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Assessing and reconstructing the impacts of defoliation caused by insect

herbivores on tree growth, carbon budget and water use, and differentiating

these impacts from other stresses and disturbances such as droughts requires

multi-proxy approaches. Here we present a methodological framework to

pinpoint the impacts of pine processionary moth (Thaumetopoea pityocampa),

a major winter-feeding defoliator, on tree cover (remote-sensing indices), radial

growth and wood features (anatomy, density, lignin/carbohydrate ratio of cell

walls, d13C and d18O of wood cellulose) of drought-prone pine (Pinus nigra)

forests in north-eastern Spain. We compared host defoliated (D) and coexisting

non-defoliated (ND) pines along with non-host oaks (Quercus faginea) following

a strong insect outbreak occurring in 2016 at two climatically contrasting sites

(cool-wet Huesca and warm-dry Teruel). Changes in tree-ring width and wood

density were analyzed and their responses to climate variables (including a

drought index) were compared between D and ND trees. The Normalized

Difference Infrared Index showed reductions due to the outbreak of –47.3%

and –55.6% in Huesca and Teruel, respectively. The D pines showed: a strong

drop in growth (–96.3% on average), a reduction in tracheid lumen diameter

(–35.0%) and lower lignin/carbohydrate ratios of tracheid cell-walls. Both pines

and oaks showed synchronous growth reductions during dry years. In the wet

Huesca site, lower wood d13C values and a stronger coupling between d13C and

d18O were observed in D as compared with ND pines. In the dry Teruel site, the

minimum wood density of ND pines responded more negatively to spring

drought than that of D pines. We argue that multi-proxy assessments that

combine several variables have the potential to improve our ability to pinpoint

and reconstruct insect outbreaks using tree-ring data.

KEYWORDS

outbreak, Pinus nigra, Raman spectroscopy, Thaumetopoea pityocampa, wood
anatomy, wood isotopes
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1 Introduction

Insect herbivores are important forest stressors that are

becoming increasingly relevant under ongoing climate warming

(Ayres and Lombardero, 2000) and forest expansion (Azcárate

et al., 2023). Climate- and human-mediated range expansions of

herbivore insects are altering their impacts on forests (Simler-

Williamson et al., 2019). For instance, higher temperatures can

enhance reproduction rates promoting the dispersal of insect

herbivores whose distributions are limited by cold winters

(Harvey et al., 2020). In Mediterranean conifer forests, a widely

reported case of range expansion linked to rising winter

temperatures is the pine processionary moth (Thaumetopoea

pityocampa Den. & Schiff., Lepidoptera: Thaumetopoeidae;

hereafter abbreviated as PPM), a major defoliator of drought-

prone pine and cedar stands (Roques et al., 2015). The PPM

population dynamics follows a positive gradation phase until

maximum PPM density is reached, then crown defoliation levels

peak in the outbreak maximum with PPM density and decreases

afterwards due to reduced food availability (Démolin, 1969; Battisti

et al., 2005; Battisti et al., 2015). Since PPM moths feed on conifer

needles within silky nests, and low winter temperatures limit the

development of PPM moths (Démolin, 1969; Roques et al., 2015),

recent upward or poleward expansions of PPM in some places have

been attributed to warmer winter conditions (Hódar et al., 2003,

2004). The PPM causes defoliation of pine and cedar forests across

the Mediterranean Basin, particularly affecting stands of species

such as black pine (Pinus nigra J.F. Arn.), Scots pine (Pinus sylvestris

L.), Aleppo pine (Pinus halepensis Mill) and maritime pine (Pinus

pinaster Ait.), while others such as stone pine (Pinus pinea L.) are

less affected (Gazol et al., 2019; Azcárate et al., 2023).

Forests are not exclusively impacted by single factors; rather,

disturbances and/or stressors interact reducing forest productivity

and modifying forest dynamics (Millar and Stephenson, 2015). For

instance, rising winter temperatures may enhance PPM impacts on

Mediterranean conifers but also amplify drought stress, making trees

more vulnerable to insect damage by reducing radial growth, increasing

defoliation and enhancing tree mortality risk (Jactel et al., 2012).

However, it is still unknown how stressors such as PPM defoliations

and drought interact and affect long-termMediterranean conifer forest

dynamics (Linares et al., 2014; Camarero et al., 2022a). To answer this

question, tree-ring based reconstructions of insect outbreaks together

with geographically detailed and temporally updated field reports of

related defoliation are needed (Sangüesa-Barreda et al., 2014; Navarro

et al., 2018; Gazol et al., 2019).

In order to perform dendrochronological reconstructions of

insect outbreaks, standardized tree-ring width series from

coexisting host and non-host tree species showing similar responses

to climate or drought severity can be compared (Swetnam et al., 1985;

Swetnam and Lynch, 1993; Speer et al., 2001; Paritsis et al., 2009;

Lynch, 2012). However, differentiating the negative impacts of severe

defoliation and drought on radial growth is not always

straightforward, because these stressors can show different carry-

over (legacy) effects (Sangüesa-Barreda et al., 2014; Camarero et al.,

2022a). An exception would be tree rings showing wood-anatomical

signatures of insect defoliation such as white rings with xylem cells
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showing a low lignification degree (Sutton and Tardif, 2005), but

these markers of outbreaks are not frequently observed. In the case of

drought, conifers often show reduced earlywood production and a

higher minimum wood density related to tracheids with narrow

lumen (Camarero et al., 2014; Camarero et al., 2015; Camarero and

Hevia, 2020; Camarero et al., 2021).

