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Simple Summary: Due to the high sustainability of insect farming, the possibility to farm insects as
a food and feed source seems to be very promising. Reusing and enhancing food waste is possible
by using it as a substrate for the growth of insects. In this context, black soldier flies (BSF) can
grow on a wide range of substrates, transforming them into valuable biomass. In this trial, four
different substrates were used and were evaluated for their suitability for larvae rearing: broiler feed
as standard diet, a vegetable diet, a diet with 50% of vegetables and 50% of butchery wastes, and a
diet composed by 75% of vegetables and 25% of butchery wastes. Butchery wastes can be suitable,
but they must be well combined with other ingredients to balance the high level of lipid and the low
content of protein, and vegetable wastes can be an appropriate candidate. Vegetable and butchery
wastes are easy to find and collect, and in the present trial, they showed interesting potential for BSF
larvae growth producing, at 22 days of age, insects with interesting chemical characteristics. The use
of vegetable wastes reduced the level of the reactive oxygen species in insect hemolymph, suggesting
a positive effect of larvae welfare.

Abstract: Hermetia illucens larvae (five days old) were farmed on broiler feed (control diet), a vegetable
diet (V100), a 50% of vegetable diet + 50% of butchery wastes (V50 + B50), and a 75% of vegetable
diet + 25% of butchery wastes (V75 + B25) to evaluate their suitability. Ten kilograms of substrate
and 6000 larvae composed each replicate (nine per group). Larvae were weighed and measured
every two days until the 25% developed into prepupae. Larval mortality and growing indexes were
calculated. Substrates, larvae, and frass chemical composition were analyzed. Larvae oxidative
status and stability were measured in hemolymph and body. The V100 larvae showed the lowest live
weight, length, thickness, and growth rate but had low mortality rate and high substrate reduction
index and protein conversion ratio. The V100 larvae had similar protein to and lower lipids than the
control ones, while the V50 + B50 and V75 + B25 larvae contained higher lipids and lower protein
than the others. Despite the vegetable wastes, at different levels, the reactive oxygen species content
decreased in hemolymph, and the V100 diet depressed growth performance and should be avoided.
The use of butchery wastes combined with vegetable ingredients can be a suitable alternative to
balance the high level of lipid and the low content of protein.

Keywords: Hermetia illucens; growth; performance; vegetable mix; butchery wastes; hemolymph;
larvae chemical traits
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1. Introduction

Global average temperature has increased by about 0.7 ◦C in the last century [1]. The
Intergovernmental Panel on Climate Change (IPCC) reported that anthropogenic green-
house gases (GHG), including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O)
and halocarbons, have been responsible for most of the observed temperature increase.
The effects of global warming are evident and have led to an increasing attention of the
world population towards the environment and biodiversity; thus, a greater sustainability
of anthropogenic activities is required.

Among the anthropogenic activities contributing to global warming, the livestock
sector is under “special surveillance”. Firstly, Gerber et al. [2] estimated that the livestock
sector contributes 14.5% of global GHG emissions, which are mainly responsible for climate
change [3]. Secondly, the societal concern over animal welfare has increased according to
the number of citizens preferring for farm animals to be treated as humanely as possible [4].
For these reasons, in recent years, several authors have studied the possibility of reducing
the global impact of animal production.

Among the different solutions, the possibility of farming insects as a food and feed
source seems to be very promising due to the high sustainability of insect breeding. In
fact, insect farming requires less land and water and produces lower GHG emissions in
comparison to traditional livestock productions [5]. In addition, insects have high feed
conversion efficiencies and can transform low-value organic by-products into high-quality
food or feed [5]. The industrial farming of insects, aiming to maximize mass production,
very often uses industrial products as growing substrate for larvae, such as poultry diet.
Widening the possibilities of using alternative and more sustainable substrates will play a
key role in enhancing the circularity of insect production, helping European insect farms to
reach their full potential [6].

In recent years, some authors starting to investigate potential new substrates for
insects, mainly for black soldier fly larvae (Hermetia illucens) [7–10] obtaining interesting
results in terms of growth performance and larval chemical quality. Black soldier fly is one
of the most reared insects in the world, not only for its bioconversion ability [11] but also
for the biological active molecules that can derive from it such as chitin [12], lipids [13], or
antimicrobial peptides [14]. Due to the great potential of the black soldier fly, a wide range
of substrates merits to be explored for its larval growth, in particular, wastes.

