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Abstract

In the framework of the European VO-Tech project, we are implementing new machine learning
methods specifically tailored to match the needs of astronomical data mining. In this paper,
we shortly present the methods and discuss an application to the Sloan Digital Sky Survey
public data set. In particular, we discuss some preliminary results on the 3-D taxonomy of the
nearby (z < 0.5) universe. Using neural networks trained on the available spectroscopic base of
knowledge we derived distance estimates for ∼ 30 million galaxies distributed over ∼ 8, 000 sq.
deg. We also use unsupervised clustering tools to investigate whether it is possible to characterize
in broad morphological bins the nature of each object and produce a reliable list of candidate
AGNs and QSOs.
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1. Introduction

Modern photometric digital surveys performed with dedicated instruments are in fact
producing high quality multiband data at a huge rate, and a new generation of software
tools is being developed to merge databases and to extract patterns, trends, etc. Fur-
thermore, due the ongoing efforts to build a Virtual Observatory (VO) infrastructure
(cf. the European VO-Tech, [1]), everyone will have at his fingertips the possibility to
extract and manipulate such multi-wavelength, multi-epoch, multi-instrument datasets
of huge dimensionality. The extraction of useful information from such datasets imposes
to abandon old conceptual schemes largely based on the 3-D visualization capability of
human minds, and to introduce in the astronomical practice fine tuned, machine learn-
ing methods for statistical pattern recognition, classification and visualization [2]. In this
context, however, astronomical data pose non trivial problems due to the fact that they
are usually highly degenerate, present strong non linear correlations among parameters
and are plagued by large fraction of missing data and upper limits.

In what follows we shall shortly outline the first results of our ongoing effort to im-
plement and apply a new generation of tools to the construction of a 3-D taxonomy of
the nearby universe with a characterization of galaxy types in a few, broadly defined,
catagories: normal (early and late type) galaxies, AGN, QSO, etc.

For all the experiments described below, we used the Sloan Digital Sky Survey Data Re-
lease 4 and/or 5 (hereafter SDSS4/5; [3]) which provides photometric data in 5 bands for
several hundred million galaxies distributed over ∼ 8, 000 square degrees, together with
additional spectroscopic information for a subsample (hereafter SpS) of ∼ 106 galaxies.
Such spectroscopic information include, among other things, redshifts and a spectral clas-
sification index derived from an eigenvector analysis which allows to disentangle among
normal galaxies (SP2), stars (SP1), nearby AGN (SP3), distant AGN (SP4), late type
stars (SP6). This spectroscopic base of knowledge can be used as a training ground for
interpolative and supervised methods as well as a validation ground for unsupervised
ones.

2. The photometric redshift

One of the main sources of degeneracy in the photometric properties of galaxies is
the lack of information on their distances and therefore any attempt to partition the
parameter space requires first the derivation of distance estimates. In order to evaluate
photometric redshifts we made use of an improved version [4] of the Neural Networks
(NNs) method presented in [5]. Both steps are accomplished using NNs architecture
known as MLP (Multi Layer Perceptron).

We adopted a two steps approach based on the use of MLP [6,7]. First we trained a
MLP to recognize nearby (id est with redshift z < 0.25) and distant (z > 0.25) objects,
then we trained two separate MLPs to work in the two different redshift regimes. Such
approach finds support in the fact that in the SDSS-5 catalogue, the distribution of
galaxies inside the two different redshift intervals is dominated by two different galaxy
populations: the Main Galaxy (MG) sample in the nearby region, and the Luminous Red
Galaxies (LRG) in the distant one. The use of two separate networks ensures that the
NNs achieve a good generalization capabilities in the nearby sample, leaving the biases
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Fig. 1. Left: distribution of spectroscopic versus photometric redshifts in the test set. Lighter grey points
mark LRG galaxies. Notice the larger scatter of non-LRGs in the distant (z > 0.25) sample. Right:
distribution of the errors computed over redshift bins for the distant sample.

mainly in the distant one.
To perform the separation between MG and LRG objects, we extracted from the SDSS-

4 SpS training, validation and test sets weighting, respectively, 60%, 20% and 20% of the
total number of objects (449,370 galaxies). The resulting test set, therefore, consisted of
89,874 randomly extracted objects.