It is assumed that the magnitude of radial growth reduction is

proportional to the amount of foliage removed by insect herbivores,

albeit this relationship may be asymptotic (Kulman, 1971; Gross,

1992). This is also the case of PPM outbreaks in Mediterranean

conifer forests (Hódar et al., 2003; Hódar et al., 2004; Battisti et al.,

2015; Gazol et al., 2019). Several studies in particular have

demonstrated that PPM outbreaks associated with high

defoliation levels cause severe reductions in radial growth

(Hernández Alonso et al., 2005; Kanat et al., 2005; Camarero

et al., 2022a). The relative loss in radial growth due to PPM

outbreaks depended on defoliation degree, with low (< 25%) and

severe defoliation levels (> 50%) inducing growth losses of 20% and

50%, respectively (Jacquet et al., 2012). According to Polge and

Garros (1971), PPM defoliation not only reduces tree-ring width

but also earlywood density through the formation of tracheids with

thin cell walls (with a reduction of 35.0% on average), but with

normal lumen diameters. However, the impacts of PPM defoliation

on tree growth and wood anatomy have not been further assessed

by comparing several measures of insect impact.

In this study, we applied a multi-proxy approach to identify the

impacts of PPM severe defoliations on forest cover based on remote-

sensing, radial growth, and carbon and water use data. We analyzed

several xylem features (wood density, wood anatomy variables such

as lumen diameter and cell-wall thickness, C and O isotope

composition, lignification degree of tracheid cell-walls), which are

proxies of carbon use in tracheid walls building (e.g., wood density)

and intrinsic water-use efficiency (e.g., cellulose d13C). First, we
followed the classical tree-ring approach by comparing the growth

of defoliated host species (Pinus nigra) with that of coexisting, non-

defoliated trees of the same species and also of a different non-host

(non-defoliated) species (Quercus faginea). Second, to pinpoint the

impact of a severe PPM defoliation we analyzed changes in forest

cover using remote sensing indices, and compared growth (tree-ring

width) and wood features (density and tracheid anatomy, C and O

isotope composition, lignification degree of cell walls) between

severely defoliated pines and non-defoliated pines and oaks. We

hypothesized that the PPM outbreak would produce a general

decrease in forest cover and that defoliated trees would show a

strong reduction in radial growth and tracheid lumen diameter and,

accordingly, an increase in wood density. Defoliated trees would also

show lower d13C values of wood cellulose related to old needle loss

and impairment of N resorption by new needles, leading to N-

depleted, less water-use-efficient current-year needles driving the tree

carbon balance. This would be accompanied with a stronger coupling

between d13C and oxygen isotope composition (d18O) reflecting the

variable yearly contribution to photosynthesis of needles from

different cohorts following the defoliation event. We also expected

that defoliated pines would show a lower responsiveness to drought

severity in terms of growth and wood density due to the impacts of

PPM defoliation as compared with non-defoliated pines, whose tree-
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ring width and density series would be more coupled to changes in

soil water availability.
2 Materials and methods

2.1 Study sites

We selected two 50-year-old P. nigra plantations where PPM

outbreaks and severe defoliations were observed from winter 2015–

2016 to spring 2016 (Figure S1). These plantations are located in the

Aragón region (north-eastern Spain), and they are named hereafter

Huesca (42.557° N, 0.342° W, 875 m a.s.l., located near Senegüé

village) and Teruel (40.190° N, 0.652° W, 1150 m a.s.l., located near

Mora de Rubielos village) sites. The cover of the plantations ranges

from 70% (Teruel) to 90% (Huesca) with a mean tree-to-tree distance

of 4–6 m. The natural vegetation is dominated by oak species

(Quercus ilex L., Quercus faginea Lam.) and junipers (Juniperus

communis L., Juniperus oxycedrus L.) in both sites. Soils are basic,

nutrient-poor and developed on flysch substrates in Huesca and on

clays in Teruel. The Teruel site is situated in a region where intensive

monitoring of PPM defoliations has been carried out since the 1970s

(Montoya and Hernández, 1991; Gazol et al., 2019).

Since Q. faginea is naturally present in the vicinity of plantations

at both sites, this winter-deciduous oak species with ring-porous

wood was selected as control, non-defoliated species. Radial growth

reduction in 2016 after the severe defoliation episode ranged from

–92% (Huesca) to –99% (Teruel) compared to previous years

(Castaño et al., 2020). Further details on site characteristics are

given in Palacio et al. (2012) and Castaño et al. (2020).

These two sites were selected because of their contrasting climate

conditions. Climate data (mean monthly maximum and minimum

temperatures and total precipitation, period 1980–2016) for the Huesca

and Teruel sites were obtained from the nearby Biescas (42.628° N,

0.325° W, 860 m a.s.l.) and Mora de Rubielos (40.253° N, 0.753° W,

1038 m a.s.l.) meteorological stations, respectively (Figure S2). These

data show that the Huesca site is cooler and wetter (9.3° Cmean annual

temperature, 808 mm total annual precipitation) than the Teruel site

(11.6° C mean annual temperature, 491 mm total annual

precipitation), where the summer drought is more severe and lasts

longer (Figure S2). To assess changes in drought severity which could

affect growth responses, we downloaded weekly values of the

Standardized Precipitation Evapotranspiration Index (SPEI) drought

index at 1.1 km2 resolution (Vicente-Serrano et al., 2017) from the

Spanish SPEI database (https://monitordesequia.csic.es). Series for the

common period 1980−2016 were obtained for the Huesca and Teruel

sites at the following temporal resolutions: 1, 3, 6, 9, 12 and 24 months.

