This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Laccolith: Hypervisor-Based
Adversary Emulation with Anti-Detection

Vittorio Orbinato, Marco Carlo Feliciano, Domenico Cotroneo, Roberto Natella

Abstract—Advanced Persistent Threats (APTs) represent the most threatening form of attack nowadays since they can stay undetected for a
long time. Adversary emulation is a proactive approach for preparing against these attacks. However, adversary emulation tools lack the
anti-detection abilities of APTs. We introduce Laccolith, a hypervisor-based solution for adversary emulation with anti-detection to fill this gap.
We also present an experimental study to compare Laccolith with MITRE CALDERA, a state-of-the-art solution for adversary emulation,
against five popular anti-virus products. We found that CALDERA cannot evade detection, limiting the realism of emulated attacks, even when
combined with a state-of-the-art anti-detection framework. Our experiments show that Laccolith can hide its activities from all the tested

anti-virus products, thus making it suitable for realistic emulations.

Index Terms—Cybersecurity, MITRE ATT&CK, TTPs, Adversary Emulation, APT, Virtualization

+

1 INTRODUCTION

Advanced Persistent Threats (APTs) have become a severe
threat in several domains where the impact can be exceedingly
high (e.g., in terms of service outages, private data breaches,
and intellectual property theft), such as healthcare, manufac-
turing, telecom, energy, and transportation. In APT, attackers
accomplish their goals through a carefully-planned sequence
of malicious actions performed while being careful to stay
undetected. These attacks are getting even more challenging
to counter, as they are carried out by cybercriminal and state-
sponsored groups. Well-known examples include the Stuxnet
attack, which has been sabotaging Iran’s nuclear centrifuges
since 2005 and was uncovered in 2010 [58], GhostNet [8],
and Carbanak [28]]. The time an APT attack goes undetected
(“dwell time”) has been estimated to be up to 700 days [34].
With all this time to act, APTs can cause irreparable damage.

Adversary emulation is the most effective prevention against
APTs [1]. Adversary emulation is a proactive approach that
reproduces the actions of an APT inside a target computer
infrastructure. It grants several advantages for security training
and assessment purposes, such as understanding threats, real-
istic and comprehensive testing, identification of weaknesses,
and validation of security controls. This approach focuses on
post-compromise scenarios, assuming that the APT has already
gained access to the target infrastructure and is infecting hosts
and devices silently, escalating privileges, and exfiltrating
data. Adversary emulation is usually exercised in virtualized
environments (cyber-ranges) and, in general, it encompasses
time-consuming activities that engage human personnel (red
teams). Several tools aim to automate adversary emulation
[67], which offer automated procedures that implement APT
techniques, as learned from threat intelligence sources. These
tools typically automate actions for information gathering,
lateral movement across hosts, connections to command-and-
control servers, and privilege escalation.

e V. Orbinato, D. Cotroneo, and R. Natella are with the Department of
Electrical Engineering and Information Technology (DIETI), Universita degli
Studi di Napoli Federico 11, Naples, Italy.

E-mail: {vittorio.orbinato, cotroneo, roberto.natella}@unina.it

e M.C. Feliciano is with Secureware s.r.l., Naples, Italy.

E-mail: mfeliciano@secware.it

Manuscript received April 19, 2005; revised August 26, 2015.

A fundamental characteristic of APTs is the adoption of
anti-detection techniques, to hide their traces from AV (anti-
virus) products and EDR (endpoint detection and response), a
modern evolution of AVs, and to persist in the target infras-
tructure as long as possible. Therefore, adversary emulation
also needs to apply anti-detection techniques, in order to
perform realistic and fruitful security assessments and training
activities. Examples of anti-detection techniques include un-
hooking probes used by EDRs to instrument and monitor
DLL and API uses [25]; disabling or hampering event tracers,
such as the Event Tracing for Windows (ETW) subsystem
[3]; using malicious kernel modules to hide processes and
files [9]; obfuscating malicious payloads (e.g., shellcodes)
[20], [26]. However, it is challenging for adversary emulation
tools to automate anti-detection techniques, since both APTs
and AV solutions are continuously evolving, in a “cat-and-
mouse” game. Currently, adversary emulation tools have to be
customized for the specific AV/EDR to evade, which requires
considerable skills and development efforts [14], [55], and is
prone to become outdated and ineffective. For these reasons,
emulating anti-detection techniques in automated ways in
adversary simulations is still impractical. This is a significant
limitation in realistically emulating APTs.

In this work, we investigate a novel solution for adver-
sary emulation with anti-detection capabilities, to avoid the
previously mentioned “cat-and-mouse” game. We tested state-
of-the-art solutions for adversary emulation (MITRE CALDERA
[67]] , Atomic Red Team [51], Invoke-Adversary [13]) and for anti-
detection (Inceptor [29]) against multiple AV/EDR products. We
found that several malicious actions (and even the installation
of the emulation agent) cannot evade detection, thus limiting
the realism of emulated attacks. Laccolith is based on a novel
hypervisor-based architecture for adversary emulation. This
design choice was led by the fact that cybersecurity exercises
typically happen in virtualized environments [2], [7], [21], [62],
[63].

Our solution (Laccolith) enables the non-detectable execu-
tion of malicious actions, by injecting them from the lowest
layers of the software stack. We experimented with Laccolith
against several AV solutions for Microsoft Windows. The
results showed that Laccolith was able to execute all of the
malicious actions, which evaded all of the tested AV products.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Our solution does not require customizations for the specific
version of the target system, as it can reliably execute non-
detectable actions across different versions of the guest OS and
AV products.

In summary, the research contributions of this work are:

e An innovative architecture for adversary emulation
with anti-detection capabilities;

o A working prototype of the proposed architecture;

e An experimental analysis of anti-detection capabilities
in state-of-the-art solutions for adversary emulation;

e An evaluation of the proposed solution compared to
the state-of-the-art.

The remainder of the paper is structured as follows. In
Section [2} we elaborate on background concepts about APTs
and adversary emulation. In Section[3 we present the proposed
solution for adversary emulation. In Section [# we illustrate
experiments on the anti-detection of existing solutions and our
proposed one. In Section 5, we discuss related work. Section [6]
concludes the paper.

2 BACKGROUND

APTs are complex attack campaigns that eventually gain access
to a target infrastructure due to inevitable weaknesses, such
as the exploitation of an unknown (“zero-day”) software
vulnerability, a known vulnerability in outdated software, or
human mistakes that result in weak credentials, information
disclosure, and execution of untrusted code [57]. Initial access
represents just the preliminary part of the attack, followed by
several other activities that depend on the objectives and skills
of the attackers.

In recent years, several models were introduced to describe
the actions and behavior of attackers. ATT&CK [10] is a security
framework introduced by the MITRE Corporation and has
rapidly become the de facto standard in the security community.
ATT&CK provides a detailed classification of the adversaries’
tactics, techniques, and procedures (TTPs), organized as a
matrix, continuously updated by observing and analyzing
threat intelligence sources [56], [67]. Tactics describe why an
adversary performs an action, and techniques describe how they
do it. Techniques are described in the ATT&CK model from
both offensive and defensive points of view, so they are a useful
reference and pivot between both disciplines. The descriptions
also include references to known usage examples of the specific
techniques and links to public threat reporting on adversary
groups and their campaigns. Moreover, techniques can further
specialize into sub-techniques, which usually provide more
specific versions of an attacker’s actions. Finally, procedures
represent the actual implementation of techniques for specific
target systems. At the time of writing, ATT&CK encompasses
193 techniques and 401 sub-techniques. The richness of this
framework makes it suitable for modeling APT campaigns. It
is worth noting that a great number of combinations of TTPs
is possible, making it relevant to focus on the TTPs of specific
APTs of interest. Typically, APTs are classified according to the
targeted domain, such as education, finance, government, and
healthcare.

As an example, we will refer to the OilRig APT [11].
OilRig is a cyber threat actor operating since 2014, interested
in several domains, such as finance, government, energy,
chemical, and telecommunications [12]]. It primarily leverages
social engineering as an initial attack vector. The Center for
Threat-Informed Defense (CTID) [19] defined the model of its

2
T g0
: L% C2Server Mailbox
! LR LT +
! IR o i
0} @ [* 7
R4 - ' 1 1
@ F© @
i . ’:’:, @ @i E E
ool .I
SR
Workstation ~ EWS Server ~ SQL Server ~|
. \
«\\ Ji]_"@) «\\@J@ \\EI/I@

Fig. 1: OilRig Operational Steps. The red dotted arrows
represent C2 communication, the black ones the operational
steps.

behavior and actions by collecting and analyzing threat and
incident reports from several sources, such as Cyware [15],
Mandiant [35], and Malwarebytes Labs [33]. Figure [1{shows
OilRig’s operational steps for exfiltrating data from a targeted
server. The first tactical goal is Initial Access, to identify the
target to exploit: OilRig achieves it using spearfishing attachment
(T156qj_-] [45]) (step (1) in Figure . Once the target opens the
malicious attachment (T1204.002 [47]), a backdoor is installed
on the host machine (step (2)). Then, it performs enumeration
(T1087 [41]) (step (3)), leading to the discovery that the user
is a member of the administrator group on an Exchange Web
Server (EWS). Using the aforementioned backdoor, OilRig
obtains credentials to EWS (T1003 [44]) (step (). Leveraging
these credentials, the attackers connect to EWS and install a
new backdoor (step (8)) to perform further enumeration (T1087
[41])) (step (6)): this leads to the discovery of an SQL server.
Using the backdoor, OilRig dumps the credentials (T1003 [44])
(step (7)) to access the SQL server. The next step is lateral
movement towards the server (step (8)) by passing-the-hash
(T1550.002 [46]), where the attackers will copy the database
backup files (step (9)) and exfiltrate them to a controlled

mailbox (T1048 [43]) (step (10)).