After the first network has classified the objects in nearby and distant ones, the deriva-
tion of the photometric redshifts is performed separately in the two regimes. Since NNs
are excellent at interpolating data but very poor in extrapolating them, in order to min-
imize the systematic errors at the extremes of the training redshift ranges we adopted
the following procedure. For the nearby sample we trained the network using objects
with spectroscopic redshift in the range [0.0, 0.27] and then considered the results to be
reliable in the range [0.01, 0.25]. In the distant sample, instead, we trained the network
over the range [0.23, 0.50] and then considered the results to be reliable in the range
[0.25, 0.48].

The error for our redshift estimates has been evaluated on the test set by measuring
the dispersion of points in the zspec vs zphot plane, i. e. the variance of the zspec − zphot

variable, after performing an interpolative correction in order to correct for systematics.
The results can be summarized as follows:
– For the MG sample, in the best experiment, the robust variance turned out to be

σ3 = 0.0208 over the whole redshift range and 0.0197 and 0.0245 for the nearby and
distant objects, respectively.

– For LRG sample we obtained σ3 ≃ 0.0163 over the whole range, and σ3 ≃ 0.0154 and
σ3 ≃ 0.0189 for the nearby and distant samples, respectively.

3. The clustering

The implementation of a reliable classification scheme based on photometric informa-
tion only, is an old problem in astronomy [8]. In few words, it consists in partitioning
the observed parameter space in clusters of objects sharing some underlying common
physical property. Obviously, since there is no a priori reason to assume that photo-
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Fig. 2. Scheme of a latent variable model mapping a 3D data space onto a 2D latent space with latent
variables uniformly arranged. Each latent variable is mapped, through the nonlinear function y, to the
center of a Gaussian distribution.

metric classification must reflect strictly any morphological classification (actually the
degeneracy observed in colours strongly argues against it), any effective classification
method must be unsupervised, id est it must partition the photometric parameter space
using only the statistical properties of the data themselves. We therefore implemented a
hierarchical approach which starts from a preliminary clustering performed using as un-
supervised clustering algorithm the so called ”Probabilistic Principal Surfaces” or PPS,
and then makes use of the Negative Entropy concept and of a dendrogram structure to
agglomerate the clusters found in the first phase.

3.1. PPS - Principal Probabilistic Surfaces

Probabilistic Principal Surfaces (PPS) [9,10] are a nonlinear extension of principal
components, in that each node on the PPS is the average of all data points that projects
near/onto it. PPS define a non-linear, parametric mapping y(x;W) from a Q-dimensional
latent space (x ∈ RQ) to a D-dimensional data space (t ∈ RD), where normally Q << D.
The function y(x;W) (defined continuous and differentiable) maps every point in the
latent space to a point into the data space.

Since the latent space is Q-dimensional, these points will be confined to a Q-dimensional
manifold non-linearly embedded into the D-dimensional data space. In our method,
the points belonging to the parameter space will be projected on the surface of a 2-
dimensional sphere. The visualization capabilities of the PPS can prove very useful in
several aspects of the data interpretation phase such as, for instance, the localization of
data points lying far away from the more dense areas (outlayers), or of those lying in the
overlapping regions between clusters, or to identify data points for which a specific latent
variable is responsible. A visualization of the data clustering is achieved by PPS algo-
rithm through the projection of objects from the multi-parametric D-dimesional space to
a two dimensional surface. These clusters, representing groups of objects corresponding
to the same latent variable, are then decimated using NEC: a hyerarchical non supervised
agglomeration algorithm.
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Fig. 3. Probability density function of the SDSS data plotted on the latent sphere surface.

3.2. NEC - Negentropy Clustering

Most unsupervised methods require the number of clusters to be provided a priori.
This circumstance represents a serious problem when exploring large and complex data
sets where the number of clusters can be very high or, in any case, unpredictable. A
simple treshold criterium is not satisfactory in most astronomical applications due to the
high degeneracy and the noisiness of the data which lead to the erroneous agglomeration
of data.