Dry conditions occurred in 1994−1995 (particularly in Teruel), 2005

and 2012 (Figure S3).
2.2 Remote sensing information

We used remote-sensing data to assess how the PPM defoliation

event impacted canopy greenness and tree cover. For the period 1990–

2021, we calculated the Normalized Difference Vegetation Index
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(NDVI), which is based on how healthy green vegetation differently

reflects red and near-infrared radiation (Tucker, 1979), and the kernel

NDVI (KNDVI), a non-linear version of the NDVI which is more

accurate in detecting changes in leaf area index (Camps-Valls et al.,

2021). We also considered the Normalized Difference Infrared Index

(NDII; see Hunt and Rock, 1989) since it was found to detect severe

defoliation due to PPM outbreaks (Sangüesa-Barreda et al., 2014). In

the case of NDII, we analyzed 456 and 437 scenes (16-day averaged

composites) taken at similar dates in Huesca and Teruel sites,

respectively, during 2000–2022. In all cases we applied cloud masks

using the CFMask algorithm and using a 40% cloud threshold in

addition to radiometric and topographic corrections using the USGS

GMTED2010 digital elevation model (Hantson and Chuvieco, 2011).

Lastly, we harmonized Landsat ETM+ surface reflectance records to

Landsat 8 OLI surface reflectance series (Roy et al., 2016). We

considered 50-m buffer areas around each site to quantify the three

vegetation indices. These calculations were carried out using the

Google Earth Engine platform (https://earthengine.google.com,

accessed on 28 September 2022).
2.3 Field sampling and tree selection

Tree selection was carried out in February 2016, following the

conclusion of the outbreak, and tree sampling was conducted in the

spring of the same year. In both study sites, a small percentage of

non-defoliated pine trees (mean defoliation 0–3%, hereafter ND

trees) coexisted with defoliated (mean defoliation 95–99%, hereafter

D trees) neighboring pines (Figure S1). Therefore, we randomly

selected pairs of defoliated (n = 15 trees) and non-defoliated (n = 15

trees) neighboring pine trees at each site within an area of ca. 2000 m2

as in Castaño et al. (2020). Since susceptibility to PPM defoliation

increases at stand edges (Régolini et al., 2014), trees were sampled

inside the forest to avoid any edge effect (>10 m from the plantation

edge). Crown defoliation was visually estimated by two observers and

averaged for each sampled pine. We performed a paired sampling

approach (e.g., each defoliated tree had its non-defoliated tree pair

located within 10 m) to reduce confounding spatial effects. The

sampled oak stands were located at 10–20 m from the pine

plantations. In the case of oaks, 15 mature trees were also sampled.

We also measured the diameter at 1.3 m of sampled trees. It was

24.6 ± 3.3 cm (mean ± SE) and 15.0 ± 1.6 cm in the Huesca and

Teruel sites, respectively, with no significant differences between D

and ND pine trees (t tests, p > 0.05). In the case of oaks, it was 15.7 ±

1.2 cm and 11.9 ± 0.4 cm in the Huesca and Teruel sites,

respectively. The mean ages (at 1.3 m) of pines were 37 ± 2 years

and 36 ± 2 years in Huesca and Teruel, respectively, whereas the

mean ages of oaks were 40 ± 2 and 46 ± 3 years, respectively.
2.4 Tree-ring width data

Dendrochronological methods were used to quantify the radial

growth of trees since 1980 (Fritts, 1976). Two increment wood cores

from each tree were extracted at breast height (1.3 m) using 5-mm

increment corer (Haglöf, Långsele, Sweden) to measure tree-ring
frontiersin.org
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width. These cores were air-dried, glued onto wooden supports and

then carefully sanded until tree-ring boundaries were clearly visible.

A third core was extracted from 10 ND and 10 D pines in each site

for densitometry analyses.

Tree rings were visually cross-dated, and their width (RW),

earlywood (EWW) and latewood (LWW) widths were measured to

the nearest 0.001 mm using a binocular microscope and a LINTAB

measuring device (Rinntech, Heidelberg, Germany). Earlywood and

latewood were visually distinguished by an abrupt transition along

the radial file of tracheids from early to latewood from tracheids

with wide lumen and thin walls to tracheids with narrow lumen and

thick walls (Camarero et al., 2021). The visual cross-dating was

checked using the COFECHA program, which calculates

correlations between each individual series with the mean series

of each group of trees (defoliated pines, non-defoliated pines and

non-defoliated oaks) at each site (Holmes, 1983).
2.5 Inter-annual changes in wood density

To assess year-to-year changes in wood density, cores from 10

ND and 10 D pines from each site were used. First, thin (ca. 1.3-mm

thick) wood samples were transversally cut using a Dendrocut table

saw (Walesch Electronic GmbH, Zurich, Switzerland). Wooden

laths were kept under constant temperature (20 °C) and humidity

(40%) in the CETEMAS wood laboratory (Asturias, Spain) micro-

densitometry laboratory, before being X-ray scanned in an Itrax

Multiscanner (Cox Analytical Systems, Sweden). The samples were

exposed to 30 kV, 30 mA for 25 ms in the radial direction (50-mm
step size) using a copper tube.

