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[1] Well-type flow takes place in a heterogeneous porous formation where the transmissivity
is modeled as a stationary random space function (RSF). General expressions for the
covariances of the head and flux are obtained and analyzed. The second-order approximation
of the mean radial flux is represented as the product between the solution qð0Þr ðrÞ valid in a
homogeneous domain and a distortion term �qðrÞ, which adjusts qð0Þr ðrÞ according to the
medium heterogeneity. The spatial dependence of the function �qðrÞ is studied. In view of
the formation identification problem, the equivalent T(eq) and apparent T(ap) transmissivity are
computed. The important result is the relationship T ð�ÞðrÞ ¼ ½1� !ð�ÞðrÞ�TH þ !ð�ÞðrÞTG (�
may be either ‘‘eq’’ or ‘‘ap’’), where TH and TG represent the harmonic and the geometric
means of the transmissivity, respectively. The position-dependent weight !ð�Þ is explicitly
calculated. Indeed, close to the well, it yields T ð�Þð0Þ ¼ TH , which is understandable in view
of the fact that the limit r

I ! 0 is equivalent to I!1, which is the heterogeneity structure of
a stratified formation. Nevertheless, the effective transmissivity of a stratified formation is
precisely TH. In contrast, far from the well, one has T ð�Þð1Þ ¼ TG, with the flow being
slowly varying in the mean there. It is shown that T ð�ÞðrÞ grows with increasing r

I. In the case
of T(eq), the rate of growing is found (similar to Dagan and Lessoff (2007)) to be strongly
dependent upon the position in the flow domain, whereas T(ap) is a more robust property.
Finally, it is shown how the general results can be used for practical applications.
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1. Introduction
[2] Flows generated by single (distributed) sources such

as flows toward pumping (injecting) wells are of central in-
terest in hydrology. Many solutions for such flows have
been derived for different configurations in homogeneous
[Muskat, 1937] as well as layered aquifers [e.g., Neuman
and Witherspoon, 1969]. These solutions have served as a
basis for solving many practical problems.

[3] However, natural porous formations are heterogene-
ous, with their transmissivity varying in the space quite
widely [Dagan, 1989]. These changes have a significant
impact upon water flow [see, e.g., Neuman and Orr, 1993].
Since the transmissivity varies in the space in an erratic
manner, it is common to model it as a RSF, and to regard
the flow equations as stochastic. As a consequence, the
head and flux become RSFs as well.

[4] Only recently, problems associated with radially con-
verging (diverging) flows of the kind encountered around
extracting (injecting) wells have been tackled. Their analy-
sis to date has been focused mainly on the definition of a
proper upscaled transmissivity (for a general discussion on
this issue, see Dagan et al. [2009]) that would allow one to

replace the heterogeneous formation by a homogeneous
(fictitious) equivalent formation [Matheron, 1967; Dagan,
1989; Gomez-Hernandez and Gorelick, 1989; Ababou and
Wood, 1990; Butler, 1991; Naff, 1991; Desbarats, 1992;
Neuman and Orr, 1993; Oliver, 1993; Indelman et al.,
1996; Sanchez-Vila, 1997; Riva et al., 2001]. Thus, the
central problem is the identification of the statistical struc-
ture of the transmissivity by the aid of field tests [see, e.g.,
Schad and Teutsch, 1994]. Indeed, by using head measure-
ments, one can infer the transmissivity statistical structure
if the theoretical link between the spatial correlation of the
flow properties and the transmissivity is available.

[5] The first studies on flow generated by sources of a
given flux in randomly heterogeneous porous formations
can be traced back to the pioneering work of Shvidler
[1966]. Analytical results valid in the near and the far fields
were obtained by Dagan [1982] who, similar to Shvidler
[1966] and Matheron [1967], employed the perturbation
approach in the variance of the log transmissivity. Hence,
the apparent transmissivity (relating the mean velocity to
the mean head gradient) has been obtained as an integral
operator, the kernel of which depends upon the transmissiv-
ity statistics [Indelman and Abramovich, 1994]. Subse-
quently, Fiori et al. [1998] computed the second-order
moments of head and flux for steady flow toward a well
with a given head. Notwithstanding some simplifying
assumptions (such as that of highly anisotropic formation),
Fiori et al. [1998] were faced with a very heavy numerical
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burden. The same problem has been (numerically) investi-
gated by Riva et al. [2001]. Their solution was based on re-
cursive approximations of exact nonlocal moment
equations developed by Neuman and Orr [1993] and Gua-
dagnini and Neuman [1999].

[6] In this paper, we are concerned with modeling of
steady water flow at regional scale. By regional scale, we
refer to entire aquifers (or major parts) that are character-
ized by horizontal scales much larger than the formation
thickness. At this scale, it is customary to model the flow as
two dimensional in the horizontal plane by averaging the
head and specific discharge over the thickness. The struc-
ture of the paper is as follows. In section 2, we formulate
the mathematical problem leading to the fluctuations of the
head and flux. These fluctuations are used (section 3) to
compute the covariance of the head (section 3.1), the flux,
and the second-order correction to the mean flux (section
3.2). To apply theoretical results for solving practical prob-
lems, we compute (section 4) the equivalent and apparent
transmissivity. Results are discussed in section 5, whereas
we end up by illustrating (section 6) an application.

2. Problem Statement
[7] A two-dimensional porous formation lies in an

unbounded domain �. The hydraulic transmissivity T(x) is
modeled as a stationary RSF of the position x 2 � with
arithmetic mean TA and a given isotropic correlation func-
tion. Flow is generated by a pulselike (Dirac function)
extraction of water at a constant specific (i.e., per unit
depth) volumetric rate Q. The governing equations are

qðxÞ ¼ TðxÞEðxÞ ðDarcy0s lawÞ;
r � qðxÞ ¼ �Q�ðxÞ ðmass conservation lawÞ

ð1Þ

where q(x) is the flux and EðxÞ ¼ �rHðxÞ represents the
gradient of the head H. Elimination of q(x) in (1) leads to

r � ½TðxÞrHðxÞ� ¼ Q�ðxÞ: ð2Þ

A solution of the stochastic Poisson equation (2) is the ran-
dom function H(x). For mathematical convenience, we
introduce the zero-mean RSF " xð Þ defined as

