impossible because any orbit of c consists of three distinct points. Hence the canonical divisor $K_{C_{4}}$ is very ample and defines an embedding of C_{4} in $\mathbb{P}^{3}=\mathbb{P} H^{0}\left(C_{4}, K_{C_{4}}\right)$, whose image (that we still denote by C_{4}) is the complete intersection of a (uniquely determined) quadric hypersurface V_{2} and a cubic hypersurface V_{3}. It remains to show that we can choose V_{2} and V_{3} as in (2.1).

Pushing down the canonical line bundle of C_{4} to C_{2} gives a decomposition of $H^{0}\left(C_{4}, K_{C_{4}}\right)$ into $\mathbb{Z} / 3 \mathbb{Z}$ eigenspaces, namely

$$
\begin{equation*}
H^{0}\left(C_{4}, K_{C_{4}}\right)=H^{0}\left(C_{2}, K_{C_{2}}\right) \oplus H^{0}\left(C_{2}, K_{C_{2}}+\eta\right) \oplus H^{0}\left(C_{2}, K_{C_{2}}+2 \eta\right) \tag{2.3}
\end{equation*}
$$

where η is a non-trivial, 3-torsion divisor on C_{2}. The first summand in (2.3) has dimension 2, whereas the others have dimension 1 ; so we can choose a basis $x_{0}, x_{1}, x_{2}, x_{3}$ of $H^{0}\left(C_{4}, K_{C_{4}}\right)$ such that x_{0}, x_{1} generate $H^{0}\left(C_{2}, K_{C_{2}}\right)$ whereas x_{2} and x_{3} generate $H^{0}\left(C_{2}, K_{C_{2}}+\eta\right)$ and $H^{0}\left(C_{2}, K_{C_{2}}+2 \eta\right)$, respectively. This means that, using homogeneous coordinates $\left[x_{0}: x_{1}: x_{2}: x_{3}\right]$ in \mathbb{P}^{3}, the action of $\mathbb{Z} / 3 \mathbb{Z}=\langle\xi\rangle$ can be written as in (2.2).

We start by looking at the invariant quadrics in the homogeneous ideal of C_{4}. There are four invariant monomials of degree 2, namely

$$
\begin{equation*}
x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}, x_{2} x_{3} \tag{2.4}
\end{equation*}
$$

hence the invariant subspace $\left(\operatorname{Sym}^{2} H^{0}\left(C_{4}, K_{C_{4}}\right)\right)^{\langle\xi\rangle}$ of $\operatorname{Sym}^{2} H^{0}\left(C_{4}, K_{C_{4}}\right)$ has dimension 4. On the other hand, the subspace of invariant quadrics in the homogeneous ideal of C_{4} is the kernel of the surjective map

$$
\left(\operatorname{Sym}^{2} H^{0}\left(C_{4}, K_{C_{4}}\right)\right)^{\langle\xi\rangle} \longrightarrow H^{0}\left(C_{4}, 2 K_{C_{4}}\right)^{\langle\xi\rangle} \cong H^{0}\left(C_{2}, 2 K_{C_{2}}\right) \cong \mathbb{C}^{3}
$$

hence it has dimension 1 . In other words, the unique quadric V_{2} containing C_{4} is invariant, hence the polynomial defining V_{2} is a linear combination of the monomials in (2.4). The coefficient of $x_{2} x_{3}$ cannot vanish, or V_{2} would be reducible, so V_{2} is as in (2.1).

Let us look now at the invariant cubics in the homogeneous ideal of C_{4}. There are eight invariant monomials of degree 3 , namely

$$
x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{1}^{3}, x_{0} x_{2} x_{3}, x_{1} x_{2} x_{3}, x_{2}^{3}, x_{3}^{3}
$$

hence the invariant subspace $\left(\operatorname{Sym}^{3} H^{0}\left(C_{4}, K_{C_{4}}\right)\right)^{\langle\xi\rangle}$ of $\operatorname{Sym}^{3} H^{0}\left(C_{4}, K_{C_{4}}\right)$ has dimension 8 . On the other hand, the subspace of invariant cubics in the homogeneous ideal of C_{4} is the kernel of the surjective map

$$
\left(\operatorname{Sym}^{3} H^{0}\left(C_{4}, K_{C_{4}}\right)\right)^{\langle\xi\rangle} \longrightarrow H^{0}\left(C_{4}, 3 K_{C_{4}}\right)^{\langle\xi\rangle} \cong H^{0}\left(C_{2}, 3 K_{C_{2}}\right) \cong \mathbb{C}^{5}
$$

hence it has dimension 3. In particular, this implies that the general invariant cubic hypersurface V_{3} containing C_{4} is not a multiple of the quadric V_{2}. Adding suitable scalar multiples of $x_{0} V_{2}$ and $x_{1} V_{2}$ in order to get rid of the monomials $x_{0} x_{2} x_{3}$ and $x_{1} x_{2} x_{3}$, and changing coordinates by multiplying x_{2} and x_{3} by suitable constants we obtain an equation of V_{3} as in (2.1) and we are done.

Let us consider now the product $C_{4} \times C_{4} \subset \mathbb{P}^{3} \times \mathbb{P}^{3}$, and write $\boldsymbol{x}=\left[x_{0}: x_{1}: x_{2}: x_{3}\right]$ for the homogeneous coordinates in the first factor and $\boldsymbol{y}=\left[y_{0}: y_{1}: y_{2}: y_{3}\right]$ for those in the second factor. Then the action of $\langle\xi\rangle$ on C_{4} induces an action of $H:=\left\langle\xi_{x}, \xi_{y}, \sigma\right\rangle$ on $C_{4} \times C_{4}$, where

$$
\xi_{x}(\boldsymbol{x}, \boldsymbol{y}):=(\xi \cdot \boldsymbol{x}, \boldsymbol{y}), \quad \xi_{y}(\boldsymbol{x}, \boldsymbol{y}):=(\boldsymbol{x}, \xi \cdot \boldsymbol{y}), \quad \sigma(\boldsymbol{x}, \boldsymbol{y}):=(\boldsymbol{y}, \boldsymbol{x})
$$

Clearly ξ_{x} and ξ_{y} commute, whereas $\sigma \xi_{x}=\xi_{y} \sigma$ and $\sigma \xi_{y}=\xi_{x} \sigma$, so H is a semi-direct product of the form

$$
H=\left\langle\xi_{x}, \xi_{y}\right\rangle \rtimes\langle\sigma\rangle \cong(\mathbb{Z} / 3 \mathbb{Z})^{2} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

In particular, $|H|=18$ and every element $h \in H$ can be written in a unique way as $h=\sigma^{k} \xi_{x}^{i} \xi_{y}^{j}$, where $k \in\{0,1\}$ and $i, j \in\{0,1,2\}$.