Once a model of an APT has been created using the
ATT&CK framework, it can be used for testing and assessing
the security posture of a target infrastructure through adver-
sary emulation. Several tools have been developed to facilitate
and automate adversary emulation. They provide automated
low-level procedures that implement the techniques described
by the ATT&CK framework. These procedures emulate the
actions of actual adversaries in a typical attack scenario. In
particular, we will refer to CALDERA [1], [42], an open-source
adversary emulation tool developed by MITRE. CALDERA
has gained popularity due to its feature-richness, maturity,
and ease of setup and use [67]. In addition, it provides high
coverage of TTPs of the MITRE ATT&CK framework. In
contrast, other adversary emulation tools consist of a small
set of scripts (e.g., in Python and Powershell) that automate
individual malicious actions (e.g., the Atomic Red Team),
leaving human red teams to string these single actions into a
complete APT campaign.

CALDERA is based on a client/server architecture, as
shown in Figure [Z} the command-and-control (C2) server
is responsible for administrating the operations, i.e., the
simulations, planning the actions to execute, and making
all the information available to the user. On the other hand,

1. Txxxx indicates a technique from the MITRE ATT&CK framework

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

the clients are the agents installed on the target machines: the
agent is responsible for the actual execution of the actions and
for sending the results back to the C2 server.

Victim machine

-—
Data & S Emulation Agent Emulation
Processes Call Server

Fig. 2: Adversary emulation traditional architecture.

Adversary emulation tools, such as CALDERA, do not
provide anti-detection techniques, hence the need to turn
off the AVs during the emulations. Turning off the AV
causes the system to run in a different environment. This
aspect constitutes a relevant concern in critical domains (such
as defense), which need to accurately emulate advanced
adversaries with evasion abilities. For instance, for forensic
analysis purposes, it is best not to alter the lists of processes
and files seen by the security teams, which would be polluted
by adversary emulation tools that run in user-space. Moreover,
the emulation designers may want some specific malicious
activities (not all) to be detected, to guide the participants in
solving pre-planned cyber-attack scenarios. As an extreme, if
none of the activities were detectable, the blue teams would
not have any element to learn from. Our solution allows the
designer to selectively configure which activities to hide from
the AVs and the participants.

To perform non-detectable actions, red teams hide their
traces using separate tools. A state-of-the-art toolkit for anti-
detection is Inceptor [29]. Inceptor is a well-known template-
driven framework for AV evasion. A template is a generic,
customizable loader with placeholders for evasion techniques
and the actual payloads. There are many templates for three
different types of payloads: .NET, PowerShell, and native
code. Inceptor offers the possibility of chaining encoding
techniques to evade static code analysis. It is also possible to
plugin additional source code writing techniques to evade the
Windows Antimalware Scanning Interface’s (AMSI) dynamic
analysis [24]. AMSI also analyses in-memory artifacts, for
example, text areas the code is going to jump to. For this
reason, Inceptor includes AMSI bypass techniques [30]. In our
experimental evaluation of the state-of-the-art on adversary
emulation and anti-detection, we consider MITRE CALDERA
in combination with Inceptor.

3 PROPOSED SOLUTION

In this section, we present our proposed solution for adversary
emulation with anti-detection. We first provide an overview,
including our system model and assumptions for our design.
We then describe in detail the proposed design. Finally, we
provide information about our implementation.

3.1

We based the design of Laccolith on a set of assumptions
applied in general for adversary emulation. The assumptions
include:

Overview

3

e Adversary emulation focuses on post-compromise
scenarios where the attacker has already gained a
foothold inside the system (e.g., through phishing or
exploiting a vulnerability) and is performing more
malicious actions, such as gaining more privileges and
stealing information.

e Adversary emulation is performed in the context of
cybersecurity exercises, which are authorized and
overseen by a “white team” in the organization (e.g.,
system administrators). Adversary emulation can be
warranted system privileges as needed.

o Laccolith is designed to perform adversary emulation
in a virtualized environment, where hosts are deployed
using virtual machines. This is typically the case in
cybersecurity exercises, where dedicated networks and
hosts are deployed using virtualization infrastructures
[2], [31], [54]. For example, all the most popular Cyber
Ranges run in the cloud, leveraging virtualization
technologies [7]], [21], [63]]. Moreover, the solution
applies to organizations that run their own private
data centers, which is often the case for high-criticality
domains such as defense, critical infrastructures, and
healthcare [16]], [53]. Instead, the proposed solution
is not meant for networks and services running on
bare-metal hardware.

e Endpoints in the environment can be equipped with
AV products, as in the case of real computer networks.
This assumption is not met by traditional adversary
emulation tools, which require turning off AV products
to install and run the tools [67]]. Laccolith is designed
to overcome this limitation.

The driving idea for our design is to leverage kernel- and
hypervisor-level privileges to execute malicious actions, which
would otherwise be detected if performed from user level (i.e.,
from an application process)E|AV solutions typically use “hook”
functions to intercept invocations of the system calls. When
applications (including malicious ones) invoke system calls, the
hook functions are executed instead (e.g., by replacing pointers
in the system call table), which can check the invocation and
detect suspicious activities. In traditional adversary emulation
(Figure [2), an agent process executes malicious actions on
behalf of a red team by issuing system calls that access OS
resources, such as files, processes, connections, and others.
Without any anti-detection technique, AV products can detect
these actions by checking system calls.

To perform non-detectable actions, it is necessary to use
system calls not monitored by the AVs, hence from the kernel
level. Consequently, the hypervisor level is the ideal choice
to accomplish that, leveraging virtual machine introspection
(VMI) techniques. In our design, we circumvent the anti-virus
checks by introducing an emulation agent from the hypervisor.
Since the hypervisor has full privileges on a physical machine,
it can warrant full read and write access to the state of a
virtual machine. We use these privileges to install an emulator
into the kernel of the guest OS of the virtual machine. This
way, it is possible to directly access guest memory, without
issuing user-space system calls. From the agent installed in
the guest OS kernel, we can perform malicious actions by
calling kernel-level APIs. Such calls cannot be detected by AV
products since they are not subject to security checks.

2. The name Laccolith reflects the injection of malicious actions from the
lower layers of the software stack. A laccolith is a volcanic phenomenon
where magma rises through the Earth’s crust, forcing rock strata upward.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Moreover, we designed the kernel-level agent with the
ability to run user-level commands, as in traditional adversary
emulation tools. Therefore, red teams can combine kernel-
level and user-level actions to perform both detectable and
non-detectable actions. This flexibility enables red teams to
perform realistic training exercises for security teams, where
the emulated APT leaves only a few selected traces of malicious
activity.

Victim machine

Emulation
Manager

Emulation
Server

|
T

VM
Introspection

Data &
Processes

Emulation Agent
Shellcode

Hypervisor

Fig. 3: Laccolith architecture.

Laccolith offers a complete architecture for adversary
emulation: a central emulation manager orchestrates emulation
agents across the network and issues actions to execute on the
victim hosts. Therefore, the red team controls the emulation
agents to reproduce the actions of an APT campaign. The
red team can interact with the emulation manager through
web and command-line interfaces. On each physical machine,
Laccolith installs an emulation server, which runs at hypervisor-
level, and manages the emulation agents on each physical
machine. The emulation server installs the emulation agents
on each virtual machine by leveraging VM introspection
techniques to modify guest memory and create a new ex-
ecution flow inside the guest kernel. Moreover, the emulation
server forwards communication between the emulation agents
and the manager. The communication traffic between the
components of Laccolith is invisible to the participants of the
cybersecurity exercise since this traffic flows at the physical
level, beyond the virtual networks of the virtual machines.

Laccolith is neutral concerning post-facto analysis: the
designer of the attack scenario can decide which artifacts
should be left inside the system for forensics purposes, thanks
to the possibility of configuring which specific actions are
executed (un)detectably. For instance, the designer may want
to stealthily poison some entries in the system registry for
forensic analysis. Moreover, the designer can launch processes
or connections in a non-detectable fashion from kernel space.
In these cases, the participant is challenged to use event
correlation techniques and SIEM technology to analyze the
system state and understand what is happening.

In summary, our design addresses the following technical
challenges: 1) to run an emulation agent in a victim machine,
with no intrusive modifications of the system under analysis;
2) to perform adversarial actions without triggering AVs; and
3) to coordinate such adversary emulation campaigns from
outside of the victim machine through a C2 infrastructure.

3.2 Emulation server

The emulation server is the trickiest component in our architec-
ture. It is responsible for injecting emulation agents inside the

4

VMs, by leveraging read /write (R/W) access permissions to
modify their state. It relies on installing a kernel-level agent to
avoid detection from AV products.

3.2.1

The emulation agent needs to run in a dedicated area of the
virtual memory of the VM. However, the allocation of virtual
memory cannot be directly performed from the hypervisor but
needs to be performed by the guest OS kernel, which is aware
of the current layout of memory allocations. Consequently,
the injection of the emulation agent consists of two stages.
The first stage consists of the injection of a small program
(a “shellcode”) in kernel space, responsible for allocating the
code region for the emulation agent, while the second stage
entails bootstrapping the asynchronous execution of the agent
in that area. The injector overwrites a piece of existing kernel
code with the shellcode to make it executed by the kernel.
Differently from the injector (which runs in the hypervisor and
can only work with “guest physical” memory addresses), the
shellcode can allocate and access the “guest virtual” memory
addresses since it runs within the guest OS kernel. Before
selecting the target kernel code to overwrite, we need to
address two requirements for the shellcode:

Overview of the injection method

1) Space: the shellcode should be small enough to fit into
the target kernel code;

2) Behavior: if the overwritten kernel code is invoked, the
shellcode needs to handle the call without hanging
the calling process. Moreover, it should also handle
the case of concurrent calls from different processes.