We introduce the Fisher’s linear discriminant which is a classification method that
first projects high-dimensional data onto a line, and then performs a classification in the
projected one-dimensional space [6]. The projection is performed in order to maximize
the distance between the means of the two classes while minimizing the variance within
each class. On the other hand, we define the differential entropy H of a random vector
y = (y1, . . . , yn)T with density f(y) as H(y) =

∫
f(y) log f(y)dy so that negentropy

J can be defined as J(y) = J(yGauss) − H(y), where yGauss is a Gaussian random
vector of the same covariance matrix as y. Negentropy can be interpreted as a measure
of non-Gaussianity and, since it is invariant for invertible linear transformations, it is
obvious that finding an invertible transformation that minimizes the mutual information
is roughly equivalent to finding directions in which the Negentropy is maximized.

Our implementation of the method makes use of an approximation to Negentropy which
provides a good compromise between the properties of the two classic non-Gaussianity
measures given by kurtosis and skeweness. Negentropy can be used to agglomerate the
clusters (regions) found by the PPS and the only a priori information is a dissimilarity
threshold T . Let us suppose to have c multi-dimensional regions Xi with i = 1, . . . , c that
have been defined by the PPS. The NEC algorithm, in practice, measures whether two
clusters can or cannot be modeled by one single Gaussian or, in other words, if the two
regions can be considered to be just aligned or rather as a part of a larger data set. By
increasing the value of the dissimilarity treshold, the number of clusters decreases and
robust partitions produce plateaus in the ”treshold vs number of clusters” diagram
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Fig. 4. Exemplification of how the NEC algorithm works on two Gaussian distribution examples. Left:
Negentropy = 2.6261 using the G1 function with a1 = 0.1; Right: Negentropy = 0.005 using the G1

function with a1 = 0.1

3.3. Preliminary results on clustering

We first applied the PPS algorithm to the sample of spectroscopically selected SDSS
DR-4 objects using as parameters for the clustering the 4 colours obtained from model
magnitudes (u-g,g-r,r-i,i-z) of SDSS archive. We fixed the number of latent variables and
latent bases of the PPS to 614 and 51 respectively, so obtaining at the end of this step
614 clusters, each formed by objects which only respond to a certain latent variables. We
choose a large number of latent variables in order to obtain an accurate separation of
objects and to avoid that any group of distinct but near points in the parameter space
could be projected onto the same cluster by chance. The clusters found by the PPS are
graphically represented by groups of points with the same colour (a different colour for
each cluster) on the surface of a 2-d sphere embedded in the 3-dimensional latent space.
These first order clusters were then fed to the NEC algorithm which determined the final
number of clusters. The plateau analysis of the agglomerative process and the inspection
of the dendrogram allowed to set the treshold to a value corresponding to 31 clusters.
We present in table (3.3) the ten most populous clusters together with the distribution
of the specClass index within each cluster. The additional 21 clusters represent less than
10 % of the objects and are still under investigation. It needs to be emphasized that the
clustering makes use of the photometric data only and the spectroscopic information is
used only to validate them. As it can be seen, galaxies (SP2) clearly dominate clusters
1, 2 and 6. Whether this separation reflects or not some deeper differences among the
three groups (such as, for instance, different morphologies), cannot be assessed on the
grounds of presently available data. AGNs (SP3) dominate clusters 5 and 9 even though
some contamination from galaxies exists.

Late type stars (SP6) populate mainly clusters 7 and 8 and are strong contaminants
of cluster 10 which also is dominated by galaxies.

4. Conclusions

We have produced a catalogue of redshifts for all galaxies in the SDSS database match-
ing the following selection criteria and falling in the redshift range 0.005 − 0.5. These
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Cl. n SP0 SP1 SP2 SP3 SP4 SP6

1 69 145 9362 48 0 12

2 25 133 13370 10 0 12

3 149 132 63 64 0 5

4 44 3396 1530 189 67 1

5 202 85 447 2428 6 10

6 26 125 13728 12 0 12

7 0 0 0 0 0 484

8 1 1 1 0 0 329

9 541 1507 127 4750 18 1

10 89 474 2117 19 4 529

Table 1
The table shows the distribution of objects in the most significant clusters found by our procedure. The
columns correspond to different values of the specClass index.

redshifts have been used to produce a first 3-D map of the nearby universe which is
currently under study to identify structures and to define accurate selection functions.
Much work has instead still to be done in obtaining a reliable partition in hogeneous
types. This is partly due to the lack of a reliable data sets for labeling and partly to a
still poor understanding of how to deal in an effective way with upper limits and missing
data.
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