Butchery waste falls into category 3 of animal by-products, defined by Regulation (EC)
1069/2009 [15]. They include mainly fat, bones, and small amounts of meat, which, for
only commercial reasons, cannot be used for human consumption. They must therefore be
disposed of, and this operation has a cost. It could be interesting, with a view to a circular
economy, to try to make the most out of this waste. The richness in fat of butchery waste
could be “mitigated” using vegetable wastes also readily available and notoriously richer
in water and carbohydrates.

Since no indications are available concerning the welfare of larvae and the potential
effect of stress on the quality of the final product, a first step could be to explore the
metabolic conditions of larvae growing on different substrates. The evaluation of the
used substrates on oxidation index responses could provide complementary physiological
information for the assessment of health and well-being outcome of larvae. It is difficult
to quantify the reactive oxygen species (ROS) in practice due to their very short half-life,
and it requires complex techniques over a long period of time [16]. Due to their high
reactivity, ROS react with practically every organic molecule they meet, producing reactive
oxygen metabolites (ROMs), which are more stable than the ROS and are therefore easier
to quantify.

Conversely, the biological antioxidant potential (BAP) matches the total antioxidant
capability of plasma and includes either exogenous (ascorbate, tocopherols, carotenoids)
or endogenous (proteins, glutathione peroxidase, superoxide dismutase, catalase) com-
ponents that can oppose the oxidant action of reactive species [17]. For these reasons, for
the laboratory assessment of the oxidative status, we used the pro-oxidizing component,
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through the d-ROMs for the determination of plasma hydroperoxides, and the antioxi-
dant component, through the BAP test for the evaluation of the total plasma antioxidant
barrier [18].

The aim of the present research was to use wastes obtained from vegetable markets
and from butcheries in different combinations as substrate for black soldier fly larvae to
produce high quality larvae for feed. Three different waste combinations were compared to
a standard diet with the purpose of testing what combination would give the best results in
terms of larvae growth performance and chemical traits. In addition, the evaluation of the
oxidative stress markers in hemolymph and the oxidative stability of larvae could supply
interesting information about animal health when farmed on different utilized substrates
for their growth.

2. Materials and Methods
2.1. Larvae and Substrates

Five-day-old black soldier fly larvae (Hermetia illucens) were purchased from the
commercial insect rearing company Smart Bug’s (Treviso, Italy) in February 2020 and
used in a growing trial. Four different substrates were used in the trial: broiler feed as a
control diet; a total vegetable mix diet (V100); a diet consisting of 75% of vegetable diet
+ 25% of butchery wastes (V75 + B25); and a diet consisting of 50% of vegetable diet +
50% of butchery wastes (V50 + B50). The vegetable diet consisted of a mix of vegetable
wastes collected from fruit and vegetable shops in the province of Napoli (Italy), containing
75% of vegetables (broccoli 40%, celery 35%, cabbages 25%) and 25% fruits (50% oranges
and 50% apples). The butchery wastes were obtained from butchers in the province
of Napoli and mainly consisted of fat and meat resulting from the trimming of bovine
carcasses and cuts of meat. The collected vegetable wastes were stored for two days at
room temperature to reduce the water content. Vegetables and butchery wastes were cut
into small pieces prior to use. Diets were prepared mixing the ingredients accurately. A
batch feeding strategy was applied, which means that the substrates were placed in plastic
containers (60 cm× 40 cm× 15 cm) one day prior to placing the larvae, at the beginning of
the experiment. This allows the substrates to heat up until the start of the experiment.

Each group (Control, V100, V50 + B50, and V75 + B25) consisted of 9 replicates, each
placed in a plastic container for a total of 36 trays. In each replicate, 10 kg of substrate
were placed. On the top of each substrate, 6000 five-day-old larvae were transferred after
weighing. To calculate the average weight 100 larvae/time were counted and weighed on
an analytical balance (Adventure Pro balance, Ohaus, Pine Brook NJ, USA) for a total of
60 weighings. The trays were covered with a perforated cap with a black nylon grid and
placed in a ventilated chamber (air flow around 2 m/s) under controlled environmental
conditions (T: 27 ± 0.5 ◦C; RH: 70 ± 5%; L:D photoperiod: 16:8).

