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1 Dipartimento di Matematica, Università di Trento, Via Sommarive, 14 I-38123 Trento (TN), Italy
2 Dipartimento di Matematica e Informatica, Università della Calabria, Cubo 30B, 87036 Arcavacata di Rende
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We study a family of surfaces of general type with pg = q = 2 and K 2 = 7, originally constructed by Cancian and
Frapporti by using the Computer Algebra System MAGMA. We provide an alternative, computer-free construction
of these surfaces, that allows us to describe their Albanese map and their moduli space.
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1 Introduction

In recent years, the work of several authors on the classification of irregular algebraic surfaces (that is, surfaces
S with q(S) > 0) produced a considerable amount of results, see for example the survey papers [2], [19] for a
detailed bibliography on the subject.

In particular, surfaces of general type with χ(OS) = 1, that is, pg(S) = q(S) were investigated. For these
surfaces, [11, Théorème 6.1] implies pg ≤ 4. Surfaces with pg = q = 4 and pg = q = 3 are nowadays completely
classified, see [3], [10], [13], [26]. On the other hand, for the the case pg = q = 2, which presents a very rich and
subtle geometry, we have so far only a partial understanding of the situation; we refer the reader to [23], [24], [25]
for an account on this topic and recent results.

As the title suggests, in this paper we consider a familyM of minimal surfaces of general type with pg = q = 2
and K 2 = 7. The existence of such surfaces was originally established in [7] with the help of the Computer Algebra
System MAGMA [6]; the present work provides an alternative, computer-free construction of them, that allows us
to describe their Albanese map and their moduli space.

Our results can be summarized as follows, see Theorem 3.7.

Main Theorem. There exists a 3-dimensional family M of minimal surfaces of general type with pg = q = 2
and K 2 = 7 such that, for all elements S ∈ M, the canonical class KS is ample and the Albanese map α : S → A
is a generically finite triple cover of a principally polarized abelian surface (A, �), simply branched over a
curve DA numerically equivalent to 4� having an ordinary sextuple point and no other singularities. The family
M provides a generically smooth, irreducible, open and normal subset of the Gieseker moduli space Mcan

2, 2, 7 of
canonical models of minimal surfaces of general type with pg = q = 2 and K 2 = 7.

In particular, this means that M provides a dense open set of a generically smooth, irreducible component of
Mcan

2, 2, 7. Furthermore, denoting by M2 the coarse moduli space of curves of genus 2, there exists a quasi-finite,
surjective morphism ς : M → M2 of degree 40 (see Proposition 3.9).

Let us explain now how the paper is organized. In Section 2 we explain our construction in detail and we
compute the invariants of the resulting surfaces (Proposition 2.5); moreover we study their Albanese map, giving
a precise description of its image and of its branch curve (Proposition 2.8). It is worth pointing out that the general
surface S contains no irrational pencils (Proposition 2.9).
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Section 3 is devoted to the study of the first-order deformations of the surfaces in M and to the description of
the corresponding subset in Mcan

2, 2, 7. A key point in our analysis is showing that for all elements in S ∈ M we
have h1(S, TS) = 3, see Proposition 3.6.

Since the degree of the Albanese map is in this case a topological invariant (Proposition 3.1), it follows that
these surfaces lie in a different connected component of the moduli space than the only other known example
with the same invariants, namely the surface with pg = q = 2 and K 2 = 7 constructed in [28], whose Albanese
map is a generically finite double cover of an abelian surface with polarization of type (1, 2), see Remark 3.8.
Hence the family M provides a substantially new piece in the fine classification of minimal surfaces of general
type with pg = q = 2.

Notation and conventions. We work over the field C of complex numbers. By surface we mean a projective,
non-singular surface S, and for such a surface KS denotes the canonical class, pg(S) = h0(S, KS) is the geometric
genus, q(S) = h1(S, KS) is the irregularity and χ(OS) = 1 − q(S) + pg(S) is the Euler–Poincaré characteristic.

If C is a smooth curve, we identify Pic0(C) with the Jacobian variety J (C) by means of the canonical
isomorphism provided by the Abel–Jacobi map, see [5, Theorem 11.1.3]. Furthermore, we write Symn(C) for the
n-th symmetric product of C .

Given a finite group G acting on a vector space V , we denote by V G the G-invariant subspace.

