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the modeling of traffic and crowds: A survey of models, speculations, and perspectives,

SIAM Rev. 53 (2011) 409–463], thus providing important research perspectives related to
new, emerging trends. The presentation addresses the scaling problem corresponding to

microscopic (individual-based), mesoscopic (kinetic), and macroscopic (hydrodynamic)

modeling and analysis. A multiscale vision guides the overall content of the paper. The
critical analysis of the overall content naturally leads to research perspectives. A selection

of them is brought to the attention of the interested reader together with hints on how

to deal with them.

Keywords: Complexity, crowd dynamics, living systems, multiscale problems, social

dynamics, stress propagation.

AMS Subject Classification: 82D99, 91D10

1. Motivations and Plan of the Paper

This section defines the aim and content of the paper, which begins with a review

and critical analysis of the mathematical literature on crowd dynamics and con-

cludes with a look at research perspectives. Our review focuses on key issues that

should be considered for new concepts and methods in modeling and simulating

human crowds that take into account behavioral state dynamics. The survey essen-

tially covers the period after the publication of the review paper,25 which provided

several possible research perspectives. One of these perspectives is particularly rel-

evant to this paper: the need to develop a modeling approach that accounts for

heterogeneous individual behavior, which can significantly affect interactions and

the resulting emergent collective dynamics. First, this section introduces some key

issues in the modeling approach. Specifically, we provide some motivations, con-

sider some aspects of a multiscale vision, and present some recent trends in crowd

modeling. Then, the outline of the paper is presented.

Motivations toward the study of human crowds: Modeling and numerical studies of

human crowds have captured the interest of applied mathematicians for decades.

One of the main motivations is the impact of this research topic on societal well-

being. For example, crisis managers could use models and simulations to support

decision making in dangerous situations that require safe evacuation, such as those

caused by fire, earthquakes and contrast of antagonist groups. A recent additional

motivation comes from the SARS-CoV-2 pandemic, specifically from the need to

understand how complex crowd interactions can lead to viral contagion and disease

spread. We believe that the synergy between artificial intelligence and simulation

platforms based on accurate models can result in improved safety. A final motivation

that we would like to mention is the variety of challenging analytic and computa-

tional/numerical problems generated by the models to study realistic crowd flows.

Research activity in this field needs to be developed within the general framework

of the study of living (and hence complex) systems. The derivation of mathemat-

ical models cannot simply rely on a straightforward application of deterministic

causality principles and the methods of classical mechanics.

Modeling scales: An important problem in crowd modeling is the selection of the

representation and modeling scale. Indeed, models can be derived at the three usual
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scales, i.e. microscopic (individual based), macroscopic (hydrodynamic), and meso-

scopic (kinetic). The third scale is in between the previous two.12 However, it is

important to search for the links between these scales. A key problem is the deriva-

tion of models at all scales based on the same principles and analogous parame-

ters.30 Then, kinetic models are derived from micro-scale (individual based) models

and macro-scale (hydrodynamical) models are developed from asymptotic meth-

ods applied to the kinetic theory description.18, 51, 52 See also specific applications

devoted to the micro–macro derivation of other macro-scale models for living organ-

isms.19, 34, 63, 86, 119 An additional difficulty for the mesoscopic representation with

respect to the classical kinetic theory is the search of a pseudo-Maxwellian equilib-

rium distribution because living systems generally live far from an equilibrium.11

New trends in the study of human crowds: Mathematicians have effectively heard

the message delivered in Ref. 25 urging them to consider heterogeneous behavioral

features in crowds and their influence on people’s interactions. Indeed, the recent

literature has witnessed an increasing attention to behavioral features in human

crowds. This entails interpreting pedestrians as active particles, rather than classical

particles. Social behaviors, which are modified by vocal and visual interactions, can

have a significant influence on the walking strategy that pedestrians use to organize

their dynamics. Thus, it is of paramount importance to account for behavioral

features in order to reproduce realistic crowd dynamics. The term social crowds is

used when social features are considered within the general framework of behavioral

dynamics.139

Plan of the paper : The content of our paper is not limited to a review and critical

analysis of the literature. We also provide important research perspectives linked

to new and emerging trends. We will refer to a vast literature on crowds and social

dynamics. Additional titles can be found in Ref. 107, which is an excellent collection.

Although this paper does not include vehicular traffic, for some analogies between

crowd dynamics and traffic we refer the interested reader to the pioneering paper by

Prigogine and Herman167 and the modeling of heterogeneous behaviors of vehicle-

driver micro-scale systems.163 Following the reasonings elaborated thus far, the rest

of the paper is divided into five sections.

Section 2 provides an introduction to the specific behavioral and mechanical

features of human crowds to be considered in the modeling approach when the

individual and collective behavioral dynamics depend on interactions and different

types of external actions, for instance vocal or visual signals to guide evacuation

dynamics. Section 2 describes also a variety of social dynamics that could be con-

sidered in the modeling approach.

Section 3 defines the mathematical frameworks that at each scale provide the

reference structures to be used in the derivation of the models. These structures

include the mechanical variables and behavioral variables related to social dynam-

ics3, 43 mentioned in Sec. 2. Models are derived by inserting into said structures

a phenomenological description of interactions among pedestrians and between
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pedestrians and external actions. In addition, Sec. 3 states the initial and initial-

boundary value problem at each scale.

Section 4 delivers a survey and critical analysis of the literature introduced

after Ref. 25. The survey refers to the mathematical structures defined in Sec. 3.

Computational problems referred to the selection of the modeling scales are briefly

reviewed. Indeed, different types of computational techniques can be used at each

scale.

Section 5 provides a look at research perspectives by selecting key topics fol-

lowed by hints to tackle them. In details, we consider the following topics: analytic

and computational problems related to multiscale methods; study of social dynam-

ics in crowds. Then, we show how some tools developed for the study of human

crowds can be used to model behavioral swarms, i.e. animal swarms in the pres-

ence of heterogeneous social interactions. Finally, we provide some reasonings of a

quest toward a mathematical theory of human crowds. All of the perspectives are

presented within the general framework of the mathematics of living systems.

2. Complexity Features Towards Multiscale Behavioral Modeling

The study of human crowds requires a deep understanding of the complexity fea-

tures of this specific living system. From this knowledge, one extracts the key char-

acteristics that should be considered in the derivation of the mathematical models.

This way of operating was already proposed in Ref. 30, where the authors have also

shown how to apply it to all modeling scales. Our paper takes it as the first step to

develop a survey and critical analysis of the state-of-the-art, followed by research

perspectives. The general tendency in the field is to propose heuristic modeling

approaches, which overlook the complexity of human crowds viewed as a living

system. Therefore, research perspectives should be based on our knowledge of such

complexity as much as possible.

For pragmatism, we select five key features without claiming that this selection

is exhaustive. Indeed, additional features should be considered whenever required

by the specific physical situation under consideration. Therefore, it is important to

keep the approach flexible.

(1) Perception ability and behavioral state: Each individual (walker) has the abil-

ity to perceive emotional states by interacting with other individuals. Thus,

the behavioral (emotional) state should be considered as a dynamical variable

which evolves in time also as a result of vocal and visual stimuli. In general,

the behavioral state depends on several factors, e.g. the mental concentration

to reach a specific target, the stress induced by the perception of danger, an

aggressive attitude to contrast antagonists, and the awareness to contagion risk

during a pandemic. Possible irrational behaviors should also be considered.

(2) Ability to express a strategy : Living entities have the ability to develop specific

walking strategies in relation to their organization ability. Therefore, walkers

select a trajectory to follow in order to reach the desired target and a speed
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to move along that trajectory. The walking strategy depends on the state of

the entities in the surrounding environment and on the physical features of the

venue where the crowd moves. Moreover, the effect of non-predictable external

events on the waking strategy should be considered.

(3) Role of the environment and the venues: The quality of the environment (i.e.

weather conditions for outdoor venues, geometry of the venue, and luminosity)

affects the crowd dynamics. Pedestrians receive inputs from their environments

and have the ability to learn from past experience. Hence, their rules of inter-

actions evolve in time and space.

(4) Heterogeneity : The ability to express a strategy is heterogeneously distributed

among walkers. This includes, e.g. different walking targets and the presence of

leaders, whose aim is to direct all other pedestrians toward their own strategy.

All types of heterogeneity induce stochastic features in the interactions. An

interesting case study consists in understanding how irrational behaviors of a

few entities can generate large deviations from the usual dynamics resulting

from rational behaviors.

(5) Nonlinear interactions: Pedestrians have a visibility domain. Within this

domain, interactions are nonlinearly additive and nonlocal as they involve not

only immediate neighbors, but also distant entities, with some weight depend-

ing on the distance. The case of interactions with a fixed number of entities,

rather than with all the entities in the visibility domain, should also be stud-

ied. Finally, it is also an important to consider the sensitivity domain, i.e. the

domain within which a pedestrian can detect the presence of the other pedes-

trians. Generally, it is a domain included or equal to visibility domain and

depends on the local density and on the level of individual stress.

In our opinion, the above items are the most relevant. One major difficulty to

tackle is the lack of a field theory, which exists for the sciences of inert matter. This

fact is strongly related to the problem of creating a rigorous mathematical approach

to the study of living systems. In addition, we believe that the modeling approach

always needs a multiscale vision,12, 30 as only one observation and representation

scale is not sufficient to describe the overall collective dynamics of living systems.

Indeed, the dynamics at the microscopic scale define the conceptual basis toward the

derivation of models at the higher scales, where observable macroscopic quantities

correspond to the collective dynamics. Such dynamics emerge from a collective

learning ability,53–55 i.e., the ability to develop a self-organizing intelligence, which

should be taken into account as it progressively modifies the rules of the interactions.

These features should be interpreted as specific flow conditions depending on,

for example, local densities and the geometry and quality of the venues through

which the crowd moves. In particular, the local density requires an appropriate

choice of modeling scale. For example (see Fig. 1), individual-based models may be

preferred to approximate the dynamics at low densities (right), while hydrodynamic

models are generally valid at high densities (left).
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Fig. 1. Left: High density crowds; Right: Low density with obstacles.

Source: https://www.pexels.com/photo/crowd-of-protesters-holding-signs-4614164/.

Fig. 2. Left: Mixed (high and low) density crowds; Right: Dynamics in complex venues.
Source: https://pixabay.com/photos/nyc-new-york-times-square-america-5276112.

Venues might present complex features and contain different emotional states.

Figure 2 shows, on the left a crowd where dense aggregations occur within a rarefied

crowd, while on the right the crowd moves in a complex venue where different types

of attraction can modify trajectories.

Figures 1 and 2 contribute to the selection of the most appropriate scale, but

also indicate the need to use both scales which, as we will see, is an open problem. In

addition, one can have overcrowded states, as shown in Fig. 3, which might denote

a high risk safety situation.

