
Citation: Abbasi, H.; Zeraati, M.;

Moghaddam, R.F.; Chauhan, N.P.S.;

Sargazi, G.; Di Lorenzo, R. Gene

Expression Programming Model for

Tribological Behavior of Novel

SiC–ZrO2–Al Hybrid Composites.

Materials 2022, 15, 8593. https://

doi.org/10.3390/ma15238593

Academic Editor: Alessandro

Pirondi

Received: 13 October 2022

Accepted: 29 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Gene Expression Programming Model for Tribological Behavior
of Novel SiC–ZrO2–Al Hybrid Composites
Hossein Abbasi 1, Malihe Zeraati 2, Reza Fallah Moghaddam 3, Narendra Pal Singh Chauhan 4 ,
Ghasem Sargazi 5,* and Ritamaria Di Lorenzo 6,*

1 Department of Computer Engineering, Tangestan Branch, Islamic Azad University, Ahram 75541, Iran
2 Department of Metallurgy and Materials Science, Faculty of Engineering,

Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
3 Faculty of Engineering, University of Garmsar, Garmsar 59146-33817, Iran
4 Department of Chemistry, Faculty of Science, Bhupal Nobles’ University, Udaipur 313002, Rajasthan, India
5 Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 76617-71967, Iran
6 Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
* Correspondence: g.sargazi@gmail.com (G.S.); ritamaria.dilorenzo@unina.it (R.D.L.)

Abstract: In order to improve product format quality and material flexibility, variety of application,
and cost-effectiveness, SiC, ZrO2, and Al hybrid composites were manufactured in the research
utilizing the powder metallurgy (PM) technique. A model was created to predict the tribological
behavior of SiC–ZrO2–Al hybrid composites using statistical data analysis and gene expression
programming (GEP) based on artificial intelligence. For the purpose of examining the impact of
zirconia concentration, sliding distance, and applied stress on the wear behavior of hybrid composites,
a comprehensive factor design of experiments was used. The developed GEP model was sufficiently
robust to achieve extremely high accuracy in the prediction of the determine coefficient (R2), the
root mean square error (RMSE), and the root relative square error (RRSE). The maximum state of
the RMSE was 0.4357 for the GEP-1 (w1) model and the lowest state was 0.7591 for the GEP-4 (w1)
model, while the maximum state of the RRSE was 0.4357 for the GEP-1 (w1) model and the minimum
state was 0.3115 for the GEP-3 model (w1).

Keywords: gene expression programming; tribological; hybrid; composite; zirconia

1. Introduction

Aluminum metal matrix composites (MMCs) have been popular over the last 20 years
due to their prospective uses in the structural, aerospace, and automotive industries [1–3].
Due to their qualities such as high thermal conductivity, specific strength, low density,
and low cost, MMCs are a desirable option. The final mechanical characteristics of a
metal matrix composite are determined by the uniform distribution of the reinforcement
particle. To achieve homogeneous distribution, many researchers have used methods
such as mechanical alloying, casting, and powder metallurgy (PM). Due to its capacity
to create parts with high homogeneity, uniform reinforcement distribution, and complex
dimensionality, PM has recently attracted more attention among all fabrication techniques
for the synthesis of MMCs. Manufacturing is more affordable as a result of this uniqueness,
which nearly minimizes the cost of complex machining [4,5]. To enhance the tribological and
mechanical characteristics, Al2O3, Si3N4, ZrO2, TiC, and SiC are frequently used to reinforce
aluminum metal matrix composites [6–10]. Additionally, aluminum matrix composites
reinforced with a combination of micro- and nano-sized reinforcement have garnered a lot
of research interest due to their enhanced mechanical and tribological properties, making
them a superior alternative to single-reinforced composites [11]. Hybrid composites with
micro- and nano-size reinforcement are crucial when used as frictional materials. Due
to the Orowan strengthening mechanism, nanoparticles improve the performance of the

Materials 2022, 15, 8593. https://doi.org/10.3390/ma15238593 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15238593
https://doi.org/10.3390/ma15238593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3241-7460
https://orcid.org/0000-0001-7340-0943
https://orcid.org/0000-0003-1406-6214
https://doi.org/10.3390/ma15238593
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15238593?type=check_update&version=2


Materials 2022, 15, 8593 2 of 10

matrix and a micro reinforcement reduces the friction load, improving the hardness and
tribological properties of the hybrid composites.

