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Abstract
The paper aims to introduce inverse tensor variational inequalities and analyze their
application to an economic control equilibriummodel.More precisely, some existence
and uniqueness results are established and the well-posedness analysis is investigated.
Moreover, the Tikhonov regularization method is extended to tensor inverse problems
to study them when they are ill-posed. Lastly, the policymaker’s point of view for the
oligopolistic market equilibrium problem is introduced. The equivalence between the
equilibrium conditions and a suitable inverse tensor variational inequality is estab-
lished.

Keywords Tensor variational inequality · Inverse tensor variational inequality ·
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1 Introduction

Since 1980, the variational inequality theory in finite-dimensional spaces has thor-
oughly been studied and the well-posedness analysis has widely been developed (see
also [10, 13]). Such a theory has several applications to applied sciences (e.g., transport
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planning, socioeconomic phenomena, game theory), and it is only quite recently that
the research has started to focus on its extension to the class of tensors [1, 14]. Some
numerical schemes are proposed in [3] to solve the tensor variational inequalities when
the uniqueness of solutions is guaranteed.

The topic of our interest is the class of inverse tensor variational inequalities, which
is very useful to model some control problems, such as the policymaker’s point of
view for the general oligopolistic market equilibrium problem (for the Euclidean case
see [4]).

In theEuclidean setting, an inverse variational inequality problemconsists in finding
x∗ ∈ R

n such that

f (x∗) ∈ Ω, 〈x∗, f ′ − f (x∗)〉 ≤ 0, ∀ f ′ ∈ Ω,

whereΩ is a nonempty subset ofRn and f : Rn → R
n ([7]). Lately, a strict connection

between classical variational inequalities and inverse variational inequalities has been
pointed out ([6, 15]). This class of inverse problems expresses equilibrium state control
problems and can also be viewed as a special case of a classical variational inequal-
ity. Indeed, if the inverse function f −1 is single-valued, then the inverse variational
inequality can be written as a classical variational inequality by setting u∗ = f (x∗)
and F(u∗) = f −1(u∗). For this reason, we name such problems as inverse variational
inequalities. Unfortunately, in some practical applications, f (x) is not available and
we only rely on F(u). See [4, 5, 7] for the well-posedness analysis of inverse varia-
tional inequalities and to [11, 12] for the Tikhonov regularization method. In [2], the
ill-posedness and the stability analysis are studied for tensor variational inequalities.

We aim to introduce inverse tensor variational inequalities and to investigate the
existence of solutions and the well-posedness analysis. Moreover, this class of inverse
problems is useful to formulate the policymaker’s point of view for an oligopolistic
market model. In particular, we obtain some well-posedness characterizations for an
inverse variational inequality. Also, under suitable assumptions, we prove the equiv-
alence between the well-posedness of an inverse tensor variational inequality and the
existence and uniqueness of its solution. Moreover, we show that the well-posedness
of an inverse tensor variational inequality is equivalent to the well-posedness of a
suitable tensor variational inequality. Finally, we extend the Tikhonov regularization
method to the class of inverse variational inequalities we introduce. Lastly, we show
how our results can be applied to the study of the policymaker’s point of view for the
general oligopolistic market equilibrium problem in which the equilibrium conditions
are characterized by a suitable inverse variational inequality. The interest in the tensor
setting is highlighted in [8], where the authors presented the open question: “Problem
4: [. . .] The TVI problem is an extension of the tensor complementarity problem,
which needs to be further studied since it has important applications such as for the
multi-person noncooperation games.”

The paper is organized as follows. In Sect. 2, some preliminary notations are
recalled. In Sect. 3, a class of inverse variational inequalities is introduced and some
existence results are proved. Section 4 deals with the well-posedness analysis. On the
other hand, the ill-posedness of such inequalities is examined by using a Tikhonov-
type regularization method in Sect. 5. Section 6 addresses the policymaker’s point of
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view for the oligopolistic market equilibrium problem. Finally, in Sect. 7 an example
is provided.

2 Notations and Preliminaries

Let us recall some definitions and preliminary results about tensors and tensor func-
tions. Given N finite-dimensional vector spaces Vi , i = 1, . . . , N , an N -order tensor
is an element of the product space V1 × · · · × VN , namely a multidimensional array.
Indeed, tensors generalize vectors (tensors of order one denoted usually by small let-
ters v,w, . . . ) and matrices (tensors of order two denoted usually by capital letters
A, B, . . . ) in a higher dimension.

Let T[N ,m] denote the set of all N -order m-dimensional tensors. We denote tensors
by italic capital letters A,B, . . . . The element (i1, . . . , iN ) of A is indicated with
ai1,...,iN . We denote the set of all N -order m-dimensional real tensors by R

[N ,m].
When it is clear in the context, we use R

[P], where P = m1 . . .mN , to denote the
class of N−order tensors of Rm1 × · · · × R

mN .

Definition 2.1 Let A,B ∈ T
[N ,m]. We define the inner product 〈·, ·〉 from T

[N ,m] ×
T

[N ,m] to R as follows

〈A,B〉 =
m∑

i1=1

· · ·
m∑

iN=1

ai1,...,iN bi1,...,iN .

When n = 2, A and B are matrices, then 〈A,B〉 = tr(ABT ), where tr(·) and T

denote the trace and the transpose of a matrix, respectively. Therefore, the tensor norm
generated by this inner product is

‖A‖ =
√√√√

m∑

i1=1

· · ·
m∑

iN=1

|ai1,...,iN |2,

which is the Frobenius norm. Moreover, the distance between A and B in T
[N ,m] is

given by ‖A − B‖.
Now, we introduce some useful concepts for the study of the well-posedness of an

inverse tensor variational inequality.

Definition 2.2 Let Ω be a nonempty subset of T[N ,m] and let A ∈ T
[N ,m]. We define

the diameter of Ω , the distance between the tensorA and the set Ω and the projection
of A on the set Ω , as follows:

diamΩ = sup {‖A − B‖ : A,B ∈ Ω} ,

d(A,Ω) = inf {‖A − B‖ : B ∈ Ω} ,

PΩ(A) = argmin {‖A − B‖ : B ∈ Ω} ,

respectively.
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To prove the well-posedness results, we present a measure of noncompactness, as
a generalization of the one introduced by Kuratovski in [9].