Moisture content of the substrates was measured at the beginning of the trial on 10 g of
each substrate, using an electric oven for 24 h at 65 ◦C. The water contents of the vegetable
and butchery wastes were 85.37 ± 1.12% and 38.92 ± 2.85%, respectively. Thus, the water
percentage in the four diets was 70.05, 85.37, 70.13, and 63.65%, for Control, V100, V75 +
B25, and V50 + B50 diets, respectively. The plastic containers were visually inspected daily
to verify the adequate level of humidity. In addition, the temperature in each container
was recorded every day to verify the optimal conditions for the larvae.

2.2. Growing Trial

One hundred larvae per replicate were randomly selected every two days, weighed,
and measured for length and thickness (measured at the equator of each larva) and were
then returned to their respective container.

Feeding of larvae was continued until more than 25% of the larvae in a tray had
developed into prepupae. The evaluation of the prepupae percentage has been undertaken
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by collecting exactly 100 g of substrate + larvae from each container (in three replicates)
and counting the number of larvae and prepupae contained in each replicate.

Larval mortality (LM), % = (ILN − (FLN + FPN)) * 100/ILN

Growth rate (GR), % = (LFW, g − LIW, g)/d

Substrate reduction (SR), % = (AS, g − RS, g) * 100/AS, g

Waste reduction index (WRI), % = (AS, g − RS, g) * 100/AS, g/d

Efficiency of conversion of digested feed (ECD) = TFB, g/(TS, g − RS, g),

where ILN = initial larval number; FLN = final larval number; FPN = final prepupae
number; LFW = larval final weight; LIW = larval initial weight; d = days of the trial;
AS = administered substrate; RS = residual substrate; TFB = total final biomass; TS = total
substrate; and RS = residual substrate.

All the weights are expressed on a dry matter basis.
Larvae yield (LY) was calculated as the ratio between larvae total biomass produced

at the end of the trial and the total available substrate on a dry matter basis.
In addition, the protein conversion ratio (PR) was calculated considering the indica-

tions of Ewald et al. [19] as follows:
PR = total protein in final larval biomass/total protein in the substrate.

2.3. Chemical-Nutritional Characteristics and Oxidative Stability of Larvae

At the end of the trial, samples of substrate, larvae and frass from each tray were
collected, freeze-dried using a Micromudulyo freeze drier (Thermo Electron Corporation,
Thermo Fisher Scientific Inc., Whaltham, MA, USA) and analyzed for chemical composition.
Dry matter (DM), ashes, and crude protein (CP) were analyzed according to AOAC [20]. In
brief, for DM and ashes, around 2.5 g of sample were weighed into porcelain capsule and
put in an electric oven at 103 ◦C until constant weight; then, the capsule was transferred
to an electric stove at 550 ◦C for the whole night. The crude protein was determined
using the Kjeldahl method; only for larvae, the nitrogen to crude protein conversion ratio
was 4.76 according to Jansen et al. [21]. Total lipids were extracted from each sample
according to the Folch et al. [22] method and gravimetrically quantified. The amount of
carbohydrates (CHO) in the diets was calculated as follows: CHO, % DM = 100—Ash,
% DM—CP, % DM—Lipids, % DM.

Oxidative stability of larvae lipids was analyzed following the primary and secondary
oxidation products by means of conjugated dienes (CD) and 2-thiobarbithuric acid re-
active substances (TBARS), determined according to the spectrophotometric methods
previously proposed by Srinivasan et al. [23] and Vyncke [24], respectively. The analyses
were performed in duplicate, and the results were expressed as mmol hydroperoxides
(mmol Hp)/100 g larvae and malondialdehyde equivalents (MDA-eq.)/100 g larvae, re-
spectively.