Lemma 2.2 The non-trivial elements of H having fixed points on $C_{4} \times C_{4}$ are precisely the three elements of order 2

$$
h_{i}:=\sigma \xi_{x}^{i} \xi_{y}^{3-i}, \quad i=0,1,2
$$

More precisely, the element h_{i} fixes pointwise the smooth curve

$$
\Gamma_{i}:=\left\{\left(\boldsymbol{x}, \xi^{i} \cdot \boldsymbol{x}\right) \mid \boldsymbol{x} \in C_{4}\right\}
$$

that is, the graph of the automorphism of C_{4} defined by $\boldsymbol{x} \mapsto \xi^{i} \cdot \boldsymbol{x}$. The three curves Γ_{0}, Γ_{1} and Γ_{2} are isomorphic to C_{4}, pairwise disjoint and their self-intersection equals -6 .

Proof. Let $h=\sigma^{k} \xi_{x}^{i} \xi_{y}^{j}$ be an element of H. If $k=0$ then $h(\boldsymbol{x}, \boldsymbol{y})=\left(\xi^{i} \cdot \boldsymbol{x}, \xi^{j} \cdot \boldsymbol{y}\right)$ so, since the action of ξ on C_{4} is free, h has fixed points if and only if it is trivial. Thus we can assume $k=1$, in which case we have

$$
\sigma \xi_{x}^{i} \xi_{y}^{j}(\boldsymbol{x}, \boldsymbol{y})=\left(\xi^{j} \cdot \boldsymbol{y}, \xi^{i} \cdot \boldsymbol{x}\right)
$$

Hence $(\boldsymbol{x}, \boldsymbol{y})$ is a fixed point for h if and only if $i+j \equiv 0(\bmod 3)$ and $\boldsymbol{y}=\xi^{i} \cdot \boldsymbol{x}$, that is $(\boldsymbol{x}, \boldsymbol{y}) \in \Gamma_{i}$.
A straightforward computation using the relations $\sigma^{2}=1$ and $\xi_{x} \sigma=\sigma \xi_{y}$ shows that the order of h_{i} is 2 .
The curve Γ_{0} is the diagonal of $C_{4} \times C_{4}$, hence it is isomorphic to C_{4} and satisfies $\left(\Gamma_{0}\right)^{2}=2-2 g\left(C_{4}\right)=-6$. The same is true for the curves Γ_{1} and Γ_{2}, because they are the translate of Γ_{0} by the action of ξ_{y} and ξ_{x}, respectively. Finally, Γ_{i} and Γ_{j} are disjoint for $i \neq j$, because ξ acts freely on C_{4}.

Lemma 2.2 implies that the quotient map $C_{4} \times C_{4} \rightarrow\left(C_{4} \times C_{4}\right) / H$ is ramified exactly over the three curves Γ_{i}, with ramification index 2 on each of them. We factor such a map through the quotient by the normal abelian
subgroup $\left\langle\xi_{x}, \xi_{y}\right\rangle \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}$. This subgroup acts separately on the two factors, whereas σ exchanges them, so we get

$$
\left(C_{4} \times C_{4}\right) /\left\langle\xi_{x}, \xi_{y}\right\rangle \cong C_{2} \times C_{2}, \quad\left(C_{4} \times C_{4}\right) / H \cong \operatorname{Sym}^{2}\left(C_{2}\right)
$$

Thus the surface $B=\left(C_{4} \times C_{4}\right) / H$ contains a unique rational curve, namely the (-1)-curve E corresponding to the unique g_{2}^{1} of C_{2}. Denoting by $\pi: B \rightarrow A$ the blow-down of E, we see that A is an abelian surface isomorphic to the Jacobian variety $J\left(C_{2}\right)$.

Remark 2.3 Because of Proposition 2.1, all Jacobians of smooth curves of genus 2 can be obtained in this way.

Let us denote now by $\xi_{x y}$ the element $\xi_{x} \xi_{y}$ and set $G:=\left\langle\xi_{x y}, \sigma\right\rangle$; then G is a non-normal, abelian subgroup of H, isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Setting

$$
T:=\left(C_{4} \times C_{4}\right) /\left\langle\xi_{x y}\right\rangle, \quad S:=\left(C_{4} \times C_{4}\right) / G
$$

and writing $t: C_{4} \times C_{4} \rightarrow T$ and $f: C_{4} \times C_{4} \rightarrow S$ for the corresponding projection maps, we have the following commutative diagram:

The morphism $u: T \rightarrow S$ is a double cover, induced by the involution σ exchanging the two coordinates in $C_{4} \times C_{4}$.

We first compute the invariants of T.
Lemma 2.4 The surface S is a minimal surface of general type with

$$
p_{g}(T)=6, \quad q(T)=4, \quad K_{T}^{2}=24
$$

Proof. By standard calculations we have

$$
p_{g}\left(C_{4} \times C_{4}\right)=16, \quad q\left(C_{4} \times C_{4}\right)=8, \quad K_{C_{4} \times C_{4}}^{2}=72
$$

The group $\left\langle\xi_{x y}\right\rangle \cong \mathbb{Z} / 3 \mathbb{Z}$ acts diagonally and freely on $C_{4} \times C_{4}$, hence T is a so-called quasi-bundle, see for instance [27, Section 3]. Therefore we obtain

$$
K_{T}^{2}=\frac{1}{3} K_{C_{4} \times C_{4}}^{2}=24, \quad \chi\left(\mathcal{O}_{T}\right)=\frac{1}{3} \chi\left(\mathcal{O}_{C_{4} \times C_{4}}\right)=3, \quad q(T)=g\left(C_{2}\right)+g\left(C_{2}\right)=4
$$

so $p_{g}(T)=6$. Note that by Noether's formula this implies $c_{2}(T)=12$. Finally, T is a minimal surface of general type because it a finite, étale quotient of the minimal surface of general type $C_{4} \times C_{4}$.