Definition 2.3 Let Ω be a nonempty subset of T[N ,m]. The noncompactness measure
μ of the set Ω is defined by

μ(Ω) = inf
{
ε > 0 : Ω ⊂ ∪n

i=1Ωi , diamΩi < ε, i = 1, . . . , n
}
,

where every {Ωi }i=1,...,n is a finite covering of the set Ω .

For the reader’s convenience, we state the Hausdorff distance.

Definition 2.4 Let Ω1 and Ω2 be two nonempty subsets of T[N ,m]. We introduce the
surplus of Ω1 over Ω2 as

e(Ω1,Ω2) = sup {d(A,Ω2) : A ∈ Ω1} .

The Hausdorff distance between Ω1 and Ω2 is defined as

H(Ω1,Ω2) = max {e(Ω1,Ω2), e(Ω2,Ω1)} .

The next definitions generalize topological and monotonicity properties to tensor
mappings.

Definition 2.5 Let K be a nonempty subset of T[N ,m]. A mapping F : K → T
[N ,m]

is said to be:

– monotone if 〈F(A) − F(B),A − B〉 ≥ 0, for every A,B,∈ K ;
– strictly monotone if 〈F(A) − F(B),A − B〉 > 0, for every A,B ∈ K , with
A �= B;

– strongly monotone if there exists ν > 0 such that 〈F(A) − F(B),A − B〉 ≥
ν‖A − B‖2, for every A,B ∈ K ;

– hemicontinuous along line segments if, for every A,B,∈ K , the function t �→
〈F (A + t(B − A)) ,B − A〉, for t ∈ [0, 1], is continuous at 0+.

3 Inverse Tensor Variational Inequalities

The class of tensor variational inequalities have been firstly introduced in [1] and [14].
In particular, given a nonempty closed convex subset K ofT[N ,m] and a tensormapping
F : K → T

[N ,m], the tensor variational inequality (T V I (K , F)) is the problem of
finding A ∈ K such that

〈F(A),B − A〉 ≥ 0, ∀B ∈ K . (1)

For this class of variational inequalities, some existence and uniqueness results have
beenproved in [1].Wenow introduce the class of inverse tensor variational inequalities.
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Definition 3.1 Let Ω be a nonempty closed convex subset of T[N ,m] and let f :
T

[N ,m] → T
[N ,m] be a tensor mapping. The inverse tensor variational inequality

(I T V I (Ω, f )) is the problem of finding A∗ ∈ T
[N ,m] such that

f (A∗) ∈ Ω, 〈A∗,F − f (A∗)〉 ≤ 0, ∀F ∈ Ω. (2)

The following result can be classically shown.

Theorem 3.1 Let Ω be a nonempty bounded closed convex subset of T[N ,m] and let
f : Ω → Ω be an injective continuous open tensor mapping. Then, I T V I (Ω, f )
admits at least one solution.

Let Ω be a subset of T[N ,m], we consider the following set:

Ωn = {B ∈ Ω : ‖B‖ ≤ n} , ∀n ∈ N. (3)

For ε > 0, let {Dε} be a sequence of subsets of T[N ,m]. We define

lim sup
ε→0+

Dε =
{
B ∈ T

[N ,m] : ∃ εn → 0+, Bn ∈ Dεn , ∀n ∈ N, such that Bn → B
}

.

(4)

Theorem 3.2 Let Ω be a nonempty closed convex subset of T[N ,m] and let f : Ω →
T

[N ,m] be an injective continuous open tensor mapping. If there exists n ∈ N such
that for every f (A) ∈ Ω \ Ωn there is F0 ∈ Ω with ‖F0‖ < ‖ f (A)‖ satisfying
〈A, f (A) − F0〉 ≤ 0, then I T V I (Ω, f ) admits a solution.

Proof Let us fix n ∈ N such that the assumption holds true. Let m > n. We consider
Ωm which is a bounded closed convex subset of T[N ,m]. Thus, applying Theorem 3.1
to I T V I (Ωm, f|Ωm

), there exists Am ∈ T
[N ,m] such that

f (Am) ∈ Ωm, 〈Am,F − f (Am)〉 ≤ 0, ∀F ∈ Ωm . (5)

Firstly, let us suppose ‖ f (Am)‖ = m > n. Hence, there exists F0 ∈ Ω with
‖F0‖ < ‖ f (Am)‖ such that

〈Am, f (Am) − F0〉 ≤ 0. (6)

Now, let us fix F ∈ Ω . Since ‖F0‖ < ‖ f (Am)‖ = m, there exists t ∈ (0, 1) such
that Ft = tF + (1 − t)F0 ∈ Ωm . Therefore, writing (5) with F = Ft , we have

0 ≥ 〈Am,Ft − f (Am)〉 = t〈Am,F − f (Am)〉 + (1 − t)〈Am,F0 − f (Am)〉.
Lastly, by using (6), we get t〈Am,F − f (Am)〉 ≤ 0. Since t > 0 and F ∈ Ω is
arbitrary, the claim is achieved.

On the other hand, if ‖ f (Am)‖ < m, for a fixed tensor F ∈ Ω , there exists
t ∈ (0, 1) such that Ft = f (Am) + t(F − f (Am)) ∈ Ωm . Then, writing (5) with
F = Ft , we obtain 0 ≥ 〈Am,Ft − f (Am)〉 = t〈Am,F − f (Am)〉. Since t > 0 and
F ∈ Ω is arbitrary, the claim is also reached. ��
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4 Well-Posedness Results

In this section, we introduce the notion of α−well-posedness and generalized α−well-
posedness. Moreover, we prove some metric characterizations for them. Finally, we
provide an equivalence result between the well-posedness of an inverse tensor varia-
tional inequality and the well-posedness of a suitable tensor variational inequality.

We start presenting the notion of approximating sequence and α−approximating
sequence.