The study of crowd dynamics is often related to safety problems, for instance

evacuation dynamics in dangerous conditions due to any type of incidents which

are often not predictable. In some cases crowd dynamics is related to urban and

transportation planning. In these cases, the emotional state is the stress. However,

it is very different in each specific case so that the interpretation of the effective

emotional state is one of the key action toward modeling, as the emotional state in

a crowd can go through very different types of emotional states and can even reach

extremes values.
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Fig. 3. High risk density.

Source: https://www.pexels.com/photo/bird-s-eye-view-of-group-of-people-1299086.

Additional issues raised by the SARS-CoV-2 pandemic also suggest the devel-

opment of studies of crowd dynamics in the context of open-air contagion problems,

which are more critical in closed environments with limited air circulation. The

modeling should take into account additional heterogeneity features such as social

and physical distancing and protective devices. All of the figures above show situ-

ations of high contagion risk.

3. Scaling and Mathematical Frameworks

The derivation of mathematical models for human crowd dynamics should refer

specifically to the scale selected to describe such dynamics by means of differential

equations. Thus, in this section, we present the formal mathematical structures

that provide the conceptual framework for the derivation of models at each scale.

We consider unbounded venues or bounded venues which include walls, inlet-outlet

doors and/or internal obstacles. Some notations used in the following are borrowed

from Ref. 30.

Before stating the mathematical modeling approach, we introduce some general

concepts and parameters. Then, mathematical structures underlying the derivation

of models are stated at each specific scale. Finally, a critical analysis looks ahead

to the review of models known in the literature.

3.1. Concept and parameters

(a) The geometry and the quality of the venue. In general, models of crowd

dynamics should consider the overall geometry and the physical quality of the venue

where the crowd moves:

— Σ denotes the overall geometry of the area, which is needed to model the walking

trajectories;
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— α models the physical quality of the venue, which is used to model the walking

speed. As in Ref. 29, we consider a dimensionless parameter α ∈ [0, 1], with

α = 0 corresponding to very low quality (i.e. motion is prevented) and α = 1

corresponding to very high quality (fast motion is allowed).

(b) The behavioral variable. An important new trend in the study of human

crowds is the introduction of a behavioral variable as an independent variable in

social dynamics. Such variable models the emotional state of pedestrians and it

is sometimes called activity, borrowing the definition used in the kinetic theory of

active particles.22 The activity, denoted by u, can be a vector if there is more than

one behavioral state.

(c) The interaction domain. This is a domain within which pedestrians can inter-

act. Nonlocal and nonlinearly additive interactions are considered in this domain.

Note that the interaction domain is related to visibility domain or sensory domain

in some references. The interaction domain will be specified at each scale.

(d) Dimensionless quantities. It is convenient to use dimensionless quantities

and parameters at each scale. This strategy simplifies the implementation of com-

putational/numerical methods and the interpretation of simulation results coming

from the application of the mathematical models. Therefore, the following ref-

erence quantities are introduced to make independent and dependent variables

dimensionless.

— `: characteristic length of the venue where the crowd moves or the diameter of

a specific circle containing the domain Σ in the case of unbounded domains;

— vM : the highest mean speed walkers can reach in a low density flow within a

high quality venue;

— T = `/vM : the characteristic time corresponding to the time it takes a fast

walker to cover distance `;

— ρM : the maximum number of walkers in a square meter, i.e. the maximum people

density;

— ui,M and ui,m: the maximal and minimum values of the components of the

activity u, with ui,m = 0 to be assumed in general.

Remark 3.1. With the reference quantities introduced as above, the spatial vari-

ables are referred to `, the speed to vM , the time variable to T , and the components

of the activity variable to ui,M −ui,m. Macroscopic quantities such as local density

and mean speed are referred to ρM and vM . In this way, all quantities take values

of the order of one.

Remark 3.2. Various papers describe how to model the dependence of the local

speed on the quality of the venue α. Then, we denote with vαM the highest mean

speed that can be reached by pedestrians in a low density flow in a venue with

quality α.
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Remark 3.3. A crowd can be subdivided into different groups, each characterized

by different features. For instance, each group moves to a different direction, the

walking strategy or the walking ability differs in each group. Borrowing a termi-

nology used in the kinetic theory of active particles31 these groups can be called

functional subsystems, which apply to all scales.

Remark 3.4. The presentation in the next three subsections refers to one func-

tional subsystem only. However, the modeling approach can be extended, by tech-

nical calculations, to system of human crowds with several groups or functional

subsystems. The mathematical structures underlying the derivation of models are

stated at each scale. These are differential systems derived by using conservation

and/or balance equations. We refer to crowds in unbounded domain. Some reason-

ings on how to model the influence of the walls is proposed in the last subsection.

3.2. Microscopic (individual-based) scale

(a) Dependent variables. We consider the dynamics of a human crowd with N

pedestrians moving in a domain Σ ⊂ R2. For i ∈ {1, . . . , N}, the overall state of a

pedestrian is specified by

— position variable: xi = xi(t) = (xi(t), yi(t)),

— velocity variable: vi = vi(t) = (vix(t), viy(t)),

— activity variable: ui = ui(t).

All the above are evolving functions of the independent time variable t. By re-

scaling to the characteristic time T , we obtain a dimensionless time variable, which

is used in the presentation. Polar coordinates vi = {vi, θi} are sometimes used to

define the velocity of an individual, where vi is the dimensionless speed and θi is

the direction of the i-pedestrian.

(b) Mathematical structures. At the microscopic level, the general mathematical

framework is derived by a pseudo-Newtonian mechanics similar to the mathemat-

ical theory of behavioral swarms.33 For this purpose, one introduces a variable zi,

denoting the rate of change dui/dt of ui. Moreover, let Ωi be the interaction domain

of the i-pedestrian. Then, for i ∈ {1, . . . , N}, a pseudo-Newtonian mechanics for

(xi,vi,ui, zi) is given by:

dui
dt

= zi,

dzi
dt

=
∑
j∈Ωi

ψi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

dxi
dt

= vi,

dvi
dt

=
∑
j∈Ωi

ϕi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

(3.1)
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where the notation j ∈ Ωi indicates that the summation refers to all j-particles

in the domain Ωi. In (3.1), ψi,ϕi are pseudo-accelerations to be specified. Let us

clarify a few concepts below.

— The interaction domain of the i-pedestrian is the domain where pedestrians can

interact with the i-pedestrian. It can be an arc of circular domain symmetric

with respect to the pedestrian’s velocity direction, denoted by Ωi = Ωi(xi, θi)

for each i-pedestrian located at xi with walking direction θi. Each pedestrian

interacts with all other pedestrians within such a domain by nonlocal and non-

linearly additive interactions.

— The pseudo-accelerations are introduced to incorporate the interaction rules.

The action by all pedestrians in Ωi that produces a pseudo-acceleration to the

activity variable of the i-pedestrian is denoted by ψi, while the action produc-

ing a psycho-mechanical acceleration to the velocity variable is denoted by ϕi.

Notice that both ψi and ϕi depend on the quality of the venue, modeled by α,

and on the overall geometry Σ as pedestrians may modify their trajectories to

avoid walls or obstacles.

Based on the key features of human behavioral modeling discussed in the pre-

vious section, ψi and ϕi should be specified such that:

— Each pedestrian is able to develop a specific, heterogeneously distributed

strategy.

— A decisional hierarchy is applied under the assumption that interactions first

modify the activity and subsequently the motion.

(c) Related issues. The solution of this mathematical model provides the time

evolution of the dependent variables corresponding to position, velocity, and activ-

ity. Macroscopic quantities can be obtained by a local averaging at each point in

the domain where the crowd moves. In practice, in a domain σ surrounding a given

point x, the local density ρ(t,x) and the mean velocity ξ(t,x) are given by

ρ(t,x) ∼=
∑
i∈σ 1

ρM |σ|
, ξ(t,x) ∼=

∑
i∈σ vi

ρ(t,x) |σ|
, (3.2)

where |σ| denotes the measure of σ. Note that these are approximations as the limit

σ → 0 is not allowed. This is due to the fact that the system under consideration

is not continuous.

The model (3.1) gives the general mathematical framework for human crowds

with activity variables ui. If ui ∼= β, where β is a constant parameter shared by

all pedestrians as in traditional crowd dynamics, then this framework simplifies to:
dxi
dt

= vi,

dvi
dt

=
∑
j∈Ωi

ϕi(xi,vi,xj ,vj ;β, α,Σ).
(3.3)
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3.3. Mesoscopic scale by the kinetic theory for active particles

(a) Dependent variable. Let us consider a system of interacting pedestrians who

are viewed as active particles by the kinetic theory approach. Instead of giving

the time evolution of state variables (xi,vi,ui) for each pedestrian, the mesoscopic

(kinetic) description of the system is delivered by one particle distribution function

at time t over the microscopic states

f = f(t,x,v,u) = f(t,x, v, θ,u), (3.4)

where x ∈ Σ, u ∈ Du is the activity vector in activity domain Du, and v ∈ Dv

is the velocity in velocity domain Dv. We write the velocity in polar coordinates

v = v(cos θ, sin θ) = vω, where v ∈ [0, 1] is the speed, θ ∈ [0, 2π) is the velocity

direction related to an orthogonal plane frame, and ω is the unit vector denoting

the velocity direction.

The distribution function f is linked to the so-called test particle (pedestrian)

assumed to be representative of the whole system. If f is locally integrable, then

f(t,x,v,u)dx dv du is the (expected) infinitesimal number of pedestrians whose

micro-state, at time t, is comprised within the elementary volume

[x,x+ dx]× [v,v + dv]× [u,u+ du] (3.5)

of the space of the micro-states. Note that the function f may be divided by ρM ,

which is the maximal packing density of pedestrians as defined above.

(b) Mathematical structures. The general mathematical structure for time evo-

lution of the distribution function f can be obtained from a balance of particles

in the elementary volume of the space of the micro-states (3.5). This equation is

derived by equating the rate-of-change of the number of active particles (a-particles

for short) plus the transport due to the velocity variable to the net flux rate within

the elementary volume, that is

∂f

∂t
+ v · ∇xf = J [f ](t,x,v,u), (3.6)

where the dot product denotes the standard inner product in R2, ∇x denotes the

gradient operator with respect to the space variables only, and J [f ](t,x,v,u) is the

net flux rate due to interactions. As in traditional kinetic theory, the interaction

term is made of two parts in general:

J [f ](t,x,v,u) = G[f, f ]− fL[f ],

where G and L represent gain and loss (both nonlinearly acting on f) of pedestri-

ans in the elementary volume of the phase space about the test microscopic state

(x,vu). The detailed expression of these terms corresponds to different ways of

modeling pedestrian interactions at the microscopic scale.