Because SiC enhances the tribological and mechanical properties, it has recently been
widely used as a ceramic reinforcement [12–14]. Al/SiC composites could be improved,
but at the expense of ductility and fracture toughness. Key material properties required to
avoid catastrophic failure in service include ductility and the toughness of fractures [15].
Additionally, as reported in earlier studies, metal oxide shifts SiC fragility and increases Al–
SiC fracture toughness when used as a reinforcement for hybrid composites [16,17]. Metal
oxides can be used as a strengthening material in composites because they are affordable,
widely accessible, and environmentally friendly [16]. ZrO2 is a readily available, reasonably
priced metal oxide with exceptional thermal, mechanical, and tribological properties [6].
There are no specific results for SiC–ZrO2–Al hybrid composites made utilizing the PM
process, according to the extensive examination of several research publications [18,19].

In the recent past, various researchers have used the GEP to estimate the various
mechanical characteristics of various types of concrete [20,21]. In recent years, researchers
have increasingly used the artificial neural network (ANN) technique to simulate the
mechanical and tribological characteristics of composite materials [22]. The capacity to
learn from small amounts of information is a very useful tool for discovering the behavior of
the experimental trend much more quickly than other methods. The relationship between
intricate data patterns of input and output may also be developed and predicted using
the ANN technique [23–25]. A hydraulic model was also used to predict how well the
ultrafiltration membrane would perform [26]. Regression models such as multiple linear
regression (MLR) and multiple linear equation regression (MLnER) as well as optimization
models like gene expression programming (GEP) have been used in recent years to predict
the outcomes of complex problems and have shown to be effective and potent tools in
prediction problems [27–30]. The performance of linear and nonlinear models in predicting
outputs should be contrasted since the nonlinear model outperforms the linear model in
small datasets [31,32]. While using GEP and statistical techniques, no comprehensive results
on the tribological behavior of ZrO2 reinforced Al–SiC hybrid nano-composites have been
found. In the current study, the tribological behavior of hybrid SiC–ZrO2–Al composites
made by powder metallurgy was examined. The effects of the ZrO2 concentration, the
sliding distance, and the applied load on the wear behavior of the hybrid composite were
examined using a full factorial design of experiments.

2. Experimental and Method
2.1. Fabrication of Composites

Zirconia powders, silicon carbide powders, and aluminum powders all had typical
particle sizes of 10 m and 30–50 nm, respectively. In the most recent investigation, these
reinforcing particles were applied. The PM technique was used to create the composites.
First, a quantity of elemental powder with a minimum count of 0.0001 g was weighed using
a digital scale (PRECISA, Dietikon, Switzerland, ES 25SM-DR). The powders were fully
combined in a centrifugal type ball mill (Fritsch, Germany) using 8 mm diameter stainless
steel balls and a ball-to-powder weight ratio of 10:1 in order to accomplish homogenization
and minimize particle agglomeration. The milling time and speed settings were 15 min
and 100 revolutions per minute, respectively. Green compacts measuring 8 mm in diameter
and 13 mm in height were created by compressing the powder combination at a pressure
of 585 MPa in a uniaxial hydraulic pallet press (Type KE, Sr. No. 1327, Kimaya Engineers,
Thane, India). The die wall was manually greased with zinc stearate before each compaction
procedure. The compacted samples were sintered in a tube furnace at 450–470 ◦C for 60 min
while under an argon environment (flow rate = 1.0 L·min−1) in order to prevent oxidation
of the aluminum matrix [33]. The sintered samples were allowed to warm up to room
temperature in the furnace. The densities of the samples were calculated using Archimedes’
principle [4].
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2.2. Gene Expression Programming