2.4. Oxidative Status of Larvae

At 20 days of age (15th day of the trial), hemolymph samples were collected from
twenty larvae per replicate, according to Łoś et al. [25]. Briefly, the larvae were immobilized
with tweezers, an incision of body layers was made with a scalpel, and the floating
hemolymph was collected with a pipette and then frozen in a tube containing 150 µL of
0.6% physiological saline until analysis. d-ROMs and BAP tests were measured using
reagents from Diacron International s.r.l. (Grosseto, Italy). In the d-ROMs test, reactive
oxygen metabolites (primarily hydroperoxides) in a biological sample, in the presence
of iron released from plasma proteins by an acidic buffer, are able to generate alkoxyl
and peroxyl radicals, according to the Fenton reaction. Such radicals can then oxidize
an alkyl substituted aromatic amine (N,N-dietylparaphenylendiamine), thus producing a
pink-colored derivative which is photometrically quantified at 505 nm [26]. The d-ROMs
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concentration is directly proportional to the color intensity and expressed as Carratelli
Units (1 CARR U = 0.08 mg hydrogen peroxide/dL). In the BAP test, the addition of a
sample to a colored solution, obtained by mixing ferric chloride solution with a thiocyanate
derivative solution, causes a discoloration, whose intensity was measured photometrically
at 505 nm and was proportioned to the ability of the plasma to reduce ferric ions [17]. The
results were expressed as µmol/L of reduced ferric ions.

2.5. Statistical Analysis

Data were analyzed by a one-way ANOVA, using the GLM procedure of SAS [27] and
considering the substrate as main effect.

The experimental unit was the replicate. To assess the differences among means,
Tukey’s test was used [27].

3. Results

All the groups reached the end of the experiment (25% of prepupae) after 17 days,
when larvae were 22 days old. Considering the amount of administered substrate (10 kg),
the number of larvae for replicate (6000), and the length of the growing period (17 days),
the feeding rate in the present trial was around 0.098 mg of substrate per larva/d.

Table 1 shows the chemical composition of the substrates used in the trial.

Table 1. Substrate chemical composition.

Substrate Moisture, % Ash, % DM Lipids, % DM Protein, % DM Carbohydrates,
% DM

Control 70.05 3.69 5.12 22.69 68.50
V100 85.37 10.41 3.98 19.11 66.50

V75 + B25 70.13 3.64 36.97 16.15 43.24
V50 + B50 63.65 1.84 49.76 14.88 33.52

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and 25% of butchery wastes; V50 + B50:
diet consisting in 50% of vegetables and 50% of butchery wastes.

The average live weight of BSF, measured on 100 larvae per replicate every 2 days
throughout the trial, is reported in Table 2. In general, larvae of 75V + 25B group showed a
higher live weight (LW) compared to the other groups, even if, at the end of the trial, they
had a similar weight to that of the control group. At 22 days of age, larvae from the V100
group showed the lowest LW (p < 0.001).

Table 2. Live weight (g) of black soldier fly larvae from 5 to 22 days of age.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

5 d 0.0582 0.0586 0.0587 0.0579 0.004 0.8598
7 d 0.0621 0.0627 0.0629 0.0618 0.009 0.9932
9 d 0.1262 ab 0.1092 b 0.1280 a 0.0804 c 0.014 <0.0001

11 d 0.1353 b 0.1413 b 0.1533 a 0.1168 c 0.0095 <0.0001
13 d 0.1365 b 0.1577 a 0.1577 a 0.1353 b 0.013 <0.0001
15 d 0.1549 ab 0.1584 a 0.1636 a 0.1423 b 0.013 0.0045
17 d 0.1653 b 0.1603 b 0.1725 ab 0.1798 a 0.012 0.0033
20 d 0.1913 ab 0.1656 b 0.1971 a 0.1854 b 0.0019 <0.0001
22 d 0.2162 a 0.1839 c 0.2163 a 0.2047 b 0.0078 <0.0001

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and 25% of butchery wastes;
V50 + B50: diet consisting in 50% of vegetables and 50% of butchery wastes; within rows: a, b, c: p < 0.01;
RMSE: Root Mean Square Error.