2 The construction

Let V2 and V3 be the two hypersurfaces of P
3 defined by

V2 := {
x2x3 + r(x0, x1) = 0

}
, V3 := {

x3
2 + x3

3 + s(x0, x1) = 0
}
, (2.1)

where r, s ∈ C[x0, x1] are general homogeneous forms of degree 2 and 3, respectively. Then C4 := V2 ∩ V3 is a
smooth, canonical curve of genus 4. Denoting by ξ a primitive third root of unity, we see that C4 admits a free
action of the cyclic group 〈ξ 〉 ∼= Z/3Z, defined by

ξ · [x0 : x1 : x2 : x3] = [
x0 : x1 : ξ x2 : ξ 2x3

]
(2.2)

and the quotient C2 := C4/〈ξ 〉 is a smooth curve of genus 2.

Proposition 2.1 All étale Galois triple covers of a smooth curve of genus 2 can be obtained in this way.

P r o o f . Let C2 be any smooth curve of genus 2 and choose any étale Z/3Z-cover c : C4 → C2. Thus C4 is a
smooth curve of genus 4 and we can choose a fixed-point free automorphism ϕ : C4 → C4 generating the Galois
group of the cover.

The curve C4 cannot be hyperelliptic, otherwise its ten Weierstrass points would be an invariant set by any
automorphism, which is impossible because any orbit of c consists of three distinct points. Hence the canonical
divisor KC4 is very ample and defines an embedding of C4 in P

3 = PH 0(C4, KC4), whose image (that we still
denote by C4) is the complete intersection of a (uniquely determined) quadric hypersurface V2 and a cubic
hypersurface V3. It remains to show that we can choose V2 and V3 as in (2.1).

Pushing down the canonical line bundle of C4 to C2 gives a decomposition of H 0(C4, KC4) into Z/3Z-
eigenspaces, namely

H 0(C4, KC4) = H 0(C2, KC2) ⊕ H 0(C2, KC2 + η) ⊕ H 0(C2, KC2 + 2η) (2.3)

where η is a non-trivial, 3-torsion divisor on C2. The first summand in (2.3) has dimension 2, whereas the
others have dimension 1; so we can choose a basis x0, x1, x2, x3 of H 0(C4, KC4) such that x0, x1 generate
H 0(C2, KC2) whereas x2 and x3 generate H 0(C2, KC2 + η) and H 0(C2, KC2 + 2η), respectively. This means
that, using homogeneous coordinates [x0 : x1 : x2 : x3] in P

3, the action of Z/3Z = 〈ξ 〉 can be written as in (2.2).
We start by looking at the invariant quadrics in the homogeneous ideal of C4. There are four invariant monomials

of degree 2, namely

x2
0 , x0x1, x2

1 , x2x3, (2.4)
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hence the invariant subspace
(
Sym2 H 0(C4, KC4)

)〈ξ〉
of Sym2 H 0(C4, KC4) has dimension 4. On the other hand,

the subspace of invariant quadrics in the homogeneous ideal of C4 is the kernel of the surjective map
(
Sym2 H 0(C4, KC4)

)〈ξ〉 −→ H 0(C4, 2KC4)
〈ξ〉 ∼= H 0(C2, 2KC2) ∼= C

3,

hence it has dimension 1. In other words, the unique quadric V2 containing C4 is invariant, hence the polynomial
defining V2 is a linear combination of the monomials in (2.4). The coefficient of x2x3 cannot vanish, or V2 would
be reducible, so V2 is as in (2.1).

Let us look now at the invariant cubics in the homogeneous ideal of C4. There are eight invariant monomials
of degree 3, namely

x3
0 , x2

0 x1, x0x2
1 , x3

1 , x0x2x3, x1x2x3, x3
2 , x3

3 ,

hence the invariant subspace
(
Sym3 H 0(C4, KC4)

)〈ξ〉
of Sym3 H 0(C4, KC4) has dimension 8. On the other hand,

the subspace of invariant cubics in the homogeneous ideal of C4 is the kernel of the surjective map
(
Sym3 H 0(C4, KC4)

)〈ξ〉 −→ H 0(C4, 3KC4)
〈ξ〉 ∼= H 0(C2, 3KC2) ∼= C

5,

hence it has dimension 3. In particular, this implies that the general invariant cubic hypersurface V3 containing
C4 is not a multiple of the quadric V2. Adding suitable scalar multiples of x0V2 and x1V2 in order to get rid of
the monomials x0x2x3 and x1x2x3, and changing coordinates by multiplying x2 and x3 by suitable constants we
obtain an equation of V3 as in (2.1) and we are done. �

Let us consider now the product C4 × C4 ⊂ P
3 × P

3, and write x = [x0 : x1 : x2 : x3] for the homogeneous
coordinates in the first factor and y = [y0 : y1 : y2 : y3] for those in the second factor. Then the action of 〈ξ 〉 on
C4 induces an action of H := 〈ξx , ξy, σ 〉 on C4 × C4, where

ξx(x, y) := (ξ · x, y), ξy(x, y) := (x, ξ · y), σ (x, y) := (y, x).

Clearly ξx and ξy commute, whereas σξx = ξyσ and σξy = ξxσ , so H is a semi-direct product of the form

H = 〈ξx , ξy〉 � 〈σ 〉 ∼= (Z/3Z)2
� Z/2Z.

In particular, |H | = 18 and every element h ∈ H can be written in a unique way as h = σ kξ i
xξ

j
y , where k ∈ {0, 1}

and i, j ∈ {0, 1, 2}.
Lemma 2.2 The non-trivial elements of H having fixed points on C4 × C4 are precisely the three elements of

order 2

hi := σξ i
xξ

3−i
y , i = 0, 1, 2.

More precisely, the element hi fixes pointwise the smooth curve


i := {(
x, ξ i · x

) | x ∈ C4
}
,

that is, the graph of the automorphism of C4 defined by x → ξ i · x. The three curves 
0, 
1 and 
2 are isomorphic
to C4, pairwise disjoint and their self-intersection equals −6.

P r o o f . Let h = σ kξ i
xξ

j
y be an element of H . If k = 0 then h(x, y) = (

ξ i · x, ξ j · y
)

so, since the action of
ξ on C4 is free, h has fixed points if and only if it is trivial. Thus we can assume k = 1, in which case we have

σξ i
xξ

j
y (x, y) = (

ξ j · y, ξ i · x
)
.

Hence (x, y) is a fixed point for h if and only if i + j ≡ 0 (mod 3) and y = ξ i · x, that is (x, y) ∈ 
i .
A straightforward computation using the relations σ 2 = 1 and ξxσ = σξy shows that the order of hi is 2.
The curve 
0 is the diagonal of C4 × C4, hence it is isomorphic to C4 and satisfies (
0)2 = 2 − 2g(C4) = −6.

The same is true for the curves 
1 and 
2, because they are the translate of 
0 by the action of ξy and ξx ,
respectively. Finally, 
i and 
 j are disjoint for i �= j , because ξ acts freely on C4. �

Lemma 2.2 implies that the quotient map C4 × C4 → (C4 × C4)/H is ramified exactly over the three curves

i , with ramification index 2 on each of them. We factor such a map through the quotient by the normal abelian
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subgroup 〈ξx , ξy〉 ∼= (Z/3Z)2. This subgroup acts separately on the two factors, whereas σ exchanges them, so
we get

(C4 × C4)/〈ξx , ξy〉 ∼= C2 × C2, (C4 × C4)/H ∼= Sym2(C2).

Thus the surface B = (C4 × C4)/H contains a unique rational curve, namely the (−1)-curve E corresponding to
the unique g1

2 of C2. Denoting by π : B → A the blow-down of E , we see that A is an abelian surface isomorphic
to the Jacobian variety J (C2).

Remark 2.3 Because of Proposition 2.1, all Jacobians of smooth curves of genus 2 can be obtained in this
way.

Let us denote now by ξxy the element ξxξy and set G := 〈ξxy, σ 〉; then G is a non-normal, abelian subgroup of
H , isomorphic to Z/2Z × Z/3Z. Setting

T := (C4 × C4)/〈ξxy〉, S := (C4 × C4)/G,

and writing t : C4 × C4 → T and f : C4 × C4 → S for the corresponding projection maps, we have the following
commutative diagram:

(2.5)

The morphism u : T → S is a double cover, induced by the involution σ exchanging the two coordinates in
C4 × C4.

We first compute the invariants of T .

Lemma 2.4 The surface S is a minimal surface of general type with

pg(T ) = 6, q(T ) = 4, K 2
T = 24.