We consider the code of system calls for the injection of
the shellcode since their position in the virtual memory of
the VM can be identified with virtual machine introspection
(VMI) techniques. VMI is an approach to gain visibility
and control over VMs without modifying the guest OS [22].
Moreover, system calls are regularly invoked by applications,
thus assuring that the shellcode will be eventually executed.
The previously mentioned requirements are the reason why
we cannot trivially overwrite a system call with the code of
the emulation agent: the first one would restrict the size of the
agent, which would hamper the implementation of malicious
actions; the second requirement implies that the system call
code needs to be restored at some point, thus removing the
injected code.

To choose a target system call to overwrite, we look for
a linear region of code, i.e., a memory region that meets the
following requirements:

1) The memory region is from the code area of the guest
OS kernel; this code is only executed by starting from
the initial address of the memory region. For example,
this requirement is satisfied if the memory region
exactly matches the code of an individual kernel
function; in this case, other kernel code only jumps to
the initial address of the memory region (i.e., there are
no jumps to addresses in the middle of the memory
region).

2) The code in the memory region does not call other
functions. This requirement avoids that code not
belonging to the memory region returns in the middle
of the region.

3) The region fits inside a memory page without crossing
page boundaries.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The first and second requirements allow us to inject
arbitrary code in the memory region without risking the kernel
jumping in the middle of the region, which would likely
raise CPU exceptions (e.g., executing an invalid opcode). The
shellcode will execute when the kernel executes the memory
region, in place of the original code. The third requirement is
necessary to make it easier to modify the VM memory from the
hypervisor since code over multiple pages in virtual memory
does not necessarily map to contiguous pages in physical
memory. An example of an eligible memory region in Microsoft
Windows OS is the MmQueryVirtualMemory function (about
3,800 bytes), which is called by the NtQueryVirtualMemory
system call. In general, linear regions of code are plentiful
and easy to find: given the function call graph of the kernel
code (e.g., ntoskrnl.exe in Microsoft Windows), a linear region
of code is a function without fan-out that fits within a single
memory page.

3.2.2 Injection method

The injection method is shown in Figure |4 and summarized as
follows. First, the injector searches the code of the target system
call in memory (step (1)). Since the injector can only access VM
memory through guest physical addresses, it scans memory
by looking for code that matches the initial unique bytes of
the target system call. The injector leverages VMI to make this
process more portable and efficient: it determines from VMI
the unique bytes of the system call from the kernel binary,
and the relative offset of the system call within the kernel
virtual address space. Then, it only scans memory pages on
that relative offset. Once the position of the target system call
has been found, the injector overwrites it with the shellcode
(step 2)).

Then, the shellcode will eventually execute when the
system call is invoked. The shellcode will execute for a limited
time, long enough to allocate a memory area and communicate
to the emulation server that the memory area is ready for
loading the emulation agent (the last step of the method).
The shellcode uses the APIs of the guest OS kernel (step
() to allocate a contiguous area of guest virtual memory
(for example, the MmAllocateContiguousMemory function from
the Windows Driver Kit (WDK) [38]). The shellcode then
obtains pages of contiguous virtual memory (e.g., 16KB in our
implementation) from the guest virtual address space (step
(@), without the constraints that previously applied for the
shellcode.

During this time window, any other concurrent call to
the target system call must immediately return, since the
shellcode should execute only once. For this purpose, the
shellcode acquires a spinlock in a non-blocking way, without
busy-waiting if the spinlock is already held (e.g., using the
xchg instruction on Intel architectures [27]). Once acquired, the
shellcode holds the spinlock to avoid concurrent executions.

Next, the shellcode writes a pre-defined value (“egg”), also
known by the injector, within the allocated memory area. This
way, the injector can find the allocated memory area using
only guest physical addresses. The injector overwrites the
allocated memory with the code of the emulation agent (step
(5)). Finally, the shellcode sets up an execution context to run
the emulation agent in the kernel. Again, the shellcode uses
APIs of the guest OS kernel to create a kernel thread (step (6)),
such as using the PsCreateSystemThread function in Windows.
The new kernel thread will be configured to run the code of
the emulation agent in the allocated memory area (step (7)),
e.g., using the StartRoutine of the Windows kernel. As a result,

5

the emulation agent will execute with high privileges since
it will run in kernel mode. After the agent starts, the injector
restores the original system call code to leave no traces in the
target VM other than the emulation agent (step (8)).

3.3 Emulation agent

The emulation agent is responsible for receiving and executing
commands from the emulation server. Since it runs with
high privileges, it can call kernel APlIs as if it were a kernel
module. The agent can also access the OS resources, such
as the process descriptors and the system registry. Through
these resources, the agent can access the memory of user-level
processes since a process descriptor indicates the memory
regions where the code and data of a process are. It can
both read (e.g., process dumping to steal passwords, tokens,
and other data) or write (e.g., process/DLL injection to hide
malicious code in system processes) the processes’ memory,
and modify the system configuration, e.g., changing the
registry for persistence purposes. Moreover, the agent can
read /write the file system, e.g., navigating through folders,
creating new files, and deleting existing ones. It can also
create new user-level processes to execute commands, such as
simulating fileless malware by running system binaries (e.g.,
PowerShell, WMI) and creating new OS resources. For example,
the execution of user-mode commands can be accomplished
using worker factories [65], [66], a Windows mechanism that
allows the kernel to create user-space thread pools and let
them execute specific tasks.

3.4 Emulation manager

The emulation manager communicates with the agents. Its role
is critical to orchestrating the low-level actions performed by
the agents into emulating the complex behavior of APTs, as
in the example of Section [2} It also offers a user interface to
manage Laccolith. In particular, it offers interfaces to inject
agents into specific targets, to access C2 functions (e.g., listing
connections to agents, sending a command to an agent, reading
its output, starting an autonomous operation), to customize
parameters (e.g., choosing which payload to inject), and upload
and download files (e.g., to exfiltrate data and information
gathering). The emulation manager is also responsible for the
management of the facts. A fact is a piece of information about
the target system, helpful to run an ability. The manager
communicates the fact values to emulation agents when
they need specific information to perform an action. For
example, suppose the goal of the emulation is to perform
lateral movement to another machine in the local network.
The emulation agent will perform a network scanning action,
whose outcome will be a fact containing the username and IP
address of the target machine. The agent will then use this fact
to perform lateral movement.

3.5 Implementation

We implemented the design of Laccolith for the QEMU
hypervisor for x86_64 [50], running on a Linux host managed
by Libvirt [32], and with hardware-supported virtualization
based on KVM [52]E]Laccolith runs as a privileged process on
the Linux host and accesses VM memory through a virtual

3. The source code and documentation of the prototype is available
at |https://github.com/Shotokhan/adversary-emulation| for research
purposes. A commercial version of the tool and support is provided
by the Secureware s.r.l. spin-off company, see https://www.secware.it/|

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/Shotokhan/adversary-emulation
https://www.secware.it/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

@

®
—

O]

Guest Virtual
Address Space

r N

Injector v

@

S\

Guest Physical

3 Address Space

@ |®

E Kernel code/data
[:l User code/data

wsmllcode

' Emulation agent

Fig. 4: Injection method in Laccolith.

device file. Our implementation targets the Microsoft Windows
OS as the guest OS for the victim machine. We used Volatility
[61], a virtual machine introspection (VMI) framework, to
get Windows kernel symbols. We chose Volatility since it is
a widespread and well-known framework that offers several
profiles to inspect the memory of several OSes. Using a popular
VMI framework facilitates the portability of Laccolith to new
versions of the guest OS (e.g., builds of Microsoft Windows)
and new guest OSes since the community continuously
provides multiple profiles to align VMI with new releases
of the OSes.

4 EXPERIMENTAL ANALYSIS

We compare Laccolith with MITRE CALDERA since it is a
state-of-the-art solution for adversary emulation. Compared to
other adversary emulation tools, CALDERA provides greater
coverage of APT tactics and techniques, a complete client-
server architecture, and the ability to orchestrate complex APT
campaigns (see also Section B for a detailed comparison). We
evaluate adversary emulation concerning its detectability.

To evaluate detectability, we test the adversary emulation
tools against a set of AV solutions, described in Section As
a metric to measure detectability, we consider the adversary
profile execution progress. An adversary profile is a sequence
of atomic steps that represent malicious activities. The metric
represents the progress of the execution of an adversary profile
in terms of atomic steps successfully executed until the AV
raises an alarm. The successful execution of an atomic step
means that the agent (from either CALDERA or Laccolith)
can execute the action without being detected by the AV. The
steps that compose an adversary profile are called abilities for
CALDERA and actions for Laccolith. This metric is expressed
as a fraction:

NEa
Npa

NE 4 is the number of executed actions of an adversary profile,
while Np4 is the total number of its actions. For example,
suppose a profile has 10 actions, and the AV detects the
execution of its eighth action. In that case, the adversary profile

Adversary Profile Execution Progress =

execution progress will be 7/10 since the profile managed to
execute 7 actions out of 10.

To gain additional insights into the detectability, we also
analyze the initial loading of the emulation agent in the
victim machine. Since AV products perform rigorous checks
before an executable launches, the emulation agent also needs
to evade these checks. For this purpose, we introduce an
additional metric, the injection success. This metric represents
the probability of successfully injecting the agent into the
victim without triggering detection. The metric is defined as a
fraction:

Nst
Ny
where Ngy is the number of successful injections attempts and
N7 is the total number of attempts.

Finally, we also include atomic tools in our experimental
analysis of state-of-the-art, i.e., tools that enable the execution
of single (atomic) adversarial actions, outside the context of
a complete attack campaign. In particular, we focused on
Atomic Red Team [51|] and Invoke-Adversary [13]], two popular
atomic toolkits [67] as discussed in Section[5} These tools are
designed to perform single adversarial actions from the MITRE
ATT&CK matrix. Their atomic nature allows us to overcome
the problem of not testing techniques skipped when running
an entire campaign with multiple actions, which could still be
detected and stopped by the AVs. Specifically, we analyze the
percentage of actions that can be detected by AVs.