In the kinetic modeling of human crowds, the interaction term is sometimes

written as

J [f ](t,x,v,u) = JG[f ](t,x,v,u) + JP [f ](t,x,v,u), (3.7)
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where JG and JP are related to modeling geometrical effects and interactions among

pedestrians within the interaction domain. More precisely, the term JG models the

desire pedestrians have to reach the exits and their ability to avoid the walls or

obstacles, while JP represents each individual’s tendency for less crowded areas

and/or to follow the main stream of motion.

We will mainly focus on the derivation of the term JP [f ](t,x,v,u), which

is determined by the interaction rules and walking strategies of each pedestrian.

To specify the interaction rules, we need to introduce three types of a-particles

(pedestrians):

— test particles with distribution function f(t,x,v,u): they are representative of

the whole system;

— field particles with distribution function f(t,x∗,v∗,u∗): by interacting with

them test particles may lose their micro-state;

— candidate particles with distribution function f(t,x∗,v∗,u∗): they can acquire,

in probability, the micro-state of the test particle after interaction with the field

particles.

Interactions among pedestrians lead to a modification of activity, velocity direc-

tion, and speed depending on the micro-state and distribution function of the

pedestrians in the interaction domain. Basic concepts about the interaction rules

include:

— The local interaction domain Ω = Ω(t,x, θ;R,Θ): A circular sector located at

the present position x, with radius R, symmetric with respect to the velocity

direction θ, with “visibility” angles Θ and −Θ. In this domain, pedestrians

perceive local density and density gradients in Ω, and interact with the other

pedestrians.

— Perceived density ρpθ: Pedestrians moving along the direction θ perceive a density

ρpθ different from the local density ρ. Models should account for the fact that

ρpθ > ρ when the density increases along θ, while ρpθ < ρ when the density

decreases.

— Transition probability density A[f ](v∗ → v,u∗ → u|x,x∗,v∗,v∗,u∗,u∗;α,Σ):

The probability that a candidate particle at x with state {v∗,u∗} shifts to the

state of the test particle {v,u} due to the interaction with field particles with

state {v∗,u∗} in Ω.

— Interaction rate η[f ](x,x∗,v∗,v
∗,u∗,u

∗;α,Σ): The frequency with which a can-

didate (or test) particle at x enters in contact with field particles in Ω.

Based on these concepts, the interaction term JP [f ](t,x,v,u) can be written as

follows:

JP [f ](t,x,v,u) =

∫
Γ×Dv×Du

η[f ](x,x∗,v∗,v
∗,u∗,u

∗;α,Σ)

×A[f ](v∗ → v,u∗ → u|x,x∗,v∗,v∗,u∗,u∗;α,Σ)
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× f(t,x,v∗,u∗)f(t,x∗,v∗,u∗)dx∗ dv∗ dv
∗ du∗ du

∗

− f(t,x,v,u)

∫
Γ

η[f ](x,x∗,v,v∗,u,u∗;α,Σ)

× f(t,x,x∗,v∗,u∗)dx∗ dv∗ du∗,

(3.8)

where Γ = Ω×Dv ×Du. Note that, here and in below, the square brackets denote

the functional dependence with respect to its arguments, that is, e.g. dependence

on the spatial derivatives of the arguments in brackets.

(c) Related issues. We remark that the macroscopic observable quantities can

be defined, under suitable integrability assumptions, by weighted moments of the

distribution function. For instance, the local density reads

ρ(t,x) =

∫
Dv

∫
Du

f(t,x, v, θ,u)v dv dθ du, (3.9)

where Dv = [0, 2π)× [0, 1] in polar coordinates, and the mean velocity is defined as

ξ(t,x) =
1

ρ(t,x)

∫
Dv

∫
Du

vf(t,x, v, θ,u)v dv dθ du. (3.10)

It is worth mentioning that the mesoscopic probability distribution is defined

over a multidimensional state space, typically two components for the position and

two for the velocity in case of crowds moving in two-dimensional domains, and

the activity variables, in addition to its dependence on time and space. Therefore,

devising computationally efficient numerical methods for these problems is highly

nontrivial. This further motivates the search for mathematical structures at higher

scales capable of reducing such computational complexity.

3.4. Macroscopic hydrodynamic modeling

(a) Dependent variables. The macroscopic scale adopts an Eulerian-type hydro-

dynamic description of a system of human crowds, in which the global crowd

dynamics are modeled by macro-scale variables (ρ, ξ,u) defining the state of the

system:

— ρ = ρ(t,x) is the dimensionless local density of the crowd at the point x and

time t, normalized with respect to the maximum packing density ρM ;

— ξ = ξ(t,x) is the dimensionless mean velocity at the point x and time t, nor-

malized with respect to the maximum average speed ξM . The mean velocity can

also be expressed in polar coordinates as follows: ξ = ξ(t,x)ω(t,x), where ξ is

the dimensionless mean speed and ω is the unit vector giving the direction of

the local mean velocity;
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— u = u(t,x) is the dimensionless local mean activity representing the specific

social-emotional state considered in each case study, with u ∈ Du for a specific

parameter domain.

To describe the local interaction between pedestrians at the macroscopic scale,

one also needs to define the interaction domain Ω also used at the lower scales.

Recall that the pedestrians at x perceive the action of all pedestrians in Ω =

Ω(t,x;ω(t,x)), which makes interactions nonlocal.

(b) Mathematical structures. At the macroscopic scale, the human crowd is

described by a second-order differential system for density ρ(t,x), velocity ξ(t,x)

and the activity u(t,x):

∂ρ

∂t
+∇x · (ρξ) = 0,

∂ξ

∂t
+ ξ · ∇xξ = A[ρ, ξ,u],

∂u

∂t
+∇x · (uξ) = S[ρ, ξ,u],

(3.11)

where A is a pseudo-mechanical acceleration acting on pedestrians in the infinites-

imal volume dx and S is a source term that implements locally the emotional state

generated by the interaction with the surrounding pedestrians. Both nonlocal and

nonlinearly additive interactions are enclosed in these terms. As before, the square

brackets denote functional dependence with respect to its arguments.

If one does not wish to consider the social behavioral variable, as in traditional

crowd dynamics, the model (3.11) can be simplified by taking the activity u as a

uniformly distributed constant in space and time, i.e. u ∼= β constant, to get
∂ρ

∂t
+∇x · (ρ ξ) = 0,

∂ξ

∂t
+ ξ · ∇xξ = A[ρ, ξ,β].

(3.12)

3.5. Critical analysis

This subsection proposes some brief remarks on the general framework of the mod-

els. Firstly, we distinguish between first- and second-order models, subsequently,

some reasonings are proposed on the statement of boundary conditions.

• Let us consider first- and second-order models. Models like (3.11) and (3.12) are

called second order, as that has been widely used also in the modeling of traffic

flow, before the study of crowd dynamics. The essence of second-order models is

than both position and velocity are described by using second-order dynamics such

as (3.12), a system of conservation laws, for the study of crowd dynamics. This is

also the case at the microscopic modeling, see for example in (3.3), a second-order
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system is used to describe the position-velocity pair of microscopic states for each

pedestrian. Note that the perceived distribution of both positions and velocity of

the surrounding walkers allows pedestrians to adapt their behavioral strategy in

the detailed description of micro-, meso- or macro-scale interactions.

There are another type of models, called first-order models, which are simpler

than second-order models. Take ξ = ξ(ρ) be a specified function in (3.12) for

example, this second-order model can be replaced by a simpler first-order model

∂ρ

∂t
+∇x · (ρξ(ρ)) = 0. (3.13)

For this simpler version of model, it is assumed that agents adjust instantaneously

their velocities according to the density they are experiencing (which implies infinite

acceleration) and take into account the slightest change in the density. However,

this simpler model might contradict empirical observations in some cases. This can

be avoided by using more sophisticated second-order models.89

At the microscopic level, a first-order version of the second-order model (3.3)

can be obtained, by simply assuming a function vi = vi(ρ), where ρ is the local

density defined in (3.2). Then the second-order model (3.3) is simply replaced by

dxi
dt

= vi(ρ). (3.14)

The same strategy can also be used in the mesoscopic model (3.6), in which the

speed v is suppressed by specifying v = v(ρ) with the concept of perceived density

which was introduced in the kinetic theory approach to modeling vehicular traffic.75

Some precise form of the speed v can be given, for example in Refs. 184, 181 and 182,

such that the maximal speed is kept under low density conditions (free flow regime),

i.e. up to a certain critical density ρc, while the speed decreases to zero, with a

polynomial-type dependence on the local density, for values of ρ greater than ρc
(slowdown zone). See also Refs. 97, 71, 72 and 73 for additional interesting studies

on empirical data and their interpretation toward modeling.

• Let us now consider the role of boundary conditions. The solution of mathemat-

ical problems, typically initial-boundary value problems, needs, at each scale, the

statement of initial conditions and boundary conditions, whenever the crowd moves

in venues with walls, internal obstacles, and inlet-outlet doors.

Initial conditions, i.e. at t = 0, are defined, at the micro-scale by position,

velocity and activity for all individuals in the crowd; at the meso-scale by the

distribution function over position, velocity and activity for the test particle for all

x in the walking domain; and at the macro-scale by the density and velocity for all

x in the walking domain.

Boundary conditions require models of a reflection dynamics at walls for all

dependent variables.30 In addition, the presence of walls modifies the walking tra-

jectories by the strategy developed by walkers in order to avoid collision with walls.
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This action occurs if the direction of the trajectory meets a wall and increases as

the distance from the wall decreases.

• The perception ability has an important role in the derivation of models as walk-

ers perceive, at each scale, the distribution of both positions and velocity of the

surrounding walkers, allows pedestrians to adapt their behavioral strategy in the

detailed description of micro-, meso- or macro-scale interactions.

4. Review and Critical Analysis of the Existing Literature

This section provides a survey and critical analysis of the literature on mathematical

approaches on modeling, simulations, and numerical analysis of dynamics of human

crowds. We consider some pioneering papers and mainly those which appeared after

review.25 The report specifically refers to the framework reported in Sec. 3. It is

presented in the next three subsections accounting for a critical analysis, which

pervades the whole section, focused on how far the various model and applications

consider the complexity features reported in Sec. 2. Section 4.4 proposes some rea-

sonings, valid at each scale, on the conceptual difficulties of the modeling approach.

These reasonings lead to the research perspectives which are treated extensively in

the next section.

4.1. Microscopic (individual based)

Here, we review some key works on microscopic models for crowd dynamics.

These range from molecular (individual based) and Brownian dynamics to cellular

automata and agent-based models.