The three curves $\Gamma_{i} \subset C_{4} \times C_{4}$ are $\xi_{x y}$-invariant, hence their images $\Sigma_{i}:=t\left(\Gamma_{i}\right) \subset T$ are three curves isomorphic to C_{2} and such that $\left(\Sigma_{i}\right)^{2}=\frac{1}{3}\left(\Gamma_{i}\right)^{2}=-2$. Moreover, the curve Γ_{0} is also σ-invariant, whereas Γ_{1} and Γ_{2} are switched by the action of σ. Then $D_{S}:=u\left(\Sigma_{0}\right)$ and $R:=u\left(\Sigma_{1}\right)=u\left(\Sigma_{2}\right)$ are two disjoint curves in S, both isomorphic to C_{2}, such that $\left(D_{S}\right)^{2}=-4$ and $R^{2}=-2$. Note that D_{S} is the branch locus of the double cover $u: T \rightarrow S$.

We can now compute the invariants of S.
Proposition 2.5 The surface S is a minimal surface of general type with

$$
p_{g}(S)=2, \quad q(S)=2, \quad K_{S}^{2}=7
$$

The morphism $\beta: S \rightarrow B$ is a non-Galois triple cover, simply ramified over R and simply branched over the diagonal $D_{B} \subset B$. Finally, S contains no rational curves (in particular, K_{S} is ample) and contains a smooth elliptic curve, namely $Z:=\beta^{*} E$ (which satisfies $Z^{2}=-3$).

Proof. We start by proving the last claim. The two smooth curves D_{B} and E intersect transversally at the six points corresponding to the six Weierstrass points of C_{2}. The preimage of $Z:=\beta^{*} E$ on $C_{4} \times C_{4}$ is the disjoint union of three smooth curves isomorphic to C_{4}, namely the graphs of the three involutions $C_{4} \rightarrow C_{4}$ obtained by lifting to C_{4} the hyperelliptic involution of C_{2}. The cyclic group $\left\langle\xi_{x y}\right\rangle$ acts transitively on the set of these curves, whereas σ acts on each of them as the corresponding involution, which has six fixed points. So Z is a smooth, irreducible curve of genus 1 contained in S, such that

$$
\begin{equation*}
Z R=\left(\beta^{*} E\right) \cdot R=E \cdot\left(\beta_{*} R\right)=E D_{B}=6 \tag{2.6}
\end{equation*}
$$

On the other hand, S does not contain any rational curve. Otherwise, such a curve would map would map onto E via $\beta: S \rightarrow B$, impossible because we have seen that $\beta^{*} E$ is smooth of genus 1 .

Since the double cover $u: T \rightarrow S$ is branched over the curve D_{S}, it follows that D_{S} is 2-divisible in $\operatorname{Pic}(S)$ and moreover

$$
24=K_{T}^{2}=2\left(K_{S}+\frac{1}{2} D_{S}\right)^{2}
$$

Using $\left(D_{S}\right)^{2}=-4$ and $K_{S} D_{S}=6$, we find $K_{S}^{2}=7$. Since S does not contain any rational curve and $K_{S}^{2}>0$, we deduce that S is a minimal surface of general type with ample canonical class.

Now, as $K_{B}=\pi^{*} K_{A}+E=E$, the Riemann-Hurwitz formula yields

$$
\begin{equation*}
K_{S}=\beta^{*} K_{B}+R=Z+R \tag{2.7}
\end{equation*}
$$

and this allows us to compute Z^{2}. In fact, using (2.6) and (2.7), we can write

$$
7=K_{S}^{2}=Z^{2}+2 Z R+R^{2}=Z^{2}+10
$$

that is $Z^{2}=-3$.
Next, denoting by $\chi_{\text {top }}$ the topological Euler number, we have

$$
\begin{aligned}
\chi_{\mathrm{top}}\left(S-D_{S}-R\right) & =\frac{1}{2} \chi_{\mathrm{top}}\left(T-\Sigma_{0}-\Sigma_{1}-\Sigma_{2}\right) \\
& =\frac{1}{2}\left(c_{2}(T)-\chi_{\mathrm{top}}\left(\Sigma_{0}\right)-\chi_{\mathrm{top}}\left(\Sigma_{1}\right)-\chi_{\mathrm{top}}\left(\Sigma_{2}\right)\right)=\frac{1}{2}(12-3(-2))=9
\end{aligned}
$$

so

$$
c_{2}(S)=\chi_{\mathrm{top}}(S)=\chi_{\mathrm{top}}\left(S-D_{S}-R\right)+\chi_{\mathrm{top}}\left(D_{S}\right)+\chi_{\mathrm{top}}(R)=9-2-2=5
$$

Therefore Noether's formula yields $\chi\left(\mathcal{O}_{S}\right)=1$, that is $p_{g}(S)=q(S)$.
The existence of the surjective morphism $\alpha: S \rightarrow A$ implies $q \geq 2$, and since minimal surfaces of general type with $p_{g}=q \geq 3$ have either $K^{2}=6$ or $K^{2}=8$ (see for instance [2]), we deduce $p_{g}(S)=q(S)=2$.

The morphism $\beta: S \rightarrow B$ is a non-Galois triple cover, because G is a non-normal subgroup of index 3 in H. Since $t: C_{4} \times C_{4} \rightarrow T$ is étale and $u: T \rightarrow S$ is branched over D_{S}, by Lemma 2.2 it follows that $\beta: S \rightarrow B$ is simply ramified over R, and hence simply branched over $\beta(R)=D_{B}$.