Wood density profiles were obtained for each sample using the

Win-Dendro software (Regent Instruments, Québec, Canada). The

measured ring-width series of radiographic images were visually cross-

dated, and compared with chronologies developed using tree-ring

width data. Minimum (MnD) and maximum (MxD) wood density

values per tree-ring (in g cm−3) were extracted from the radiographic

images by calibrating the grey-scale intensities using a light calibration

curve derived from a calibration step-wedge. A final check of the visual

cross-dating based on tree-ring widths was carried out by using the

COFECHA software as before. We focused on MnD and MxD

because they do not depend on the definition of earlywood and

latewood and MnD usually shows strong responses to spring drought

in P. nigra and other conifers (Camarero et al., 2014; Camarero and

Hevia, 2020). MnD and MxD corresponded to the lowest and highest

density values along the density profile of a tree-ring, respectively.
2.6 Processing tree-ring width and wood
density data

To reflect growth changes through time, tree-ring width series

were transformed to basal area increment (BAI) series assuming

circular growth of stems. Then the ring-width, MnD and MxD series

were subjected to detrending and standardization to remove long-

term trends and to retain the year-to-year variability (Fritts, 1976).

These procedures allowed the calculation of the mean, detrended
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series or chronologies for each variable and type of trees (ND and D

pines, ND oaks), which were further correlated with monthly climate

variables (mean maximum and minimum temperatures,

precipitation) and weekly SPEI data considering the period 1980–

2016. First, we applied a power (Box-Cox) transformation to the

individual density series to reduce heteroscedasticity. Second, a

smoothing spline with a 50% frequency response at a wavelength

of 20 years was fitted to individual series. Then, ring-width (RW,

EWW, LWW) and density (MnD and MxD) indices were obtained

by dividing or subtracting, respectively, the fitted values from the

observed values. The resulting indices were subjected to

autoregressive modeling to remove first-order autocorrelation.

Then, the individual series were averaged by tree type and species

(ND and D pines, ND oaks) on a yearly basis using a bi-weight robust

mean to produce mean series of pre-whitened indices or residual

chronologies (Fritts, 1976). These procedures were performed using

the ARSTAN v 4.4 software (Cook and Krusic, 2007).

The ring-width and density (EWW, LWW, MnD, MXD)

indexed series calculated at individual levels for each group (ND

and D pines) were correlated with monthly climate variables (mean

maximum and minimum temperatures and total precipitation)

from previous October to current September and also considering

the growing season (April to July).

Outbreak defoliation signals in tree-ring width data are usually

analyzed by comparing standardized tree-ring width series from host

(in our case P. nigra) and non-host tree species (in our case the oak Q.

faginea) (Swetnam et al., 1985). A similar procedure was followed by

Camarero et al. (2022a) to reconstruct PPM outbreaks near the Teruel

study site. Here we followed a similar approach by comparing

(i) individual and mean series of ring-width indices of host and non-

host tree species in each site, and (ii) correlations between individual

and mean series of ring-width and density (MnD, MxD) and the SPEI.
2.7 Wood anatomy

In an additional sampling campaign in 2018, we took cores of D

pines in the Teruel and Huesca sites. Thin transversal wood sections

(10–15 mm thick) were obtained using a sledge core microtome

(Gärtner and Nievergelt, 2010). This was done in four cores from

four D pines sampled in both study sites and showing a clear narrow

ring in 2016 (i.e. associated to the PPM outbreak). Sections included

the 2016 ring and two 2-year reference periods, previous (i.e., 2014–

2015) and subsequent (i.e., 2017–2018) to the PPM outbreak.

Sections were mounted on glass slides, stained with safranin

(0.5% in distilled water) and fixed with Eukitt®. Images of

sections were first taken at 40–100× magnification with a digital

camera mounted on a light microscope (Olympus BH2, Tokyo,

Japan) and then stitched with the Image Composite Editor software

(Interactive Visual Media, Microsoft 2023, Redmond, USA).

Images were analyzed for xylem measurement using the software

ImageJ v.1.40 (Schneider et al., 2012). In particular, lumen radial

diameter (LD) and the double cell wall thickness (CWT) were

measured for each tracheid along five radial rows for the 2014–

2018 period using the ‘plot profile’ function. This function allowed

discriminating between tracheid walls and lumen according to the
frontiersin.org
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variation of pixels’ grey intensity along a line passing through a

tracheid radial file. To compare patterns of cell dimensions between

and within rings, the number of cells was standardized to 20 by using

the tracheidogram method (Vaganov et al., 2006) with the ‘tgram’

package (DeSoto et al., 2011) in the R version 3.6.0 environment

(R Core Team, 2022).

Trends and trend changes (breakpoints) in LD and CWT time

series were analyzed through an additive decomposition model using

the ‘greenbrown’ package (Forkel et al., 2013) in R version 4.2.1

environment (R Core Team, 2022). In detail, we used the Seasonal

Trend Model method, based on the classical additive decomposition

model (Verbesselt et al., 2012), where linear and harmonic terms are

fitted to the original time series using ordinary least squares

regression. The significance of the trend was estimated using t tests.

The breakpoint detection algorithm searches for structural changes in

the regression and estimates their position byminimizing the residual

sum of squares (Forkel et al., 2013). When a breakpoint is detected,

the trend is divided into two segments whose slopes may or may not

be significant. Lastly, we used t tests and ANOVAs to check if there

were significant (p < 0.05) differences in both tracheid traits (LD,

CWT) between the outbreak year (2016) and the previous (2014–

2015) and subsequent 2-year periods (2017–2018).
2.8 Raman spectroscopy

We used confocal Raman micro-spectroscopy to investigate the

chemical composition (lignification) of tracheid cell-walls

(Gierlinger et al., 2012; Gierlinger, 2014; Agarwal, 2019). Raman

imaging allows the quantification of the chemical composition of

cell walls without altering their structure. As in the wood anatomy

data, we compared the ring formed during the defoliation year

(2016) vs. the previous (2015) and following (2017) rings. We

selected for these analyses five D pines from Huesca; the lack of

material prevented the application of this analysis in trees from

Teruel. As in the case of wood anatomy, thin wood cross sections

were obtained although they were not stained. We mounted each

section on microscope slides. After gently pressing the cover glass to

remove the excess of denatured water, samples were semi-

permanently fixed.