P r o o f . By standard calculations we have

pg(C4 × C4) = 16, q(C4 × C4) = 8, K 2
C4×C4

= 72.

The group 〈ξxy〉 ∼= Z/3Z acts diagonally and freely on C4 × C4, hence T is a so-called quasi-bundle, see for
instance [27, Section 3]. Therefore we obtain

K 2
T = 1

3
K 2

C4×C4
= 24, χ(OT ) = 1

3
χ(OC4×C4) = 3, q(T ) = g(C2) + g(C2) = 4,

so pg(T ) = 6. Note that by Noether’s formula this implies c2(T ) = 12. Finally, T is a minimal surface of general
type because it a finite, étale quotient of the minimal surface of general type C4 × C4. �

The three curves 
i ⊂ C4 × C4 are ξxy-invariant, hence their images �i := t(
i ) ⊂ T are three curves iso-
morphic to C2 and such that (�i )2 = 1

3 (
i )2 = −2. Moreover, the curve 
0 is also σ -invariant, whereas 
1 and

2 are switched by the action of σ . Then DS := u(�0) and R := u(�1) = u(�2) are two disjoint curves in S,
both isomorphic to C2, such that (DS)2 = −4 and R2 = −2. Note that DS is the branch locus of the double cover
u : T → S.

We can now compute the invariants of S.

Proposition 2.5 The surface S is a minimal surface of general type with

pg(S) = 2, q(S) = 2, K 2
S = 7.
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The morphism β : S → B is a non-Galois triple cover, simply ramified over R and simply branched over the
diagonal DB ⊂ B. Finally, S contains no rational curves (in particular, KS is ample) and contains a smooth
elliptic curve, namely Z := β∗E (which satisfies Z2 = −3).

P r o o f . We start by proving the last claim. The two smooth curves DB and E intersect transversally at the
six points corresponding to the six Weierstrass points of C2. The preimage of Z := β∗E on C4 × C4 is the disjoint
union of three smooth curves isomorphic to C4, namely the graphs of the three involutions C4 → C4 obtained by
lifting to C4 the hyperelliptic involution of C2. The cyclic group 〈ξxy〉 acts transitively on the set of these curves,
whereas σ acts on each of them as the corresponding involution, which has six fixed points. So Z is a smooth,
irreducible curve of genus 1 contained in S, such that

Z R = (β∗E).R = E .(β∗ R) = E DB = 6. (2.6)

On the other hand, S does not contain any rational curve. Otherwise, such a curve would map would map onto
E via β : S → B, impossible because we have seen that β∗E is smooth of genus 1.

Since the double cover u : T → S is branched over the curve DS , it follows that DS is 2-divisible in Pic(S)
and moreover

24 = K 2
T = 2

(
KS + 1

2
DS

)2

.

Using (DS)2 = −4 and KS DS = 6, we find K 2
S = 7. Since S does not contain any rational curve and K 2

S > 0, we
deduce that S is a minimal surface of general type with ample canonical class.

Now, as K B = π∗K A + E = E , the Riemann–Hurwitz formula yields

KS = β∗K B + R = Z + R, (2.7)

and this allows us to compute Z2. In fact, using (2.6) and (2.7), we can write

7 = K 2
S = Z2 + 2Z R + R2 = Z2 + 10,

that is Z2 = −3.
Next, denoting by χtop the topological Euler number, we have

χtop(S − DS − R) = 1

2
χtop(T − �0 − �1 − �2)

= 1

2
(c2(T ) − χtop(�0) − χtop(�1) − χtop(�2)) = 1

2
(12 − 3(−2)) = 9,

so

c2(S) = χtop(S) = χtop(S − DS − R) + χtop(DS) + χtop(R) = 9 − 2 − 2 = 5.

Therefore Noether’s formula yields χ(OS) = 1, that is pg(S) = q(S).
The existence of the surjective morphism α : S → A implies q ≥ 2, and since minimal surfaces of general

type with pg = q ≥ 3 have either K 2 = 6 or K 2 = 8 (see for instance [2]), we deduce pg(S) = q(S) = 2.
The morphism β : S → B is a non-Galois triple cover, because G is a non-normal subgroup of index 3 in H .