Remark 2.6 The existence of surfaces S was first established in [7], using a computer-aided construction based on Magma computations. The present paper provides the first computer-free description of them. Actually, S is a semi-isogenous mixed surface, namely a quotient of type $(C \times C) / G$, where C is a smooth curve and G is a finite subgroup of $\operatorname{Aut}(C \times C)$, such that the subgroup G^{0} of the automorphisms preserving both factors has index 2 and acts freely. In fact, with our previous notation

$$
C=C_{4}, \quad G=\left\langle\xi_{x y}, \sigma\right\rangle, \quad G^{0}=\left\langle\xi_{x y}\right\rangle .
$$

The paper [7] provides a detailed study of semi-isogenous mixed surfaces, showing, among other things, that they are smooth and how to compute their invariants. For instance, [7, Proposition 2.6] allows us to prove the equality $q(S)=2$ without exploiting the classification of surfaces with $p_{g}=q \geq 3$.

Let us now identify the blow-up morphism $\pi: B \rightarrow A$ with the Abel-Jacobi map

$$
\operatorname{Sym}^{2}\left(C_{2}\right) \longrightarrow J\left(C_{2}\right)
$$

If Θ is the class of a theta divisor in $\operatorname{NS}(A)$, let us define the class $\Theta_{B}:=\pi^{*} \Theta$ in $\operatorname{NS}(B)$. Moreover, let us write x for the class in $\mathrm{NS}(B)$ given by the image of the map

$$
C_{2} \longrightarrow \operatorname{Sym}^{2}\left(C_{2}\right), \quad p \longmapsto p_{0}+p
$$

where $p_{0} \in C_{2}$ is fixed (such a class does not depend on p_{0}). Then we can prove the following
Lemma 2.7 The equality $\pi_{*} D_{B}=4 \Theta$ holds in $\mathrm{NS}(A)$.
Proof. This is a consequence of general results on g-fold symmetric products of curves of genus g. For instance, [18, Equations (1) and (5)] give in our case the relations

$$
2 E+D_{B}=4 x, \quad \Theta_{B}=E+x
$$

in $\operatorname{NS}(B)$, and these in turn imply $D_{B}=4 \Theta_{B}-6 E$. So the result follows by applying the push-forward map $\pi_{*}: \mathrm{NS}(B) \rightarrow \mathrm{NS}(A)$.

The next step consists in describing the Albanese morphism of S.
Proposition 2.8 The abelian surface A is isomorphic to $\operatorname{Alb}(S)$ and, up to automorphisms of A, the generically finite triple cover $\alpha=\pi \circ \beta: S \rightarrow$ A coincides with the Albanese morphism of S. Furthermore, the only curve contracted by α is Z. Finally, α is branched over a divisor D_{A} numerically equivalent to 4Θ, having an ordinary sextuple point and no other singularities.

Proof. By the universal property of the Albanese variety ([4, Chapter V]), the morphism $\alpha: S \rightarrow A$ must factor through the Albanese morphism of S; but α is surjective and generically of degree 3 , so it must actually coincide with the Albanese morphism of S up to automorphisms of A. Since β is a finite morphism, α only contracts the preimage of E in S, which is Z. The branch locus D_{A} of α is equal to the image of the diagonal D_{B} via $\pi: B \rightarrow A$; since D_{B} is smooth and intersects E transversally at six points, it follows that D_{A} has an ordinary sextuple point and no other singularities. Finally, the fact that D_{A} is numerically equivalent to 4Θ follows from Lemma 2.7.

The situation is summarized in Figure 1 below.

Fig. 1 The triple covers α and β.
Furthermore, the Stein factorization of $\alpha: S \rightarrow A$ is described in the diagram

where $c_{Z}: S \rightarrow \tilde{S}$ is the birational morphism given by the contraction of the elliptic curve Z. Since $Z^{2}=-3$, the normal surface \tilde{S} has a Gorenstein elliptic singularity of type \tilde{E}_{6}, see [15, Theorem 7.6.4].

Recall that an irrational pencil (or irrational fibration) on a smooth, projective surface is a surjective morphism with connected fibres over a curve of positive genus.

Proposition 2.9 The general surface S contains no irrational pencils.
Proof. Assume that $\phi: S \rightarrow W$ is an irrational pencil on S. Since $q(S)=2$, we have either $g(W)=1$ or $g(W)=2$. On the other hand, using the embedding $W \hookrightarrow J(W)$ and the universal property of the Albanese map, we obtain a morphism $A \rightarrow J(W)$ whose image is isomorphic to the curve W. This rules out the case $g(W)=2$, hence W is an elliptic curve and so A is a non-simple abelian surface. The proof is now complete, because A is isomorphic to the Jacobian variety $J\left(C_{2}\right)$, which is known to be simple for a general choice of C_{2} ([17, Theorem 3.1]).

3 The moduli space

A projective variety X is called of maximal Albanese dimension if its Albanese map $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ is generically finite onto its image. For surfaces of general type with irregularity at least 2 , this is actually a topological property, as shown by the result below.

Proposition 3.1 Let S be a minimal surface of general type with $q(S) \geq 2$. If S is of maximal Albanese dimension, then the same holds for any surface which is homeomorphic to S. Furthermore, in the case $q(S)=2$ the degree of the Albanese map $\alpha: S \rightarrow A$ is a topological invariant.