"ðxÞ ¼ 1� TðxÞ
TA

; ð3Þ

and substitute it into (2) to have

�2HðxÞ ¼ �r � ½"ðxÞEðxÞ� þ Q
TA
�ðxÞ: ð4Þ

[8] Before going on, it is worth emphasizing that the log
transmissivity Y(x) ¼ ln T(x) (representing the quantity that
is usually regarded as RSF) is uniquely determined via (3)
since it results in

TA ¼ TG exp
�2

Y

2

� �
; �2

" ¼ expð�2
Y Þ � 1;

�"ðxÞ ¼
exp½�2

Y�Y ðxÞ� � 1
expð�2

Y Þ � 1
;

ð5Þ

with �2
" being the variance of ", whereas TG and �2

Y repre-
sent the geometric mean and the variance of Y, respectively.
More important, it is easily seen from the third expression
of (5) that, at the first order in the variance �2

Y , the autocor-
relation functions of " and Y coincide, i.e., �"ðxÞ ¼ �Y ðxÞþ
oð�4

Y Þ. As it will be clearer later on, since all the relevant
results of this study are obtained in terms of �", it turns out
that assuming T (and indeed ") instead of Y as RSF leads to
the same conclusions.

[9] To solve equation (4), the head is expanded into an
asymptotic series HðxÞ ¼

Pn
i¼0 H ðiÞðxÞ, with H ðiÞ ¼ Oð"iÞ.

Substituting the expansion into (4), and collecting terms up
to the first order, leads to

�2H ð0ÞðxÞ ¼ Q
TA
�ðxÞ; �2H ð1ÞðxÞ ¼ �r � ½"ðxÞEð0ÞðxÞ�: ð6Þ

The head distribution H(0) represents a solution to the flow
problem in a homogeneous formation, and it is given by

H ð0ÞðxÞ ¼ Q
2�TA

ln
x
‘0

� �
: ð7Þ

Because of the radial symmetry, H(0) depends only upon the
magnitude x ¼ jxj of the distance from the well, and it is
uniquely determined by imposing the condition of its van-
ishing at a certain distance ‘0 from the well. In addition, it is
well known that, to allow for a wide applicability of (7)
within the flow domain, one has to require that ‘0 >> I .
This paper focuses on the flow pattern in the close vicinity
of a well, that is, for r ! 0. As a consequence, even rela-
tively small (but different from 0) values for the ratio ‘0

I do
not affect results provided that one is mainly concerned
with the flow behavior in the close vicinity of the well.

[10] The head fluctuation H(1) satisfies a Poisson-type
equation with random forcing term, and it can be expressed
(after some straightforward algebraic derivations) in terms
of the Green’s function G xð Þ ¼ TA

Q H 0ð Þ xð Þ as

H ð1ÞðxÞ ¼ Q
TA

Z
�

dx0"ðx0Þ @

@x0m
Gðx0Þ @

@x0m
Gðjx� x0jÞ: ð8Þ

By the same token as before, we expand in asymptotic se-
ries the flux q and get (from Darcy’s law) the following
equations for the various terms:

qð0ÞðxÞ ¼ TAEð0ÞðxÞ; qðnÞðxÞ ¼ TA½EðnÞðxÞ� "ðxÞEðn�1ÞðxÞ�
ðn¼ 1; 2; :::Þ:

ð9Þ

The fluctuation (8), together with (9), enables one to derive
moments of the flow variables.

3. Moments of the Flow Variables
[11] In this section, we focus on calculating second-order

statistical moments of the head H and flux q because of
their importance in the hydrological applications. Since the
transmissivity is modeled as a RSF with isotropic autocorre-
lation, any change of such moments is because of variations
along the radial distance r, solely. In addition, as it will be
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clearer later on, moments are computed starting from the
expression (8) of the head fluctuation. As a consequence,
they do not depend upon the parameter ‘0.

3.1. Pressure Head
[12] The head covariance CH(r0, r0) is obtained by multi-

plying (8) applied at two different points r0 = r0, and sub-
sequently by taking the ensemble average, i.e.,

CHðr0; r00Þ ¼ H 1ð Þ r0ð ÞH 1ð Þ r00ð Þ
D E

¼ Q
TA

Z
�

dr

2�ð Þ2
r � r� r0ð Þ
r r� r0j jð Þ2

C"H r; r00ð Þ:
ð10Þ

Thus, in order to evaluate CH(r0, r0), one has to compute
the cross correlation C"H r0; r00ð Þ ¼ " r0ð ÞH 1ð Þ r00ð Þ

� �
between " (and therefore T) and the head H. This has been
done (see Appendix A for details) for an arbitrary autocor-
relation �" of the RSF "ðxÞ with given finite integral scale
I, and the final result is

C"H ðr0; r00Þ ¼ Q�2
"

2�TA
�ðr0; r00Þ; ð11Þ

�ðr0; r00Þ ¼
Z 1
jr0�r00 j

d���"ð�Þ
�2 � r0ðr0 � r00Þ �

Z r0

0

d���"ð�Þ
�2 � r0ðr0 � r00Þ : ð12Þ

By switching to polar coordinates in (10),

CH r0; r00ð Þ ¼ Q
TA

Z 1
0

dr

2�ð Þ2
C"H r; r00ð Þ

Z 2�

0

d�ðr � r0 cos �Þ
r2 þ r02 � 2r0r cos �

;

ð13Þ

and calculating the inner integral

Z 2�

0

d�ðr � r0 cos �Þ
r2 þ r02 � 2r0r cos �

¼ 2�
r

h r � r0ð Þ ð14Þ

(h is a Heaviside function defined as h(x) ¼ 0 for x < 0,
h xð Þ ¼ 1

2 for x ¼ 0, and h (x) ¼ 1 for x > 0) leads to

CH r0; r00ð Þ ¼ Q�"
2�TA

� �2 Z 1
r0

dr
r

� r; r00ð Þ: ð15Þ

The head variance �2
HðrÞ is obtained by setting r0 ¼ r00 ¼ r

into (15), i.e.,

�2
H ðrÞ ¼

Q�"
2�TA

� �2 Z 1
r

dr
r

� r; rð Þ: ð16Þ

[13] The correction hH ð2ÞðrÞi to the mean head has been
calculated by Indelman [2001], and we briefly recall it
since it will be used later on. Thus, it is convenient to repre-
sent the second-order approximation hHðrÞi2 ¼ H ð0ÞðrÞþ
�2
"hH ð2ÞðrÞi of the mean head as

hHðrÞi2 ¼ H ð0ÞðrÞ�H ðrÞ; �H ðrÞ ¼ 1þ �2
" H ðrÞ; ð17Þ

where  HðrÞ adjusts the homogeneous head H(0) according
to the medium heterogeneity. The function  HðrÞ has been
derived by Indelman [2001], and it is written as