Starting from 11 days of age, larvae from V75 + B25 and V50 + B50 groups showed a
similar length and, at the end of the trial, were longer than the larvae of the control group,
while larvae from the V100 group showed intermediate values (Table 3).
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Table 3. Body length (cm) of black soldier fly larvae from 7 to 22 days of age.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

7 d 1.14 1.12 1.18 1.16 0.067 0.1199
9 d 1.31 b 1.31 b 1.52 a 1.25 b 0.166 0.0046

11 d 1.31 c 1.39 bc 1.67 a 1.58 ab 0.161 <0.0001
13 d 1.34 c 1.48 bc 1.71 a 1.65 ab 0.151 <0.0001
15 d 1.43 c 1.57 bc 1.77 a 1.67 ab 0.121 <0.0001
17 d 1.44 b 1.63 ab 1.78 a 1.75 a 0.178 0.0003
20 d 1.47 b 1.64 ab 1.84 a 1.77 a 0.210 0.0022
22 d 1.55 b 1.65 ab 1.87 a 1.80 a 0.182 0.0003

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and25% of butchery wastes;
V50 + B50: diet consisting of 50% of vegetables and 50% of butchery wastes; within rows: a, b, c: p < 0.01;
RMSE: Root Mean Square Error.

The height of larvae, measured in the middle of the body, is pictured in Table 4. In
general, the V75 + B25 group showed the highest values up to 17 days of age. Then, the
control group larvae overcame all the others. Starting from 11 days old, V100 groups
showed the lowest height values.

Table 4. Body thickness (cm) of black soldier fly larvae from 7 to 22 days of age.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

7 d 0.24 b 0.22 b 0.29 a 0.25 ab 0.034 0.0003
9 d 0.40 a 0.33 b 0.42 a 0.30 b 0.032 <0.0001

11 d 0.42 ab 0.37 c 0.44 a 0.40 bc 0.031 <0.0001
13 d 0.43 b 0.37 c 0.47 a 0.41 b 0.024 <0.0001
15 d 0.43 b 0.37 c 0.47 a 0.42 b 0.025 <0.0001
17 d 0.44 b 0.38 c 0.48 a 0.45 ab 0.032 <0.0001
20 d 0.55 a 0.38 c 0.50 b 0.47 b 0.028 <0.0001
22 d 0.55 a 0.38 c 0.50 b 0.49 b 0.025 <0.0001

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and 25% of butchery wastes;
V50 + B50: diet consisting in 50% of vegetables and 50% of butchery wastes; within rows: a, b, c: p < 0.01;
RMSE: Root Mean Square Error.

The growth performance of the BSF larvae during the trial are summarized in Table 5.
The V50 + B50 group showed the highest mortality rate (p < 0.01), followed by the V75 + B25
group and, together, control and V100 groups. The total larval biomass in the V100 group
was the lowest (p < 0.01), while the V75 + B25 group had a higher total larval biomass than
the control and V100 groups. The total larval frass showed the highest value in the control,
followed by V50 + B50, V75 + B25, and V100 groups (p < 0.01). The length to height ratio of
V50 + B50 group larvae was lower (p < 0.01) than that of V100 larvae and higher (p < 0.01)
compared to the control group larvae. The growth rate of V100 group was lower (p < 0.01)
than of the other groups; the opposite happened for the substrate reduction (SR) index. In
addition, the control group showed the lowest (p < 0.01) SR value. Larvae yield obtained in
the V50 + B50 group was lower (p < 0.01) than that of the V100 and V75 + B25 groups. The
waste reduction index of V50 + B50 group was lower (p < 0.01) than that of V75 + B25 and
higher than that of the control group. The efficiency conversion of digested food was the
highest (p < 0.01) in the control group, followed by both V100 and V75 + B25 and then by
the V50 + B50 groups. The protein conversion ratio was the highest (p < 0.01) in the V100
and V75 + B25 groups.

The hydroperoxide levels and the antioxidant capacities found in hemolymph of larvae
fed different diets are indicated in Table 6. The antioxidant barrier was not significantly
different among groups, whereas the concentration of hydroperoxides was higher in the
control group, thereby showing that the use, as well as the inclusion, of vegetables in the
diet accumulated less oxidative damages.
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Table 5. Growth performance of black soldier fly larvae calculated at the end of the trial.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

Mortality, % 9.95 c 10.61 c 18.93 b 20.47 a 1.075 <0.0001
TLB, g DM 657.7 b 370.5 c 717.2 a 688.8 ab 18.49 <0.0001
TLF, g DM 1673.2 a 443.2 d 1013.5 c 1464.5 b 87.31 <0.0001