Definition 4.1 Let α > 0. A sequence {An} ⊂ T
[N ,m] is said to be a α−approximating

sequence for I T V I (Ω, f ) if and only if there exists a sequence {εn}, with εn > 0,
for every n ∈ N, εn → 0, as n → +∞, such that

f (An) ∈ Ω, 〈An,F − f (An)〉 ≤ α

2
‖F − f (An)‖2 + εn, ∀F ∈ Ω, ∀n ∈ N.

(7)

When α = 0, we simply say that {An} is an approximating sequence for I T V I (Ω, f ).

Definition 4.2 We say that I T V I (Ω, f ) is α−well-posed in the generalized sense if
and only if I T V I (Ω, f ) has a nonempty solution set S and every α−approximating
sequence has some subsequence which converges to a tensor of S. When the solution
set S has only one element, we say simply that I T V I (Ω, f ) is α−well-posed.

In the sequel, 0−well-posedness in the generalized sense is said well-posedness in the
generalized sense, analogously for the 0−well-posedness.

We can easily show the following preliminary result.

Lemma 4.1 Let Ω be a nonempty convex subset of T[N ,m]. Let α ≥ 0 and let f :
T

[N ,m] → T
[N ,m] be a tensor mapping. Then,A∗ is a solution to I T V I (Ω, f ) if and

only if

〈A∗,F − f (A∗)〉 ≤ α

2
‖F − f (A∗)‖2, ∀F ∈ Ω.

Let Ω be a nonempty closed convex subset of T[N ,m]. The α−approximating solu-
tion set Tα(ε) of I T V I (Ω, f ) is defined, for every ε > 0, as

Tα(ε) =
{
A ∈ T

[N ,m] : f (A) ∈ Ω,

〈A,F − f (A)〉 ≤ α

2
‖F − f (A)‖2 + ε, ∀F ∈ Ω

}
.

First of all, we prove a metric characterization of the α−well-posedness of
I T V I (Ω, f ) in terms of the diameter of the set Tα(ε).

Theorem 4.1 Let Ω be a nonempty closed convex subset of T[N ,m]. Let f : T[N ,m] →
T

[N ,m] be a continuous tensor mapping. Then, I T V I (Ω, f ) is α−well-posed if and
only if

Tα(ε) �= ∅, ∀ε > 0, and diam Tα(ε) → 0, as ε → 0. (8)
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Proof Suppose I T V I (Ω, f ) is α−well-posed. Hence, the inverse tensor variational
inequality has a unique solution A∗ and, in particular, A∗ ∈ Tα(ε), for every ε > 0.
By contradiction, if diam Tα(ε) �→ 0, as ε → 0+, there exist l > 0, a sequence {εn},
with εn > 0, for every n ∈ N, εn → 0, as n → +∞, and Un,Vn ∈ Tα(εn), for every
n ∈ N, such that

‖Vn − Un‖ > l, ∀n ∈ N. (9)

Since Un,Vn ∈ Tα(εn), for every n ∈ N, both {Un} and {Vn} are α−approximating
sequences for the inverse tensor variational inequality. Therefore, both two sequences
converge to the unique solution A∗ to I T V I (Ω, f ). This contradicts (9).

Vice versa, suppose (8) holds true. Let {An} ⊂ T
[N ,m] be an α−approximating

sequence for I T V I (Ω, f ). Hence, there exists a sequence {εn}, with εn > 0, for
every n ∈ N, εn → 0, as n → +∞, verifying (7). Thus, An ∈ Tα(εn), for every
n ∈ N. By (8), {An} is a Cauchy sequence which converges to a tensor A ∈ T

[N ,m].
Since f is continuous and Ω is a closed set, we have

f (A) ∈ Ω, 〈A,F − f (A)〉 ≤ α

2
‖F − f (A)‖2, ∀F ∈ Ω.

Making use of Lemma 4.1, it follows thatA is a solution to I T V I (Ω, f ). Finally, the
uniqueness of solution to I T V I (Ω, f ) can be shown with classically arguments. ��

Furthermore, the following characterization of the α-well-posedness in generalized
sense of I T V I (Ω, f ) in terms of the noncompactness measure holds.

Theorem 4.2 Let Ω be a nonempty closed convex subset of T[N ,m]. Let f : T[N ,m] →
T

[N ,m] be a continuous mapping. Then, I T V I (Ω, f ) is α−well-posed in the gener-
alized sense if and only if

Tα(ε) �= ∅, ∀ε > 0, and μ (Tα(ε)) → 0, as ε → 0+. (10)

Proof First suppose that I T V I (Ω, f ) isα−well-posed in the generalized sense. Then,
its solution set S is nonempty and compact. Indeed, if {An} is any sequence in S,
then it is an α−approximating sequence of I T V I (Ω, f ). Consequently, {An} has a
subsequence which converges to a tensor of S. Then, S is compact. In addition, it
follows that ∅ �= S ⊂ Tα(ε), for every ε > 0. Hence, it results

H(Tα(ε), S) = max {e(Tα(ε), S), e(S, Tα(ε))} = e(Tα(ε), S), ∀ε > 0.

Then, we obtain

μ(Tα(ε)) ≤ 2H(Tα(ε), S) + μ(S) = 2e(Tα(ε), S), ∀ε > 0.

We assume by contradiction that e(Tα(ε), S) �→ 0, as ε → 0. Therefore, there exist
l > 0, a sequence {εn}, with εn > 0, for every n ∈ N, εn → 0, as n → +∞, and
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An ∈ Tα(εn), for every n ∈ N, such that

An /∈ S + B(0, l), ∀n ∈ N, (11)

where B(0, l) is the closed ball centered at the null tensor with radius l in the tensor
space T

[N ,m]. Since An ∈ Tα(εn), for every n ∈ N, {An} is an α−approximating
sequence for I T V I (Ω, f ). By the α−well-posedness in the generalized sense, there
exists a subsequence {Ank } converging to a tensor of S. This contradicts (11), and
hence the implication is proved.

Vice versa, let us assume that (10) holds. Since f is continuous and Ω is closed,
we have that Tα(ε) is closed and nonempty, for every ε > 0. Let us consider the set

S′ = ∩ε>0Tα(ε) =
{
A ∈ T

[N ,m] : f (A) ∈ Ω, 〈A,F − f (A)〉 ≤ α

2
‖F − f (A)‖2

}
.