 H ðrÞ ¼
1
2

1� !ðrÞ � !ð‘0Þ
ln r � ln ‘0

� �
; !ðrÞ ¼

Z 1
r

dx
x

1� r2

x2

� �
�"ðxÞ:

ð18Þ

It is easy from (18) to investigate the flow behavior in the
near and far fields. Indeed, close to the well, one has
 Hð0Þ ¼ 1þ�"ð0Þ

2 ¼ 1. Such a limit clearly differs from that
(i.e.,  Hð0Þ ¼ 0) obtained by Severino et al. [2008], who
considered a Dirichlet-type condition (i.e., given head) at
the well. At the other extreme of large distances, one has
 Hð1Þ ¼ 1þ�"ð1Þ

2 ¼ 1
2. Since this result coincides with that

obtained by Severino et al. [2008], it is seen that the type of
the boundary condition at the well does not affect  HðrÞ in
the far field.

3.2. Flux
[14] The leading-order term qð0Þr and the fluctuation q(1)

of the flux are obtained from (9) as follows:

qð0Þr ðrÞ ¼
Q

2�r
; qð1ÞðrÞ ¼ TA½Eð1ÞðrÞ � "ðrÞEð0ÞðrÞ�: ð19Þ

The flux covariance along radii, i.e., Cq r0; r00ð Þ ¼
qð1Þr r0ð Þ qð1Þr r00ð Þ
� �

(with qð1Þr being the fluctuation of the ra-
dial component of the flux), can be written as

Cqðr0; r00Þ
T2

A

¼ Cð1Þq ðr0; r00Þ � ~Cqðr0; r00Þ þ CEr ðr0; r00Þ; ð20Þ

Cð1Þq ðr0; r00Þ ¼ Q�"
2�TA

� �2 �ðjr0 � r00jÞ
r0r00

; ð21Þ

~Cqðr0; r00Þ ¼ Q
2�TA

1
r0
@

@r00
C"H ðr0; r00Þ þ 1

r00
@

@r0
C"H ðr00; r0Þ

� �
: ð22Þ

The quantity CEr r0; r00ð Þ ¼ @
@r0H

1ð Þ r0ð Þ @
@r00H

1ð Þ r00ð Þ
� �

repre-
sents the head-gradient covariance. The usefulness of the
decomposition (20) relies on the fact that one can clearly
distinguish the contribution of the mean radial flow (i.e.,
Cð1Þq ) from those related to the head-gradient fluctuation.
Computing ~Cq r0; r00ð Þ and CEr r0; r00ð Þ requires multidimen-
sional numerical quadratures [Fiori et al., 1998; Riva et al.,
2001; Guadagnini et al., 2003]. Such a computational bur-
den was circumvented by Indelman and Dagan [1999] by
taking advantage of the highly anisotropic geometry of sedi-
mentary formations. This assumption is also equivalent to
approximating the fluctuation of the flux (second expression
of (19)) with

qð1Þ rð Þ � �TA" rð ÞE 0ð Þ rð Þ: ð23Þ

[15] Turning to the problem of computing ~Cq r0; r00ð Þ,
insertion of (11) into (22) and carrying out the required dif-
ferentiations leads to

~Cqðr0; r00Þ ¼ �2C
ð1Þ
q ðr0; r00Þ � Q�"

2�TA

� �2

½�ðr0; r00Þ þ�ðr00; r0Þ�;

ð24Þ
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�ðx; yÞ ¼
Z 1
jx�yj

d���"ð�Þ
½�2 � xðx� yÞ�2

�
Z x

0

d���"ð�Þ
½�2 � xðx� yÞ�2

; ð25Þ

where C
ð1Þ
q x; yð Þ ¼ Cð1Þq x; yð Þ for x = y, and C

ð1Þ
q x; xð Þ ¼

1
2C
ð1Þ
q x; xð Þ. The head-gradient covariance CEr r0; r00ð Þ ¼

@2

@r0@r00 H 1ð Þ r0ð ÞH 1ð Þ r00ð Þ
� �

is easily obtained from (15) after
carrying out the derivatives with respect to r0 and r00. The
result is

CEr r0; r00ð Þ ¼ C
ð1Þ
q r0; r00ð Þ þ Q�"

2�TA

� �2

� r0; r00ð Þ: ð26Þ

Thus, by accounting for (20), (21), (24), and (26), we end
up with the following expression for the flux covariance:

Cq r0; r00ð Þ ¼ Q�"
�

� �2 �" r0 � r00ð Þ
r0r00

þ 1
2

� r0; r00ð Þ þ 1
4

� r00; r0ð Þ
� �

:

ð27Þ

The covariance (27), which represents one of the main
results of this paper, is given in terms of one quadrature
(which is easily computed after specifying the shape of �").
In particular, the variance �2

q rð Þ ¼ Cq r; rð Þ is

�2
q rð Þ ¼ Q�"

2�r

� �2 5
2
þ 3 qðrÞ

� �
;  qðrÞ ¼ r2

Z 1
r

dx
�"ðxÞ

x3
:

ð28Þ

[16] In some hydrological applications (such as delimit-
ing the protection zone of pumping wells), it would be desir-
able to determine the distribution of the mean radial flux. At
�2
" order, the mean radial flux results from truncating the as-

ymptotic expansion (9) at the second term, and subsequently
taking the expectation, i.e., hqrðrÞi2 ¼ qð0Þr ðrÞ þ hqð2Þr ðrÞi,
where (see equation (9))

qð0Þr ðrÞ ¼ TAEð0ÞðrÞ ¼ Q
2�r

; hqð2Þr ðrÞi ¼ TA½hEð2ÞðrÞi � �"EðrÞ�:

ð29Þ

In equation (29), the mean second-order gradient is given
by (see equation (17))

hEð2ÞðrÞi ¼ ��2
"