4.1.1. Molecular/Brownian dynamics-like based models: The social force

model and its variants

The majority of the models in this category are based on the celebrated social

force model (SFM) for pedestrian dynamics115 proposed back in the mid ’90s. Its

derivation is based on the Langevin-type equation that contains a frictional term

and a random force term reading:

mi
dxi
dt

= − 1

τi
(v0iei − vi) +

∑
j∈Ωi

φi(·) + σiξi(t), (4.1)

where v0i is the maximum walking speed for an individual i, ei is the desired

direction, τi is a characteristic relaxation time, φi(·) is the force exerted to the ith

pedestrian, and ξi(t) is a random force and σi its amplitude. The random term,

usually represents fluctuations that occur around the preferred paths73 and it is

considered to be a Gaussian process. Thus, the expected value of random force

vanishes.

The idea behind the SFM is that the motion of individuals is governed by “vir-

tual forces”. These forces include the acceleration toward the desired destination, a
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resultant repellent force “exerted” by obstacles/borders and by the pairwise inter-

action between nearby individuals, that keeps an individual at a distance from

another. Furthermore, one may also consider the effect of a resultant attractive

force due to mimetic behavior that may observed for example in situations such

as those of emergency evacuation or the movement toward objects of common

interest.115

For the numerical integration of the equations of motion of the SFM and its

variants, one should take into account that the resulting system is not Hamiltonian

due to the friction term. Thus, established methods that have been developed for

Molecular dynamics should be used with caution.138

The SFM has been widely used to simulate crowd dynamics with applications

ranging from guided crowd dynamics204 and the behavior of pedestrian at signalized

intersections209, 212 to emergency evacuation112, 114, 169, 210 and the mitigation of

the spread of infectious diseases,82 to name just a few.

On the other hand, various works have been focused on the adaptation/extension

of the SFM in various directions. For example, in Ref. 207, the authors have com-

bined the pairwise Mutual Information90 and the SMF to evaluate the disorder of

an escaping crowd, thus adjusting the parameters of the SFM in a dynamic way

in order to achieve an optimal evacuation. In another work, the SFM has been

adapted to include stochasticity in order to classify and quantify changes due to

the collision-avoidance movement.74 Moreover, the SFM has been the basis for for-

mulating the collision-avoidance problem between two individuals, treated like a

Nash-equilibrium problem, Ref. 176 in order to derive a Fokker–Planck (convection-

diffusion PDE) equation in the thermodynamic limit.60

4.1.2. Cellular automata models

The concept of cellular automaton (CA) has been created by Stanislav Ulam and

John von Neumann in 1950s and finalized in its current form by John von Neumann

in 1960s.197 Since then, CA have been rapidly developed and widely used to model

the dynamics of complex systems including crowd dynamics.38, 158 In a nutshell,

CA models are discrete dynamical systems defined by three main components,

namely the discrete lattice of cells, the states, i.e. a set of discrete variables, and

the transition rules that govern the way cells change their state in discrete time

steps.

Therefore, in a general way, the evolution of crowd dynamics can be represented

by a discrete-time/discrete space model of the form:

si(t+ 1) = R(si(t), si−l1(t), . . . si+l2(t),u(t)). (4.2)

si(t) ∈ Rd is a d-dimensional vector containing the states at the cell i that can be

discrete or continuous variables, including for example information about if the cell

i is empty or occupied, if it corresponds to a border/object, the speed and direction

of the individual that occupies the cell at time t, his/her desired direction, etc.;
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the integers l1, l2 define the radius of the pairwise interactions,42 R : RN → Rd
denotes the evolution operator that can be deterministic or probabilistic (usually

a Markovian process), and N denotes the number of cells at time t that influence

the state of the cell at time t+ 1. Finally the vector u ∈ Rl reflects the influence of

external stimuli, such as alarms, announcements, external notifications, and weather

conditions.

A two-dimensional lattice is usually formed by square cells of approximately

40 cm× 40 cm,137 which is the average space around an individual on a layout plan

view; taking into account that the average walking speed at normal situations (i.e.

when people are not in a hurry or under panic) is 1.3 m/s (see Ref. 115) one can

derive the unit time step of the simulation (the time of transition from a cell to a

neighbor cell) which is 0.3 s.137

In the simplest case of a two-dimensional square lattice, the state of each cell is a

binary variable (empty of occupied), while simple rules of motion can be described

in a probabilistic way for example as follows (see also Ref. 56). In each time step,

individuals stay still or move simultaneously according to a transition probability pij
in their Moore neighborhood defined by the eight cells surrounding the cell occupied

by the individual. This transition probability depends on the desired direction and

the speed of the individual and the “free cells” in its neighborhood. If more than one

individual decides to move to the same not-occupied cell, then only one is allowed

to go there; this choice is made according to the corresponding relative transition

probabilities. If the cell in which the individual has “decided” to move is already

occupied, then he/she does not move.

Cellular Automata models have been used to approximate the emergent flows for

a bidirectional pedestrian walkway.74 The idea of chemotactic responses to attrac-

tant and repellent sources, has been used in the so-called floor field model56, 137

to describe long-range interactions, in order to approximate collective dynamics in

counter flows, such as lane formation, and to study the effect of the cell size and

the maximum walking speed. Cellular Automata have been also combined with

game-theoretical approaches to model rationality, herding, and conflict during an

emergency evacuation.211 Other studies have coupled CA with fuzzy logic to simu-

late crowd evacuation processes, with the usage of a Mamdani-type fuzzy inference

system for defining the transition rules.102 For a review of CA modeling approaches

for crowd dynamics, see Ref. 145.

4.1.3. Agent-based models

Agent-based (AB) simulators are the state-of-the-art in individual-based, say micro-

scale, modeling of crowd dynamics. AB models introduce heterogeneity in the

behavior of individuals and can approximate real-world environments/urban archi-

tectures, thus integrating concepts and techniques from both the SFM and CA

modeling approaches but also from other disciplines, ranging from game theory and

complex networks to epidemiology, neuroscience and sociology.110, 201
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Agent-based models have been used to model many complex crowd dynamics

under realistic situations and scenarios. One of the first attempts in this particular

field was that of the simulation of evacuation from a hospital.64 In this particular

model, agents possess six attributes that influence their mobility, namely walk-

ing speed, physical size, ability to traverse, perception, psychological profile, and

assistance needs including motorized and non-motorized wheel-chair users. Another

application of AB models is for the simulation of pedestrian flow in a continuous

space which is represented as a network.148

Agent-based models have been also developed to simulate evacuation under

structural damages of buildings subjected to ground motions due to earthquakes.147

In this model, agents were categorized according to their gender, age, body size,

walking speed, stride length and step frequency based on experimental data.

Recently, AB models have been used to simulate evacuation from the emergency

department at the Johns Hopkins Hospital during the COVID-19 pandemic due to

a fire emergency.109 The agents were categorized in two main types, namely patients

and staff that have the mutual interest of reaching the safe zone. Patients were fur-

ther categorized into visually impaired, hearing impaired, mobility impaired, men-

tally impaired, and non-disabled. Mobility impaired patients were further classified

into wheelchair users, motorized wheelchair users, stamina impaired, high-acuity

bed-bound, and low-acuity bed-bound patients, while non-disabled patients were

categorized as elderly, children, and adults.

4.1.4. Critical discussion on microscopic simulations

Models derived at the microscopic models and, in particular, highly detailed agent-

based models are the state-of-the-art in the simulation of realistic crowd dynamics.

However, all models are just approximations of the real-world dynamics. Because of

the inherent complexity, strong heterogeneity and nonlinearities in the interactions

between individuals, AB-models are built with uncertainty on the various param-

eters, variables and evolution rules ranging from physical to sociological, cognitive

and emotional ones.

What is usually done with such detailed simulators in order to relax the inherent

uncertainty and to study the emergent dynamics is to run “brute force” temporal

simulations. One usually sets up many initial (macroscopic) conditions, for each

one of them create a large enough number of ensemble (microscopic) realizations,

probably changes some of the rules and then runs the detailed dynamics for a long

time. The aim is to investigate how parameters such as initial conditions, walking

speeds, “social-forces”, architectural and urban interventions, the use of alerts and

signs, may influence the collective behavior, the time evacuation, the capacity of a

shared space or the rate of spread of an epidemic in a structure.

However, such “experimental” simulations suffer from the “curse of dimension-

ality” and are therefore insufficient for the systematic numerical analysis, optimiza-

tion and design of controllers for shaping the emergent dynamics.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

16
11

-1
65

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

51
.7

0.
14

5.
23

6 
on

 0
1/

10
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 21, 2023 13:51 WSPC/103-M3AS 2350037

1630 N. Bellomo et al.

An alternative is the statistical-mechanics-based approach presented above

aiming at extracting macroscopic evolution laws and then analyze and con-

trol their dynamics with the best available continuum-level techniques. The

gap between the high-dimensional agent-based space and the low-dimensional

emergent/macroscopic/hydrodynamical scale is bridged through closures, relating

higher-order, moments to a few, low-order moments of the underlying detailed dis-

tributions. However, such closures are based on assumptions introducing certain

biases in the modeling and numerical analysis. Infinite size of population, homoge-

neous agents, homogeneous interaction networks are some of the assumptions that

may bias the analysis at the density/crowd level.

Thus, bridging systematically the individual to the emergent crowd dynam-

ics constitutes an important, open challenge in the contemporary crowd dynamics

modeling, systematic qualitative and numerical analysis, and control. In Sec. 4.4,

we briefly touch on this problem.

4.2. Mesoscopic (kinetic)

This subsection reports about different methods and applications concerning mod-

eling approaches developed by methods of generalized kinetic theories. In detail, we

consider models with discrete velocities, models with behavioral-social dynamics,

and contagion problems in crowds. These topics are selected among a variety of

possible case studies.

4.2.1. Kinetic models with discrete velocities

Let us consider discrete velocity models, in which the velocity modulus v (speed)

and the velocity direction θ take discrete values in

Iv = {v1 = 0, . . . , vi, . . . vm = 1}

and

Iθ =

{
θ1 = 0, . . . , θj , . . . θn =

n− 1

n
2π

}
.

Therefore, the overall state of the system is described by the set of probabilities:

f = f(t,x) = {fij(t,x)}, (4.3)

where fij(t,x) denotes the probability, at time t and position x that a pedestrian

moves with speed vi and direction θj .

Accordingly, the mathematical structure writes as a system of n×m equations

(∂t + vij · ∇x)fij(t,x) = Jij [f ](t,x), (4.4)

where Jij [f ] is the operator modeling interactions.
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Macroscopic quantities are obtained as in Eqs. (3.9) and (3.10), where finite

sums replace integrals

ρ(t,x) =
n∑
i=1

m∑
j=1

fij(t,x), (4.5)

while analogous calculations lead to mean velocity

ξ(t,x) =
1

ρ(t,x)

n∑
i=1

m∑
j=1

vi(cos θji+ sin θjj)fij(t,x), (4.6)

where i and j are unit vectors of an orthogonal frame.