The “tree-based” concept of genetic programming was originally put out by Cramer [34].
Genetic algorithms are a subclass of evolutionary algorithms (EA) that employ approaches
inspired by natural evolution to develop solutions to optimization problems. The primary
proponent of genetic programming, Koza [35], eventually considerably broadened genetic
programming as a pioneer for a variety of difficult optimization and research problems [36].
Similar to genetic programming and genetic algorithms, gene expression programming
(GEP) uses a natural selection approach (GP). It uses genetic and fitness-based population
generation as well as individual selection. The foundation of GEP is individual encoding
using a chromosome, a symbolic string of fixed or changeable letters [37]. The numerous
genes on each GEP chromosome are each encoded by a separate sub-expression tree. Each
gene structure has a head and a tail that are connected to other GEP processes. The head
contains terminals (constants) and mathematical functions, while the tail just has terminals.
Various functions (n) and the head (h) may be used to compute the length of the tail (t),
and the result is stated as: t = h (n− 1) + 1.

The flowchart of the GEP algorithm can be seen in Figure 1.
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3. Results and Discussion

The first simulation includes a critical step that determines the process parameters
influencing one input layer with the zirconia concentration, sliding speed, sliding dis-
tance, and applied stress as the input and output nodes, namely wear loss. The operating
characteristics as shown in Table 1 support this. Twenty-four datasets from past publica-
tions [7,38] are included in the data utilized in this study. A typical method of displaying
the distribution and outliers of the input data is the box plot (Figure 2). As a result, all of the
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input parameters do not include any outliers, and the data generally exhibit a symmetric
distribution.

Table 1. General full factorial experimental.

Concentration (wt%) Sliding Distance (m) Applied Load (N)

0, 3, 6, 9 300, 600, 900 20, 40
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Figure 2. Box plot of the experimental data.

On GEP models, many tests are conducted and each has a distinct setup (chromosomes
number, head length, gene number and linking function, etc.). A total of candidate GEP
models with a respectable level of fitness are selected out of them.

The parameters and a list of the function set utilized in the four GEP models are shown
in Tables 2 and 3, respectively.

Table 2. GEP model parameters.

Chromosomes number 30
Head size 7.8

Genes number 3, 4
Linking function Addition (+), Multiplication (×)

Fitness function error type RMSE
Constant per gene 1

Mutation rate 0.044
Inversion rate 0.1

One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.1

Table 3. List of function sets.

Code Function Set

S1 +, ×, /, −,
S2 +, ×, x2, Sqrt
S3 +, sin, log, 1/x
S4 −, Sqrt, log, 1/x, x2, sin, ×

One model is preferable to another according to a set of standards for assessing the
model correctness. The root-mean-square-error (RMSE) and the root relative square error
are two examples of these criteria (RRSE). To assess the consistency of the numerical values
of the squared regression, a further parameter is utilized, in which the anticipated and
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experimental data may be calculated (R2). The errors and regression value are given by the
following equation:

RMSE =
1√
M

√√√√M

∑
1

(
f j − fi

)2 (1)

RRSE =

√
∑i
(

fi − f j
)2√

∑i

(
fi −

(
1
M

)
∑i fi

)2
(2)

R2 = 1−
∑i
(

fi − f j
)2

∑i
(

f j
)2 (3)

The values of fi and fj are the actual and projected values, respectively, and M is the
total number of datasets. R2, RMSE, and RRSE are a few examples of statistical verification
criteria that have been used to assess the correctness of the fitness. Higher R2 and lower
RMSE and RRSE values are the goals of the evaluation in order to demonstrate a more
accurate methodology. Table 4 contains a summary of the statistics for the four GEP models.