@

@r
½H ð0ÞðrÞ H ðrÞ�; ð30Þ

whereas the cross variance is obtained by taking r0 ¼ r00 ¼ r
into "ðr0Þ @@r00H

ð1Þðr00Þ
� �

. Similar to the head, to focus on the
impact of the heterogeneity, it is useful to represent (we
skip the algebraic derivations) the second-order approxima-
tion of the mean flux as

hqrðrÞi2 ¼ qð0Þr ðrÞ�qðrÞ; �qðrÞ ¼ 1þ �2
"

1
2
þ 2 qðrÞ

� �
: ð31Þ

In this way, hqrðrÞi2 is expressed as the product between
the zero-order term qð0Þr ðrÞ (valid for homogeneous media)
and the characteristic heterogeneity function �qðrÞ, which

adjusts qð0Þr according to the medium heterogeneity. Similar
to the head, the near and far fields of �qðrÞ are easily
derived from (31). Thus, from the second expression of
(28), it is seen that

lim
r!0

 qðrÞ ¼
�"ð0Þ

2
¼ 1

2
; lim

r!1
 qðrÞ ¼

�"ð1Þ
2
¼ 0: ð32Þ

Substituting these limits into (31) leads to

�qð0Þ ¼ 1þ 3
2
�2
"; �qð1Þ ¼ 1þ �

2
"

2
: ð33Þ

[17] Thus, the distortion effect as a result of the medium
heterogeneity is higher at the well. This is understandable
because of the large variability of qr in the vicinity of the
well. Such a result has important implications in the analy-
sis of tracer tests. Indeed, it has been invoked by Indelman
and Dagan [1999] to explain the differences in the macro-
dispersivity coefficient that one has when comparing trans-
port generated by diverging radial flows with that taking
place in mean uniform flows.

4. Equivalent Versus Apparent Transmissivity
[18] Traditionally, the transmissivity can be upscaled

under conditions of mean uniform gradient. In this case,
one ends up with the effective transmissivity Tef, which is a
medium property [see, e.g., Rubin, 2003]. In our case, the
strong nonuniformity in the region adjacent to the well
defies the use (in a traditional sense) of the effective trans-
missivity approach.

[19] It has been shown by Indelman and Abramovich
[1994] that the upscaled Darcy’s law (representing the rela-
tionship between mean head and mean gradient) can be
defined in a convolution form, the kernel of which depends
upon the statistics of the transmissivity. However, direct
identification of the kernel by field data seems to be a diffi-
cult task (see, also, discussion in the work of Tartakovsky
and Neuman [1998]). To achieve simple (although approxi-
mate) results, one can define various quantities that are
expressed in terms of parameters that can be easily meas-
ured [e.g., Tartakovsky et al., 2002]. Thus, the concept of
equivalent transmissivity (ET) has been introduced [Math-
eron, 1967; Indelman et al., 1996; Indelman and Zlotnik,
1997; Riva et al., 2001] in order to relate measured data to
the statistical structure of the formation.

[20] Starting from the classical definition of transmissiv-
ity for a homogeneous medium, i.e., TA ¼ QGð0ÞðrÞ

H ð0ÞðrÞ, we
define the ET (hereafter denoted by T(eq)) as the one per-
taining to a fictitious homogeneous medium that conveys
the same specific volumetric rate Q as the actual heteroge-
neous formation, i.e.,

T ðeqÞðrÞ ¼ Q
Gð0ÞðrÞ
hHðrÞi2

¼ TA
H ð0ÞðrÞ
hHðrÞi2

¼ TA½1þ �2
" H ðrÞ��1; ð34Þ

being the last passage obtained by means of the representa-
tion (17). The advantages of equation (34) are as follows:
(1) T(eq) can be quantified by pressure-head measurements,
and (2) it is useful for scenario simulations by replacing
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blocks of heterogeneous media by homogeneous media in
numerical computations. Instead, the main limitation of the
ET concept is that it depends upon the flow configuration
and, therefore, it cannot be considered as a medium property.

[21] A different characterization of the mean flow can be
obtained by using the definition of apparent transmissivity
(AT). This is defined as the ratio between hqri2 and
hEðrÞi2, i.e.,

T ðapÞðrÞ ¼ hqrðrÞi2
hEðrÞi2

: ð35Þ

[22] Thus, the AT is the property regarded as the effec-
tive one by a naive observer that simultaneously measures
the mean flux and the mean head gradient. The main
advantage of the characterization by T(ap) is that it can be
defined in a unique manner. It can be used in more complex
domains to delimit the zone in which the effective medium
theory applies. To the contrary, the main limitation of such
a concept is that it depends on quantities (such as the mean
head gradient) that cannot be easily measured. Substitution
of hqrðrÞi2 ¼ �qðrÞqð0Þr ðrÞ into (35), and computing the
mean gradient hEi2, leads to

T ðapÞðrÞ ¼ TA
2þ �2

" ½1þ 4 qðrÞ�
2þ �2

" ½1þ 2 qðrÞ�
: ð36Þ

The most important implication (in view of the identifica-
tion problem) of equation (36) is that now one can relate
T(ap) to the characteristic function  q. As a consequence,
once  q has been calibrated via the head measurements in
the field, one can easily infer the spatial structure of T(ap).
The utility of such a result for the practical applications
will be illustrated next.

[23] The general representations (34) and (36), together
with the results established in the previous sections, lead to
the following asymptotics:

T ðeqÞð0Þ ¼ T ðapÞð0Þ � TH ; T ðeqÞð1Þ ¼ T ðapÞð1Þ � TG; ð37Þ

where the last passages have been obtained by accounting
for the relationships TA ¼ TG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

"

p
and TG ¼ THffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
"

p
. The near-field localization by the harmonic

mean TH ¼ 1
TðxÞ

D E�1
is because of the condition of constant

specific volumetric rate Q at the well. Indeed, at the radius
scale (i.e., for r � I), Q is constant, and from the Darcy’s
law one has

Q
2�r

T�1 ¼ d
dr

HðrÞ: ð38Þ

Then, by writing the local head as HðrÞ ¼ hHðrÞi
þH ð1ÞðrÞ, and taking the expectation into (38), leads to TH.
In a different way, we could say that, for a local observer at
r scale, the condition r

I ! 0 is equivalent to I !1, which
represents the heterogeneity structure of a stratified forma-
tion. Nevertheless, the transmissivity of a stratified forma-
tion is precisely TH [Dagan, 1982]. In contrast, if the head
is prescribed at the well, the same procedure as above

shows that the localization is by the arithmetic mean TA. As
for the far field, the flow there behaves as a uniform one
[see, e.g., Indelman and Abramovich, 1994] for which the
transmissivity is Tef ¼ TG.