Injection Success =

41

We used the following configuration for the experimental
analysis, shown in Figure

e Victim Windows 10 VM (VM1): the target of the
adversary emulation;

o Additional Windows 10 VM (VM2): it is a machine
necessary to perform some malicious actions, e.g.,
network shares enumeration performed by the Shares
Hunter profile, as shown in Table[6]

Both VMs are equipped with 4 CPU cores and 2 GB RAM
and run Microsoft Windows 10. Before our experiments, we

Experimental Setup

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

tested the portability of Laccolith across different versions of
the guest OS. We deployed Laccolith on seven Windows 10
versions, which span over three years, with significant changes
across the versions [64]. Laccolith leverages Volatility to apply
the injection method in a portable way. Indeed, Laccolith could
correctly inject the emulation agent in all the tested versions of
Windows without the need for special customizations. In our
experiments, we focus on Microsoft Windows 10 build 19044.

Linux host with KVM/QEMU hypervisor

VM1 VM2
Fnlivirus System call Agent '_Antivirus System call -i
=== \ () Virtual - -— \
) - Network T)
| \ BBk | N
| AN N I | AN N I
| N 5 Ol I | AN 3 Sl l
=) = 4.6= Y]
I b, =S | (i) |
Logs Data & | Logs Data & |
|== Processes |== Processes
_________ —_ e — . — — —

Fig. 5: Experimental setup.

We selected five popular AV products for our detectability
analysis: Windows Defender, Avast, AVG, Kaspersky, and
Avira. These products qualify as modern EDR solutions and
cover state-of-the-art detection techniques [5]]. For instance,
they monitor system calls using user-space and kernel-space
hooks; they use both signature-based and real-time behavioral
detection; and they implement self- and system-protection
techniques. An example of such protections is preventing
filesystem access to specific directories, such as the main
system directories and the AV directory itself.

4.2 Detectability evaluation of MITRE CALDERA

To study the detectability of CALDERA, we selected its twelve
default adversary profiles. These profiles can be classified
into two categories: reconnaissance & information gathering and
advanced. The first category encompasses the first eight profiles
listed below, which perform basic operations: user identifi-
cation, process enumeration, anti-virus discovery, screenshot
capture, and file search. The advanced profiles perform more
invasive actions, like process injection, lateral movement, and
malicious payload execution. As a consequence, their activities
will be noisy and more likely to be flagged by the anti-viruses.
We report a short description for each profile:

e Discovery: collects detailed information from a host,
such as local users, user processes, admin shares, and
anti-virus programs;

o Hunter: performs Discovery operations, then tries to
exfiltrate files from the working directory;

o Check: collects information about the configuration
of the host (e.g., installation of common software
packages, such as Chrome, Go, and Python), and the
configuration of its network interfaces;

o Collection: collects personal information from the host,
such as company emails, IP addresses, and personal
files;

o Enumerator: enumerates the presence of different types
of processes on the host, such as WMIC, PowerShell,
and SysInternals utilities;

e Nosy Neighbor: finds the preferred Wi-Fi networks, and
tries to disrupt the Wi-Fi connection;

o Signed Binary Proxy Execution: executes malicious code
through signed and trusted binaries;

7

e Super Spy: monitors the active user by capturing
screenshots, copying data from the clipboard, and
scanning preferred Wi-Fi networks;

o Undercover: swaps the built-in PowerShell with Power-
Shell Core to stop PowerShell processes;

o Stowaway: injects Sandcat (the default emulation agent
in CALDERA) into another process;

e Worm: runs PowerKatz to steal user credentials, then
moves laterally in multiple ways;

e You Shall (Not) Bypass: bypasses User Account Control
(UAQ).

In addition to these profiles, we implemented a custom Ran-
somware profile for completeness. This profile was developed
from scratch, similar to the implementation of the predefined
profiles. It encompasses the following abilities:

o Find files;

o Stage sensitive files;

o Compress the staged directory;

o Exfiltrate the staged directory;

o Encrypt sensitive files (e.g., docx and pdf files).

The first four abilities re-use the ones of the predefined
profiles to find the target files. The last ability has been
implemented with a PowerShell script [37] to encrypt the
sensitive files, by silently skipping the files if it does not have
permission to rewrite them. Using a PowerShell script with
standard APIs for encryption makes the process more similar
to “legitimate” programs (as in fileless malware), similar to
other profiles in CALDERA. In this way, the Ransomware
profile should be as detectable as the other reconnaissance &
information gathering adversary profiles.

TABLE 1: Adversary Profile Execution Progress for MITRE
CALDERA. Bold values represent incomplete progress.

Profile Windows Defender Avast AVG Kaspersky Avira
Discovery . 9/9 EE 9/9 EE 9/9 ER 99 mR 9/9
Hunter W 14/14 EN14/14 EE14/14 EE14/14 EE14/14
Check W 6/6 Hm 6/ EM 6/6 EE 6/6 ER 6/6
Collection . 2/2 N 2/ EE 2/2 W 2/2 W 2/2
Enumerator m 5/5 B 5/5 B 55 E 5/5 W 5/5
Nosy Neighbor [7/ WR 7/7 W 7/7 W 7/7
Signed Binary Proxy Execution m 3/3 I 3/3 B 3/3 W 3/3 W 3/3
Super Spy . 11/11 ENil/11 EE11/11 EE11/11 E11/11
Undercover 12 N 12 EEm 12 Em 12 WE 2/2
Stowaway 12 EE 12 EE 12 EE 12 WE 2/2
Worm .19 19 W 19 W 19 WE 9/9
You Shall (Not) Bypass HE 2/4 HEE 24 EE 24 BE 14 BE 14
Ransomware m 5/5 I 55 B 55 EM 5/5 W 5/5

Table [I|shows the execution progress for each adversary
profile of MITRE CALDERA against the five anti-viruses. It
is possible to notice that the reconnaissance & information
gathering profiles execute without being detected since they
do not perform harmful actions. For the advanced profiles,
the results of the experiments are quite different. During the
execution, all the anti-viruses, except for Avira, flagged the
activities of the profiles as suspicious. Moreover, the detected
abilities are always the first ones in the atomic order: once
an ability has been detected, it is not possible to complete
the operation, since the prerequisites for the following ones
will not be satisfied. As a consequence, the last abilities of
the advanced profiles could not be executed. For instance,
the Stowaway profile uses two abilities: since the execution
of the first one is stopped by the anti-virus, the second one
cannot be tested. Therefore, this profile scored 1 /2 in terms
of detectability. We reported the detected abilities for each
profile in Table |2} This experimental analysis shows that the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

emulation agent of MITRE CALDERA can stealthily execute
most Discovery, Collection, and Exfiltration techniques, but is
easily blocked when it tries to perform more intrusive actions,
such as Credential Access and Privilege Escalation.

It is worth noting that the AVs always detect the injection
of CALDERA's agent. After performing 20 repetitions of the
injection, we conclude that the injection success of CALDERA
is 0/20 against each AV. Consequently, the results in Table
only refer to the execution of the adversary profiles, assuming
that the agent has already been loaded on the target machine.

4.2.1 Integrating CALDERA with anti-detection

To overcome the limitations of MITRE CALDERA in terms
of anti-detection, we combined it with Inceptor [29], a state-
of-the-art evasion framework introduced in Section 2] In this
experimental analysis, we focus on Windows Defender, and
on the injection stage of the emulation agent of CALDERA
(i.e., the initial installation of the agent). We enhance the agent
with multiple anti-detection techniques from Inceptor.

The injection needs to bypass three layers of detection: User
Account Control (UAC), signature-based static analysis, and
dynamic sandbox analysis. UAC is a protection that involves
user interaction, by displaying a message through a GUI
frontend (Microsoft SmartScreen [40]). Sandbox analysis is a
technique used by anti-virus software to analyze potentially
malicious files and programs, by running them in a safe and
isolated environment. It is particularly useful for detecting
new and unknown malware, which can often evade static
signature-based detection. In Microsoft Windows, Windows
Defender Application Guard [39] is responsible for performing the
sandbox analysis, using a virtual container with a specialized
version of the Windows OS.

We used the following combination of anti-detection
techniques to make the injection stealthier: a native binary
template, an encoding chain composed of Shikata-Ga-Nai [17],
a popular polymorphic binary encoder [36], XOR encoding,
120 seconds of execution delay, and an unhooking technique
for EDR bypass. Moreover, we signed the resulting binary
with a Microsoft signature using CarbonCopy [49].

We experimentally evaluate the injection of the CALDERA
agent with anti-detection by performing 20 repetitions. The
injection is unable to evade UAC. This would require the
exploitation of known vulnerabilities in Microsoft Windows
(UAC bypass), which are regularly fixed by updates of the OS.
Therefore, Inceptor is unable to provide a reliable solution
to escape UAC, and we manually allow the execution of
the CALDERA agent through the UAC. Even neglecting
the problem with UAC, the agent was successfully injected
approximately 5 times out of 20, thus with an injection success
equal to 5/20 and 25% probability. The encoding chain allows
the binary to bypass static analysis since it does not match
any known signature. The execution delay and unhooking
technique heuristically help to elude the dynamic sandbox
analysis: the delay is helpful to make the behavior seem benign
while unhooking prevents EDRs from inspecting function calls.
The binary signature helped to evade the dynamic analysis:
when the binary has a valid signature, Windows Defender
performs less detailed dynamic checks. However, since the
binary needs to decode itself from the encryption chain at some
point, it is still challenging to bypass the sandbox analysis,
making the injection detectable. The need for additional UAC
bypass techniques further complicates the process of making
CALDERA stealthier.