Table 4. The statistical performances of the GEP models in RMSE, RRSE, and R2.

No. Head Size Number
of Genes

Linking
Function Function Set

Training Testing

R2 RMSE RRSE R2 RMSE RRSE

GEP-1

w1 7 3 + S1 0.9451 0.4357 0.2342 0.9649 1.0906 0.3353
w2 7 3 × S1 0.9677 0.3343 0.1797 0.9828 0.8902 0.2737
w3 8 3 + S1 0.9485 0.4218 0.2267 0.9436 1.1465 0.3525
w4 8 3 × S1 0.9690 0.3274 0.1760 0.9962 0.4007 0.1233
w5 7 4 + S1 0.9747 0.2955 0.1589 0.9973 0.3563 0.1095
w6 7 4 × S1 0.9762 0.2873 0.1544 0.9908 0.6120 0.1882

GEP-2

w1 7 3 + S2 0.9471 0.4318 0.2321 0.9823 0.8175 0.2513
w2 7 3 × S2 0.9517 0.4091 0.2199 0.9757 0.8067 0.2480
w3 8 3 + S2 0.9658 0.3612 0.1942 0.9801 0.7394 0.2273
w4 8 3 × S2 0.9372 0.5564 0.2991 0.9792 0.8205 0.2552
w5 7 4 + S2 0.9425 0.4468 0.2402 0.9750 0.7548 0.2321
w6 7 4 × S2 0.9584 0.3795 0.2040 0.9798 0.6948 0.2136

GEP-3

w1 7 3 + S3 0.9740 0.3115 0.1674 0.9522 1.0163 0.3125
w2 7 3 × S3 0.9703 0.3221 0.1731 0.9931 0.4003 0.1231
w3 8 3 + S3 0.9685 0.3462 0.1861 0.9607 1.009 0.3103
w4 8 3 × S3 0.9840 0.2357 0.1267 0.9864 0.7831 0.2408
w5 7 4 + S3 0.9703 0.3296 0.1772 0.9758 1.0485 0.3224
w6 7 4 × S3 0.9768 0.2847 0.1531 0.9831 0.6950 0.2137

GEP-4

w1 7 3 + S4 0.9677 0.3348 0.1800 0.9828 0.7591 0.2334
w2 7 3 × S4 0.9480 0.4367 0.2347 0.9633 0.7668 0.2358
w3 8 3 + S4 0.9422 0.5103 0.2743 0.9580 1.2254 0.3768
w4 8 3 × S4 0.9538 0.4005 0.2153 0.9794 0.6767 0.2081
w5 7 4 + S4 0.9608 0.4438 0.2386 0.9750 1.1326 0.3482
w6 7 4 × S4 0.9314 0.4890 0.2629 0.9895 0.4853 0.1492

The R2 for the four GEP models in the training and testing stages of component w1
(Figure 3) was more than 0.9740 according to the statistical findings in Table 4. The GEP-3
(w1) model showed the greatest R2 values for the model’s training and testing stages of
0.9740 and 0.9522, respectively. The correlations between training and testing are often not
statistically different from one another in GEP models.

Figure 3 displays the R2 values for each of the six GEP (w1)-based models (a). The
R2 in the maximum state (shown in this Figure for a training mode) was associated with
the GEP-3 (w1) model, however, the R2 in the lowest state (shown in this figure for a
training mode) was related to the GEP-1 (w1) model. The wear loss of hybrid composite
SiC–ZrO2–Al was predicted by all six GEP models, although model GEP-3 (w1) is preferred
over other models. The lowest RMSE was shown in Figure 3b for the training mode, where
the maximum state of the RMSE was 0.4357 for the GEP-1 (w1) model and the minimum
state was 0.3115 for the GEP-3 (w1) models. For the testing mode, the maximum state was
1.0906 for the GEP-1 (w1) model and the minimum state was 0.7591 for the GEP-4 (w1)
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model. As a result, in the maximum state for the GEP-1 (w1) model in the training mode
and the lowest state for the GEP-3 (w1) model in the testing mode, respectively, the RRSE
was 0.2342 and 0.1674, respectively, as shown in Figure 3c.
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An evolutionary run with more chromosomes would take longer since the number
of settings is often governed by the complexity of the issue and the number of potential
solutions. Selecting the ideal setup parameters (such as gene head size, gene count, and
linking function) for the ideal GEP model is a crucial next step.