5. Discussion of Results
[24] In this section, we are going to discuss the general

results obtained so far.

5.1. Pressure Head
[25] Starting from the head variance (16), it can be

evaluated once the function �ðx; rÞ (which, in turn, depends
upon the autocorrelation function of ") is specified. In
particular, substituting the exponential model �"ðxÞ ¼
expð�xÞ (we consider the lengths normalized by I, although
for simplicity we retain the same notation) in equation (12)
leads to

�ðx; rÞ ¼ 1
2

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� rÞ

ph i
�1ðx; rÞ

n

þexp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� rÞ

ph i
�2ðx; rÞ

o
;

ð39Þ

�1ðx; rÞ ¼ Ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� rÞ

ph i
�Ei

ffiffiffi
x
p
ð
ffiffiffiffiffiffiffiffiffiffi
x� r
p

�
ffiffiffi
x
p
Þ

	 

�Ei

ffiffiffiffiffiffiffiffiffiffi
x� r
p

ð
ffiffiffi
x
p
�

ffiffiffiffiffiffiffiffiffiffi
x� r
p

Þ
	 


;
ð40Þ

�2ðx; rÞ ¼ Ei �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� rÞ

ph i
�Ei �

ffiffiffi
x
p
ð
ffiffiffiffiffiffiffiffiffiffi
x� r
p

þ
ffiffiffi
x
p
Þ

	 

�Ei �

ffiffiffiffiffiffiffiffiffiffi
x� r
p

ð
ffiffiffi
x
p
þ

ffiffiffiffiffiffiffiffiffiffi
x� r
p

Þ
	 


;
ð41Þ

whereas, for Gaussian �"ðxÞ ¼ exp ��4x2
� �

, it yields

�ðx; rÞ1
2

exp ��
4

xðx� rÞ
h i

Ei
�

4
xðx� rÞ

h in

�Ei
�

4
rðx� rÞ

h i
�Ei ��

4
xr

 �o
:

ð42Þ

The scaled variance �2
HðrÞ ¼ TA�H

Q�"

 �2
is depicted in Figure

1 as function of the dimensionless distance r
I from the well.

In the far field, the head variance is quite low, since the
flow practically behaves as a homogeneous flow. The head
variance in the far field is easily studied by considering
that, for a local observer (i.e., at fixed r), the condition r�
I is equivalent to I! 0. As a consequence, we can replace
the autocorrelation of " with a white noise signal, i.e.,
�" � �. This line of attack was adopted by Dagan [1982]
who found (see equation (140) of Dagan [1982]) that

�2
HðrÞ �

lnðr=IÞ
ð2�r=IÞ2

; r� I : ð43Þ

By comparing (see Figure 1) the asymptotic (43) with our
general solution, it is seen that the asymptotic of Dagan
[1982] applies for r � 10I.

[26] From the point of view of the applications, the near-
field behavior is more interesting. The head variance �2

HðrÞ
is singular at r ¼ 0. In fact, close to the well, the formation
appears as a homogeneous block with harmonic transmis-
sivity TH. Thus, because of the singular nature of the head
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there (see equation (7)), the same is true for the variance
�2

H . Such a result has also been recovered via Monte Carlo
simulations [Riva et al., 2001]. The near-field behavior can
be studied by assuming �"ðxÞ ¼ 1 (which is a reasonable
approximation in view of the assumption r � I). This
approach has been employed by Dagan [1982], and the
final result [Dagan, 1982, equation (142)] is

�2
H ðrÞ �

1
2�

ln
r
I

 �� �2

; r� I : ð44Þ

[27] Inspection from Figure 1 shows that the approxima-
tion (44) is in a very good agreement with the general
expression (16) up to r � 0.1I. The transitional regime (i.e.,
0.1I 	 r 	 10I) is computed after insertion of equations
(39) and (41). The most evident feature is that the shape of
the autocorrelation is practically immaterial.

[28] It is interesting to note from (44) that the coefficient
of variation CVHðrÞ ¼ �H ðrÞ

H ð0ÞðrÞ ¼ �"
�H ðrÞ
GðrÞ of the head is given

by

CVH ðrÞ � �" 1� lnð‘0=IÞ
lnðr=IÞ

� ��1

;
r
I
	 0:1: ð45Þ

[29] This result shows that, at the well (i.e., for r ! 0),
the prediction upon the head is highly uncertain, irrespec-
tive of ‘0

I . This is because of the fact that most of the head
buildup takes place in a homogeneous inclusion surround-
ing the well [Dagan, 1982]. An important issue concerning
the identification of the transmissivity by means of head
data attains the optimal location of the piezometers. Indeed,
measurements very close to the well would be highly
uncertain, whereas in the far field the homogeneous head
H(0) is no longer of practical use (because of its logarithmic

growth). Thus, a suitable annular sampling region should
be properly designed (a wide discussion on such an issue is
provided by Guadagnini et al. [2003]). For instance, the
external radius is determined by the reliability/applicability
of the far-field expression of the head, whereas the inner ra-
dius could be determined to avoid large uncertainty in the
head measurements. To discuss this issue in a quantitative
manner, in Figure 2 we have depicted the autocorrelation
coefficient of the head �Hðr0; r00Þ ¼ CH ðr0; r00Þ

�2
H ðr0Þ

versus the
dimensionless distance r0

I and some values of r00
I . For small

r00, the head measurements are correlated over larger distan-
ces. This is understandable since, for small r00, the impact
of the boundary condition at the well is felt within a large
portion of the flow domain. As r00 increases, head measure-
ments at different radial distances are less correlated
because of the reduction of the conditioning effect of the
boundary condition. In particular, �Hðr0; r00Þ tends to
become more and more symmetric as r00 increases. This is
explained by recalling that, in the far field, the flow behaves
as a mean uniform flow for which it is known that the auto-
correlation of the flow variables is a symmetric function of
the position. It is worth noting that the higher values of �H

are attained for the smaller values of the reference distance
r00, and vice versa. In fact, the smaller r00, the more persis-
tent the covariance CH(r0, r00) is. Nevertheless, the head var-
iance �2

H reduces (with logarithmic law) with r0. Thus, the
global effect upon �Hðr0; r00Þ ¼ CH ðr0; r00Þ

�2
H ðr0Þ

is an increase of the
autocorrelation. As soon as the covariance starts to reduce
(since head measurements become more and more uncorre-
lated), then �H drastically decays. To the contrary, for large
r00, the covariance decays more rapidly with r0 and the over-
all effect is that �H is smaller.