Since t : C4 × C4 → T is étale and u : T → S is branched over DS , by Lemma 2.2 it follows that β : S → B is
simply ramified over R, and hence simply branched over β(R) = DB . �

Remark 2.6 The existence of surfaces S was first established in [7], using a computer-aided construction
based on Magma computations. The present paper provides the first computer-free description of them. Actually,
S is a semi-isogenous mixed surface, namely a quotient of type (C × C)/G, where C is a smooth curve and G
is a finite subgroup of Aut(C × C), such that the subgroup G0 of the automorphisms preserving both factors has
index 2 and acts freely. In fact, with our previous notation

C = C4, G = 〈ξxy, σ 〉, G0 = 〈ξxy〉.
The paper [7] provides a detailed study of semi-isogenous mixed surfaces, showing, among other things, that they
are smooth and how to compute their invariants. For instance, [7, Proposition 2.6] allows us to prove the equality
q(S) = 2 without exploiting the classification of surfaces with pg = q ≥ 3.
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Let us now identify the blow-up morphism π : B → A with the Abel–Jacobi map

Sym2(C2) −→ J (C2).

If � is the class of a theta divisor in NS(A), let us define the class �B := π∗� in NS(B). Moreover, let us write
x for the class in NS(B) given by the image of the map

C2 −→ Sym2(C2), p −→ p0 + p

where p0 ∈ C2 is fixed (such a class does not depend on p0). Then we can prove the following

Lemma 2.7 The equality π∗ DB = 4� holds in NS(A).

P r o o f . This is a consequence of general results on g-fold symmetric products of curves of genus g. For
instance, [18, Equations (1) and (5)] give in our case the relations

2E + DB = 4x, �B = E + x

in NS(B), and these in turn imply DB = 4�B − 6E . So the result follows by applying the push-forward map
π∗ : NS(B) → NS(A). �

The next step consists in describing the Albanese morphism of S.

Proposition 2.8 The abelian surface A is isomorphic to Alb(S) and, up to automorphisms of A, the generically
finite triple cover α = π ◦ β : S → A coincides with the Albanese morphism of S. Furthermore, the only curve
contracted by α is Z. Finally, α is branched over a divisor DA numerically equivalent to 4�, having an ordinary
sextuple point and no other singularities.

P r o o f . By the universal property of the Albanese variety ([4, Chapter V]), the morphism α : S → A must
factor through the Albanese morphism of S; but α is surjective and generically of degree 3, so it must actually
coincide with the Albanese morphism of S up to automorphisms of A. Since β is a finite morphism, α only
contracts the preimage of E in S, which is Z . The branch locus DA of α is equal to the image of the diagonal DB

via π : B → A; since DB is smooth and intersects E transversally at six points, it follows that DA has an ordinary
sextuple point and no other singularities. Finally, the fact that DA is numerically equivalent to 4� follows from
Lemma 2.7. �

The situation is summarized in Figure 1 below.

Fig. 1 The triple covers α and β.

Furthermore, the Stein factorization of α : S → A is described in the diagram

where cZ : S → S̃ is the birational morphism given by the contraction of the elliptic curve Z . Since Z2 = −3, the
normal surface S̃ has a Gorenstein elliptic singularity of type Ẽ6, see [15, Theorem 7.6.4].
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Recall that an irrational pencil (or irrational fibration) on a smooth, projective surface is a surjective morphism
with connected fibres over a curve of positive genus.

Proposition 2.9 The general surface S contains no irrational pencils.

P r o o f . Assume that φ : S → W is an irrational pencil on S. Since q(S) = 2, we have either g(W ) = 1 or
g(W ) = 2. On the other hand, using the embedding W ↪→ J (W ) and the universal property of the Albanese map,
we obtain a morphism A → J (W ) whose image is isomorphic to the curve W . This rules out the case g(W ) = 2,
hence W is an elliptic curve and so A is a non-simple abelian surface. The proof is now complete, because A is
isomorphic to the Jacobian variety J (C2), which is known to be simple for a general choice of C2 ([17, Theorem
3.1]). �

3 The moduli space

A projective variety X is called of maximal Albanese dimension if its Albanese map αX : X → Alb(X) is
generically finite onto its image. For surfaces of general type with irregularity at least 2, this is actually a
topological property, as shown by the result below.

Proposition 3.1 Let S be a minimal surface of general type with q(S) ≥ 2. If S is of maximal Albanese
dimension, then the same holds for any surface which is homeomorphic to S. Furthermore, in the case q(S) = 2
the degree of the Albanese map α : S → A is a topological invariant.