A Raman microscope (LabRAM HR, Horiba Jovin Yvon

Scientific, Kyoto, Japan) equipped with laser excitation energies

of 2.33 eV (532 nm, Ar/Kr laser, Coherent) was used. A 100×

objective with a laser spot of about 1 mm was employed. The laser

power was around 1 mW and the spectral resolution was 1 cm−1.

The WITec Project Plus software was used for data analysis

(WITec, Ulm, Germany). Raman imaging was performed on

earlywood and latewood zones focusing on the cell corners of

tracheid cell-walls because stress factors such as drought or insect

defoliation cause reduced lignification of the middle lamella and

outer secondary cell walls in these areas where lignification

processes start (Donaldson, 2002). We measured areas of about

2000–3000 µm2. For each tree ring, 30 images were captured and

analyzed (15 in earlywood tracheids and 15 in latewood tracheids)

to obtain average values of lignin/carbohydrate (particularly

cellulose) ratios, which are based on the Raman intensity of the
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lignin and carbohydrate bands and reflect the degree of

lignification (Hänninen et al., 2011).
2.9 C and O isotopes in wood cellulose

We selected eight D and nine ND pine individuals in each site.

We investigated the period 2015–2018 to include the 2016

defoliation event in both sites. Annual rings were separated under

the microscope using scalpels. Wood samples were milled and

homogenized using a ball mixer mill (Retsch MM301, Haan,

Germany). Then, wood a-cellulose was extracted for C and O

isotope analyses (Loader et al., 1997; Ferrio and Voltas, 2005;

Shestakova et al., 2017). Sodium hydroxide was used to obtain a-
cellulose which was homogenized to a fine powder with a ball mixer

mill (Retsch MM301, Haan, Germany). An aliquot of 0.3–0.4 mg of

dry a-cellulose was weighed on a balance (Mettler Toledo AX205,

OH, USA) and placed into tin and silver capsules for d13C and d18O
analyses, respectively. In Teruel, we could obtain enough wood

material only for two D pines and 3 ND pines because of the very

narrow 2016 ring. This did not allow extracting enough cellulose for

d13C and d18O analyses which were not done. For d13C, capsules
were combusted to CO2 using a Flash EA-1112 elemental analyzer

interfaced with a Finnigan MAT Delta C isotope ratio mass

spectrometer (Thermo Fisher Scientific Inc., MA, USA). For d18O,
capsules were combusted using a Carlo Erba 1108 elemental

analyzer (Carlo Erba Instruments Ltd, Milan, Italy) interfaced

with a Finnigan Deltaplus XP isotope ratio mass spectrometer

(Thermo Fisher Scientific Inc., Bremen, Germany). Isotope

analyses were carried out at the Stable Isotope Facility of the

University of California (Davis, USA). Stable isotope ratios were

expressed as per mil deviations using the d notation relative to

Vienna Pee Dee Belemnite (VPDB) for C isotopes and the Vienna

Standard Mean Ocean Water standard for O isotopes. The accuracy

of the analyses (standard deviation of working standards) was

0.06‰ (d13C) and 0.25‰ (d18O).
2.10 Statistical analyses

Comparisons of variables (NDII, tree-ring width, BAI, EWW,

LWW, LD, CWT, MnD, MxD, lignin/carbohydrate ratio,

correlations between ring-width or density indices and climate

variables) between sites or between ND and D pine trees were

performed using t tests. Comparisons between slopes of d18O vs.

d13C linear regression were done using an ANCOVA. We used

Wilcoxon rank-sum tests to check if the changes through time in

growth (BAI) differed between defoliation classes at each study site.
3 Results

3.1 Remote sensing data

The annual NDVI series showed a clear drop in the 2016 year

following the PPM outbreak (Figure S4). The relative NDVI
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(KNDVI) drop in 2016 was –10.5% (–20.5%) and –10.8% (–24.6%)

in Huesca and Teruel, respectively. We also found a notable KNDVI

drop of –17.3% in 1993 for Huesca. Regarding the NDII, the annual

relative reductions measured in 2016 were –47.3% and –55.6% in

Huesca and Teruel, respectively (Figure 1). The NDII showed

minimum values from late March to late April 2016. The NDII

was significantly higher (paired-t = 28.5, p < 0.001) in Huesca

(mean ± SD, 0.22 ± 0.07) than in Teruel (0.09 ± 0.06). All vegetation

indices (NDVI, KNDVI, NDII) indicated that the recovery time was

faster (about one year shorter) in Huesca than in Teruel.
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3.2 Changes in radial growth linked
to PPM defoliation

The PPM defoliation markedly reduced radial growth in 2016

(Table 1; Figures 2, 3, S5). The mean reduction in BAI was –93.3% and

–99.3% in Huesca and Teruel, respectively (Figure 3). Similar

reductions in ring-with were observed (Figure S5). The BAI (mean ±

SE) was higher in D pines (4.51 ± 0.45 cm2) than in ND pines (3.41 ±

0.39 cm2) fromHuesca, but differences were only marginally significant

(t = 1.83, p = 0.07). In the drier Teruel site, growth rates were again
FIGURE 1

Values of the NDII vegetation index calculated in (A) Huesca and (B) Teruel sites during 2000–2022. The 2016 NDII drop corresponds to a severe
PPM defoliation. Continuous and dashed horizontal lines indicate the mean and the mean – 1.96 SD (95% confidence interval) values, respectively.
TABLE 1 Radial growth and wood density statistics obtained in defoliated (D) pines and non-defoliated (ND) pines (P. nigra) and oaks (Q. faginea)
from Huesca and Teruel sites.