Figure 1. Dimensionless head variance �2
H versus the normalized radial distance r

I
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[30] A simple (approximate) expression for CH (and
therefore for �H ) valid in the near field can be obtained.
Indeed, by employing the definition of the head covariance
CHðr0; r00Þ ¼ hH ð1Þðr0ÞH ð1Þðr00Þi and accounting for (8), it
is easy to show that CHðr0; r00Þ ¼ Q�"

TA

 �2
CHðr0; r00Þ, being

CHðr0; r00Þ ¼
Z

�

dx0
@

@x0m
Gðx0Þ @

@x0m
Gðjr0 � x0jÞ

Z
�

dx00�"ðx0 � x00Þ


 @

@x00n
Gðx00Þ @

@x00n
Gðjr00 � x00jÞ:

ð46Þ

Close to the well, one may assume that �" � 1 and, there-
fore, (46) is written as

CH ðr0; r00Þ � Fðr0ÞFðr00Þ;

FðrÞ ¼
Z

�

dx
@

@xm
GðxÞ @

@xm
Gðjr� xjÞ:

ð47Þ

The integral F, also encountered in the electric crystal prob-
lem [Lifshitz and Rozentsveig, 1946], was calculated by
Indelman [2001] when analyzing the mean head in a source
flow, with the final result being FðrÞ ¼ � GðrÞþ½ r

2
d
drGðrÞ�.

Thus, the near-field approximation of �H is written as

�Hðr0; r00Þ � lnðr00=IÞ
lnðr0=IÞ : ð48Þ

The asymptotic (48) is in excellent accordance (see Figure
2) with the general expression of �H up to r0 � 0.1I (in the
far field, it is found that �H � 0).

5.2. Flux
[31] Although the general expression for the flux var-

iance has been already obtained (see equation (28)), it is
instrumental to re-derive it in a different manner. Thus, we
note that the fluctuation q(1) satisfies the divergent-free con-
dition (the second expression of (1))

@

@xi
qð1Þi ðxÞ ¼ 0: ð49Þ

Hence, switching to polar coordinates in (49), multiplying
both sides by qð1Þr ðrÞ, and taking the ensemble average leads
to

d
dr
þ 2

r

� �
�2

qðrÞ ¼ 0 ) �2
qðrÞ ¼ Oðr�2Þ: ð50Þ

The decay of the flux variance as r�2 was known to be
asymptotically valid [Matheron, 1967; Shvidler, 1985; Naff,
1991]. Here, it is extended to the entire flow domain.
Another issue is about the singular behavior of �2

q at r ¼ 0.
Indeed, the condition of mass conservation at the well
requires that 2�rq ¼ Q ¼ constant. As a consequence,
the flux becomes exceedingly high for r! 0. Thus, the large
variance of the specific flux occurring at the well suggests
that large sample sizes are necessary to construct reliable sta-
tistics from velocity measurements (obtained by flowmeters).

[32] To quantify the uncertainty of the flux, it is conven-
ient to consider the coefficient of variation CVqðrÞ ¼ �qðrÞ

qð0Þr ðrÞ
,

which is given (see equations (19) and (28)) by

CVqðrÞ ¼ �"
5
2
þ 3 qðrÞ

� �1=2

: ð51Þ

Figure 2. Correlation coefficient �Hðr0; r00Þ of the head versus the distance r0
I and different values of r00

I .
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[33] By accounting for (32), the following general
asymptotics are easily established:

lim
r!0

CVqðrÞ ¼ 2�"; lim
r!1

CVqðrÞ ¼
ffiffiffi
5
2

r
�" ð52Þ

The condition CVq(1) < CVq(0) is explained by the very
large variations of local fluxes at the well, whereas in the
far field the flux is slowly varying. These asymptotics may
represent useful information for some practical applica-
tions, such as the identification of the formation heteroge-
neity structure (see discussion from Indelman [2001]).

[34] The transitional regime of (51) is evaluated after
computing  qðrÞ for a given autocorrelation �". By assum-
ing the exponential and the Gaussian models, one has

 qðrÞ ¼
1
2

ð1� rÞ expð�rÞ � r2Eið�rÞ ðexponentialÞ

exp ��4r2
� �

þ �
4r2Ei ��4r2

� �
ðGaussianÞ:

8><
>:

ð53Þ

The scaled coefficient of variation CVqðrÞ
�"

is depicted in Fig-

ure 3 versus the normalized distance r
I from the well. As

previously established, CVq decreases like r�1 with r
I, and

it reaches the large-distance asymptotic after 10 integral
scales. The same behavior is observed in the work of Naff
[1991, Figure 4] in the case 	 ¼ 10 (resembling the two-
dimensional formation). The near- and far-field values
reported by Naff [1991] are smaller than those obtained in
our case. Indeed, unlike Naff [1991] (who considered a

three-dimensional domain), in our case fluid particles can
circumvent inclusions of low conductivity only laterally
(since the aquifer is two dimensional), therefore causing
them to depart (from the mean trajectory) to a larger extent.

[35] In view of the analysis of tracer transport, it useful
to consider the autocorrelation coefficient �q of the flux. In

Figure 4, we have depicted �qðr0; r00Þ ¼ Cqðr0; r00Þ
�2

qðr0Þ
versus the

dimensionless distance r0
I and a few values of r00

I . For con-
venience, we have considered the case of Gaussian �" (the
same conclusions can be drawn by dealing with exponen-
tial �"), for which the quadrature (25) is analytically com-
puted, i.e.,

� r0; r00ð Þ ¼ �" r0ð Þ
2r0r00

� r0�" r0 � r00ð Þ � r00

2r0r00ðr0 � r00Þ

� �
8

exp ��
4

r0 r0 � r00ð Þ
h i

� r0; r00ð Þ;
ð54Þ

�ðr0; r00Þ ¼ Ei ��
4

r0 r00 � r0ð Þ
h i

� Ei � �
4

r00 r00 � r0ð Þ
h i

� Ei ��
4

r0r00
 �

:
ð55Þ

It is seen that flux (similar to the head) values are more cor-
related when r00 is close to the well because of the condi-
tioning effect of the boundary condition. The most
interesting feature is that �q vanishes after five integral
scales. In other words, by this distance, the flow becomes
slowly varying. This argument was invoked by Indelman
and Dagan [1999] to justify the approximate velocity co-
variance that they used to model tracer macrodispersion.
On the basis of numerical simulations [see Indelman and

Figure 3. Scaled coefficient of variation CVq

�"
of the flux versus the normalized radial distance from the

well.
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Dagan, 1999, Figure 4], it turned out that such an approxi-
mation becomes sufficiently accurate for R � 5I. Thus, our
results cast in a more physically based context the numeri-
cal justification provided by Indelman and Dagan [1999] to
their approximate expression of the velocity covariance.