Taking into account Lemma 4.1, it results S′ = S. By using (10) and applying The-
orem on p. 412 of [9], we conclude that S is nonempty compact and e(Tα(ε), S) =
H(Tα(ε), S) → 0, as ε → 0+.

Let {Un} ⊂ T
[N ,m] be an α−approximating sequence for I T V I (Ω, f ). Then, there

exists a sequence {εn}, with εn > 0, for every n ∈ N, εn → 0, as n → +∞, verifying
(7).

Therefore, Un ∈ Tα(εn), for every n ∈ N. Then, it results d(Un, S) ≤
e(Tα(εn), S) → 0. Being S compact, there exists An ∈ S, for every n ∈ N, such
that ‖Un − An‖ = d(Un, S) → 0, as n → +∞. Again, by the compactness of S, we
deduce that {An} has a subsequence which converges toA ∈ S. As a consequence, the
corresponding subsequence {Unk } converges toA. Therefore, the claim is completely
proved. ��

Now we prove that, under suitable assumptions, the well-posedness of an inverse
tensor variational inequality is equivalent to the existence and uniqueness of its solu-
tions. To this aim we introduce the following definition.

Definition 4.3 A tensor mapping f : T[N ,m] → T
[N ,m] is said to be anti-monotone if

〈A − B, f (A) − f (B)〉 ≤ 0, ∀A,B,∈ T
[N ,m].

Theorem 4.3 Let Ω be a nonempty closed convex subset of T[N ,m]. Let f : T[N ,m] →
T

[N ,m] be an hemicontinuous along line segments and anti-monotone tensor mapping.
Then, I T V I (Ω, f ) is well-posed if and only if it has a unique solution.

Proof The necessity holds trivially. For the sufficiency, suppose that I T V I (Ω, f ) has
a unique solution A∗; hence, by the anti-monotonicity of f , we get

0 ≤ 〈A∗, f (A∗) − F〉
= 〈A∗ − A, f (A∗) − F〉 + 〈A, f (A∗) − F〉
≤ 〈A∗ − A, f (A) − F〉 + 〈A, f (A∗) − F〉, ∀A ∈ T

[N ,m], ∀F ∈ Ω. (12)
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Now, let {An} ⊂ T
[N ,m] be an approximating sequence for I T V I (Ω, f ). As a con-

sequence there exits a sequence {εn}, with εn > 0, for every n ∈ N, εn → 0, as
n → +∞, such that

f (An) ∈ Ω, 〈An,F − f (An)〉 ≤ εn, ∀F ∈ Ω, ∀n ∈ N. (13)

With analogous procedure as in (12), we obtain

〈An − A, f (A) − F〉 + 〈A, f (An) − F〉 ≥ −εn, ∀A ∈ T
[N ,m], ∀F ∈ Ω.

(14)

Now, we consider U∗ = (A∗, f (A∗)) and Un = (An, f (An)), for every n ∈ N.
Let us assume that {Un} is unbounded. Hence, without loss of generality, we may

assume that ‖Un‖ → +∞, as n → +∞. We set tn = 1

‖Un − U∗‖ and Wn =
(Zn,Gn) = (A∗ + tn(An − A∗), f (A∗) + tn( f (An) − f (A∗))). Thus, without loss
of generality, wemay assume tn ∈]0, 1] andWn → W = (Z,G) �= U∗. Furthermore,
G ∈ Ω since Ω is closed and convex. Then, for any F ∈ Ω and any A ∈ T

[N ,m], it
follows:

〈Z − A, f (A) − F〉 + 〈A,G − F〉
= 〈Z − Zn, f (A) − F〉 + 〈A,G − Gn〉

+ (1 − tn)
{〈A∗ − A, f (A) − F〉 + 〈A, f (A∗) − F〉}

+ tn {〈An − A, f (A) − F〉 + 〈A, f (An) − F〉} . (15)

Therefore,making use of (12)–(15), it follows, for everyF ∈ Ω , for everyA ∈ T
[N ,m],

〈Z − A, f (A) − F〉 + 〈A,G − F〉 ≥ 〈Z − Zn, f (A) − F〉 + 〈G − Gn,A〉 − tnεn .

Letting n → +∞ in the above inequality, we deduce

〈Z − A, f (A) − F〉 + 〈A,G − F〉 ≥ 0, ∀F ∈ Ω, ∀A ∈ T
[N ,m]. (16)

For every A′ ∈ T
[N ,m] and for every G′ ∈ Ω , we set

z(t) = Z + t
(A′ − Z)

and g(t) = G + t
(G′ − G)

, ∀t ∈ [0, 1].

By using (16), it follows

〈Z − z(t), f (z(t)) − g(t)〉 + 〈z(t),G − g(t)〉 ≥ 0, ∀t ∈ [0, 1],

which leads to

〈Z − A′, f (z(t)) − g(t)〉 + 〈z(t),G − G′〉 ≥ 0, ∀A′ ∈ T
[N ,m], ∀G′ ∈ Ω.
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Since f is hemicontinuous along line segments, letting t → 0+ in the above inequality,
we obtain

〈Z − A′, f (Z) − G〉 + 〈Z,G − G′〉 ≥ 0, ∀A′ ∈ T
[N ,m], ∀G′ ∈ Ω. (17)

For the arbitrarity of A′, by (17) it follows that

; s〈r , f (Z) − G〉 ≤ C, ∀s, r ∈ R, (18)

where C is a constant. By (18), we get f (Z) = G, so that taking into account (17),
we have

〈Z, f (Z) − G′〉 ≥ 0, ∀G′ ∈ Ω. (19)

Hence, Z solves I T V I (Ω, f ) and, then, Z = A∗ for the uniqueness assumption.
This is a contradiction with the fact that (A∗, f (A∗)) �= (Z, f (Z)).

Therefore, we may assume that {Un} is bounded. Let {Unk } be any subsequence of
{Un} such that Unk → (A,G), as k → +∞. By using (14) and letting k → +∞, it
results

〈A − A, f (A) − F〉 + 〈A,G − F〉 ≥ 0, ∀A ∈ T
[N ,m], ∀F ∈ Ω.