4.3 Detectability evaluation of atomic tools

After CALDERA, we evaluate the detectability of individual
actions from atomic tools (Atomic Red Team [51]] and Invoke-
Adversary [13]). For the sake of clarity, we focused on testing a
subset of the actions provided by these tools. We sampled the
actions uniformly across the tactics of the MITRE cyber kill
chain. Table 3| provides the percentage of actions detected by
the AVs. Table 4] and [provide detailed results for Atomic Red
Team and Invoke-Adversary, respectively. These tools show
the same drawbacks as CALDERA, where the most intrusive
actions all raise alerts from the AVs. Looking at the tables, it
is possible to notice how non-intrusive actions are the only
ones not detected by any of the AVs, namely GetCurrent User
with PowerShell Script, Prompt User for Password, Activate Guest
Account for Atomic Red Team, and System Owner Discovery
and Screen Capture for Invoke-Adversary. It is worth noting
that even the deployment of the tools triggers an alert from
the AVs. So, it is not possible to use them without turning AVs
off in the deployment phase.

4.4 Detectability evaluation of Laccolith

Our previous analysis showed that traditional adversary emu-
lation is cumbersome and unable to perform intrusive actions
without being detected. We here present an experimental
analysis of detectability for Laccolith. For this analysis, we
implemented four adversary profiles with Laccolith: Thief,
Op-2, Ransomware, and Shares Hunter, as described in Table @
Since we had to develop adversary profiles from scratch for
Laccolith, we did not aim for a verbatim reimplementation of
the adversary profiles of CALDERA. Instead, the adversary
profiles in Laccolith match the CALDERA profiles in terms
of high-level strategy of the attackers. Moreover, we relate
the adversary profiles for Laccolith with real-world APTs
(threat-informed adversary emulation). The new profiles in
Laccolith cover all the tactics covered by CALDERA profiles,
except Privilege Escalation (covered by the You Shall (Not)
Bypass profile) since Laccolith already has high privilege. The
Ransomware profile also covers the Impact tactic, which is not
covered by the default profiles of CALDERA. We introduced
this profile to show the ability of Laccolith to support complex
operations and cover a relevant cybersecurity threat.

Table [7] provides details on which commands of the
emulation agent are involved in each profile, in order to get
more insight about the adversary profiles of this experiment.
In total, the profiles cover 7 commands implemented by the
emulation agent, including actions to access the filesystem,
the system registry, and to execute user-space commands.
Moreover, the Laccolith agent provides additional commands
for managing adversary emulation campaigns, not shown
in the table for the sake of brevity. Overall, the newly
implemented profiles allowed us to test the functionalities of
Laccolith in depth.

To compare Laccolith to CALDERA, we performed the
same experimental analysis for detectability. Table [8| shows
the adversary profile execution progress for the four profiles
against all the chosen AVs. It is possible to notice that all
profiles achieve complete execution progress, meaning that
the AVs do not detect any of their actions. It is worth noting
that the Shares Hunter profile has seven actions according
to Table [8] instead of the four mentioned in Table [f] This
happens because this profile does not have an a priori planning,
but a dynamic one in which some actions depend on the
outcome of the previous ones. In particular, since this profile

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 2: Abilities of MITRE CALDERA detected by AV products.

Profile Ability Windows Defender Avast AVG Kaspersky Avira
Undercover Install PowerShell Core 6 v v v v
Stowaway Inject Sandcat into Process 4 v 4 4
Worm Run PowerKatz v v v v
You Shall (Not) Bypass Wowé64log DLL Hijack v v v v v
You Shall (Not) Bypass Bypass UAC Medium v v/ v

TABLE 3: Atomic techniques detection results for each AV
product.

Profile
Atomic Red Team
Invoke-Adversary

Windows Defender
70%
75%

Avast
70%
75%

AVG Kaspersky Avira
70% 50% 30%
75% 63% 50%

TABLE 4: Technique detectability for Atomic Red Team.

Technique Windows Defender _ Avast
Execute basebd-encoded PowerShell from Windows Registry
GetCurrent User with PowerShell Script
Thread Execution Hijacking
Prompt User for Password
Mimikatz
Clear Logs
Activate Guest Account
Disable Windows Security Center Notifications
Bypass UAC using Event Viewer (PowerShell)
Disable Microsoft Defender Firewall

AVG Kaspersky Avira
v

v

v

v v

AVANANERANANERANERAN
]ISI]EI]I]]S

]ISI]EI]I]]S

v

TABLE 5: Technique detectability for Invoke-Adversary.

Technique Windows Defender Avast AVG Kaspersky Avira

System Owner Discovery

PowerShell Encoded Mimikatz v v v v v
Screen Capture
Add local firewall rule exceptions v v v v
Create local administrator v v v v v
Capture Lsass Memory Dump v v v v v
Clear Security Log v v v

PSExec v v v v v

performs network discovery operations, the result of its actions
depends on whether there are any neighbors in the network.
We assumed that the target VM interacted with the other VM
recently, so it has the IP address of VM2 in its ARP cache
alongside the gateway one. Both VM1 and VM2 have the
NetBIOS sharing option active.

The injection relies on overwriting the code of a system call
or a kernel function called by a system call. Then, the shellcode
executes only once, and the other concurrent calls return, as
described in Section After loading the emulation agent,
the original code is restored. This injection method can fail
since the original code may be restored concurrently with a
thread executing that function, which could encounter invalid
opcodes due to misalignment or valid code that returns errors
because of invalid values in the CPU registers. This failure
results in an assertion failure (e.g., bug check) within the kernel.
Moreover, a critical system process (e.g., SYSTEM svchost.exe)
may crash because the system call does not exhibit the expected
behavior.

We performed preliminary experiments to gain insights
into these events. In these initial experiments, we executed the
injection after an increasing amount of time after the boot of
the victim machine. We found that these events are more likely
if the injection is performed within a few minutes right after
the boot. If the injection is performed after a few minutes have

passed since boot, the injection becomes more reliable. This
behavior can be explained by the higher activity of system
processes in the early phases of the start-up, which make high
use of system calls and can expose these processes to failures.

Therefore, the success of the injection method depends on
the fraction of time the system spends executing the injected
system call, and the percentage of cases that the system call
is invoked by system processes. To quantify the effectiveness
of the injection method, we performed more experiments by
focusing on the favorable case of injection after boot has been
completed, and the system has stabilized. The experiments
consisted in repeating the injection method multiple times,
each time from a clean condition (e.g., a full restart of the
victim machine), and measuring how many times the injection
was successful. We conducted 20 experiments for each AV,
re-booting the target VM each time to have independent
samples. The timing of the injection was set to one minute
after the Windows login prompt appeared. To verify if the
injection was successful, we sent the agent an echo and a
close command to check if it could execute commands and
terminate gracefully. The injection fails if the connection is
received, but it is impossible to perform these operations. If
there is some minor error from user applications, which cannot
be attributable to a security alarm (e.g., a generic “unknown
exception in explorer.exe”), we still consider the injection
successful.

Table 9 summarizes the experimental results. The AV does
not impact the injection success since all the setups with the
different AVs exhibit similar behavior. The overall success
rate of the injection method has been 90/100, hence 90%
of experiments. Considering a margin of error of 1/v/N,
where N is the overall number of repetitions [6], the success
rate of the injection method ranges between 80% and 100%.
Even in the worst case, the success rate is still higher than
the probability of running CALDERA and Inceptor without
being detected, which had approximately a 25% probability of
success, neglecting the issue of bypassing UAC which makes
the process even more uncertain.

It is worth noting that the injection success for Laccolith
can be further improved by injecting into a target linear region
of code that is executed less frequently, in order to reduce
the probability that the injection clashes with the execution of
the target system call. This can be achieved by a preliminary
profiling of the execution frequency of system calls. Since the
profiling depends on the workload of the specific system under
evaluation, and since this represents an engineering problem,
we consider this beyond the scope of our research work.

4.5 Threats to validity

Threats to external validity. We targeted Microsoft Windows
as guest OS for the victim machine, which may affect the
generality of our solution. We focus on Windows since it

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10

TABLE 6: Adversary profiles in Laccolith.

Profile Description Tactics Commands High-level actions Referenced APTs
Exfiltrate files Discovery, Directory listing (to find (1) Find local users, APT1,
Thief from local Collection, local users and to list (2) List user desktop, OilRig,
user desktop Exfiltration desktop files), Read file (3) Exfiltrate a list of staged files APT3
Upload a Powershell script (1) Write file on
in a system folder Write file, remote file system,
and install a scheduled Persistence, Write to registry, (2) Install a scheduled Remsec
Op-2 task that executes that Credential Version, task on the remote (Strider),
script at boot, get access Dump process Windows target, Ke3chang
system version and memory (3) Get system version,
dump LSASS memory (4) Dump Isass credentials
(1) Find local users,
Discover and exfiltrate Discovery, Directory listing, (2) Find sensitive files, APTS,
Ransomware sensitive files, encrypt Collection, Read file, (3) Exfiltrate a list of staged Bad Rabbit
them and leave Exfiltration, Write file files and encrypt them, (multiple APTs)
a message Impact (4) Encrypt remote files,
(5) Write ransom message
Read ARP cache to find (1) Find local IP address,
neighbors, scan them to see Discovery, User-mode commands: (2) Read ARP cache, Conti,
Shares Hunter ~ which has Netbios/SMB Lateral ipconfig, arp, (3) Scan hosts for APT32
sharing enabled, Movement nbtstat, net view SMB/NetBIOS,

enumerate shares

(4) Enumerate network shares

TABLE 7: Coverage of commands of the Laccolith agent, with
respect to the adversary profiles.

Profile Commands
Thief dir, read
Op-2 write, setkey, version, dump
Ransomware dir, read, write

Shares Hunter read, usermode

TABLE 8: Adversary profile execution progress for Laccolith.

Profile Windows Defender Avast AVG Kaspersky Avira
Thief N 3/3 EN3/3 EE3/3 H3/3 /3
Op-2 . 4/4 H4/4 EE4/4 . 4/4 . 4/4
Ransomware Hl5/5 EN5/5 EM5/5 Hl5/5 Hl5/5
Shares Hunter /7 mm7/7 WR7/7 /7 /7

TABLE 9: Injection success for Laccolith.