Site Species Type RW (mm) EWW (mm) LWW (mm) MnD (g cm−3) MxD (g cm−3)

Huesca P. nigra D 1.92 ± 0.14b 1.52 ± 0.10b 0.51 ± 0.03a 0.42 ± 0.01a 1.01 ± 0.01a

ND 1.80 ± 0.11b 1.10 ± 0.08a 0.58 ± 0.05a 0.43 ± 0.01a 0.97 ± 0.01a

Q. faginea ND 1.39 ± 0.04a – – – –

Teruel P. nigra D 1.62 ± 0.18b 1.24 ± 0.13a 0.40 ± 0.04a 0.44 ± 0.01a 0.91 ± 0.02a

ND 1.51 ± 0.17b 1.16 ± 0.13a 0.35 ± 0.03a 0.45 ± 0.01a 0.90 ± 0.02a

Q. faginea ND 0.66 ± 0.04a – – – –
RW, tree-ring width; EWW, earlywood width; LWW, latewood width; Mnd, minimum wood density; MxD, maximum wood density. Values are means ± SE calculated for the common period
1980–2016 excepting density values in Teruel (period 1980–2015). Different letters indicate significantly (p < 0.05) different values between groups of trees within the same site according to t tests.
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higher in D pines (3.14 ± 0.30 cm2), but not statistically different from

those measured in ND pines (2.72 ± 0.25 cm2). In both sites, the RW of

ND or D pines was significantly higher than the oaks’ RW (t = 4.45, p

<0.001; Table 1). Oak growth rates were always lower than those of
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pines (Figure S6). In Huesca, D pines grew more than ND pines from

1981 to 1992, from 1995 to 1998 and also from 2001 to 2015 (p < 0.05;

Wilcoxon rank-sum tests). In Teruel, this occurred from 1982 to 1987,

from 1995 to 2005, and in 2009 and 2010. Regarding other tree-ring
A

B

FIGURE 2

(A) View of several rings in a Pinus nigra tree severely defoliated by PPM in the Teruel site showing the narrow 2016 ring corresponding to the 2015–
2016 PPM outbreak. The bar indicates 0.5 mm. (B) Difficult to distinguish narrow rings due to PPM defoliation (red circle) or to severe drought
(yellow circle) in a core from a defoliated P. nigra tree growing in a natural stand located at 1200 m a.s.l. near the Teruel site. The black area
indicates the ring formed in 1990. Image (B) is based on Camarero et al. (2022a).
FIGURE 3

Growth variability and trends (BAI, basal area increment) in defoliated and non-defoliated pines and non-defoliated oak trees from (A) Huesca and
(B) Teruel sites. Values are means ± SE. Note the different BAI scales.
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variables, we only found significantly higher EWW in D than in ND

pines from Huesca (Table 1).

In each site, growth reductions of the two tree species were

usually associated with dry years such as 1994−1995, 2005 and 2012

(Figures 3, S6), excepting the 1993 narrow ring in Huesca which

likely corresponds to a previous PPM defoliation (pers. observ.). In

both sites, the three BAI series were significantly (p < 0.05) and

positively correlated. In Huesca, the highest correlation

corresponded to the comparison between ND pines and oak BAI

series (r = 0.90), whereas in Teruel it was for the comparison

between ND and D pines (r = 0.91).

No significant differences were found between ND and D pines

when comparing EWW, LWW (Figure S7), MnD or MxD series

(Figure S8), except that D pines showed higher EWW values than

ND pines in Huesca (Table 1).
3.3 Changes in wood anatomy associated
with PPM defoliation

In both sites a significant reduction in LD was detected in the

2016 ring (relative reductions in maximum LD were –32.4% and
Frontiers in Ecology and Evolution 08
–37.5%, respectively, for Huesca and Teruel). These reductions

caused marked breakpoints (Figure 4). Significant differences were

detected in the average LD in 2016 compared to the prior (2014–

2015) and subsequent (2017–2018) periods (Huesca, F = 4.82, p =

0.029; Teruel, F = 5.69, p = 0.013). In Teruel, LD in 2016 was smaller

than in the previous 2-year period (t = −3.35, p = 0.010), but not

with respect to the subsequent 2-year period (t = 1.91, p = 0.165),

whereas the pre- and post-outbreak periods did not significantly

differ (t = −1.80, p = 0.200). Similarly, in Huesca, LD in 2016 was

smaller than in the previous year (t = −3.05, p = 0.024), but not

similar to the subsequent (t = 2.44, p = 0.073) 2-year period,

whereas the pre- and post-outbreak periods did not significantly

differ (t = −0.74, p = 0.738). The CWT values differed between 2016

and the preceding or following periods only in Huesca (Figure S9).
3.4 Raman spectroscopy

In the five defoliated pines analyzed, the lignin/carbohydrate ratios

were significantly (p < 0.05) lower in the defoliation year (2016) than

in the previous (2015) and following (2017) years both in the

earlywood and in the latewood cell walls (Table 2). Ratios were
A

B

FIGURE 4

Changes in tracheid lumen diameter (in mm) caused by the 2016 PPM outbreak in (A) Huesca and (B) Teruel sites. Left panels show the changes in
lumen diameter for the period 2014–2018. Shaded areas correspond to the standard deviation of the mean, dashed lines represent trends for the
lumen diameter. Number of stars indicate the p values of each segment at which the trend is significant: *** (p ≤ 0.001), * (p ≤ 0.05), and no symbol
if p > 0.1. Vertical dashed grey line corresponds to significant detected breakpoint. Right panels show boxplots of lumen diameter comparing the
2016 lumen diameter with the values of the pre- (2014–2015) and post-outbreak (2017–2018) periods (right panels). Different letters indicate
significant (p < 0.05) differences according to one-factor ANOVAs.
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lower in the earlywood (2.32 ± 0.08) than in the latewood (2.74 ±