By the same arguments as in (16)–(19), we have

f (A) = G ∈ Ω, 〈A, f (A) − F〉 ≥ 0, ∀F ∈ Ω.

Consequently,A is a solution to I T V I (Ω, f ). Since I T V I (Ω, f ) has a unique solu-
tion A∗, it follows A = A∗. Therefore, {Ank } converges to A∗. Thus, I T V I (Ω, f )
is well-posed. ��

4.1 Link with theWell-Posedness of Tensor Variational Inequalities

The purpose of the subsection is to show that the well-posedness of an inverse tensor
variational inequality is equivalent to thewell-posedness of a suitable tensor variational
inequality.

Analogously to the inverse tensor variational inequality problem, a sequence
{An} ⊂ T

[N ,m] is called α−approximating sequence for T V I (K , F) if and only
if there exists {εn}, with εn > 0, for every n ∈ N, εn → 0, as n → +∞, such that
〈F(An),An − B〉 ≤ εn , for every B ∈ K . Moreover, we say that T V I (K , F) is
well-posed if and only if T V I (K , F) has a unique solution and every approximating
sequence converges to the unique solution. We say that T V I (K , F) is well-posed in
the generalized sense if and only if T V I (K , F) has a nonempty solution set S and
every approximating sequence has a subsequence which converges to a tensor of S.

Let Ω be a nonempty subset of T[N ,m]. Let us set K = T
[N ,m] × Ω and consider

F(
[A, F]

) = [F − f (A), −A], for every
[A, F] ∈ K , where [A, F] is the tensor
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Fig. 1 Example of [A,B] for two 3-order tensors

of K obtained by “gluing" the tensors A and F in a tensorial sense (see Figure 1 for

an example of two 3-order tensors). Observe that the space
(
T

[N ,m])2 can be identified
with T[N ,2m]. Hence, the following result holds true.

Theorem 4.4 Let Ω be a nonempty closed convex subset of T[N ,m] and let f :
T

[N ,m] → T
[N ,m] be a tensor mapping. Then, A∗ ∈ T

[N ,m] is a solution to
I T V I (Ω, f ) if and only if U∗ = [A∗, f (A∗)

] ∈ K is a solution to T V I (F, K ).

Proof Let A∗ be a solution to I T V I (Ω, f ). It results

F(U∗) = F
([A∗, f (A∗)

]) = [
f (A∗) − f (A∗), −A∗] = [

0, −A∗] .

Thus, it follows

〈F(U∗), [A, F] − U∗〉 = 〈[0, −A∗] ,
[A − A∗, F − f (A∗)

]〉 ≥ 0, ∀ [A, F] ∈ K .

Conversely, let U∗ be a solution to T V I (K , F), with analogous computations we
deduce that A∗ is a solution to I T V I (Ω, f ). ��

Finally, we can establish the following characterizations.

Theorem 4.5 Let Ω be a closed subset of T[N ,m] and let f : T[N ,m] → T
[N ,m] be a

continuous tensor mapping. Then, the following statements hold:

1. I T V I (Ω, f ) is well-posed if and only if T V I (K , F) is well-posed;
2. I T V I (Ω, f ) is well-posed in the generalized sense if and only if T V I (K , F) is

well-posed in the generalized sense.

Proof Let us first prove 1. Let I T V I (Ω, f ) be well-posed. Then, I T V I (Ω, f ) has
a unique solution A∗ ∈ T

[N ,m]. By Theorem 4.4, we have that U∗ = [A∗, f (A∗)]
is the unique solution to T V I (K , F). Let {Un} = {[An,Fn]} be an approximating

123



Journal of Optimization Theory and Applications (2023) 196:570–589 581

sequence for T V I (K , F). There exists a sequence {εn}, with εn > 0, for every n ∈ N,
εn → 0, as n → +∞, such that 〈F(Un),Un − V〉 ≤ εn, ∀V = [A,F] ∈ K ,∀n ∈ N.
This implies

〈Fn − f (An),An − A〉 ≤ 〈An,Fn − F〉 + εn, ∀A ∈ T
[N ,m], ∀F ∈ Ω, ∀n ∈ N.

Fix F ∈ Ω , Z ∈ T
[N ,m] and consider A = An − sZ , then s〈Fn − f (An),Z〉 ≤ C ,

where s is arbitrarily chosen and C is a constant. Then, f (An) = Fn and thus

−〈An, f (An) − F〉 = −〈An,Fn − F〉 ≤ εn, ∀F ∈ Ω, ∀n ∈ N,

namely {An} ⊂ T
[N ,m] is an approximating sequence for I T V I (Ω, f ). Hence, it

results An → A∗. Therefore, Un = [An,Fn] → [A∗, f (A∗)], as n → +∞ and,
thus, also T V I (K , F) is well-posed.

Conversely, let us assume T V I (K , F) is well-posed. Then, it has a unique solution
U∗ = [A∗,F∗], with F∗ = f (A∗). By Theorem 4.4, A∗ is the unique solution to
I T V I (Ω, f ). Let {An} ⊂ T

[N ,m] be an approximating sequence for I T V I (Ω, f ).
Thus, there exists a sequence {εn}, with εn > 0, for every n ∈ N, εn → 0, as n → +∞,
verifying (13).

Let Fn = f (An) and Un = [An,Fn], for every n ∈ N. By (13), it follows that
Un ∈ K and

〈F(Un),Un − V〉 = 〈[0,−An], [An − A, f (An) − F] ≤ εn,

∀V = [A,F] ∈ K , ∀n ∈ N.

This means that {Un} is an approximating sequence for T V I (K , F). By its well-
posedness, we deduce Un = [An, f (An)] → [A∗, f (A∗)], as n → +∞. Therefore,
the sequence {An} converges toA∗, as n → +∞, and so I T V I (Ω, f ) is well-posed.