Anti-virus Injection Success

Windows Defender Hl 19/20

Avast W 17/20
AVG W 17/20
Kaspersky N 19/20
Avira 18/20
Overall Il 90/100

is a common target for APTs and is widely used in the
adversary emulation landscape. For example, the MITRE
ATT&CK framework started as a project to gather information
about TTPs against Windows-based systems [56]. It exhibits
a diverse attack surface, encompassing a wide range of
services, applications, and configurations, which enables a
comprehensive exploration of attack vectors. This complexity
makes Windows a realistic target for enterprise systems.
Other guest OSes can also be targeted by our solution, as
discussed later in the paper. We performed experiments with
three state-of-the-art open-source adversary emulation tools:
MITRE CALDERA, Atomic Red Team, and Invoke-Adversary.
According to a recent survey [67], these tools are the most

mature and are aligned to the MITRE ATT&CK matrix, which
allow us to reproduce threat behavior in a reliable way. We
evaluated the detectability of adversary emulation against five
popular AV products. The choice of antivirus solutions can
be a limitation of our evaluation. We focused on antivirus
solutions that represent those commonly used in real-world
scenarios [5]], considering the ones that aligned better with the
typical deployment context of adversary emulation.

Threats to internal validity. Inconsistent configuration
settings for the AVs may threaten the internal validity
of the study. We used standard configurations of the five
AV solutions, to avoid variations of results not due to the
effectiveness of the adversary emulation tools.

Threats to construct validity. The choice of detection metrics
can impact the validity of the study. We adopted three different
metrics for the evaluation of detectability, which encompass
all the key aspects of detectability: perimeter breach detection
(injection success), malicious actions detection (atomic technique
detection), and timeliness in the APT campaign detection
(adversary profile execution progress).

5 RELATED WORK

Zilberman et al. [67] analyze and classify several adversary
emulators. The authors defined a set of criteria and a method-
ology to evaluate the threat emulators; a taxonomy of the
qualities of the threat emulators; and guidelines for choosing
an appropriate adversary emulator, given the specific environ-
ment and the security assessment tasks. Among the criteria
defined in this work are OS compatibility, changes needed
in the security array, ATT&CK TTPs coverage, procedures
configuration, and required security expertise. In this section,
we further analyze and discuss the most popular and mature
adversary emulation tools according to the survey [67].
Atomic Red Team [51] is a library of scripts to emulate
adversary behavior. Every script implements a single ATT&CK
technique or sub-technique (277 out of 719, 231 out of 507 for
Windows). It can be used for specific/atomic tests but is not
suitable to emulate complex scenarios. Red Team Automation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

11

TABLE 10: Adversary emulation solutions comparison.

Tool C2 Server _Complex Attacks ATT&CK Tactics Coverage Needs Pre-Installed Agent _ Anti-detection
CALDERA v =, (1 Haede 108 g v x
Atomic Red Team X X BRIPOB 0B, X X
Red Team Automation x &, (1 o 08 g X X
APTSimulator X ‘ @ % a Eggg % X X
Infection Monkey v ‘ % 3 g% 5 falg B/Dtl_]r v X
Meta x - AL JorR x x
DumpsterFire X ‘ i ? 5 L= ﬂﬁﬁ' X X
Tnvoke-Adversary X X o B X x
Sliver v X & % ail v X
Laccolith v ‘ B & [%% & @ £ G/Dﬁ X v

Key: Collection

‘ Built-in
@ Custom

gﬁ Execution %

Credential Access D&E Exfiltration

=]
g Defense Evasion @ Impact

. me
Discovery Initial Access
00 i

K
anl

[18] is a script framework that implements single techniques
from the ATT&CK framework (around 50) for security as-
sessment purposes. It does not offer built-in scripts for multi-
procedure attacks. APTSimulator [48] is a batch script-based
tool for Windows that offers around 30 attack techniques to
emulate post-compromise scenarios. These techniques leverage
external tools such as Mimikatz and PowerSploit. Infection
Monkey [23] is an adversary emulation tool composed of two
main elements, the server (Monkey Island) and the agents
(Monkeys). Infection Monkey implements a few ATT&CK
techniques, mostly for Initial Access and Lateral Movement. As
CALDERA, Infection Monkey does not offer any anti-detection
capability to hide malicious actions, and AVs easily detect
its agents’ activities [67]. Metta [60] is an adversary emulator
developed by Uber Technologies to assess endpoint security.
It provides techniques for various tactics, such as Discovery,
Credential Access, and Defense Evasion. However, it does
not emulate complete attacks but focuses on the assessment
of specific targets. DumpsterFire [59] offers a collection of
actions (fires) that can be chained together into complex attacks
(dumpster fires). Fires are not based on ATT&CK framework
techniques and are organized into categories: Network Scans,
File Downloads, Websurfing, Account Bruteforcing, Filesystem
Activities, Malware, Custom OS Commands, and Shenanigans.
It can only execute on Linux. Invoke-Adversary [13] is a
PowerShell script to test security mechanisms. It offers 39
techniques grouped by ATT&CK tactics. It does not offer multi-
procedure scripts and does not support Lateral Movement.
Moreover, its procedures are usually detected by AVs, making
it not suitable for usage in real-world scenarios. Sliver [4]
is a C2 framework for adversary emulation. It offers multi-
platform agents that communicate with the C2 server using
different protocols (e.g., HTTP, DNS, Mutual TLS). It also
provides attacker capabilities through plugins called armories.
Sliver does not offer any AV-evasion capability as explicitly
stated in its documentation.

Lateral Movement

Gae— :
=r—] Persistence
D]-’

Privilege Escalation

Table[I0]summarizes the comparison among the mentioned
adversary emulation solutions. It is possible to notice how
the tools that provide an advanced architecture with a C2
server (i.e., CALDERA, Infection Monkey, and Sliver) need
to install an agent on the target system. None of the other
tools, which do not use an agent, offer command-and-control
capabilities. In terms of ATT&CK tactics coverage, Atomic
Red Team is the best-performing tool, covering 11 tactics.
CALDERA has a similar coverage to Atomic Red Team and
is the most complete among the C2 frameworks. CALDERA
does not cover Initial Access, because it is not relevant in
adversary emulation, and the Impact tactic, unlike our solution
which encompasses it in the Ransomware profile. Moreover,
CALDERA surpasses the other C2 frameworks regarding
complex attacks, providing built-in attacks and capabilities to
develop custom ones. CALDERA also provides a plugin to
leverage Atomic Red Team tactics and techniques, making it
the best-performing tool among the existing ones. It is worth
noting that none of the analyzed tools provide anti-detection
techniques to evade AV/EDR products.

Our proposed solution differs from the previous ones.
Laccolith represents a C2 framework that does not need
to explicitly install an agent on the victim machine, unlike
CALDERA, Infection Monkey, and Sliver. It also offers profiles
based on real-world APTs and mapped to the ATT&CK
matrix, covering the same tactics of Atomic Red Team. Most
importantly, Laccolith enables the emulation of malicious
actions without being detected by AV and EDR solutions.
Moreover, it is portable across different versions of the target
guest OS and does not require any customization related to
the specific AV/EDR. To achieve all these abilities, Laccolith
leverages virtualization, widely used in infrastructures for
cybersecurity exercises, as illustrated in the following.

Yamin et al. [63] performed a literature review on Cyber
Range platforms and security testbeds, highlighting that most
solutions leverage virtualization to set up security training and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

assessment environments. The use of virtualization spans mul-
tiple domains, such as Internet-of-Things (IoT), autonomous
systems, SCADA systems, and critical infrastructures. Beuran
et al. [2]] proposed CyTrONE, a framework for cybersecurity
training. CyTrONE is equipped with a Learning Management
System (LMS) for the trainees and offers a Cyber Range
that relies on virtualization technologies. The Cyber Range
is instantiated using a variable number of VMs, depending
on the specific training scenario. KYPO [7] is a platform for
cyber defense exercises developed by Masaryk University.
It aims to emulate attacks on critical infrastructures in a
controlled environment. For this purpose, KYPO leverages
cloud computing technologies (e.g., OpenStack), and relies
on virtualization for hosts and networks. DETERIab [62] is a
solution for cybersecurity experimentation developed in the
context of the DETER project. It provides a flexible and realistic
environment for security training and assessment. These
goals are fulfilled by leveraging virtualization technologies,
which enable easy reconfiguration and scalability. The National
Cyber Range (NCR) [21] is a facility for cybersecurity testing
established by the Defense Advanced Research Projects Agency
(DARPA). Its purpose is to provide an environment to design
and test new ways to respond to the most recent threat actors.
The range combines physical and virtualized resources and
networks according to the nature of the simulation.

6 CONCLUSION

In this work, we presented Laccolith, a hypervisor-based
solution for adversary emulation equipped with anti-detection
capabilities. Laccolith introduces a new approach to inject
an agent into the target machine based on virtualization, an
enabling technology for cybersecurity assessment and training
infrastructures. Laccolith supports the emulation of advanced
cyber-attacks (APTs) that adopt sophisticated techniques to
hide their traces. This architecture enables the development
of a new generation of cyber-range simulations for critical
domains, such as in defense. Moreover, Laccolith can support
future research on solutions to detect stealthy adversaries.We
performed an experimental analysis to compare Laccolith with
state-of-the-art tools for adversary emulation. Our analysis
showed that existing tools cannot evade detection by AV/EDR
solutions, limiting the usefulness of adversary emulation. We
also integrated anti-detection solutions, namely Inceptor, to
find out that this combination was still unable to evade defense
mechanisms. Instead, Laccolith evaded all the AVs with high
reliability, making it suitable for usage in actual emulation
scenarios.