Proof. This follows by the results of [8], see for instance [24, Proposition 3.1].
Proposition 3.1 allows us to study the deformations of S by relating them to those of the flat triple cover $\beta: S \rightarrow B$. Since the trace map provides a splitting of the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{B} \longrightarrow \beta_{*} \mathcal{O}_{S} \longrightarrow \mathcal{E}_{\beta} \longrightarrow 0
$$

we obtain a direct sum decomposition

$$
\begin{equation*}
\beta_{*} \mathcal{O}_{S}=\mathcal{O}_{B} \oplus \mathcal{E}_{\beta} \tag{3.1}
\end{equation*}
$$

where \mathcal{E}_{β} is a vector bundle of rank 2 on B which satisfies

$$
\begin{equation*}
h^{0}\left(B, \mathcal{E}_{\beta}\right)=0, \quad h^{1}\left(B, \mathcal{E}_{\beta}\right)=0, \quad h^{2}\left(B, \mathcal{E}_{\beta}\right)=1 \tag{3.2}
\end{equation*}
$$

and that, according to [20], is called the Tschirnhausen bundle of β.
As in [24, Section 3] we have a commutative diagram

whose central column is the pullback via $\beta: S \longrightarrow B$ of the sequence

$$
\begin{equation*}
0 \longrightarrow T_{B} \xrightarrow{d \pi} \pi^{*} T_{A} \longrightarrow \mathcal{O}_{E}(-E) \longrightarrow 0, \tag{3.4}
\end{equation*}
$$

see [30, p. 73]. The normal sheaf \mathcal{N}_{α} of $\alpha: S \rightarrow A$ is supported on the set of critical points of α, namely on the reducible divisor $R+Z$. Analogously, the normal sheaf \mathcal{N}_{β} of $\beta: S \rightarrow B$ is supported on the set of critical points of β, namely on R.

Lemma 3.2 We have

$$
\begin{equation*}
\mathcal{N}_{\beta}=\left(N_{R / S}\right)^{\otimes 2}=\mathcal{O}_{R}(2 R) \tag{3.5}
\end{equation*}
$$

Hence all first-order deformations of $\beta: S \rightarrow B$ leaving B fixed are trivial.
Proof. Since R is smooth, the first statement is a consequence of [29, Lemma 3.2]. Furthermore, we observe that $R^{2}=-2$ implies that the line bundle \mathcal{N}_{β} has negative degree on R, hence $H^{0}\left(R, \mathcal{N}_{\beta}\right)=0$. By [30, Corollary 3.4.9], this shows that $\beta: S \rightarrow B$ is rigid as a morphism with fixed target.

Note the the last statement of Lemma 3.2 agrees with the fact that the branch locus D_{B} of $\beta: S \rightarrow B$ is a rigid divisor in B.

Lemma 3.3 We have

$$
h^{1}\left(S, T_{S}\right)=h^{0}\left(R+Z, \mathcal{N}_{\alpha}\right)+1 \geq 3 .
$$

Proof. Let us write down the cohomology exact sequence associated with the short exact sequence in the central row of (3.3), recalling first that S is a surface of general type and therefore $h^{0}\left(S, T_{S}\right)=0$:

$$
0 \longrightarrow H^{0}\left(S, \alpha^{*} T_{A}\right) \cong \mathbb{C}^{2} \longrightarrow H^{0}\left(R+Z, \mathcal{N}_{\alpha}\right) \longrightarrow H^{1}\left(S, T_{S}\right) \xrightarrow{\varepsilon} H^{1}\left(S, \alpha^{*} T_{A}\right)
$$

Then the claim will follow if we show that $\operatorname{rank}(\varepsilon)=3$, and this can be done by using the same argument as in [24, Section 3].

More precisely, since T_{A} is trivial and the Albanese map induces an isomorphism $H^{1}\left(S, \mathcal{O}_{S}\right) \cong H^{1}\left(A, \mathcal{O}_{A}\right)$, then $H^{1}\left(S, \alpha^{*} T_{A}\right) \cong H^{1}\left(A, T_{A}\right)$ and we can see ε as the map $H^{1}\left(S, T_{S}\right) \rightarrow H^{1}\left(A, T_{A}\right)$ induced on first-order deformations by the Albanese map. By Remark 2.3 the first-order deformations of S dominate the first-order algebraic deformations of A, so $\operatorname{rank}(\varepsilon) \geq 3$; on the other hand, the Albanese variety of every deformation of S has to remain algebraic, so $\operatorname{rank}(\varepsilon) \leq 3$ and we are done.

Thus, in order to understand the first-order deformations of S, we can study \mathcal{N}_{α}.
Lemma 3.4 The sheaf \mathcal{N}_{α} is locally free of rank 1 on the reducible curve $R+Z$.
Proof. By a standard application of Nakayama's lemma (see for instance [16, Corollary 5.3.4]), it suffices to check that the \mathbb{C}-vector space $\mathcal{N}_{\alpha, x} / \mathfrak{m}_{x} \mathcal{N}_{\alpha, x}$ has dimension 1 for all $x \in R+Z$, where $\mathfrak{m}_{x} \subset \mathcal{O}_{R+Z, x}$ is the maximal ideal. Equivalently, we will check that the vector bundle map $d \alpha: T_{S} \rightarrow \alpha^{*} T_{A}$ has rank 1 at each point $x \in R+Z$. Let us distinguish three cases.

- If $x \in R \backslash Z$, then α is locally of the form $(u, v) \mapsto\left(u^{2}, v\right)$, with $x=(0,0)$ and R given by $u=0$. Then $d \alpha$ is the linear map associated with the matrix

$$
\left(\begin{array}{cc}
2 u & 0 \\
0 & 1
\end{array}\right)
$$

which has rank 1 at the point x.

- If $x \in Z \backslash R$, then α is locally a smooth blow-up, hence of the form $(u, v) \mapsto(u v, v)$, where $x=(0,0)$ and Z corresponds to the exceptional divisor, whose equation is $v=0$. Then $d \alpha$ is the linear map associated with the matrix

$$
\left(\begin{array}{cc}
v & u \\
0 & 1
\end{array}\right),
$$

which has rank 1 at the point x.