The second statement follows by adapting the arguments of the previous one. ��

5 Tikhonov-Type RegularizationMethod for Ill-Posed Inverse Tensor
Variational Inequalities

This section is devoted to extend the Tikhonov regularization method to the class of
inverse tensor variational inequalities. This method allows us to find a solution to the
ill-posed I T V I (Ω, f ) as the limit of a sequence of solutions to approximating inverse
tensor variational inequalities. Indeed, for I T V I (Ω, f ), we consider the following
regularized problem denoted by I T V Iε(Ω, f ): find A ∈ T

[N ,m] such that

f (A) ∈ Ω, 〈A,F − fε(A)〉 ≤ 0, ∀F ∈ Ω, (20)

where fε = f − εI, with ε > 0 and I the identity tensor mapping. From now on,
we denote by S(Ω, f ) the solution set of I T V I (Ω, f ) and by Sε(Ω, f ) the one of
I T V Iε(Ω, f ).

The idea is to find, under which assumptions, the sequence of solutions to
I T V Iε(Ω, f ), for every ε > 0, converges to a solution to I T V I (Ω, f ), as ε → 0+.
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To this purpose, we prove that the rather weak coercivity condition assuming in The-
orem 3.2 is enough to ensure that the solution set of I T V Iε(Ω, f ) is nonempty
and bounded. Then, we perform the perturbation analysis for the solution set of
I T V I (Ω, f ).

Theorem 5.1 Let Ω be a nonempty closed convex subset of T[N ,m] and let f :
T

[N ,m] → T
[N ,m] be an injective continuous open tensor mapping. Let us suppose

that there exists n ∈ N such that for every f (A) ∈ Ω \ Ωn there exists F0 ∈ Ω with
‖F0‖ < ‖ f (A)‖ satisfying

〈A, f (A) − F0〉 ≤ 0.

Then, for every ε > 0 we have

1. I T V Iε(Ω, f ) has a solution;
2. if f −1 : Ω → Ω is a bounded tensor mapping, the set {St (Ω, f ) : t ∈ (0, ε]} is

bounded.

Proof Let us start proving 1.We aim to show that the assumptions are enough to imply
the ones of Theorem 3.2. Indeed,

〈A − ε f (A), f (A) − F0〉 = 〈A, f (A) − F0〉 − ε〈 f (A), f (A) − F0〉
= 〈A, f (A) − F0〉 − ε‖ f (A)‖2 + ε〈 f (A),F0〉
≤ −ε‖ f (A)‖2 + ε‖ f (A)‖‖F0‖
= −ε‖ f (A)‖ (‖ f (A)‖ − ‖F0‖) ≤ 0,

where we have applied the hypothesis and the Cauchy–Schwartz inequality. Then, it
follows that I T V Iε(Ω, f ) has a solution.

Now, let us show 2. Let t ∈ (0, ε] and At ∈ St (Ω, f ). It is sufficient to show that
f (At ) ∈ Ωn since f −1 is a boundedmapping.We proceed by contradiction supposing
that f (At ) /∈ Ωn or equivalently f (At ) ∈ Ω \ Ωn . Therefore, there exists F t

0 ∈ Ω

with ‖F t
0‖ < ‖ f (At ))‖ satisfying 〈At , f (At ) − F t

0〉 ≤ 0. Since At ∈ St (Ω, f ) and
F t
0 ∈ Ω , it results

f (At ) ∈ Ω, 〈At − t f (At ),F t
0 − f (At )〉 ≤ 0.

Consequently, it follows

t
[
‖ f (At )‖2 − 〈 f (At ),F t

0〉
]

≤ 〈At , f (At ) − F t
0, 〉 ≤ 0.

Hence, we obtain ‖ f (At )‖ ≤ ‖F t
0‖. This is a contradiction. ��

Theorem 5.2 Let Ω be a nonempty closed convex subset of T[N ,m] and let f :
T

[N ,m] → T
[N ,m] be an injective continuous open tensor mapping. Let us suppose

that there exists n ∈ N such that for every f (A) ∈ Ω \ Ωn, there exists F0 ∈ Ω with
‖F0‖ < ‖ f (A)‖ satisfying 〈A, f (A) − F0〉 ≤ 0. Then, it results

∅ �= lim sup
ε→0+

Sε(Ω, f ) ⊂ S(Ω, f ).
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Proof By Theorem 5.1, ∅ �= lim sup
ε→0+

Sε(Ω, f ) follows. Next, we consider A ∈
lim sup
ε→0+

Sε(Ω, f ) and show that A ∈ S(Ω, f ). By definition, there exist a sequence

{εn}, with εn → 0, and An ∈ Sεn (Ω, f ), for every n ∈ N, such that An → A, as
n → +∞. This means that

f (An) ∈ Ω, 〈An − εn f (An),F − f (An)〉 ≤ 0, ∀F ∈ Ω. (21)

Since f is continuous, we have that f (An) → f (A), as n → +∞. In addition, for
the closedness of Ω , it follows f (A) ∈ Ω . Hence, for every F ∈ Ω , it results

〈An − εn f (An),F − f (An)〉 = 〈An,F − f (An)〉 − εn〈 f (An),F〉 + εn‖ f (An)‖2.

Therefore, passing to the limit as n → +∞, we obtain

lim
n→∞〈An − εn f (An),F − f (An)〉 = 〈A,F − f (A)〉.

Lastly, making use of (21), we deduce 〈A,F − f (A)〉 ≤ 0. Then, the claim is proved.
��

6 General Oligopolistic Market Model: the Policymaker’s Point of
View

The class of inverse tensor variational inequalities we consider has a fundamental role
to analyze some economic control equilibrium models. This section aims to show an
application of the previous theoretical results to the study of the general oligopolistic
market equilibrium problem. More precisely, we first present the firms’ point of view
and later the policymaker’s viewpoint for the problem.

Let us considerm firms Pi , i = 1, . . . ,m, and n demandmarkets Q j , j = 1, . . . , n,
and suppose that every firm produces l different commodities (k denotes a generic
commodity). Let xki j be the amount of the k-th good that the producer Pi ships to the

market Q j . Let X =
(
xki j

)

i jk
∈ R

[mnl] be the total shipment strategy. Let pki express

the k-th commodity output produced by the firm Pi , i = 1, . . . ,m, k = 1, . . . , l. Let qkj
represent the demand for the k-th commodity of the demandmarket Q j , j = 1, . . . , n,
k = 1, . . . , l. We assume that both variables xki j , pki and qkj are nonnegative, for
i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l. Also, we assume that the quantity produced
by each firm Pi of the good k must be equal to the commodity shipments of such kind
from that firm to all the demand markets. Furthermore, the quantity demanded by
each demand market Q j of the good k must be equal to the commodity shipments of
such kind from all the firms to that demand market. Thus, the following feasibility
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conditions hold:

pki =
n∑

j=1

xki j , i = 1, . . . ,m, k = 1, . . . , l,

qkj =
m∑

i=1

xki j , j = 1, . . . , n, k = 1, . . . , l.