A limitation of this work is the focus on a specific guest OS
(the victim) and hypervisor. Currently, our prototype supports
Microsoft Windows as guest OS and Linux-KVM as hypervisor,
since they represent popular solutions for enterprise systems.
For the portability of our solution to a different hypervisor,
we need APIs from the hypervisor to read and modify the
memory of the guest OS. For example, in the case of the
XEN hypervisor, the LibVMI library can be leveraged by our
solution. If such APIs are not available for the target hypervisor,
an alternative is to save and modify a snapshot of the VM
memory. For the portability to a different guest OS, we need to
rewrite the injector to use kernel-level APIs. This can be easily
achieved by taking advantage of the modular architecture
of modern OSes, such as, using the APIs for Linux Kernel
Modules. About the scalability, our current prototype requires
a few minutes for injecting into VMs with a small amount of

12

RAM. For systems with more RAM, the performance can be
improved by optimizing the current prototype. In particular,
the most expensive step in the injection process is the analysis
of memory through Virtual Machine Introspection (VMI). Our
prototype leverages Volatility for VMI, which collects large
amounts of information that may be unnecessary for the
injection. Therefore, our prototype can be further optimized
by tailoring Volatility for the injection phase.

ACKNOWLEDGMENTS

This work has been partially supported by the Italian Ministry
of University and Research (MUR) under the programme
“PON Ricerca e Innovazione 2014-2020 — Dottorati innovativi
con caratterizzazione industriale” and by MUR PRIN 2022,
project FLEGREA (CUP E53D23007950001).

REFERENCES

[1] Andy Applebaum, Doug Miller, Blake E. Strom, Chris Korban, and
Ross Wolf. Intelligent, automated red team emulation. Proceedings of
the 32nd Annual Conference on Computer Security Applications, 2016.

[2] Razvan Beuran, Dat Tang, Cuong Pham, Ken-ichi Chinen, Yasuo Tan,
and Yoichi Shinoda. Integrated framework for hands-on cybersecurity
training: Cytrone. Computers & Security, 78:43-59, 2018.

[3] Binarly. Design issues of modern EDRs: bypassing ETW-based so-
lutions. |https:/ /www.binarly.io/posts/Design_issues_of_modern_
EDRs_bypassing_ETW-based_solutions/index.html.

[4] Bishop Fox. Sliver. https://github.com/BishopFox/sliver,

[5] Marcus Botacin, Felipe Duarte Domingues, Fabricio Ceschin, Raphael
Machnicki, Marco Antonio Zanata Alves, Paulo Licio de Geus, and
André Grégio. Antiviruses under the microscope: A hands-on
perspective. Computers & Security, 112:102500, 2022.

[6] Brian Caffo. Statistical inference for data science. British Columbia,
UK: Leanpub, 2016.

[7] Pavel Celeda, Jakub Cegan, Jan Vykopal, Daniel Tovariak, et al. Kypo-
a platform for cyber defence exercises. M&S Support to Operational
Tasks Including War Gaming, Logistics, Cyber Defenice. NATO Science
and Technology Organization, 2015.

[8] Citizen Lab. Tracking GhostNet: Investigating a Cyber Espionage Net-
work. https://citizenlab.ca/wp-content/uploads/2017/05/ghostnet

df.

[9] léornelis De Plaa. Bypass EDR’s memory protection, introduction to

hooking. https://outflank.nl/blog/2019/06/19/red-team-tactics-

combining-direct-system-calls-and-srdi-to-bypass-av-edr/!

MITRE Corporation. MITRE ATT&CK. https:/ /attack.mitre.org/|

CTID. OilRig Adversary Plan. https://github.com/center-for-threat-

informed-defense/adversary_emulation_library/tree/master/

oilrig,

CTI]%. OilRig Intelligence Summary. https://github.com/center-

for-threat-informed-defense/adversary_emulation_library/blob/

master/fin6/Intelligence_Summary.md.

CyberMonitor. Invoke-Adversary.

CyberMonitor /Invoke-Adversary,

CyberStruggle. FireEye EDR Bypassed with Basic Process Injec-

tion. https://cyberstruggle.org/fireeye-edr-bypassed-with-basic-

process-injection/.

Cyware. APT34: The Helix Kitten Cybercriminal Group Loves

to Meow Middle Eastern and International Organizations.

https:/ /cyware.com/blog/apt34-the-helix-kitten-cybercriminal-
group-loves-to-meow-middle-eastern-and-international-
organizations-48ae,

R Dhaya, R Kanthavel, and Kanagaraj Venusamy. Dynamic secure

and automated infrastructure for private cloud data center. Annals of

Operations Research, pages 1-21, 2021.

Ege Balci. Shikata-Ga-Nai. https://github.com/EgeBalci/sgn.

Endgame Inc. Red Team Automation. https://github.com/

endgameinc/RTA.

MITRE Engenuity. Center for threat-informed defense. https://ctid

mitre-engenuity.org/.

Evan Pena and Casey Erikson. Staying Hidden

on the Endpoint: Evading Detection with Shellcode.

https:/ /www.mandiant.com/resources/staying-hidden-on-
the-endpoint-evading-detection-with-shellcode,

Bernard Ferguson, Anne Tall, and Denise Olsen. National cyber

range overview. In 2014 IEEE Military Communications Conference,

pages 123-128. IEEE, 2014.

[10]
(11]

[12]

[13] https://github.com/

[14]

[15]

[16]

[17]
(18]
(19]

[20]

[21]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://github.com/BishopFox/sliver
https://citizenlab.ca/wp-content/uploads/2017/05/ghostnet.pdf
https://citizenlab.ca/wp-content/uploads/2017/05/ghostnet.pdf
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://attack.mitre.org/
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/oilrig
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/oilrig
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/master/oilrig
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/master/fin6/Intelligence_Summary.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/master/fin6/Intelligence_Summary.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/master/fin6/Intelligence_Summary.md
https://github.com/CyberMonitor/Invoke-Adversary
https://github.com/CyberMonitor/Invoke-Adversary
https://cyberstruggle.org/fireeye-edr-bypassed-with-basic-process-injection/
https://cyberstruggle.org/fireeye-edr-bypassed-with-basic-process-injection/
https://cyware.com/blog/apt34-the-helix-kitten-cybercriminal-group-loves-to-meow-middle-eastern-and-international-organizations-48ae
https://cyware.com/blog/apt34-the-helix-kitten-cybercriminal-group-loves-to-meow-middle-eastern-and-international-organizations-48ae
https://cyware.com/blog/apt34-the-helix-kitten-cybercriminal-group-loves-to-meow-middle-eastern-and-international-organizations-48ae
https://github.com/EgeBalci/sgn
https://github.com/endgameinc/RTA
https://github.com/endgameinc/RTA
https://ctid.mitre-engenuity.org/
https://ctid.mitre-engenuity.org/
https://www.mandiant.com/resources/staying-hidden-on-the-endpoint-evading-detection-with-shellcode
https://www.mandiant.com/resources/staying-hidden-on-the-endpoint-evading-detection-with-shellcode

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3376129

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

[31]

[32]
(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]
(45]
[46]
(47]
(48]
[49]
[50]
[51]
[52]
(53]

Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspec-
tion based architecture for intrusion detection. In Ndss, volume 3,
pages 191-206. San Diego, CA, 2003.

Guardicore. Infection Monkey. https://www.guardicore.com/
infectionmonkey /|

Danny Hendler, Shay Kels, and Amir Rubin. Amsi-based detection of
malicious powershell code using contextual embeddings. In Proceed-
ings of the 15th ACM Asia Conference on Computer and Communications
Security, pages 679-693, 2020.

Hoang Bui. Bypass EDR’s memory protection, introduction to hook-
ing. https://medium.com/@fsx30/bypass-edrs-memory-protection-
introduction-to-hooking-2etb21lacttd6.

InfoSec. Evade EDR with Shellcode Injection and gain persistence
using Registry Run Keys. https://infosecwriteups.com/evade-avs-
edr-with-shellcode-injection-159dde4dbala.

Intel. XCHG - Exchange Register/Memory with Regis-
ter. https:/ /www.cs.princeton.edu/courses/archive/spr18/cos217/
reading /x86-64-2.pdf.

Kaspersky. Carbanak APT: The Great Bank Robbery.
https:/ /media.kasperskycontenthub.com/wp-content/uploads/
sites/43/2018/03/08064518/Carbanak_APT_eng.pdt.

klezVirus. Inceptor. https://github.com/klezVirus/inceptor.
klezVirus. Inceptor — Bypass AV-EDR solutions combining well-
known techniques. https://github.com/klezVirus/inceptor/blob/
main/slides/Inceptor%20-%20Bypass%20AV-EDR%20solutions%!
20combining %20well%20known%20techniques.pdf,

Daniel Kouril, Tomas Rebok, Tomas Jirsik, Jakub Cegan, Martin
Drasar, Martin Vizvary, and Jan Vykopal. Cloud-based testbed for
simulation of cyber attacks. In 2014 IEEE Network Operations and
Management Symposium (NOMS), pages 1-6. IEEE, 2014.

LibVirt. LibVirt. https://libvirt.org/,

Malwarebytes Labs. APT34 targets Jordan Government using new
Saitama backdoor. https://www.malwarebytes.com/blog/threat-
intelligence/2022/05/apt34-targets-jordan-government-using-
new-saitama-backdoor.

Mandiant. M-Trends 2021. https://www.mandiant.com/resources/
m-trends-2021!

Mandiant. New Targeted Attack in the Middle East by APT34,
a Suspected Iranian Threat Group, Using CVE-2017-11882 Ex-
ploit. https://www.mandiant.com/resources/blog/targeted-attack-
in-middle-east-by-apt34.