- Finally, if $x \in R \cap Z$ then α is locally the composition of the two maps above, so of the form $(u, v) \mapsto$ $\left(u^{2} v, v\right)$, where $x=(0,0)$, the curve R corresponds to the locus $u=0$ and the curve Z to the locus $v=0$. Then $d \alpha$ is the linear map associated with the matrix

$$
\left(\begin{array}{cc}
2 u v & u^{2} \\
0 & 1
\end{array}\right)
$$

which has rank 1 at the point x.
This completes the proof.
We can be more precise and compute the restrictions of \mathcal{N}_{α} to both curves R and Z.
Lemma 3.5 We have

$$
\mathcal{N}_{\alpha \mid Z}=\mathcal{O}_{Z}(-Z), \quad \mathcal{N}_{\alpha \mid R}=\mathcal{O}_{R}(2 R+Z)=\mathcal{O}_{R}\left(K_{R}\right)
$$

Proof. Let us first apply the functor $\otimes_{\mathcal{O}_{R+Z}} \mathcal{O}_{Z}$ to the exact sequence forming the last column of diagram (3.3); using (3.5), we get

$$
\mathcal{O}_{R}(2 R) \otimes \mathcal{O}_{Z} \xrightarrow{\zeta} \mathcal{N}_{\alpha \mid Z} \longrightarrow \mathcal{O}_{Z}(-Z) \longrightarrow 0
$$

By Lemma 3.4, the sheaf $\mathcal{N}_{\alpha \mid Z}$ is locally free on Z; on the other hand, $\mathcal{O}_{R}(2 R) \otimes \mathcal{O}_{Z}$ is a torsion sheaf, hence ζ is the zero map and so $\mathcal{N}_{\alpha \mid Z} \cong \mathcal{O}_{Z}(-Z)$.

Next, we apply to the same exact sequence the functor $\otimes_{\mathcal{O}_{R+Z}} \mathcal{O}_{R}$, obtaining

$$
\begin{equation*}
\mathcal{T} \xrightarrow{\tau} \mathcal{O}_{R}(2 R) \longrightarrow \mathcal{N}_{\alpha \mid R} \longrightarrow \mathcal{O}_{Z}(-Z) \otimes \mathcal{O}_{R} \longrightarrow 0 \tag{3.6}
\end{equation*}
$$

Since $\mathcal{T}:=\operatorname{Tor}_{\mathcal{O}_{R+Z}}^{1}\left(\mathcal{O}_{Z}(-Z), \mathcal{O}_{R}\right)$ is a torsion sheaf (supported on $R \cap Z$) and $\mathcal{O}_{R}(2 R)$ is locally free on R, we deduce that τ is the zero map and so (3.6) becomes

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{R}(2 R) \longrightarrow \mathcal{N}_{\alpha \mid R} \longrightarrow \mathcal{O}_{Z}(-Z) \otimes \mathcal{O}_{R} \longrightarrow 0 \tag{3.7}
\end{equation*}
$$

On the other hand, the curves R and Z intersect transversally at the six Weierstrass points p_{1}, \ldots, p_{6} of R, so we infer

$$
\begin{equation*}
\mathcal{O}_{Z}(-Z) \otimes \mathcal{O}_{R}=\mathcal{O}_{Z} \otimes \mathcal{O}_{R}=\bigoplus_{i=1}^{6} \mathcal{O}_{p_{i}} \tag{3.8}
\end{equation*}
$$

Hence (3.7) and (3.8) yield

$$
0 \longrightarrow \mathcal{O}_{R} \longrightarrow \mathcal{N}_{\alpha \mid R}(-2 R) \longrightarrow \bigoplus_{1}^{6} \mathcal{O}_{p_{i}} \longrightarrow 0
$$

that is the invertible sheaf $\mathcal{N}_{\alpha \mid R}(-2 R)$ has a global section whose divisor is $\sum p_{i}$. This means $\mathcal{N}_{\alpha \mid R} \cong \mathcal{O}_{R}(2 R+$ $\left.\sum p_{i}\right)=\mathcal{O}_{R}(2 R+Z)$. Finally, Equation (2.7) shows that $R+Z$ is a canonical divisor on S, so by using adjunction formula we obtain

$$
\mathcal{O}_{R}(2 R+Z)=\mathcal{O}_{S}\left(K_{S}+R\right) \otimes \mathcal{O}_{R}=\mathcal{O}_{R}\left(K_{R}\right)
$$

We can finally prove
Proposition 3.6 All surfaces S constructed in Section 2 satisfy

$$
h^{1}\left(S, T_{S}\right)=3
$$

Proof. By Lemma 3.3 it suffices to show the inequality $h^{0}\left(R+Z, \mathcal{N}_{\alpha}\right) \leq 2$. By [1, p. 62] we have a "decomposition sequence"

$$
0 \longrightarrow \mathcal{O}_{Z}(-R) \longrightarrow \mathcal{O}_{R+Z} \longrightarrow \mathcal{O}_{R} \longrightarrow 0
$$

which gives, tensoring with \mathcal{N}_{α} and using Lemma 3.5,

$$
0 \longrightarrow \mathcal{O}_{Z}(-R-Z) \longrightarrow \mathcal{N}_{\alpha} \longrightarrow \mathcal{O}_{R}\left(K_{R}\right) \longrightarrow 0
$$

Since $Z(-R-Z)=-3<0$, we deduce $H^{0}\left(Z, \mathcal{O}_{Z}(-R-Z)\right)=0$. So $H^{0}\left(R+Z, \mathcal{N}_{\alpha}\right)$ injects into $H^{0}\left(R, K_{R}\right)=\mathbb{C}^{2}$ and we are done.

The moduli space of principally polarized abelian surfaces has dimension 3; moreover,the rigidity of the curve D_{B} in B implies that the curve D_{A} has only trivial deformations in A. So our surfaces S provide a 3-dimensional subset \mathcal{M} of the moduli space $\mathcal{M}_{2,2,7}^{\text {can }}$ of (canonical models of) minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$. Because of Proposition 3.6, the corresponding Kuranishi family is smooth; this implies that \mathcal{M} has at most quotient singularities, so it is a normal (and hence generically smooth) open subset of $\mathcal{M}_{2,2,7}^{\text {can }}$. In particular, \mathcal{M} provides a dense open set of a generically smooth, irreducible component of this moduli space.