Since the transportation vehicles have limited capacity, we need to suppose that
there exist two tensors X = (xki j ) ∈ R

[mnl] and X = (xki j ) ∈ R
[mnl] such that

0 ≤ xki j ≤ xki j ≤ xki j , ∀i = 1, . . . ,m, ∀ j = 1, . . . , n, ∀k = 1, . . . , l.

Hence, the feasible set is given by

K =
{
X ∈ R

[mnl] : 0 ≤ xki j ≤ xki j ≤ xki j ,

∀i = 1, . . . ,m, ∀ j = 1, . . . , n, ∀k = 1, . . . , l

}
, (22)

which is a bounded closed convex subset of the Hilbert space R[mnl].
We introduce costs and prizes, as in the list hereafter, assuming that theymaydepend

upon the entire production pattern. More precisely, for i = 1, . . . ,m, j = 1, . . . , n,
k = 1, . . . , l:

– f ki (X ) is the production cost of the firm Pi for the good k;
– dkj (X ) is the demand price of the demand market Q j of the good k;

– cki j (X ) is the transaction cost between the firm Pi and the demand market Q j for
the good k;

– ηki j is the resource tax imposed on the firm Pi for the transaction with the demand
market Q j for the good k;

– λki j is the incentive pay imposed on the firm Pi for the transaction with the demand
market Q j for the good k;

– hki j is the difference between the supply tax and the incentive pay for the transaction
between the firm Pi and the demand market Q j regarding the good k, namely
hki j = ηki j − λki j , hence H = (hki j ) ∈ R

[mnl].

Therefore, the profit vi of the firm Pi is given by

vi (X ) =
l∑

k=1

⎡

⎣
n∑

j=1

dkj (X )xki j − f ki (X ) −
n∑

j=1

cki j (X )xki j −
n∑

j=1

hki j x
k
i j ,

⎤

⎦ , i = 1, . . . ,m,

i.e., the difference between the price that each demand market Pi is disposed to pay
and the sum of the production costs, the transportation costs and the taxes.
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The m firms supply commodities in a noncooperative behavior, i.e., each one tries
to maximize its own profit function considered the optimal distribution pattern of
the other firms. Thus, a feasible tensor X ∗ ∈ K is a general oligopolistic market
equilibrium distribution from the producers’ point of view if and only if, for each
i = 1, . . . ,m, it results

vi (X ∗) ≥ vi (Xi ,X ∗−i ), (23)

where X ∗−i = (X∗
1, . . . , X

∗
i−1, X

∗
i+1, . . . , X

∗
m) and Xi is a slice of X of dimension

nl. Under suitable assumptions on the profit function, X ∗ ∈ K is an equilibrium
distribution if and only if it satisfies the tensor variational inequality

〈−∇Dv(X ∗),X − X ∗〉 = −
m∑

i=1

n∑

j=1

l∑

k=1

∂vi (x∗)
∂xki j

(xki j − xk∗i j ) ≥ 0, ∀x ∈ K,

(24)

([1, Theorem 5.5]).
Now, we change point of view and consider the policymakers’ perspective. We first

define the optimal regulatory tax H∗ = (hk∗i j ) and, then, we characterize it by means
of an inverse tensor variational inequality. As a consequence, the term H presented
above as a fixed parameter, is now considered a variable.

We introduce the feasible state set

Ω =
{
W ∈ R

[mnl] : xki j ≤ wk
i j ≤ xki j ,

∀i = 1, . . . ,m, ∀ j = 1, . . . , n, ∀k = 1, . . . , l

}
, (25)

and define the optimal regulatory tax as follows.

Definition 6.1 A tensorH∗ ∈ R
[mnl] is an optimal regulatory tax if X (H∗) ∈ Ω and,

for i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l, the following conditions hold:

xki j (H∗) = xki j ⇒ hk∗i j ≤ 0, (26)

xki j < xki j (H∗) < xki j ⇒ hk∗i j = 0, (27)

xki j (H∗) = xki j ⇒ hk∗i j ≥ 0. (28)

This definition must be interpreted as follows: first of all, the optimal regulatory tax
H∗ is such that the corresponding state X (H∗) has to satisfy the capacity constraints,
namely xki j ≤ xki j (H∗) ≤ xki j , i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l. Moreover, if

xki j (H∗) = xki j , then the exportations have to be encouraged; thus, taxes must be less

than or equal to the incentive pays. If xki j (H∗) = xki j , then the exportations have to be
reduced; hence, taxes must be greater than or equal to the incentive pays. Finally, if
xki j < xki j (H∗) < xki j , taxes have to be equal to the incentive pays.
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Theorem 6.1 A regulatory tax H∗ = (hk∗i j ) ∈ R
[mnl] is an optimal regulatory tax if

and only if

X (H∗) ∈ Ω,

m∑

i=1

n∑

j=1

l∑

k=1

(
wk
i j − xki j (H∗)

)
hk∗i j ≤ 0, ∀W ∈ Ω. (29)

Proof Let H∗ be an optimal regulatory tax. Let us fix i = 1, . . . ,m, j = 1, . . . , n,
k = 1, . . . , l, andW ∈ Ω . In particular xki j ≤ wk

i j ≤ xki j . If x
k
i j (H∗) = xki j , by (26) we

have (wk
i j − xki j (H∗))(hk∗i j ) ≤ 0. If xki j < xki j (H∗) < xki j , by applying (27) we deduce