Remark 4.1. In general, models can introduce discrete or continuous activities,

as well as different groups of pedestrians, i.e. functional subsystems (FSs). Then, a

superscript h, with h = 1, . . . , r, denotes each FS.

Remark 4.2. It is useful to normalize the terms fij with respect to the maximal

packing density ρM , defined in Sec. 3, and similarly the speed is divided by vM , see

Remark 3.1.

The model proposed in Ref. 20 considers a dynamics of different FSs in

unbounded domains, including antagonist groups, where each FS uniformly shares

different activity variables. The dynamics refer to:

(a) Selection of preferred velocity direction. The search for the preferred direc-

tion is obtained by combining, weighted by the local density, the following trends:

— T1: Trend to the exit or a preferred direction;

— T2: Attraction by the mean stream induced by the other pedestrians;

— T3: Search of less crowded direction with minimal density gradient.

In particular, increasing local density increases T2 and T3 and weakens T1.

(b) Modeling the speed. The speed is modeled by a simple phenomenological

model accounting for the local density and the quality of the venue. More precisely,

within the framework of first-order model, the speed is given by v = v[ρ], i.e. it is

supposed to depend on the local density in a functional way.

Remark 4.3. The dependence of v on ρ can be based on empirical data in uniform

flow conditions, see Refs. 180–182, 184. Some authors, see Refs. 24 and 29, include

density gradients to account for the so-called, perceived density, which is greater

(lower) than the real one for positive (negative) slopes.

This approach corresponds to a hybrid model, as both kinetic and macroscopic

structures are used. In detail:

— The velocity direction is modified in a kinetic way, by modeling collective behav-

iors from microscopic interactions with tools of kinetic game theory;
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— The speed is heuristically supposed to be induced by macro-scale quantities, i.e.

it depends on the local density.

Detailed descriptions of the model are reported in Sec. 2 of the pioneering

article,20 where, in addition to modeling, existence of solutions is proved for arbi-

trarily large times, while simulations are obtained through computational schemes

based on splitting methods, where the transport equations are treated by finite

difference methods for hyperbolic equations. Some preliminary reasonings toward

the modeling of stress conditions, related to awareness of danger, are also pro-

posed. Subsequently, the derivation of macro-scale equations from the underly-

ing mesoscopic description was developed by an asymptotic limit of the kinetic

models.18

The contents of Ref. 20 have motivated various developments generally focused

on specific applications, for instance, the study of evacuation dynamics during stress

conditions, see Refs. 2, 133 and 146. Further developments correspond to crowd

dynamics in domains with boundaries and obstacles.133, 146 In this case, an addi-

tional trend must be considered in the modeling approach, i.e.

— T4: Trend to avoid collisions with walls or obstacles.

Technical calculations to model how the selection of trajectories accounts for

all trends T1–T4 are reported in Ref. 12. Applications mainly refer to the study

of evacuation dynamics focusing both on pattern formation and evacuation time.

Patterns of the flow are related to overcrowding phenomena that indicate high risk

against safety. In detail, the following studies have been developed:

— Numerical simulations of evacuation time depending on the size of the exit zone,

on the initial distribution of the crowd, and on a parameter which weighs the

unconscious attraction of the stream and the search for less crowded walking

directions.2

— Lane formation in bidirectional flow in corridors, evacuation from a room with

one or more exits with variable size, with and without obstacles.27, 133

— Crowd dynamics of several groups characterized by different motility and walk-

ing strategy. Some pattern formations are shown by numerical simulations, for

instance, lane formation and clustering of a crowd with several groups having

different motility.146

4.2.2. Kinetic models with behavioral-social dynamics

The models reviewed in the preceding subsection indicate that the overall dynamics

depend on specific parameters modeling the quality of the venue, the walking ability,

and the emotional state of the pedestrians.

The role of the activity variable at all scales, from microscopic to macroscopic,

has been studied in Ref. 12. In principle, this emotional state is heterogeneously

distributed in the crowd. Such state significantly affects the overall crowd dynamics
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in extreme real-life situations such as a peaceful demonstration that turns violent88

and the spreading of panic in emergency evacuations.108 Studies devoted to safety

problems clearly indicate that crisis management can take advantage of models that

account for human behaviors such as spreading of emotional states.172, 173, 175, 203

On the other hand, fully consistent behavioral models should describe the

dynamics of interactions and propagation of specific emotional state. The foun-

dations of the mathematical approach on this topic were proposed in Ref. 27 by

inserting in the microstate of the a-particles an additional social variable and

accounting for the dynamics of this variable also in the transition probability den-

sity A[f ] . Numerical simulations show clear emergence behaviors such as pedes-

trian segregation into two groups walking in opposite directions in a crowded

street.27

The key problem is then modeling the dynamics of the activity variable and

consequently the dynamics of the mechanical variables. Recent studies have been

focused on the aforementioned concepts. For instance, a kinetic modeling of human

crowds with behavioral-social dynamics is considered in Ref. 29, in which inter-

actions are supposed to trigger a decision process which comprises the following

sequential steps:

(1) Exchange of the stress state;

(2) Selection of the walking direction;

(3) Selection of the walking speed.

The crowd evacuation from a metro station is simulated in Ref. 29 to enlighten

the role of the emotional state in the overall dynamics. The numerical results

show that stress propagation significantly affects crowd density patterns and overall

crowd dynamics.

An interesting model for crowd dynamics with emotional contagion is consid-

ered in Ref. 41, in which interacting pedestrians modify their psychological status

and, in turn, the walking strategy. The model involves pedestrian movement with a

speed proportional to a “fear” variable that undergoes a temporal consensus aver-

aging based on the distance to other agents. The problem is approached by an

agent-based model as well as in a continuum limit. However, in the case that when

pedestrian paths cross, the continuum PDE model does not capture the dynamics

of the particle system accurately due to crossing of the characteristics of the PDE,

then a kinetic equation is introduced to provide a continuous description of the

particle model. More precisely, therein, the emotional state, fear, is propagated by

a Bhatnagar–Gross–Krook (BGK) type kinetic model

∂

∂t
f +

∂

∂x
(uf) =

∂

∂u
γ((u− u∗)f), (4.7)

where f(t, x, u) is the probability density depending on time t, position x and

local fear level u. The quantity u∗(t, x) is the “average” fear level for location x at

time t computed as the mean fear level of individuals weighted by their distance
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from x:

u∗(t, x) =

∫∫
κ(|x− y|)f(t, y, u)u du dy∫∫
κ(|x− y|)f(t, y, u)du dy

, (4.8)

with a interaction kernel κ(r) that decays with r and integrates to one.

The results are limited to one space dimension. The numerical examples with

the kinetic description can recover the behavior of emotional contagion propagation

observed at the microscopic level. This model is further studied in Ref. 200 by

appropriate numerical methods, which further illustrates that kinetic description

provides better resolution than the macroscopic model whose viscosity solution

becomes incorrect when the characteristics at the microscopic level cross. Note that

Ref. 41 has provided a multiscale approach, from microscopic to macroscopic, for

crowd dynamics with emotional contagion. Recent studies have further developed

this research line.206

Motivated by the studies in above references, the following hybrid model of

crowd dynamics with emotional contagion has been developed131:

∂

∂t
fi + u(cos θi, sin θi) · ∇xfi = J [f ] + γ((u− u∗)fi)u, (4.9)

where fi(t,x, u) is the distribution function at time t, position x, with moving

direction θi and emotion level u. Several evacuation scenarios involving two groups

of interacting pedestrians are investigated in Ref. 131 to assess the impact of domain

geometry on the fear propagation and evacuation dynamics.131, 135

Remark 4.4. Note that the interaction term J [f ] in (4.9) takes into account T1–

T4 as the standard model for crowd dynamics.12 However, T2–T3 are weighted by

the emotional state u, such that, a higher level of emotional state (more specifically,

fear level) results in a higher tendency to follow the stream unconsciously (T2) and

lower ability to search for the less congested direction (T3).

4.2.3. Kinetic models with epidemic spread

The onset of the SARS-CoV-2 pandemic and subsequent space diffusion has moti-

vated studies somehow related to crowd dynamics. In general, contagion occurs

by contact, or simply clustering, of people in a crowd. Diffusion is a subsequent

dynamics related on the movement of the crowd in a territory also by using public

or individual transportation.

It is worthwhile making precise the role of the social variable in the dynamics

thus, distinguishing emotional and awareness to the risk of epidemic contagion,

despite of their apparent similarity. The key social state in the former is the level

of stress, while in the latter is the level of awareness, which lead to completely

different consequences, as stress promotes aggregation of pedestrians and leads to

the herd behavior under stress conditions,140 while the level of awareness pushes

pedestrians to follow social distancing guidelines to prevent epidemic spread.
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Kinetic models of crowd dynamics are also applied, after the onset of the SARS-

CoV-2 pandemic, to the study of epidemic spread in human crowds. In details, a

hybrid approach, coupling a kinetic model of crowd dynamics27 and epidemic con-

tagion model in one dimensional crowd motion, is introduced in Refs. 134 and 135:
∂

∂t
fi +

∂

∂x
(vi[ρ]fi) = Ji[f ],

∂hi
∂t

+
∂

∂x
(vihi) = γ((u− u∗i )gi)u,

(4.10)

where fi(t, x) is the pedestrian distribution function at time t, position x, with

moving direction θi, hi(t, x, u) is the probability of finding people with contagion

level u at time t, position x, and with walking direction θi, for two directions i = 1, 2

in one-dimensional case. The quantity u∗i (t, x) is the local average contagion level of

pedestrians with moving direction θi weighted by their distance from x as similarly

defined in (4.8). This model is one way coupled, in which the first equation is closed

but the second one depends on the solution of the first one, meaning that the

contagion spreading depends on but does not influence the crowd motion.

Another kinetic model of crowd dynamics with epidemic spread is the one con-

sidered in Ref. 179, in which the pedestrians are described by different groups

(i.e. susceptible, exposed, and infected) and the pedestrian dynamics are mod-

eled by a kinetic equation for multi-group pedestrian flow accounting for a nonlo-

cal Susceptible–Exposed–Infected–Susceptible (SEIS) contagion model for disease

spread:

∂fk

∂t
+ v · ∇xf

k +R[fk] = T k, (4.11)

where fk = fk(t,x,v), k = S,E, I, are the distribution functions of susceptible

(S ), exposed (E ) and infected (I ) pedestrians. The operator R is used to repre-

sent interactions between pedestrians. A social force model is utilized in Ref. 179.