0.13). The highest ratios for latewood were found in the 2017 ring.
3.5 C and O isotopes in wood cellulose

In Huesca, d13C values were significantly lower (t = −3.17,

p = 0.007) in D pines (mean ± SE, −25.61 ± 0.20 ‰) than in ND

pines (−24.90 ± 0.11‰), but no significant differences were observed

regarding d18O (mean value = 33.60 ‰; Figure 5). There was a clear

drop in d13C values from 2015 to 2016 in defoliated pines (−0.79 ±

0.09 ‰) which was stronger (t = −22.5, p < 0.001) than in non-

defoliated pines (−0.27 ± 0.02 ‰). In this site, the positive
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relationship between d13C and d18O values was stronger in D than

in ND pines (r = 0.80 and r = 0.70, respectively), and the slope of this

relationship was also significantly higher in D pines (F = 15.30, p =

0.002; 0.54 ± 0.12 vs. 0.30 ± 0.10 in D vs. ND trees, respectively).
3.6 Responses of ring-width and
minimum wood density to climate
variables and drought

Overall, pine growth was enhanced by cool-wet conditions in spring

and summer, particularly in the drier Teruel site (Figure S10). In this site,

dry spring conditions were strongly associated with high MnD values.
TABLE 2 Mean values of the lignin/carbohydrate ratio obtained through Raman spectroscopy in five defoliated pines (P. nigra) from the Huesca site.

Tree Wood type Years

2015 2016 2017

1 EW 2.49 ± 0.09b 2.00 ± 0.01a 2.38 ± 0.16b

LW 2.67 ± 0.04b 2.27 ± 0.01a 3.43 ± 0.15c

2 EW 2.56 ± 0.06b 1.84 ± 0.05a 2.51 ± 0.10b

LW 2.73 ± 0.04b 2.05 ± 0.03a 3.49 ± 0.06c

3 EW 2.73 ± 0.07b 2.08 ± 0.04a 2.44 ± 0.07b

LW 2.99 ± 0.06b 2.35 ± 0.06a 3.03 ± 0.18b

4 EW 2.47 ± 0.10b 1.97 ± 0.04a 2.39 ± 0.03b

LW 2.70 ± 0.05b 2.41 ± 0.04a 2.75 ± 0.06b

5 EW 2.58 ± 0.07b 1.99 ± 0.05a 2.46 ± 0.08b

LW 2.79 ± 0.07b 2.26 ± 0.06a 3.07 ± 0.11c
Values (means ± SE) are reported for cell walls of earlywood (EW) and latewood (LW) tracheids considering the defoliation year (2016) and the previous and following years. Different letters
indicate significantly (p < 0.05) different values between years and within the same tree according to t tests.
FIGURE 5

Relationships between d13C and d18O values from defoliated and non-defoliated pine trees in Huesca site. Lines indicate significant (p < 0.05)
linear relationships.
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When comparing the climate-growth/density correlations at the

individual level between ND and D pines, we found two different

responses. In Huesca, the LWW of D pines responded more (t =

3.19, p = 0.015) to July rainfall (r = 0.26 ± 0.05) than in the case of

ND pines (r = 0.14 ± 0.03). In Teruel, the negative relationship

between MnD and April rainfall was stronger (t = −7.16, p < 0.001),

in absolute terms, in ND (r = −0.39 ± 0.05) than in D pines

(r = 0.11 ± 0.04). In this site, the MnD of ND trees also decreased in

response to high March precipitation (Figure S10).

Growth series of pines from Huesca (6-month SPEI, SPEI6)

responded to longer droughts than those of pines from Teruel (3-

month SPEI, SPEI3; Figure 6). In Huesca, the growth of ND trees

responded more to SPEI6 than growth of D trees with correlations

peaking in August. In Teruel, the MnD of ND pines responded

more negatively to SPEI3 than in the case of D pines with

correlations peaking in absolute terms in May (Figure 6).
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4 Discussion

The framework applied in this case study to evaluate the

impacts of PPM on P. nigra plantations allowed us to differentiate

the responses of coexisting host (pines) and non-host (oaks) species

to insect defoliation and droughts such as those occurring in 2005

and 2012. Furthermore, we extended the classical approach of

comparing host vs. non-host tree species by including additional

variables which provided complementary information to pinpoint

the insect outbreaks. Altogether, we advocate for a more widespread

use of multi-proxy approaches to detect the impacts of severe insect

defoliations on tree growth and functioning.

First, remote-sensing vegetation indices (NDII, KNDVI)

showed strong reductions in tree cover as observed in other

studies where insects partially (Sangüesa-Barreda et al., 2014) or

completely defoliated stands (Camarero et al., 2022b). In fact, the
FIGURE 6

Relationships (Pearson correlations) between weekly values of the SPEI drought index and series of ring-width (plots A, B) or minimum wood density
(plots C, D) indices of defoliated and non-defoliated pines in the Huesca and Teruel sites. In each plot, the selected SPEI temporal resolution is indicated
(e.g., SPEI6 corresponds to a 6-month resolution). Horizontal dashed and dotted lines indicate 0.05 and 0.01 significance levels, respectively.
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NDII was already used as an efficient index to detect PPM

defoliation with very low values corresponding to strong

defoliation events (Sangüesa-Barreda et al., 2014). Our findings

concur with these analyses.