(wk
i j −xki j (H∗))(hk∗i j ) = 0. If xki j (H∗) = xki j by (28) it follows (wk

i j −xki j (H∗))(hk∗i j ) ≤
0. Therefore, for every i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l and for everyW ∈ Ω

we obtain (wk
i j − xki j (H∗))hk∗i j ≤ 0. By summing over i = 1, . . . ,m, j = 1, . . . , n

and k = 1, . . . , l, we reach (29).
On the other hand, if we assume there existsH∗ ∈ R

[mnl] such that (29) holds true,
then for every i = 1, . . . ,m, j = 1, . . . , n and k = 1, . . . , l we deduce

(
wk
i j − xki j (H∗)

)
hk∗i j ≤ 0, ∀W ∈ Ω. (30)

Now, let us fix i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l and W ∈ Ω . Hence, xki j ≤
wk
i j ≤ xki j . We first show that if xki j (H∗) = xki j we have h

k∗
i j ≤ 0. By contradiction,

we suppose hk∗i j > 0. Then, choosing wk
i j = xki j in (30), it results (xki j − xki j )h

k∗
i j > 0,

which contradicts (30). Secondly, if xki j (H∗) = xki j we want to prove hk∗i j ≥ 0. By

contradiction, we assume hk∗i j < 0. Hence, choosing wk
i j = xki j in (30), it follows

(xki j −xki j )h
k∗
i j > 0, which is in contradiction with (30). Lastly, if xki j < xki j (H∗) < xki j

we can show, by employing the same techniques as the two previous cases, that hk∗i j
can neither be positive nor negative. ��
We denote by W = R

[mnl] × Ω whose elements are the tensors Z = [H,W], where
H ∈ R

[mnl] and W ∈ Ω . We define the tensor mapping F(Z) = [W − X (H),−H],
for everyZ ∈ W. Making use of Theorem 4.4, the inverse tensor variational inequality
(29) can be equivalently expressed as a classical tensor variational inequality. Precisely,
the following result holds.

Theorem 6.2 The inverse tensor variational inequality (29) is equivalent to the fol-
lowing tensor variational inequality:

Z∗ ∈ W : 〈F(Z∗),Z − Z∗〉 ≥ 0, ∀Z ∈ W. (31)

7 Numerical Example

In this section, we provide a simple numerical example of the theoretical achievements
presented. We consider two firms and two demand markets. Each firm produces two
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different goods. The feasible set is

K =
{
X ∈ R

[8] : 0 ≤ xki j ≤ 100, i = 1, 2, j = 1, 2, k = 1, 2

}
.

The profit functions of two firms are given by

v1(X ) = (x111)
2 − x111x

2
21 − x111h

2
12 + 2x111 + 2h111x

1
12 + (x112)

2 − 5x112,

v2(X ) = (x221)
2 − x221h

2
22 + 3x221x

1
11 − (x222)

2 + x222x
1
12 + x222h

1
12.

The components of the tensor mapping ∇Dv different from zero are

∂v1

x111
= 2x111 − x221 − h212 + 2,

∂v1

x112
= 2h111 + 2x112 − 5 + x222,

∂v2

x221
= 3x111 + 2x221 − h222,

∂v2

x222
= x112 − 2x222 + h112.

It is possible to prove that if the solution to the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x111 − x221 − h212 + 2 = 0

2h111 + 2x112 − 5 + x222 = 0

3x111 + 2x221 − h222 = 0

x112 − 2x222 + h112 = 0,

belongs to the interior of the feasible set K, then it solves (24). Hence, we get

x1∗11 = h222 + 6h212 − 12

10
,

x1∗12 = 10 − 4h111 + h112
3

,

x2∗21 = h212 + h222 − 2

5
,

x2∗22 = 5 − 2h111 + 2h112
3

.

For the inverse problem, we first consider the set of feasible states

Ω =
{
W ∈ R

[8] : 0 ≤ wk
i j ≤ 100, i = 1, 2, j = 1, 2, k = 1, 2.

}
.

We would like to find a solution to (29). Therefore, set yki j = ωk∗
i j , i = 1, 2, j =

1, 2, k = 1, 2, we can solve the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10ω1∗
11 − h2∗22 − 6h2∗12 + 12 = 0

3ω1∗
12 − 10 + 4h1∗11 − h1∗12 = 0

5ω2∗
21 − h2∗12 − h2∗22 + 2 = 0

3ω2∗
22 − 5 + 2h1∗11 − 2h1∗12 = 0.
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Then, for a given ωk∗
i j , we obtain

h1∗11 = 9ω2∗
22 + 5 − 6ω1∗

12

2
,

h1∗12 = 6ω2∗
22 − 3ω1∗

12,

h2∗12 = 2 − ω2∗
21 + 2ω1∗

11,

h2∗22 = 6ω2∗
21 − 2ω1∗

11 .

In order to solve (29), we have to consider different cases in which ωk∗
i j assumes

maximal or minimal values. Let us deal here with the case

ωk∗
i2 = 0 and ωk∗

i1 = 100, for i, k = 1, 2.

We obtain that (components different from zero of) the optimal regulatory tax and
(components different from zero of) the optimal commodity distribution are

h1∗11 = 5

2
h2∗12 = 102
h2∗22 = 400
h1∗12 = 0

and

x1∗11 = 194

5
x1∗12 = 25

6
x2∗21 = 100
x2∗22 = 0,

respectively. The other cases, obtained varying ωk∗
i j , i = 1, 2, j = 1, 2, k = 1, 2,

and hk∗i j , i = 1, 2, j = 1, 2, k = 1, 2, between the capacity constraints, can be
treated analogously. Therefore, we find the optimal regulatory tax and the optimal
commodity distribution in any case.

8 Conclusions

In this paper, we introduced inverse tensor variational inequalities and analyzed their
application to an economic control equilibriummodel. We proved some existence and
uniqueness results. Moreover, we investigated the well-posedness analysis proving
that, under suitable assumptions, the well-posedness of an inverse tensor variational
inequality is equivalent to the existence and uniqueness of its solution. We extended
also the Tikhonov regularization method to this class of inverse problems when they
are ill-posed. Finally, we analyzed the policymaker’s point of view for the general
oligopolistic market equilibrium problem showing the equivalence between the equi-
librium conditions and a suitable inverse tensor variational inequality.
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