[36] The function �q, as computed from the second
expression of (31) and (53), is depicted in Figure 5. It is

displayed versus the normalized radial distance r
I from the

well and some values of �2
" . Because of its monotonic

decrease with r, it results that �qð1Þ 	 �qðrÞ 	 �qð0Þ. In
particular, the far-field limit is practically attained at a
distance slightly larger than three integral scales. It is inter-
esting to observe that the distortion effect because of the
combination of the medium heterogeneity and the distance

Figure 4. Correlation coefficient �qðr0; r00Þ of the flux versus the distance r0
I and different values of r00

I
(Gaussian autocorrelation of ").

Figure 5. The characteristic heterogeneity function �q of the flux as function of the normalized radial
distance r

I and a few values of the variance �2
" .
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dependence is more sensitive for r 	 I. These properties of
the function �qðrÞ may be applicable in checking more
involved numerical codes.

5.3. Equivalent Versus Apparent Transmissivity
[37] Both the equivalent and the apparent transmissiv-

ities vary with the distance from the well and, therefore,
they are not local properties. In particular, they are bounded
between the harmonic TH and the geometric TG mean. To
study the transition from TH to TG, it is convenient to repre-
sent T(eq) and T(ap) as follows:

T ð�ÞðrÞ ¼ ½1� !ð�ÞðrÞ�TH þ !ð�ÞðrÞTG

ð� can be either eq or apÞ;
ð56Þ

where !ð�Þð0Þ ¼ 0 and !ð�Þð1Þ ¼ 1. In other words, the
equivalent and the apparent transmissivities are weighted
means of the harmonic and the geometric means. The
weighting functions !ð�Þ depend upon the radial distance,
and they are given by

!ðeqÞðrÞ ¼ 2 1þ �
2
"

2

� �
1�  H ðrÞ

1þ �2
" H ðrÞ

;

!ðapÞðrÞ ¼ 2 1þ �
2
"

2

� �
1� 2 qðrÞ

2þ �2
" ½1þ 2 qðrÞ�

:

ð57Þ

[38] In Figure 6, we have depicted (black lines) !ðeqÞ for
�2
" ¼ 0:5 versus the normalized radial distance r

I and some
values of the parameter ‘0

I . For comparison purposes, we
have also depicted (red lines) the weight !ðapÞ. Even if
both !ðeqÞ and !ðapÞ depend upon the position, it is seen that
!ðapÞ is a more robust property. Such a result, which is in
agreement with previous studies (an overview can be found
in the work of Dagan [2001]), is because of the fact that
the equivalent conductivity (unlike the apparent one) is
defined via the mean head hHi2, and therefore it depends

upon the additional parameter ‘0
I (see equations (18) and

(34)). This drastically affects the rate of approaching the
far-field value (i.e., TG) of the equivalent transmissivity. In
particular, T(eq) ^ TH for r

I < 1, whereas it slowly increases
with r

I. Another important feature is that the rate of getting
the asymptotic T(eq)(1) depends significantly upon the
shape of �". To explain this, it is worth recalling that the
Gaussian �" model pertains to a continuous transmissivity
field, whereas the exponential model is related to a discon-
tinuous field, e.g., a formation made up by inclusions with
jumps of the transmissivity values at the boundary between
each inclusion [see, e.g., Dagan, 1989]. This lower-scale
difference in the formation structure is more influential
here because of the streamline’s convergence at the well.

[39] The definition of equivalent transmissivity has impli-
cations in the analysis of the pumping tests. Indeed, equa-
tion (34) corresponds to the transmissivity value determined
in a pumping test by an observer that measures the mean
head for a fixed Q. Thus, if the transmissivity measurements
are used in simulations as representative of Tef, this is
clearly underestimated. The discrepancy between transmis-
sivity values determined by pumping tests and those to be
used in regional-scale simulations has been recently tackled
by Dagan and Lessoff [2007]. Similar to this study [see
Dagan and Lessoff, 2007, Figure 6], they found that T(eq) �
TH for relatively large portions of the flow domain. Thus,
the expression (56) serves to better quantify the problem of
identifying the values of the transmissivity to be used when
simulating well flows at regional scale.

6. Summary and Recommendations for Practical
Applications

[40] This paper focuses on the statistical moments of the
head and flux for steady flow toward a well. The fluctuation

Figure 6. The dependence of the weights (equation (57)) !ðapÞ (red lines) and !ðeqÞ (black lines) upon
the dimensionless radial distance r

I from the well.
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(3) modeled as a stationary RSF with given variance �2
" and

autocorrelation function �". Moments are derived for any
�" in terms of a few quadratures, which are easily (in some
cases in a closed form) computed after specifying the shape
of �".

[41] The head variance �2
H (and similarly for the flux var-

iance) is singular at the well. This is explained by noting that
the domain surrounding the well de facto behaves as a ho-
mogeneous unit with constant (equal to the harmonic mean)
transmissivity. Unlike the previous study of Dagan [1982],
who considered the near- and far-field behavior of �2

H , we
analytically compute the head variance in the entire flow do-
main. This enables one to better quantify the range of applic-
ability of the approximate solutions of Dagan [1982].

[42] The flux is expressed in a general form, which
requires only one quadrature (that is analytically carried
out for both exponential and Gaussian �"). Thus, the com-
putational burden related to the involved multidimensional
numerical quadratures [Fiori et al., 1998; Riva et al., 2001]
is overcome. One interesting result (especially in view of
the applications) is that the maximum uncertainty in the
flux is achieved at the well (where CVq ¼ 2�"). This is
understandable because of the high-velocity fluctuations
there. Instead, far from the well (say, for r > 10I), it yields

CVq ¼
ffiffi
5
2

q
�", since velocity fluctuations (which are mainly

addressed to the flow nonuniformity) are drastically reduced.
[43] We have analyzed the head autocorrelation

�Hðr0; r00Þ at two different radial positions r0 and r00. For r00

� I, the autocorrelation �Hðr0; r00Þ persists over large por-
tions of the flow domain, whereas when r00 � I, it drastically
reduces since the boundary condition does not impact any-
more. A qualitatively similar behavior is observed when con-
sidering the autocorrelation �qðr0; r00Þ of the flux. Besides
being of theoretical interest, the statistical moments derived
here may serve in some practical applications, such as the
analysis of tracer tests.