However, it can be replaced by the usual interaction term J [f ] as in the kinetic

theory of active particles. Finally, the operator T k in (4.11) is defined by using an

SEIS-type kinetic disease spread model
TS = νf I − βIfS ,

TE = βIf
S − θfE ,

T I = θfE − νf I ,

(4.12)

with constants ν, θ and some well-defined nonlocal infection rate βI depending

on the rate of infected pedestrians. The numerical simulations show qualitative

behaviors of each group, which may also shed some light on contagion problems in

crowds.

Finally, we also mention a novel multiscale mathematical framework informed by

multidisciplinary data modeling pandemic dynamics proposed in Ref. 21, in which

the interaction of different spatial scales, from the small scale of the virus itself and
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cells to the large scale of individuals and further up to the collective behavior of

populations, are taken into account, such that both the propagation of virus and

the spatial patterns of the crowd are studied by kinetic and lattice models. It sheds

light on further development of new mathematical theories, ideas and techniques.

4.3. Macroscopic (hydrodynamical) models

Macroscopic (hydrodynamical) modeling of human crowd describes dynamics in a

coarse-grained way (via densities, mean velocities, and mean flows). Firstly, this

subsection presents a review of models and problems at the macroscopic scale

and, subsequently, some reasonings on computational problems within a multiscale

vision.

4.3.1. On macro-scale models and problems

The reference structure for the derivation of models is defined in Sec. 3.4 by

Eq. (3.11). This structure involves the local density ρ = ρ(t,x), mean velocity

ξ = ξ(t,x) and activity u = u(t,x). It can be simplified by assuming that the

activity is uniformly shared by all pedestrian (second-order models) or even by first-

order models, if ξ is approximated by heuristic models linking the mean speed to

local density and gradients of the density along the trajectories.

In general, we will call third-order models those derived by using of all equations

in (3.11). In principle, one may invent first-order models which include also the

dynamics of the activity variable.

It is worth mentioning three key objectives/problems of the modeling approach:

(1) Velocity direction accounting for the need of reaching a target or a meeting

point and of avoiding obstacles walls.

(2) Adaptation of the speed to local density conditions.

(3) Social dynamics in the crowd.

Examples of first- and second-order models can be found in Refs. 76 and in

Ref. 26, respectively. Both models are derived according to an oversimplified model-

ing of the selection of the velocity directions. See also the critical analysis in Ref. 121

and further developments in Ref. 126.

The main reference for macro-scale models is the book,77 where the derivation

of models is referred to a multiscale vision. A theoretical approach to the three key

modeling problems has been proposed in Ref. 30 which has been already cited in

reference to a multiscale vision of the modeling approach. Indeed, this paper opens

at new perspectives toward the modeling of macro-scale models.

Bearing all the above in mind, let us now present a concise description to show

how the modeling approach evolved in time. The first modeling attempts can be

traced back in the early 1970s,116, 117 where the crowd motion was modeled as a

molecular fluid based on gas-kinetic and fluid-dynamic models. In particular, the
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crowd was modeled as a Hamiltonian system at the thermodynamic limit, thus

assuming conservation of momentum and energy.

Following studies123, 124 based on the theory of hydrodynamics143 and theories

of continuum mechanics addressed phenomenological continuum models in the form

of PDEs for large scale crowds starting from the modeling of a single type of pedes-

trian and extended to a multiple type flow. The derivation of the models was based

on three main hypotheses, namely that the speed of pedestrians of a single type in

a multiple type flow is determined by a function of the total density, pedestrians

seek to minimize their motion in time and while avoiding places of high densities,

and, that their motion is governed by a potential determined by the destination

they want to reach.

In another study,68 the authors used the conservation law of mass analogous

to the ones used for traffic dynamics in order to capture patterns that are typical

in crowds but not in traffic dynamics (such as evacuation under panic). That was

achieved by modifying both the speed law, i.e. the fundamental diagram, and the

definition of the solution per-se, thus introducing a non-entropic Riemann solver.

Other studies, have used continuum mechanics theories, based on balance equa-

tions of mass and momentum in the form of PDEs which are “closed” by phe-

nomenological algebraic equations linking the local velocity to density and density

gradients.76 The closures take into account the presence of obstacles and pedestrian

strategies, such as the avoidance of high density places that are associated with and

increased life-threat.

Based on the concept of contact dynamics for deformable solids95 and by apply-

ing the principle of virtual work on the crowd, in Ref. 127 a macroscopic model was

proposed to approximate the dynamics, pressure, and contact forces in a moving

dense crowd. In Ref. 69, the authors proposed a model based on nonlocal conser-

vation laws in two space dimensions, thus incorporating explicitly the influence of

walls, obstacles and exits into the crowd dynamics in order to predict observed

phenomena such as clogging and the spontaneous formation of queues at the exits.

Recently, in Ref. 179, the authors derived a hydrodynamic approximation of a social

force model coupled with an Eikonal equation and a non-local SEIS model for dis-

ease spread to study the effect of crowd motion in the spread of an infection disease

among pedestrians.

An additional interesting application is proposed in Ref. 150, where the authors

coupled a macroscopic model for crowd evacuation (inspired to a 2D vehicular

traffic flow model) with a hydrodynamic model of flood inundation described by

the Shallow Water Equation. The model is in charge of describing the collective

behavior of the crowd during an evacuation scenario due to a flood.

The qualitative analysis of mathematical problems has received much attention

from mathematicians, leading to valuable contributions. As examples, the reader

can refer to the Hughes models,7, 62 see also Ref. 165 for the proof of measure con-

tinuity. On the other hand, the research activity has not yet succeeded to provide

a fully convincing reply to the criticism that the number of pedestrians, in most
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cases, is not high enough to justify the assumption of continuity of the matter.

In addition, the modeling approach should also consider that the flow of pedestri-

ans often mixes almost continuous and rarefied conditions. This is an important

topic also in the case of flows through different venues, for instance from small

size venues (with high pedestrian density) to large size venues (with low pedestrian

density), or vice versa. This feature of the physics of crowds motivates attention to

multiscale computational problems such as those treated in the second part of this

subsection.

4.3.2. Numerical-analysis-based bridging of microscopic and macroscopic

scales: The Equation-free approach

In this section, we briefly present the concept of the Equation-free multiscale

numerical analysis-based framework that allows the bridging of micro- and macro-

modeling scales.

Let us assume a microscopic (SFM, CA, AB) simulator with N individuals that

can be in general presented as

U(t+ TU ) = ΦTU
(U(t),p). (4.13)

U(t) ∈ RMN denotes the vector of the states containing M attributes for each

individual (in the simplest case the positions and velocities for each individual).

ΦTU
: RMN × Rp → RNM is the microscopic evolution operator, which given the

values of the states at time t will report the values of the evolved microscopic

distribution after a time horizon TU (considered as the sampling time of the obser-

vations); and p ∈ Rp is the vector of the model parameters.

A key hypothesis for the existence of macroscopic models in the form of PDEs

is that after sometime t � TU the emergent crowd collective dynamics can be in

principle described by a few macroscopic quantities, say, u ∈ Rn, n�MN . Usually

these “few” quantities are the first moments (e.g. densities ρ(t,x) and the mean

velocity field v(t,x) distributed in space as in the hydrodynamical models) of the

underlying microscopic distribution.

This implies that there is a slow, low-dimensional manifold that can be param-

eterized by u. The hypothesis of the existence of such a slow low-dimensional

manifold dictates that the higher-order moments y ∈ RMN−n of the microscopic

distribution U become very fast (compared to the macroscopic time of observation,

say T � TU ) functions of the n lower-order moments.

At the moments-space, this dependence can be written as a singularly perturbed

system of the form: u(t+ T ) = F T (u(t), εy(t),p),

y(t+ T ) = W T (u(t), εy(t),p),
(4.14)

where ε > 0 is a sufficiently small number.
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Under the above description and assumptions, Fenichels’ theorem92 on the exis-

tence of an invariant low-dimensional “slow” manifold as specified above can be

extended to discrete systems of the form of (4.14) (see also Refs. 45 and 191):

u(t+ T ) = F T (u(t),χ(u(t),p, ε),p). (4.15)

Such a smooth manifold is defined as

Mε = {(u,y) ∈ Rn × RMN−n : y(t) = χ(u(t),p, ε)}. (4.16)

The manifold Mε is diffeomorphic, O(ε) close to the M0 manifold defined for ε = 0,

and locally invariant under the dynamics given by Eq. (4.14).

Thus, on the slow manifold, one can in principle define the (discrete in time)

macroscopic model:

u(t+ T ) = F T (u(t),p), (4.17)

where F T : Rn×Rp → Rn is a smooth multi-variable, vector-valued, function having

u(t) as initial condition. The above macroscopic map (called coarse-timestepper)

describes the emergent collective dynamics and can be obtained by finding the

closure expressed by χ relating the higher-order moments of the microscopic dis-

tribution U(t) to the macroscopic variables u(t).

The Equation-free approach,130, 152 via the above idea, bypasses the need to

extract such a closure analytically, thus providing it on demand in a strict numerical

way as follows:

Given the set of the macroscopic variables at time t0:

(a) Set the coarse-grained initial conditions u(t0) ≡ u0.

(b) Transform the coarse-grained initial conditions to consistent microscopic dis-

tributions U0 = µu0, where µ is a lifting operator.

(c) Run the microscopic (SFM, CA, AB) simulator for a short macroscopic interval

T to get the resulting microscopic distributions U(t + T ). The choice of T is

associated with the (estimated) gap of the eigenspectrum of the Jacobian of

the coarse-timestepper around the stationary state.

(d) Obtain the values of the coarse-grained variables using a restriction operator

M : u(t+ T ) = MU(t+ T ).

Around the above coarse-timestepper one can “wrap” iterative linear algebra

numerical methods (and for large-scale system, matrix-free iterative methods in the

Krylov subspace) to perform numerical bifurcation analysis187, 189, 190 and design

both linear and nonlinear control methods.188, 190

Within this framework, in Refs. 70, 151 and 159 the authors studied the dynam-

ics of two crowds moving along a corridor from opposite directions with a door-like

bottleneck in the middle of the corridor using the social-force model as microscopic

simulator. Using the Equation-free approach, they constructed the bifurcation dia-

gram for the collective dynamics with respect to the width of the door, thus iden-

tifying the existence of a coarse-grained Hopf bifurcation point, marking the onset

of oscillations in the collective flow in both directions.
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More recently, in Ref. 162, the Equation-free approach has been coupled

with machine learning for the numerical bifurcation analysis and data-driven

control of the collective dynamics of complex/multiscale systems modeled via

microscopic/agent-based simulators. The proposed approach has been applied to

agent-based simulations of traffic dynamics, however, it can be also used in the case

of crowd dynamics.