Second, defoliated pines showed a strong reduction in growth,

as expected and in agreement with previous meta-analyses (Jactel

et al., 2012), but also in lumen diameter and, therefore, potential

hydraulic conductivity. It has been found that severe PPM

defoliation (50–60%) caused a reduction in lumen area of

earlywood and latewood tracheids in Pinus brutia one year after

the defoliation started (Güney, 2019). This finding also concurs

with our results and indicates that rebuilding new foliage and

forming new xylem cells in spring may incur a cost in terms of

the radial enlargement of tracheids and their final lumen area,

which influences how trees access and use water to provide enough

turgor to cambium cells (Von Wilpert, 1991).

Third, defoliated pines presented lower cellulose d13C values,

as hypothesized, and a stronger coupling between d13C and d18O
values than their non-defoliated counterparts in the wet site. The

first result indicates that the loss of old needles in these trees

translated into a lower intrinsic water-use efficiency compared to

the more efficient non-defoliated pines. Herbivory in the winter

season may strongly impair nitrogen mobilization from old

needles to new needles during growth resumption (Proe et al.,

2000), thereby compromising photosynthetic capacity (Wyka

et al., 2016) more than stomatal conductance. In fact, whole leaf

conductance to water vapor has been shown to be consistently

highest in the youngest, and lowest in the oldest, needle cohort of

the phylogenetically close P. sylvestris (Wyka et al., 2016). In this

regard, a stronger coupling of C and O isotopes (Scheidegger et al.,

2000; Roden and Farquhar, 2012; Voltas et al., 2013; Shestakova

et al., 2017) in defoliated pines suggests a broader range of

stomatal responses scaling with rates of photosynthesis (Warren,

2006), which may be related to a varying net contribution of

needles from different cohorts to the total tree carbon budget

before, during and following the defoliation event. Despite the

impacts of the severe PPM defoliation on radial growth, lumen

diameter and C-O wood isotopes, the heavily defoliated pines

recovered one year after the outbreak and showed normal growth

and wood-anatomical values. In a long-term experiment with

induced PPM severe defoliation near the Teruel site, radial

growth was impaired but trees accumulated and stored non-

structural carbohydrates showing no source limitation but a

reduced C-sink demand and a decrease in C allocation to

growth (Palacio et al., 2012). Therefore, defoliated trees did not

seem to present signs of carbon pools exhaustion. Further research

could investigate if C depletion occurs in other organs such as

roots since severe PPM defoliations can have cascading effects on

root– fung i in te rac t ions and reduce the b iomass o f

ectomycorrhizal fungi in soils below defoliated pines as was

observed in the dry Teruel site (Castaño et al., 2020).

Fourth, growth of non-defoliated trees from the wet Huesca site

responded more to mid-term summer droughts than that of

defoliated trees, whereas in the dry Teruel site non-defoliated

pines showed a higher minimum wood density responsiveness to
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short spring droughts than defoliated trees. These two results

suggest a higher growth dependence on soil water availability of

less defoliated trees prior to the insect outbreak. However, in the wet

site latewood production of defoliated trees depended more on

summer rainfall than in non-defoliated trees. In another study on a

gypsy moth outbreak, pre-outbreak differences in wood density and

responses to climate (also with a higher dependence on

precipitation in defoliated trees) were also observed in coexisting

trees showing different susceptibility to insect defoliation

(Camarero et al., 2018). It should be further investigated in other

insect-tree species and along wide climatic gradients if there are

other predisposing factors making conspecific trees more or less

prone to insect defoliation. From a practical point of view, the tree-

ring signal of PPM outbreaks seem to be more evident in the wet

(Huesca) than in the dry (Teruel) site where drought also leads to

the formation of narrow rings and dense wood (Camarero

et al., 2022a).

Our findings suggest that PPM defoliation reduced the lignin

concentration of tracheid cell walls, which probably indicated a

lower or abnormal lignification as has also been observed in

drought-stressed trees (Donaldson, 2002). Using Raman

spectroscopy, it was found that the lignin content of fiber cell

walls increased during outbreak years in the boreal shrub Salix

glauca, while the content of carbohydrates decreased, i.e. there was

an increase in the lignin/carbohydrate ratio (Prendin et al., 2021).

This coincided with a sharp reduction in ring width and also in the

transversal area of vessels (Prendin et al., 2020). This was

interpreted as a decrease in C availability due to the insect

defoliation which caused the formation of thinner and lignin-

rich fiber cell walls maximizing wood mechanical stiffness. The

different results of those studies compared with ours may depend

on the fact that we examined a winter-feeding insect affecting

conifers, whereas Prendin et al. (2020; 2021) analyzed spring-

feeding insects defoliating deciduous hardwood species. Finally,

the presented multi-proxy framework could be also used for

detecting the impacts of other disturbances (e.g., wildfire) on

tree growth and functioning by separating the influence of

different stress factors.

We conclude that: (i) the patterns of radial growth and

responses to climate alone may not be good indicators for

reconstructing past insect defoliation events and outbreaks, and

(ii) other wood variables or techniques (lumen area, minimum

wood density, C and O isotopes, Raman spectroscopy) are more

reliable indicators or tools for assessing the impacts of insect

defoliation on tree functioning. In this study case involving PPM

and P. nigra, defoliated pines showed lower growth, lumen

diameter, d13C and responsiveness to climate than non-defoliated

trees. Multi-proxy tree-ring analysis has the potential to improve

our ability to reconstruct insect outbreaks using dendrochronology.
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