P r o o f . This follows by the results of [8], see for instance [24, Proposition 3.1]. �

Proposition 3.1 allows us to study the deformations of S by relating them to those of the flat triple cover
β : S → B. Since the trace map provides a splitting of the short exact sequence

0 −→ OB −→ β∗OS −→ Eβ −→ 0,

we obtain a direct sum decomposition

β∗OS = OB ⊕ Eβ, (3.1)

where Eβ is a vector bundle of rank 2 on B which satisfies

h0(B, Eβ) = 0, h1(B, Eβ) = 0, h2(B, Eβ) = 1 (3.2)

and that, according to [20], is called the Tschirnhausen bundle of β.
As in [24, Section 3] we have a commutative diagram

(3.3)

whose central column is the pullback via β : S −→ B of the sequence

0 −→ TB
dπ−→ π∗TA −→ OE(−E) −→ 0, (3.4)
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see [30, p. 73]. The normal sheaf Nα of α : S → A is supported on the set of critical points of α, namely on the
reducible divisor R + Z . Analogously, the normal sheaf Nβ of β : S → B is supported on the set of critical points
of β, namely on R.

Lemma 3.2 We have

Nβ = (NR/S)⊗2 = OR(2R). (3.5)

Hence all first-order deformations of β : S → B leaving B fixed are trivial.

P r o o f . Since R is smooth, the first statement is a consequence of [29, Lemma 3.2]. Furthermore, we observe
that R2 = −2 implies that the line bundle Nβ has negative degree on R, hence H 0(R, Nβ) = 0. By [30, Corollary
3.4.9], this shows that β : S → B is rigid as a morphism with fixed target. �

Note the the last statement of Lemma 3.2 agrees with the fact that the branch locus DB of β : S → B is a rigid
divisor in B.

Lemma 3.3 We have

h1(S, TS) = h0(R + Z , Nα) + 1 ≥ 3.

P r o o f . Let us write down the cohomology exact sequence associated with the short exact sequence in the
central row of (3.3), recalling first that S is a surface of general type and therefore h0(S, TS) = 0:

0 −→ H 0(S, α∗TA) ∼= C
2 −→ H 0(R + Z , Nα) −→ H 1(S, TS)

ε−→ H 1(S, α∗TA).

Then the claim will follow if we show that rank(ε) = 3, and this can be done by using the same argument as in
[24, Section 3].

More precisely, since TA is trivial and the Albanese map induces an isomorphism H 1(S, OS) ∼= H 1(A, OA),
then H 1(S, α∗TA) ∼= H 1(A, TA) and we can see ε as the map H 1(S, TS) → H 1(A, TA) induced on first-order
deformations by the Albanese map. By Remark 2.3 the first-order deformations of S dominate the first-order
algebraic deformations of A, so rank(ε) ≥ 3; on the other hand, the Albanese variety of every deformation of S
has to remain algebraic, so rank(ε) ≤ 3 and we are done. �

Thus, in order to understand the first-order deformations of S, we can study Nα .

Lemma 3.4 The sheaf Nα is locally free of rank 1 on the reducible curve R + Z.

P r o o f . By a standard application of Nakayama’s lemma (see for instance [16, Corollary 5.3.4]), it suffices
to check that the C-vector space Nα, x/mxNα, x has dimension 1 for all x ∈ R + Z , where mx ⊂ OR+Z , x is the
maximal ideal. Equivalently, we will check that the vector bundle map dα : TS → α∗TA has rank 1 at each point
x ∈ R + Z . Let us distinguish three cases.

� If x ∈ R \ Z , then α is locally of the form (u, v) → (
u2, v

)
, with x = (0, 0) and R given by u = 0. Then

dα is the linear map associated with the matrix
(

2u 0
0 1

)
,

which has rank 1 at the point x .
� If x ∈ Z \ R, then α is locally a smooth blow-up, hence of the form (u, v) → (uv, v), where x = (0, 0)

and Z corresponds to the exceptional divisor, whose equation is v = 0. Then dα is the linear map associated
with the matrix(

v u
0 1

)
,

which has rank 1 at the point x .

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



2692 R. Pignatelli and F. Polizzi: A family of surfaces with pg = q = 2, K 2 = 7 and Albanese map of degree 3

� Finally, if x ∈ R ∩ Z then α is locally the composition of the two maps above, so of the form (u, v) →(
u2v, v

)
, where x = (0, 0), the curve R corresponds to the locus u = 0 and the curve Z to the locus v = 0.