4.4. Additional remarks, further applications and perspectives

The review of the existing literature on modeling by active particle methods has

revealed an intense research activity. We expect this to be further developed in

the next years, which will be devoted to the challenging objective of developing

mathematical tools to couple mechanics and human behaviors. This objective can

be pursued not only for crowd dynamics, but also for a broad variety of studies

involving living systems in general.

Indeed, further investigations are very attractive due to many complex aspects

of human psychology in different scenarios and the challenges in describing with

mathematical equations how heterogeneous behaviors affect the collective dynamics

of crowds. Therefore, suitable studies on the psychology of the crowd are useful, even

necessary, toward a fully consistent modeling approach.40, 59, 193 Different emotional

behaviors have been studied to understand their ability to modify the crowd walking

strategy.87, 142, 186

The impact of social dynamics on individual interactions and their influence

at higher scales has been studied in various papers, for instance, Refs. 80 and 81.

In addition, as noted in Refs. 4 and 30, crowd dynamics should be described at

all the three possible modeling scales (i.e. microscopic, mesoscopic, macroscopic)

by a consistent approach for many practical applications. Namely, models must be

derived at each scale using the same principles and similar parameters, i.e. within

a multiscale vision. This is a key to derive macroscopic models from the underlying

description at the micro-scale, see Refs. 51 and 52. This approach is also useful to

the application of computational methods as we shall see in Sec. 5.

Therefore, we suggest to look ahead to perspectives in two sequential steps.

First, in this subsection, we propose some general reasonings on recent applications

of mathematics to model crowd dynamics. Then, in Sec. 5, we select a number of

key problems which we believe will capture the attention of applied mathematicians

in the next years. Hints to tackle these problems will be given as well.

Let us now mention some noteworthy research articles dealing with topics that

are presently at an initial stage, but arguably will be further developed. Besides

their theoretical interest, the following topics are of practical importance as they

may significantly contribute to crowd management in emergency situations where

overcrowding may cause fatal accidents.17, 54

(1) The concept of crowd is broadening in order to consider different types of

interactions and modeling scopes. An example of such scopes is to account for
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contagion problems in a population.164 Further studies toward the search of

new mathematical structures are motivated by this broader vision. In addition,

possible alternatives can be studied, like, e.g. methods derived from the Fokker–

Plank framework.39

(2) Control problems have been studied focusing on the role of leaders, trained

personnel to guide pedestrians to egress from a complex environment whose

connectivity may not even be known or may modified by incidents.5 Modeling

of crowds with passive and active agents can contribute to the formulation of

these control problems,65 see also Ref. 6. Models and empirical data of assisted

evacuation dynamics178, 198 can provide further support. An important topic

appears to be the detection of stress conditions.149

(3) Crowd dynamics should be studied also in complex frameworks. An example is

the coupling of crowd dynamics with vehicular traffic to organize the motion

of people in combination with different types of vehicles.44, 96

(4) The study of the crowd psychology should go beyond the concept of panic, which

has received criticisms. Well-defined feelings, such as stress, or even positive

behaviors, such as awareness of danger situations,15 should be investigated.

However, independently of the use or misuse of the term “stress”, simulations

of high stress conditions are useful.199, 213 The pioneering papers by Helbing

and coworkers offer an important framework to start from Refs. 100, 111–115

and 156.

(5) The motion of crowds depends on the quality of the environment. For example,

so far a parameter α ∈ [0, 1] has been introduced to account for such qual-

ity. The parameter α can be used at all scales as shown in Ref. 30. However,

the literature in engineering journals should consider a multiplicity of specific

features of venues where the crowd moves, such as presence of smoke174 or foot-

bridges.46, 196 In general, the modeling approach should include the awareness

of the specific features of the environment where the crowd moves.67

(6) A key problem for all different frameworks is the modeling of interactions, which

can benefit from the contribution of theoretical tools of game theory.48, 58, 168

Further theoretical studies can contribute to the derivation of social models

of micro-scale interactions, for instance the study of fast and slow thinking128

somehow related to decision making.128 Indeed, understanding interactions

leads to understanding collective dynamics at all scales.120, 205 Thus, the search

of universal interaction models is well motivated.129 This research objective

might require mathematical structures different from the classical ones reviewed

in this paper. An interesting results of this type of quest is given in Ref. 194.

(7) Safety in evacuation is often mentioned as an application crowd dynamics

model. In addition to previously cited articles, see also Refs. 125 and 195. For

related congestion problems, see Ref. 144. In addition, contagion problems have

received much attention recently, as stressed in Sec. 4.2. Another important

application is related to engineering problems. For example, the study of crowd
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evacuation can lead to improve the design of buildings with enhanced safety.171

Analogous reasonings apply to urban planning. Models of crowd dynamics on

lively structures, such as footbridges, can contribute to their design again with

the aim of improving safety.46

5. On a Forward Look to Research Perspectives

The review and critical analysis presented in the preceding sections, mainly in

Sec. 4.4, has already identified some pros and cons of the current state-of-the-art

and a few research perspectives, which have been brought to the attention of the

interested reader. Beyond these indications, a further selection of research targets

is proposed in this conclusive section. We consider five key topics worth to be

developed within well-focused research programs because, according to the authors

opinion (it might be even bias), these topics will be pervasive future research activity

in the field.

These topics are treated in the next five subsections which include also some

hints on how to tackle each of them. This is a selection, mostly based on the

authors’ research expertise, not an exhaustive list of relevant future directions.

Certainly, additional future directions can be identified, and developed according

to the background knowledge of each researcher active in the field.

We will start with analytical problems. Then, we will look at computa-

tional/numerical problems. Next, we will focus on the modeling of complex social

dynamics to understand how different types of social interactions modify the col-

lective motion of the crowd. Then, we will consider how the knowledge acquired to

model human crowds can be exported to describe the dynamics of animal swarms.

Finally, in the last subsection, we will go back to the main problem at the

origin of our survey, i.e. we propose some speculations toward the development of

a mathematical theory of human crowd dynamics.

5.1. Analytic problems

The derivation of models, and their application to the simulation of real dynamics,

generates challenging analytic and computational problems through the multiscale

vision mentioned various times in this paper. Some perspective ideas are treated in

Ref. 30, where the following methodological indications were proposed:

— Models should be derived, at all scales, by the same physical principles as

reported in Sec. 4.

— The activity is an additional micro-scale variable whose dynamics is described,

at all scales, by an additional dynamical equation.

Therefore, we believe all previous results obtained with models that treat the

activity variable as constant parameter should be re-visited in favor of results

obtained with models which treat the dynamics of the activity variable.
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A classical problem is the qualitative analysis of the initial value problem. The

analysis in Ref. 20 for models with discrete velocity directions might be extended to

more general models with dynamical activity variable. The study should be focused

on the existence and regularity of solutions and may consider also initial-boundary

value problems. Papers linking the qualitative analysis to computing problems and

identification of pattern formation9 are of special interest for this task.

An additional problem worth to be considered is the derivation of the macro-

scale models from the underlying micro-scale description in the spirit of the sixth

Hilbert problem.118 This problem was treated in Ref. 49 by a mean field approach,

while methods known in the kinetic theory of classical particles have been further

developed to study the case of crowd dynamics in Ref. 18. Recent studies50–52 have

developed a general approach to deal with the Hilbert problem, which is worth to

be extended to specific case studies, such as the micro–macro derivation.

The qualitative analysis of macro-scale mathematical models has attracted the

attention of applied mathematicians who have studied various interesting problems

related to the study of real flow conditions, see Refs. 8 and 9. The open problems

refer to the qualitative analysis of problems, if possible at all scales, related to the

broad variety of crowd dynamics including those reviewed in this paper.

5.2. Computational problems

The application of computational tools refers to the specific scale selected for the

representation and modeling of the system. Indeed, micro-scale models require inte-

gration codes for ODEs, where the main difficulty consists in dealing with large

number of nonlinear equations and stiffness;47, 185 while macro-scale models need

computational methods for hyperbolic type PDEs. Specific tools have been applied

in the case of kinetic type models where the dependent variables is the distribution

function f = f(t,x,v,u) and where, the right-hand side of (3.6) is a nonlinear and

nonlocal integration term. This intrinsic complexity brings difficulties not only to

the analysis but also to numerical computations.

Note that both macro- and meso-scale models involve both transport and inter-

action terms. The natural way to consider these terms is given by operator splitting

methods,122 where the overall evolution step is decomposed into two sub-steps — a

transport step and an interaction step. Specifically, in the first step, one has to solve

a system of hyperbolic conservation laws which can be done by standard methods

such as finite-difference, finite-volume, finite-element, or spectral methods.141 The

second step can be technically challenging, mainly in the case of kinetic models, as

high-dimensional integral defining the interaction operator needs to be computed.

The reader interested to numerical computation tools of kinetic equations is referred

to Refs. 11, 85 and 161 and references therein.

The following discussion mentions two basic computational tools: the stochastic

Monte Carlo method and the deterministic discrete-velocity models. See, for exam-

ple, Refs. 27–29, where the kinetic model has been solved in by a stochastic particle
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scheme which closely resembles the Direct Simulation Monte Carlo (DSMC) method

originally proposed by Bird.37 The distribution function is represented by a collec-

tion of computational particles whose positions and velocities evolve in time by a

sequence of time steps, each consisting of a free transport and a local interaction

sub-steps. The former corresponds to the transport operator in the kinetic equation.

In contrast, the latter is performed according to stochastic rules, consistent with

the structure of the interaction term in the kinetic equation and the corresponding

transition probability densities. The space domain to be simulated is divided by a

mesh of cells. These cells are used to collect together particles that may interact

and to sample macroscopic properties such as density and mean velocity.

After the above introductory reasonings, let us now consider some research

perspectives on computational methods that are induced by the multiscale vision,

just like in the case of analytic problems. In particular, we consider the following

perspectives:

• The activity viewed as a dynamical variable: The numerical solution of

problems where the activity is a dynamical variable are definitely worth to be

studied. Specifically, we refer the development of Monte Carlo methods, as well

as to the dynamics at the micro- and macro-scale. Some preliminary results can

be found in Ref. 29, where simulations have been developed in the specific case

study of counterflow in corridors. However, a systematic study for more general

methods still needs to be exhaustively tackled.

• Linking equations at different scales: An additional tricky problem is the

computational interfacing of equations at different scales, for instance kinetic

models versus continuum models. This study is useful to simulations of crowd

flows through venues, where local density undergoes sharp variations. Then, the

selection of the specific model-scale might be related to the local density. For

instance, low density flows in large areas demand micro-scale models, while high

density flows, which can occur, in small areas, demand macro-scale models. The

transition from micro- to macro-scale poses technical problems, as variables at the

micro-scale provide, by local averaging, the required information about macro-

scale variables. On the other hand, the inverse transition poses problems as the

required information about micro-scale variables cannot be obtained from the

information at the macro-scale in a straightforward way.