Summing up, we have proven the Main Theorem stated in the introduction, namely
Theorem 3.7 There exists a 3-dimensional family \mathcal{M} of minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$ such that, for all elements $S \in \mathcal{M}$, the canonical class K_{S} is ample and the Albanese map $\alpha: S \rightarrow A$ is a generically finite triple cover of a principally polarized abelian surface (A, Θ), simply branched over a curve D_{A} numerically equivalent to 4Θ having an ordinary sextuple point and no other singularities. The family \mathcal{M} provides a generically smooth, irreducible, open and normal subset of the Gieseker moduli space $\mathcal{M}_{2,2,7}^{\mathrm{can}}$ of canonical models of minimal surfaces of general type with $p_{g}=q=2$ and $K^{2}=7$.

Remark 3.8 By Proposition 3.1 the degree of the Albanese map is in our case a topological invariant, so it follows that the surfaces in \mathcal{M} lie in a different connected component of $\mathcal{M}_{2,2,7}^{\text {can }}$ than the only other known example with the same invariants, namely the surface with $p_{g}=q=2$ and $K^{2}=7$ constructed in [28], whose Albanese map is a generically finite double cover of an abelian surface with polarization of type (1, 2). Hence the family \mathcal{M} provides a substantially new piece in the fine classification of minimal surfaces of general type with $p_{g}=q=2$.

For every surface S whose isomorphism class $[S]$ belongs to \mathcal{M}, the normalization of the branching curve D_{A} of $\alpha: S \longrightarrow A$ is isomorphic to C_{2}, hence we obtain a morphism

$$
\varsigma: \mathcal{M} \longrightarrow \mathcal{M}_{2}, \quad \varsigma([S]):=\left[C_{2}\right]
$$

where \mathcal{M}_{2} denotes as usual the coarse moduli space of curves of genus 2 . Note that such a morphism is surjective by Proposition 2.1. Correspondingly, we have a morphism of deformation functors, namely

$$
\delta_{S}: \operatorname{Def}_{S} \longrightarrow \operatorname{Def}_{C_{2}}
$$

The next result clarifies the relation between the deformations of S and those of the curve C_{2}.
Proposition 3.9 The following hold:
(1) $\delta_{S}: \operatorname{Def}_{S} \rightarrow \operatorname{Def}_{C_{2}}$ is an isomorphism of functors.
(2) $\varsigma: \mathcal{M} \rightarrow \mathcal{M}_{2}$ is a quasi-finite morphism of degree 40.

Proof. (1) Since $\operatorname{dim} \mathcal{M}=\operatorname{dim} H^{1}\left(S, T_{S}\right)=3$, the functor Def_{S} is unobstructed; moreover, the functor $\operatorname{Def}_{C_{2}}$ is clearly unobstructed, too. Proposition 2.1 implies that the first-order deformations of S dominate the first-order deformations of C_{2}, so the differential map

$$
\begin{equation*}
d \delta_{S}: H^{1}\left(S, T_{S}\right) \longrightarrow H^{1}\left(C_{2}, T_{C_{2}}\right) \tag{3.9}
\end{equation*}
$$

is surjective, and hence it is an isomorphism because $H^{1}\left(S, T_{S}\right)$ and $H^{1}\left(C_{2}, T_{C_{2}}\right)$ have the same dimension. Since Def_{S} and $\operatorname{Def}_{C_{2}}$ are both unobstructed, this shows that δ_{S} is an isomorphism of functors, see [30, Corollary 2.3.7 and Remark 2.3.8].
(2) We have to show that, for each $\left[C_{2}\right] \in \mathcal{M}_{2}$, the cardinality of $\varsigma^{-1}\left(\left[C_{2}\right]\right)$ is at most 40 and that it is exactly 40 for a general choice of C_{2}.

Remark that, once C_{2} is fixed, the étale $\mathbb{Z} / 3 \mathbb{Z}$-cover $c: C_{4} \rightarrow C_{2}$ completely determines S. Conversely, we claim that, starting from S, it is possible to reconstruct the étale morphism $c: C_{4} \rightarrow C_{2}$ up to automorphisms of
C_{2} and C_{4}. In fact, the subgroup $\xi_{x y}$ is normal in H and the quotient $H /\left\langle\xi_{x y}\right\rangle$ is isomorphic to S_{3}, hence looking at diagram (2.5) we see that the map

$$
v \circ \gamma: T \longrightarrow B=\operatorname{Sym}^{2}\left(C_{2}\right)
$$

yields the Galois closure of the triple cover $\beta: S \rightarrow B$. This shows that S determines the quasi-bundle $T=$ $\left(C_{4} \times C_{4}\right) /\left\langle\xi_{x y}\right\rangle$. On the other hand, since the action of $\left\langle\xi_{x y}\right\rangle$ on $C_{4} \times C_{4}$ is faithful, if we know T we can reconstruct C_{4} and the the étale $\mathbb{Z} / 3 \mathbb{Z}$-cover $c: C_{4} \rightarrow C_{2}$ up to automorphisms by using the rigidity result for minimal realizations of surfaces isogenous to a product proven in [9, Proposition 3.13].

Summing up, the cardinality of $\varsigma^{-1}\left(\left[C_{2}\right]\right)$ equals the number of Galois étale triple covers $c: C_{4} \longrightarrow C_{2}$ up to equivalence. Here by "equivalence of covers" we intend commutative diagrams of the form

where the horizontal arrows are automorphisms of the corresponding curves. In particular, as explained for instance in [22], if $\varphi_{2}=\mathrm{id}_{C_{2}}$ then the number of equivalence classes of Galois triple covers $c: C_{4} \rightarrow C_{2}$ coincides with the number of distinct subgroups of order 3 in $\operatorname{Pic}^{0}\left(C_{2}\right)$, i.e. with half the number of non-trivial 3-torsion points, that is $\left(3^{4}-1\right) / 2=40$.

On the other hand, if C_{2} is a general curve of genus 2 its unique non-trivial automorphism is the hyperelliptic involution, which acts as the multiplication by -1 on the group $\operatorname{Pic}^{0}\left(C_{2}\right)$ and hence trivially on the set of its 40 subgroups of order 3 . Thus, for a general choice of C_{2}, the fibre $\varsigma^{-1}\left(\left[C_{2}\right]\right)$ consists of exactly 40 distinct points.