Then dα is the linear map associated with the matrix(
2uv u2

0 1

)
,

which has rank 1 at the point x .

This completes the proof. �
We can be more precise and compute the restrictions of Nα to both curves R and Z .

Lemma 3.5 We have

Nα|Z = OZ (−Z), Nα|R = OR(2R + Z) = OR(K R).

P r o o f . Let us first apply the functor ⊗OR+ZOZ to the exact sequence forming the last column of diagram
(3.3); using (3.5), we get

OR(2R) ⊗ OZ
ζ−→ Nα|Z −→ OZ (−Z) −→ 0.

By Lemma 3.4, the sheaf Nα|Z is locally free on Z ; on the other hand, OR(2R) ⊗ OZ is a torsion sheaf, hence ζ

is the zero map and so Nα|Z ∼= OZ (−Z).
Next, we apply to the same exact sequence the functor ⊗OR+ZOR , obtaining

T τ−→ OR(2R) −→ Nα|R −→ OZ (−Z) ⊗ OR −→ 0. (3.6)

Since T := Tor1
OR+Z

(OZ (−Z), OR) is a torsion sheaf (supported on R ∩ Z ) and OR(2R) is locally free on R, we
deduce that τ is the zero map and so (3.6) becomes

0 −→ OR(2R) −→ Nα|R −→ OZ (−Z) ⊗ OR −→ 0. (3.7)

On the other hand, the curves R and Z intersect transversally at the six Weierstrass points p1, . . . , p6 of R, so we
infer

OZ (−Z) ⊗ OR = OZ ⊗ OR =
6⊕

i=1

Opi . (3.8)

Hence (3.7) and (3.8) yield

0−→OR −→ Nα|R(−2R) −→
6⊕
1

Opi −→ 0,

that is the invertible sheaf Nα|R(−2R) has a global section whose divisor is
∑

pi . This means Nα|R ∼= OR
(
2R +∑

pi
) = OR(2R + Z). Finally, Equation (2.7) shows that R + Z is a canonical divisor on S, so by using adjunction

formula we obtain

OR(2R + Z) = OS(KS + R) ⊗ OR = OR(K R).

�
We can finally prove

Proposition 3.6 All surfaces S constructed in Section 2 satisfy

h1(S, TS) = 3.

P r o o f . By Lemma 3.3 it suffices to show the inequality h0(R + Z , Nα) ≤ 2. By [1, p. 62] we have a
“decomposition sequence”

0 −→ OZ (−R) −→ OR+Z −→ OR −→ 0,
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which gives, tensoring with Nα and using Lemma 3.5,

0 −→ OZ (−R − Z) −→ Nα −→ OR(K R) −→ 0.

Since Z(−R − Z) = −3 < 0, we deduce H 0(Z , OZ (−R − Z)) = 0. So H 0(R + Z , Nα) injects into
H 0(R, K R) = C

2 and we are done. �
The moduli space of principally polarized abelian surfaces has dimension 3; moreover,the rigidity of the curve

DB in B implies that the curve DA has only trivial deformations in A. So our surfaces S provide a 3-dimensional
subset M of the moduli space Mcan

2, 2, 7 of (canonical models of) minimal surfaces of general type with pg = q = 2
and K 2 = 7. Because of Proposition 3.6, the corresponding Kuranishi family is smooth; this implies that M has at
most quotient singularities, so it is a normal (and hence generically smooth) open subset of Mcan

2, 2, 7. In particular,
M provides a dense open set of a generically smooth, irreducible component of this moduli space.

Summing up, we have proven the Main Theorem stated in the introduction, namely

Theorem 3.7 There exists a 3-dimensional family M of minimal surfaces of general type with pg = q = 2
and K 2 = 7 such that, for all elements S ∈ M, the canonical class KS is ample and the Albanese map α : S → A
is a generically finite triple cover of a principally polarized abelian surface (A, �), simply branched over a
curve DA numerically equivalent to 4� having an ordinary sextuple point and no other singularities. The family
M provides a generically smooth, irreducible, open and normal subset of the Gieseker moduli space Mcan

2, 2, 7 of
canonical models of minimal surfaces of general type with pg = q = 2 and K 2 = 7.