[44] The (second-order) mean flux hqrðrÞi2 has been
derived. It is represented as hqrðrÞi2 ¼ qð0ÞðrÞ�qðrÞ to show
how the medium heterogeneity modifies (through the distor-
tion function �q) the homogeneous flux qð0Þr . It is easy to es-
tablish both the near-field behavior, i.e., �qð0Þ ¼ 1þ 3

2�
2
" ,

and the far–field behavior, i.e., �qð1Þ ¼ 1þ �2
"

2 . For expo-
nential and Gaussian �", the characteristic heterogeneity
function �qðrÞ is computed in closed form.

[45] Another advantage of the perturbation approach
employed in this paper is that it leads to the localization of
the flow equations [Tartakovsky and Neuman, 1998]. Thus,
we have defined the equivalent transmissivity T(eq) as that
pertaining to a homogeneous (fictitious) formation that con-
veys the same specific volumetric rate of the real formation.
We have then compared such a definition with that of appa-
rent transmissivity T(ap). In both the cases, we have obtained
a simple general expression for T(eq) and T(ap). These prop-
erties vary with the distance from the well, i.e., they are not
effective medium properties. Both T(eq) and T(ap) are
weighted averages between the harmonic transmissivity TH
and the effective transmissivity Tef in uniform flow.

[46] A salient question is whether it is possible to solve
the flow equations ‘‘only once’’ by dealing with a homo-
geneous medium having the same hydraulic response of

the actual one. It is well known that, under natural gradi-
ent conditions (i.e., uniform mean flow), such an upscaling
is possible provided that one uses the geometric mean TG.
However, such a rule does not apply to a well-type flow,
for which the upscaled transmissivity depends on the rela-
tive radial distance r

I (Figure 6). To illustrate how the theo-
retical results can be used to tackle such a problem, we
consider a hypothetical heterogeneous (with �2

" ¼ 0:5) aq-
uifer. Two avenues are, in principle, possible. First, one
can use a Monte Carlo procedure regarding Y(x) ¼ ln T(x)
as a normally distributed RSF. The Monte Carlo method
has two limitations. Indeed, to generate the spatial distri-
bution of the Y field in an accurate manner, the numerical
grid has to be small compared to the integral scale (fine-
scale simulation). This requirement may result in a very
large system of equations. In addition, to capture the sta-
tistics of the dependent variables, a large number of real-
izations are needed (even when one is only interested in
the mean values). At present, these two requirements are
too demanding in most hydrological applications because
of the heavy numerical burden. Furthermore, scarcity of
field data and imprecision of measurements make even the
identification of the T statistics quite uncertain. This
intrinsic uncertainty reduces the ability of Monte Carlo
simulations to produce accurate results, and thus may
reduce the advantage of computationally intensive Monte
Carlo simulations over simpler (although approximate)
methodologies.

[47] As a second option, only one simulation with (prop-
erly assigned) nodal values of the transmissivity can be
adopted. In such a case, the critical issue concerns the val-
ues to be assigned to each point of the flow domain. For
instance, at r � I it is seen (red line in Figure 6) that
!ðapÞ � 0:75. As a consequence, the effective transmissivity
would result only for 75% equal to the geometric mean TG,
i.e., the value that one would (erroneously) use if approach-
ing such a problem in the same manner as for mean uni-
form flows. By the same token, one can easily argue that
even more dramatic are the consequences if one deals with
smaller radial distances. Finally, it is also seen from Figure
6 that a largely variable (and therefore largely uncertain)
value for the equivalent transmissivity should be consid-
ered (depending on the ratio ‘0

I ).
[48] While this simple example shows how these theoret-

ical results can be readily applied to solve practical prob-
lems, there are many factors, the impact of which requires
further investigation, e.g., high variance, influence of the
aquifer boundaries, conditioning by transmissivity mea-
surement, unsteady flow, quantifying the errors introduced
by localization, etc. Hence, the subject calls for further
research, although it should be realized that, in applica-
tions, the usefulness of refinements is limited by the lack of
data and mainly by the imprecise characterization of the
heterogeneous fine-scale structure.

Appendix A: Derivation of the Cross Covariance
CeH

[49] In order to compute the covariances C"H and CEr , we
first calculate the head fluctuation. Thus, from (8) and using
the relationship @

@xm
¼ xm

x
d
dx, one has
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H 1ð Þ rð Þ ¼ Q
TA

Z
�

dr

2�ð Þ2
" rð Þ r � r� rð Þ

r r� rj jð Þ2
: ðA1Þ

The cross covariance C"H is calculated by multiplying " r0ð Þ
by (A1) evaluated in r00 = r0, and subsequently taking the
expectation to get

C"H r0; r00ð Þ ¼ Q
TA

�"
2�

 �2
Z

�

dr� rð Þ r0 � rð Þ � r0 � r00 � rð Þ
r0 � rj j r0 � r00 � rj jð Þ2

: ðA2Þ

Switching to polar coordinates r ¼ rðr; �Þ

C"H r0; r00ð Þ ¼ Q
TA

�"
2�

 �2
Z 1

0
drr� rð Þ

Z 2�

0
d�

r2 þ r0 r0 � r00ð Þ � r 2r0 � r00ð Þ cos �

 r0ð Þ
 r0 � r00ð Þ ;

ðA3Þ


 að Þ ¼ r2 þ a2 � 2ar cos �: ðA4Þ

Integrating over the angle

Z 2�

0
d�

r2 þ r0 r0 � r00ð Þ � r 2r0 � r00ð Þ cos �

 r0ð Þ 
 r0 � r00ð Þ

¼ 2�
h r � r0 � r00j jð Þ � h r0 � rð Þ

r2 � r0 r0 � r00ð Þ

ðA5Þ

(the h function has been defined in section 3.1), and substi-
tuting into (A3), leads to (11).
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