Change the number of genes, the number of gene heads, and the linking function in all
models to achieve this. The optimum GEP model structure, according to Table 2, is a GEP-3
(w4) model with a head size of 8, three genes, and a multiplication-based linking function.

The GEP-3 (w4) formulae for predicting the wear loss of the SiC–ZrO2–Al hybrid
composites are shown in equation:

Wear loss = sin (log(((−5.05×−4.08× ( Sliding distance + Applied load ))
+(−1.55× Sliding distance × Concentration ))))

× sin(sin(((( Sliding distance × Applied load × 2.54)× Sliding distance × 4.78) + ( 1.0
−9.01 ))))

×(sin((((8.74× Applied load × 0.94) + ( Concentration × Concentration × 8.74))
+(3.87× Sliding distance × Concentration ))) + 9.18)

(4)

Figure 4 also includes an expression tree (ET) for the GEP-3 (w4) model.
By considering the SiC–ZrO2–Al hybrid composites, concentration of zirconia, sliding

speed, sliding distance, and applied load as practical parameters of wear loss, a sensitivity
analysis was employed for the determination of the most effective practical parameter on
the microhardness of the nanocomposite coatings. Given that the best model for predicting
microhardness is GEP-3 (w4), GEP-3 was employed for the sensitivity analysis (w4). In the
GEP-3 (w4) models, the value for each practical parameter was set to zero while the values
for the other parameters varied. By turning off the effect of the most affected parameter on
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the GEP-3 (w4) model, namely the RMSE as the threshold, it is reasonable to have a larger
deviation from the performance of the models [24].
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The current density significantly affected the wear loss of the SiC–ZrO2–Al hybrid
composites, as can be seen in Figure 5. The influence of each process parameter on the wear
attributes of the constructed composites was then examined using the created model. To
ascertain the impact of zirconia concentration on wear loss, the GEP-3 (w4) simulation was
run with data altering the concentration of ZrO2 from 5, 10, and 20% while maintaining
the other process parameters such as sliding distance and applied stress, unchanged.
Additionally, Figure 5 explores and illustrates the impact of other process factors.
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composites, as can be seen in Figure 5. The influence of each process parameter on the 
wear attributes of the constructed composites was then examined using the created 
model. To ascertain the impact of zirconia concentration on wear loss, the GEP-3 (w4) 
simulation was run with data altering the concentration of ZrO2 from 5, 10, and 20% while 
maintaining the other process parameters such as sliding distance and applied stress, un-
changed. Additionally, Figure 5 explores and illustrates the impact of other process fac-
tors. 

 
Figure 5. Sensitivity analysis of the practical parameters.

4. Conclusions

Powder metallurgy was used to create the SiC–ZrO2–Al hybrid composites. The
tribological behavior of the Al–SiC–ZrO2 hybrid composites was predicted using gene
expression programming (GEP) and statistical data analysis for potential automotive
engine-based applications. The influence of ZrO2 concentration, applied stress, the wear be-
havior of hybrid composites, and sliding distance were examined for potential engineering
applications using a complete factorial design of experiments. The GEP-1 (w1) model had
the highest possible RMSE of 0.4357, while the GEP-4 (w1) model had the lowest possible
RMSE of 0.7591. The GEP-1 (w1) model had the highest possible RRSE of 0.4357, while the
GEP-3 model had the lowest possible RRSE of 0.3115. (w1).
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