Remark 3.8 By Proposition 3.1 the degree of the Albanese map is in our case a topological invariant, so
it follows that the surfaces in M lie in a different connected component of Mcan

2, 2, 7 than the only other known
example with the same invariants, namely the surface with pg = q = 2 and K 2 = 7 constructed in [28], whose
Albanese map is a generically finite double cover of an abelian surface with polarization of type (1, 2). Hence the
family M provides a substantially new piece in the fine classification of minimal surfaces of general type with
pg = q = 2.

For every surface S whose isomorphism class [S] belongs to M, the normalization of the branching curve DA

of α : S −→ A is isomorphic to C2, hence we obtain a morphism

ς : M −→ M2, ς([S]) := [C2],

where M2 denotes as usual the coarse moduli space of curves of genus 2. Note that such a morphism is surjective
by Proposition 2.1. Correspondingly, we have a morphism of deformation functors, namely

δS : DefS −→ DefC2 .

The next result clarifies the relation between the deformations of S and those of the curve C2.

Proposition 3.9 The following hold:

(1) δS : DefS → DefC2 is an isomorphism of functors.
(2) ς : M → M2 is a quasi-finite morphism of degree 40.

P r o o f . (1) Since dimM = dim H 1(S, TS) = 3, the functor DefS is unobstructed; moreover, the functor
DefC2 is clearly unobstructed, too. Proposition 2.1 implies that the first-order deformations of S dominate the
first-order deformations of C2, so the differential map

dδS : H 1(S, TS) −→ H 1(C2, TC2) (3.9)

is surjective, and hence it is an isomorphism because H 1(S, TS) and H 1(C2, TC2) have the same dimension.
Since DefS and DefC2 are both unobstructed, this shows that δS is an isomorphism of functors, see [30, Corollary
2.3.7 and Remark 2.3.8].

(2) We have to show that, for each [C2] ∈ M2, the cardinality of ς−1([C2]) is at most 40 and that it is exactly
40 for a general choice of C2.

Remark that, once C2 is fixed, the étale Z/3Z-cover c : C4 → C2 completely determines S. Conversely, we
claim that, starting from S, it is possible to reconstruct the étale morphism c : C4 → C2 up to automorphisms of
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C2 and C4. In fact, the subgroup ξxy is normal in H and the quotient H/〈ξxy〉 is isomorphic to S3, hence looking
at diagram (2.5) we see that the map

v ◦ γ : T −→ B = Sym2(C2)

yields the Galois closure of the triple cover β : S → B. This shows that S determines the quasi-bundle T =
(C4 × C4)/〈ξxy〉. On the other hand, since the action of 〈ξxy〉 on C4 × C4 is faithful, if we know T we can
reconstruct C4 and the the étale Z/3Z-cover c : C4 → C2 up to automorphisms by using the rigidity result for
minimal realizations of surfaces isogenous to a product proven in [9, Proposition 3.13].

Summing up, the cardinality of ς−1([C2]) equals the number of Galois étale triple covers c : C4 −→ C2 up to
equivalence. Here by “equivalence of covers” we intend commutative diagrams of the form

where the horizontal arrows are automorphisms of the corresponding curves. In particular, as explained for instance
in [22], if ϕ2 = idC2 then the number of equivalence classes of Galois triple covers c : C4 → C2 coincides with
the number of distinct subgroups of order 3 in Pic0(C2), i.e. with half the number of non-trivial 3-torsion points,
that is

(
34 − 1

)
/2 = 40.

On the other hand, if C2 is a general curve of genus 2 its unique non-trivial automorphism is the hyperelliptic
involution, which acts as the multiplication by −1 on the group Pic0(C2) and hence trivially on the set of its
40 subgroups of order 3. Thus, for a general choice of C2, the fibre ς−1([C2]) consists of exactly 40 distinct
points. �

Remark 3.10 Let us denote by A2 the coarse moduli space of principally polarized abelian surfaces. It is
well-known that the Torelli map τ2 : M2 → A2, sending every curve to its polarized Jacobian, is an immersion,
see [21]. Thus, composing τ2 with ς , we obtain a generically finite dominant morphism τ2 ◦ ς : M → A2 of
degree 40, which is the one induced by the deformations of the Albanese map α : S → Alb(S). Observe that
such a morphism is not surjective, because its image does not contain the products of elliptic curves that are not
isomorphic to Jacobians.
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