Mandiant. Shikata Ga Nai Encoder Still Going Strong.
https:/ /www.mandiant.com /resources/blog/shikata-ga-nai-
encoder-still-going-strong,

Markus Fleschutz. Collection of Powershell scripts.
https:/ /github.com/fleschutz/PowerShell /blob/master /Scripts/
encrypt-file.psl,

Microsoft. API reference docs for Windows Driver Kit (WDK). https:
/ /learn.microsoft.com/en-us/windows-hardware/drivers/ddi/.
Microsoft. Microsoft Defender Application Guard overview.
https:/ /learn.microsoft.com/en-us/windows/security/ threat-
protection/microsoft-defender-application-guard /md-app-
guard-overview,

Microsoft. Microsoft Defender SmartScreen. https!
/ /learn.microsoft.com/en-us/windows/security/threat-
protection/microsott-detender-smartscreen/microsoft-defender-
smartscreen-overview,

MITRE. Account Discovery, T1087. https://attack.mitre.org/
techniques/T1087/.

MITRE. CALDERA. https://github.com/mitre/caldera,

MITRE. Exfiltration Over Alternative Protocol, T1048. https://attack
mitre.org/techniques/T1048/,

MITRE. OS Credential Dumping, T1003. https:/ /attack.mitre.org/
techniques/T1003/.

MITRE. Phishing, T1566. https://attack.mitre.org/techniques/
T1566/.

MITRE. Use Alternate Authentication Material: Pass the Hash,
T1550.002. https:/ /attack.mitre.org/techniques/T1550/002/.
MITRE. User Execution: Malicious File, T1204.002. https://attack.
mitre.org/techniques/T1204/002/,

Nextron Systems GmbH. APTSimulator. https://github.com/
NextronSystems/APTSimulator,

Paranoid Ninja. CarbonCopy. https://github.com/paranoidninja/
CarbonCopy,

Qemu. Qemu. https://www.qemu.org/!

Red Canary. Atomic Red Team. https://atomicredteam.io/}
RedHat. Linux-KVM. |https://www.linux-kvm.org/page/Main_
Page.

Nathan Regola, Nitesh V Chawla, et al. Storing and using health
data in a virtual private cloud. Journal of medical Internet research,
15(3):€2076, 2013.

13

[54] Kevin Schoonover, Eric Michalak, Sean Harris, Adam Gausmann,
Hannah Reinbolt, Daniel R Tauritz, Chris Rawlings, and Aaron Scott
Pope. Galaxy: a network emulation framework for cybersecurity. In
11th {USENIX} Workshop on Cyber Security Experimentation and Test
({CSET} 18), 2018.

[55] Spot the Planet. Bypassing Cylance and other AVs/EDRs by
Unhooking Windows APIs. |https://www.ired.team/offensive-
security /defense-evasion/bypassing-cylance-and-other-avs-
edrs-by-unhooking-windows-apis!

[56] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels,
Adam G Pennington, and Cody B Thomas. Mitre att&ck: Design and
philosophy. In Technical report. The MITRE Corporation, 2018.

[57] Blake E Strom, Joseph A Battaglia, Michael S Kemmerer, William
Kupersanin, Douglas P Miller, Craig Wampler, Sean M Whitley, and
Ross D Wolf. Finding cyber threats with att&ck-based analytics. The
MITRE Corporation, Bedford, MA, Technical Report No. MTR170202,
2017.

[58] Symantec Security Response. W32.Stuxnet Dossier.
https:/ /docs.broadcom.com/doc/security-response-w32-
stuxnet-dossier-11-en.

[59] TryCatchHCF. DumpsterFire. https://github.com/TryCatchHCEF/

DumpsterFirel

[60] Uber Technologies Inc. Metta. https://github.com/uber-common/
mettal

[61] Volatility Foundation. Volatility. https://www.volatilityfoundation
org/.

[62] John Wroclawski, Terry Benzel, Jim Blythe, Ted Faber, Alefiya
Hussain, Jelena Mirkovic, and Stephen Schwab. Deterlab and the
deter project. The GENI Book, pages 35-62, 2016.

[63] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos.
Cyber ranges and security testbeds: Scenarios, functions, tools and
architecture. Computers & Security, 88:101636, 2020.

[64] Pavel Yosifovich, David A Solomon, and Alex Ionescu. Windows Inter-
nals, Part 1: System architecture, processes, threads, memory management,
and more. Microsoft Press, 2017.

[65] Zerosum0x0. “Heresy’s Gate”: Kernel Zw*/NTDLL Scrap-
ing + “Work Out”: Ring 0 to Ring 3 via Worker Facto-
ries. https://zerosumOx0.blogspot.com/2020/06/heresys-gate-
kernel-zwntdll-scraping.html#workout.

[66] Zerosum0x0. Zerosum0x0 GitHub repository. https://github.com/
zerosumOx0-archive/archive,

[67] Polina Zilberman, Rami Puzis, Sunders Bruskin, Shai Shwarz, and
Yuval Elovici. Sok: A survey of open-source threat emulators. arXiv
preprint arXiv:2003.01518, 2020.

Vittorio Orbinato is a PhD Student at Universita degli Studi di Napoli
Federico Il, Naples, Italy. His research interests include adversary emulation
and software security. He received his M.Sc. Degree from Universita degli
Studi di Napoli Federico Il, Naples, Italy.

Marco Carlo Feliciano is a Security Researcher at Secureware s.r.l.
His research interests are in adversary emulation. He received his M.Sc.
Degree from Universita degli Studi di Napoli Federico Il, Naples, Italy.

Domenico Cotroneo (PhD) is Full Professor at Universita degli Studi di
Napoli Federico Il, Naples, Italy. His research interests include software
fault injection, dependability assessment, and field-based measurement
techniques. He is co-founder and scientific consultant at Secureware s.r..

Roberto Natella (PhD) is Associate Professor at Universita degli Studi
di Napoli Federico Il, Naples, Italy. His research interests are in software
security and dependability, with main recurring theme on the experimental
injection of faults, attacks, and stressful conditions in software systems. He
is co-founder and scientific consultant at Secureware s.r.l.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.guardicore.com/infectionmonkey/
https://www.guardicore.com/infectionmonkey/
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://medium.com/@fsx30/bypass-edrs-memory-protection-introduction-to-hooking-2efb21acffd6
https://infosecwriteups.com/evade-avs-edr-with-shellcode-injection-159dde4dba1a
https://infosecwriteups.com/evade-avs-edr-with-shellcode-injection-159dde4dba1a
https://www.cs.princeton.edu/courses/archive/spr18/cos217/reading/x86-64-2.pdf
https://www.cs.princeton.edu/courses/archive/spr18/cos217/reading/x86-64-2.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064518/Carbanak_APT_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064518/Carbanak_APT_eng.pdf
https://github.com/klezVirus/inceptor
https://github.com/klezVirus/inceptor/blob/main/slides/Inceptor%20-%20Bypass%20AV-EDR%20solutions%20combining%20well%20known%20techniques.pdf
https://github.com/klezVirus/inceptor/blob/main/slides/Inceptor%20-%20Bypass%20AV-EDR%20solutions%20combining%20well%20known%20techniques.pdf
https://github.com/klezVirus/inceptor/blob/main/slides/Inceptor%20-%20Bypass%20AV-EDR%20solutions%20combining%20well%20known%20techniques.pdf
https://libvirt.org/
https://www.malwarebytes.com/blog/threat-intelligence/2022/05/apt34-targets-jordan-government-using-new-saitama-backdoor
https://www.malwarebytes.com/blog/threat-intelligence/2022/05/apt34-targets-jordan-government-using-new-saitama-backdoor
https://www.malwarebytes.com/blog/threat-intelligence/2022/05/apt34-targets-jordan-government-using-new-saitama-backdoor
https://www.mandiant.com/resources/m-trends-2021
https://www.mandiant.com/resources/m-trends-2021
https://www.mandiant.com/resources/blog/targeted-attack-in-middle-east-by-apt34
https://www.mandiant.com/resources/blog/targeted-attack-in-middle-east-by-apt34
https://www.mandiant.com/resources/blog/shikata-ga-nai-encoder-still-going-strong
https://www.mandiant.com/resources/blog/shikata-ga-nai-encoder-still-going-strong
https://github.com/fleschutz/PowerShell/blob/master/Scripts/encrypt-file.ps1
https://github.com/fleschutz/PowerShell/blob/master/Scripts/encrypt-file.ps1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://attack.mitre.org/techniques/T1087/
https://attack.mitre.org/techniques/T1087/
https://github.com/mitre/caldera
https://attack.mitre.org/techniques/T1048/
https://attack.mitre.org/techniques/T1048/
https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1003/
https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1204/002/
https://github.com/NextronSystems/APTSimulator
https://github.com/NextronSystems/APTSimulator
https://github.com/paranoidninja/CarbonCopy
https://github.com/paranoidninja/CarbonCopy
https://www.qemu.org/
https://atomicredteam.io/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://docs.broadcom.com/doc/security-response-w32-stuxnet-dossier-11-en
https://docs.broadcom.com/doc/security-response-w32-stuxnet-dossier-11-en
https://github.com/TryCatchHCF/DumpsterFire
https://github.com/TryCatchHCF/DumpsterFire
https://github.com/uber-common/metta
https://github.com/uber-common/metta
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
https://zerosum0x0.blogspot.com/2020/06/heresys-gate-kernel-zwntdll-scraping.html#workout
https://zerosum0x0.blogspot.com/2020/06/heresys-gate-kernel-zwntdll-scraping.html#workout
https://github.com/zerosum0x0-archive/archive
https://github.com/zerosum0x0-archive/archive

	Introduction
	Background
	Proposed solution
	Overview
	Emulation server
	Overview of the injection method
	Injection method

	Emulation agent
	Emulation manager
	Implementation

	Experimental Analysis
	Experimental Setup
	Detectability evaluation of MITRE CALDERA
	Integrating CALDERA with anti-detection

	Detectability evaluation of atomic tools
	Detectability evaluation of Laccolith
	Threats to validity

	Related Work
	Conclusion
	References
	Biographies
	Vittorio Orbinato
	Marco Carlo Feliciano
	Domenico Cotroneo
	Roberto Natella