Remark 3.10 Let us denote by \mathcal{A}_{2} the coarse moduli space of principally polarized abelian surfaces. It is well-known that the Torelli map $\tau_{2}: \mathcal{M}_{2} \rightarrow \mathcal{A}_{2}$, sending every curve to its polarized Jacobian, is an immersion, see [21]. Thus, composing τ_{2} with ς, we obtain a generically finite dominant morphism $\tau_{2} \circ \varsigma: \mathcal{M} \rightarrow \mathcal{A}_{2}$ of degree 40 , which is the one induced by the deformations of the Albanese map $\alpha: S \rightarrow \operatorname{Alb}(S)$. Observe that such a morphism is not surjective, because its image does not contain the products of elliptic curves that are not isomorphic to Jacobians.

Acknowledgments F. Polizzi was partially supported by Progetto MIUR di Rilevante Interesse Nazionale Geometria delle Varietà Algebriche e loro Spazi di Moduli and by GNSAGA-INdAM. He thanks the MathOverflow users abx and D. Speyer for their help with the proof of Proposition 2.1, and J. Starr for useful suggestions and for pointing out the reference [18]. He is also grateful to T. Gentile for his help with Figure 1. Roberto Pignatelli was partially supported by the project Futuro in Ricerca 2012 Moduli Spaces and Applications. He is a member of GNSAGA-INdAM. He wishes to thank Sönke Rollenske for his help with the proof of Lemma 3.5. Both authors thank the organizers of the intensive research period Algebraic Varieties and their Moduli at the Centro di Ricerca Matematica Ennio de Giorgi (Pisa) for the invitation and the hospitality in the period May-June 2015, when this project started. They are also grateful to the referee for many detailed comments and suggestions that considerably improved the presentation of these results.

References

[1] W. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact Complex Surfaces, Grundlehren der mathematischen Wissenschaften, Vol. 4, second enlarged edition (Springer-Verlag, Berlin, 2003).
[2] I. Bauer, F. Catanese, and R. Pignatelli, Complex surfaces of general type: some recent progress, in: Global Methods in Complex Geometry (Springer-Verlag, 2006), pp. 1-58.
[3] A. Beauville, L'inegalité $p_{g} \geq 2 q-4$ pour les surfaces de type générale, Bull. Soc. Math. France 110, 343-1346 (1982).
[4] A. Beauville, Complex Algebraic Surfaces (Cambridge University Press, 1996).
[5] C. Birkenhake and H. Lange, Complex Abelian Varieties, Grundlehren der mathematischen Wissenschaften Vol. 302, second edition (Springer-Verlag, Berlin, 2004).
[6] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24, 235-265 (1997).
[7] N. Cancian and D. Frapporti, On semi-isogenous mixed surfaces, e-print arXiv:1510.09055 (2015).
[8] F. Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104, 263-289 (1991).
[9] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122, 1-44 (2000).
[10] F. Catanese, C. Ciliberto, and M. M. Lopes, On the classification of irregular surfaces of general type with non birational bicanonical map, Trans. Amer. Math. Soc. 350, 275-308 (1998).
[11] O. Debarre, Inegalités numériques pour les surfaces de type générale, Bull. Soc. Math. France 110, 319-346 (1982).
[12] P. Griffiths and J. Harris, Principles of Algebraic Geometry (J. Wiley, 1978).
[13] C. Hacon and R. Pardini, Surfaces with $p_{g}=q=3$, Trans. Amer. Math. Soc. 354, 2631-2638 (2002).
[14] R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257 (Springer, 2010).
[15] S. Ishii, Introduction to Singularities (Springer, 2004).
[16] G. R. Kempf, Algebraic Varieties, London Mathematical Society Lecture Notes Series 172 (Cambridge University Press, 1993).
[17] S. Koizumi, The ring of algebraic correspondences on a generic curve of genus g, Nagoya Math. J. 60, 173-180 (1976).
[18] A. Mattuck, On symmetric product of curves, Proc. Amer. Math. Soc. 13, 82-87 (1962).
[19] M. Mendes Lopes and R. Pardini, The geography of irregular surfaces, in: Current Developments in Algebraic Geometry, Mathematical Sciences Research Institute Publications 59 (Cambridge Univ. Press, 2012), pp. 349-378.
[20] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math. 107, 1123-1158 (1985).
[21] F. Oort and J. Steenbrink, The local Torelli problem for algebraic curves, in: Journées de Géometrie Algébrique d'Angers (1979) (Sijthoff and Noordhoff, 1980).
[22] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417, 191-213 (1991).
[23] M. Penegini and F. Polizzi, On surfaces with $p_{g}=q=2, K^{2}=5$ and Albanese map of degree 3, Osaka J. Math. 50, 643-686 (2013).
[24] M. Penegini and F. Polizzi, Surfaces with $p_{g}=q=2, K^{2}=6$ and Albanese map of degree 2, Canadian J. Math. 65, 195-221 (2013).
[25] M. Penegini and F. Polizzi, A new family of surfaces with $p_{g}=q=2$ and $K^{2}=6$ whose Albanese map has degree 4, J. Lond. Math. Soc. (2) 90, 741-762 (2014).
[26] G. P. Pirola, Surfaces with $p_{g}=q=3$, Manuscripta Math. 108(2), 163-170 (2002).
[27] F. Polizzi, Standard isotrivial fibrations with $p_{g}=q=1$, J. Algebra 321, 1600-1631 (2009).
[28] C. Rito, New surfaces with $K^{2}=7$ and $p_{g}=q \leq 2$, e-print arXiv:1506.09117 (2015).
[29] S. Rollenske, Compact moduli for certain Kodaira fibrations, Ann. Sc. Norm. Super. Pisa IX(4), 851-874 (2010).
[30] E. Sernesi, Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften, Vol. 334 (SpringerVerlag, Berlin, 2006).

[^0]: * e-mail: Roberto.Pignatelli@unitn.it
 ** Corresponding author: e-mail: polizzi@mat.unical.it