• Discrete velocity models: Discrete-velocity models are popular for approx-

imating kinetic type equations in velocity space, which originated as simpli-

fied models of the Boltzmann equation for a qualitative study of rarefied

gases.57, 101, 160 Discrete velocity models of kinetic type equations can be obtained

assuming that particles are allowed to move with a finite number of velocities. In

semi-discrete-velocity models instead, the assumption is that the velocity direc-

tions attain a finite number of values while the speed is continuous along each

direction.
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In the setting of modeling crowd dynamics, discrete-velocity models are widely

accepted as already mentioned in Sec. 4.2 in reference to Boltzmann-like meth-

ods. The distribution function f(t,x,v,u) is represented by a set of unknowns

{fij(t,x)} in lower dimensions as (4.3). Then, the original differential-integral

equation in higher dimensions is replaced by a system of coupled differential equa-

tions of the form (4.4) in lower dimensions, which can be split into a transport

part and a system of ordinary differential equations for the interaction. At this

point, standard full discretization methods can be applied, see Refs. 2, 20, 133

and 146.

• Discrete space dynamics: Discrete velocities lead to treat the interaction oper-

ator by a finite sum of interaction terms corresponding to the discrete velocity.

Further, discretization of space would lead to systems of ODEs. This approach

has been developed in the case of vehicular traffic by taking advantage of the

one-dimensionality of the flow.93 In this case, the transport term is approxi-

mated by the inlet and outlet fluxes at the boundary of the finite elements. Space

discretization can be achieved by, e.g. lattice methods (see Ref. 83) where the

technical difficulty consists in selecting a lattice appropriate with the geometry of

the venue where the crowd moves. In addition, it is worth mentioning that the use

of discrete velocities can help with the criticism that the number of pedestrian is

never large enough to justify the continuity assumption of the distribution func-

tion over the micro-state variable. In fact, this approach considers homogeneous

groups of individual entities within a finite domain of the velocity space.

5.3. Social dynamics in crowds

In Sec. 4, we have shown how emotional states, heterogeneously distributed among

people in a crowd, can have an important influence on the walking strategy. The

main reference for this is Ref. 30. Emotional states can be modeled by the activ-

ity variable viewed as a dynamical variable whose space propagation depends on

interactions, external actions, as well as on the geometry of venues.

Starting from these reasonings, we can argue that modeling of crowds goes

beyond rational behaviors and that irrational behaviors should also be taken into

account. In addition, different types of social dynamics should be modeled based

on social and psychological studies.87, 100, 140, 142, 193 These emotional states might

affect density sensitive interactions and natural distancing.36, 91, 153 Without claim-

ing to be exhaustive, we report on a selections of possible case studies and define,

for each of them, the specific interactions to be considered followed by some hints

toward their modeling.

The common feature in the modeling approach to the following case studies is

that we model the walking strategy as described in Sec. 4. Specifically, each walker

interacting with other walkers and with the external environment, first modifies

one’s emotional state, i.e. the activity, and subsequently, the mechanical variables

corresponding to the selection of the direction and to the adjustment of the speed.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

16
11

-1
65

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

51
.7

0.
14

5.
23

6 
on

 0
1/

10
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 21, 2023 13:51 WSPC/103-M3AS 2350037

1646 N. Bellomo et al.

• Safety problems in evacuation dynamics. We consider a crowd in venues consisting

in a sequence of connected domains. Modeling and simulations can discover the

trajectories which reduce the risk of overcrowding. Vocal and visual signaling

can act to induce walkers to “learn” about these trajectories. In detail, signaling

should promote a collective learning toward a consensus to the optimal values of

the activity variable deemed to reduce evacuation time and avoid overcrowded

areas. Indeed, it is a problem of collective consensus by learning53–55 that can

be promoted also by leaders trained to select optimal trajectories. These leaders

promote consensus toward their own walking strategy.

• Dynamics of antagonistic groups. Models of counter-flows have already been stud-

ied in various papers by models describing patterns formation with finger-like

shapes in crowds moving to opposite directions. Further studies have been devel-

oped in Refs. 27 and 29, which show how social dynamics modify these patterns.

These papers suggest to develop the modeling of antagonistic groups in complex

venues. The study of this topic might contribute to describe the complex dynam-

ics happening in safety problems, e.g. the contrast between security forces and

rioters. Detection of violent behaviors and classification of images can contribute

to the modeling approach.35 The literature in this field is not limited to the

kinetic theory approach. For instance, macroscopic models have been developed

to describe motion in corridors and counter-flows94 and to account for asymmetric

interactions99 and self-organization.78, 103, 170, 177, 192

• Virus contagion dynamics in crowds. Mathematical models refer to crowds that

include individuals carrying a virus. Pioneering studies have been developed in

Refs. 131, 134, 135 and 136, where the authors compute the trajectories of indi-

viduals moving in complex venues and relate the probability of contagion to the

local density and speed, see also Ref. 1. In fact, the aforementioned probability

increases with the density and decreases with the speed, as high speeds reduce the

contact time. Therefore, it is important to account for the awareness of contagion

risk since this would modify trajectories with the aim to reduce the quantitative

effects of contacts.

Obviously, the modeling approach should advance jointly with the progress

in the study of virus epidemics, which has stressed the multiscale feature of the

contagion dynamics and immune response,21, 23, 157, 183, 208 since internal state

includes both the awareness to the contagion risk and the viral charge. An objec-

tive of modeling and simulations is showing how contagion patterns propagate

in time and space depending on the probability distribution of the aforemen-

tioned internal variables. The dynamics of pattern formation should consider the

structure of local networks as shown in Ref. 104.

5.4. From crowds to swarms

The mathematical theory of swarms has been promoted by the celebrated paper by

Cucker and Smale79 which has been followed by a broad variety of research articles
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devoted to analytic and computational topics and specific applications to simulate

real-world collective dynamics. A detailed survey of the literature on modeling of

swarms and related problems goes beyond the aims of our paper. Therefore, we

simply address the interested reader to the survey4 and references therein, as well

as the special issue61 devoted to this specific topic.

An important development in the modeling approach has been the introduction

of internal mechanical variables, see Refs. 105 and 106, corresponding to the so-

called thermodynamic swarm, or to activity variables33 somehow analogous to those

in crowd dynamics. This development is important whenever the study is focused

on applications beyond the classical consensus dynamics of animal swarms. For

instance, it can be referred to exotic applications, such as financial markets,13, 14

and to a broad variety of systems in the natural sciences, see Ref. 10 and references

therein. Applications can be pursued from both individual-based models and kinetic

theory approaches.32

Bearing all the above reasonings in mind, it appears worthy to understand how

far the modeling techniques developed for human crowds can be considered toward

the derivation of models of animal swarms. The key problem consists in the model-

ing of interactions by taking advantage of the studies developed in the case of crowds

and transferring this knowledge to the modeling of swarms. Moreover, the modeling

of swarms should include not only the dynamics of position and velocity, but also

social dynamics generated, e.g. by the interaction between predators and prey.84

5.5. Toward a mathematical theory of crowds

Let us now return to the stone guest behind the overall content of our paper. We

wish to understand how far we have gone in the quest of a mathematical theory of

human crowds.

Right from the beginning, we have stated that crowds must be treated as a

collective living system. Therefore, we cannot hope in the identification of causal-

ity principles based on background physical theories valid for the inert matter, as

clearly explained by Robert May.154 Further, one should consider also evolutive

features which are visible in all biological systems and, more in general, all living

systems.155 A strategy to pursue this objective consists in the following approach,22

which is here specialized to the case of crowd dynamics:

(1) Deriving, at each scale, a mathematical structure capable to capture the key

features of human, hence living, crowds.

(2) Modeling of the interactions which first modify the activity variable and then

the mechanical variables, i.e. velocity direction and speed.

(3) Deriving crowd models by simply inserting these interaction models into the

structure mentioned in Item (1).

The literature on the first item has been reviewed in our paper showing (in

agreement with Ref. 30) that it is possible to derive, at each scale, mathematical

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

16
11

-1
65

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

51
.7

0.
14

5.
23

6 
on

 0
1/

10
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 21, 2023 13:51 WSPC/103-M3AS 2350037

1648 N. Bellomo et al.

structures that couple the dynamics of the activity variable with the dynamics

of the mechanical variables. Therefore, the behavioral features of human crowd

can be taken into account. Further, it has been observed that the kinetic theory

approach captures, quite naturally, some specific features of crowds, such as the

different types of heterogeneity handled by functional subsystems. Transferring the

achievements of kinetic theory models to micro- and macro-scale approaches is a

possible perspective. See hints proposed in Ref. 30.

On the other hand, a key open problem is the modeling interactions. There-

fore, it is interesting to observe that some active teams (see for instance Refs. 71

and 72) are moving to sharp investigations of empirical data on different aspects of

interaction dynamics to understand, e.g. avoidance,73 orientation,202 distancing166

and fluctuations.98 Some challenging problems are still open, one of these being if

interactions are visual based or sensitivity based, where sensitivity refers to a fixed

number of individual entities as conjectured in the theory of swarms.16, 32

Finally, integrating empirical research with the mathematical structures

reviewed in this paper would provide an important (decisive) contribution toward

the complex quest of a mathematical theory of human crowds.

Therefore, we can state that the key toward the derivation of a mathematical

theory of human crowds is the modeling of interactions accounting for the het-

erogeneous emotional and behavioral features of people in the crowd, see Refs. 66

and 194. This philosophy should be followed at each scale by mathematical tools

suitable to move from one scale to the other.
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11. V. V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of
Nonequilibrium Flows (Springer-Verlag, 2001).

12. B. Aylaj, N. Bellomo, L. Gibelli and A. Reali, On a unified multiscale vision of
behavioral crowds, Math. Models Methods Appl. Sci. 30 (2020) 1–22.

13. H.-O. Bae, S.-Y. Cho, S.-K. Lee and S.-B. Yun, A particle model for herding phe-
nomena induced by dynamic market signals, J. Statist. Phys. 177 (2019) 365–
398.

14. H.-O. Bae, S.-Y. Cho, J. Kim and S.-B. Yun, A kinetic description for the herding
behavior in financial market, J. Statist. Phys. 176 (2019) 398–424.

15. R. Bailo, J. A. Carrillo and P. Degond, Pedestrian models based on rational behav-
iors, in Crowd Dynamics, Vol. 1, Modelling Simulations Science Engineering Tech-
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