L/H 2.82 c 4.34 a 3.74 ab 3.67 b 0.23 <0.0022
GR 0.011 a 0.009 b 0.011 a 0.010 a 0.0009 <0.0001
SR 44.13 c 69.71 a 66.07 b 59.88 b 3.13 <0.0001
LY 0.22 ab 0.25 a 0.24 a 0.19 b 0.01 <0.0001

WRI 2.60 c 4.10 a 3.89 ab 3.52 b 0.25 <0.0001
ECD 0.48 a 0.36 b 0.36 b 0.32 c 0.015 <0.0001
PR 0.26 b 0.36 a 0.36 a 0.23 b 0.023 <0.0001

V100: total vegetable diet; V75 + B25: diet consisting of 75% of vegetables and 25% of butchery wastes;
V50 + B50: diet consisting of 50% of vegetables and 50% of butchery wastes; TLB = total larval biomass;
TLF = total larval frass; L/H: length to height ratio; GR = growth rate; SR = substrate reduction; LY = larvae yield;
WRI = waste reduction index; ECD = efficiency conversion of digested food; PR: protein conversion ratio. Within
rows: a, b, c, d: p < 0.01; RMSE: root mean square error.

Table 6. Hemolymph oxidative stress profile of black soldier fly larvae at 20 days of age.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

d-ROMs, U CARR 113.0 a 86.74 b 69.21 b 73.50 b 21.71 <0.0001
BAP, µmol/L 3860.5 3802.1 3967.3 3973.2 767.2 0.9016

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and 25% of butchery wastes;
V50 + B50: diet consisting in 50% of vegetables and 50% of butchery wastes; d-ROMs: Diacron Reactive Oxygen
Metabolites; BAP: Biological Antioxidant Potential; within rows: a, b: p < 0.01; RMSE: Root Mean Square Error.

At the end of the trial, the larvae of V100 group showed the highest (p < 0.01) moisture,
followed by the control and, together, the V50 + B50 and V75 + B25 groups. The V100
group showed the highest (p < 0.01) amount of ash, followed by the control, V75 + B25, and
V50 + B50 groups (Table 7). The highest percentage of lipids (p < 0.01) was found in the
V50 + B50 group and the lowest in the V100 one. The V50 + B50 group showed a lower
percentage of protein (p < 0.01) compared to the control and V100 groups. The CD level in
the control and V50 + B50 groups was higher (p < 0.01) than the other groups. The MDA of
V75 + B25 group was higher (p < 0.01) than the values found in the other groups.

Table 7. Black soldier fly larvae chemical composition and oxidative stability.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

Moisture, % 66.22 b 77.46 a 59.10 c 57.69 c 0.29 <0.0001
Ash, % DM 7.28 b 13.50 a 5.05 c 4.57 d 0.55 <0.0001

Lipids, % DM 22.12 b 6.01 c 27.08 b 35.56 a 4.10 <0.0001
Crude protein, % DM 44.24 a 44.87 a 40.67 ab 30.65 b 3.79 <0.0001

CD, mmol Hydroperoxide/100 g 1.64 a 0.56 b 0.86 b 1.69 a 0.30 <0.0001
TBARS, mg MDA-eq/kg 0.18 b 0.22 ab 0.27 a 0.21 ab 0.045 0.0032

V100: total vegetable diet; V75 + B25: diet consisting in 75% of vegetables and 25% of butchery wastes. DM:
dry matter; V50 + B50: diet consisting in 50% of vegetables and 50% of butchery wastes; CD: conjugated dienes;
TBARS: thiobarbituric acid reactive substances; within rows: a, b, c, d: p < 0.01; RMSE: root mean square error.

Regarding the chemical traits of frass (Table 8), the moisture was the highest (p < 0.01)
in the V50 + B50 group, followed by V100, control, and V75 + B25 groups. The ash
percentage was the highest (p < 0.01) in the V100 group, followed by the control, V75 + B25,
and V50 + B50 groups. The highest lipid percentage (p < 0.01) was measured in the
V50 + B50 group, while the lowest was in the control and V100 groups. The V100 group
showed a higher protein content (p < 0.01) than the control and V75 + B25 groups.



Animals 2021, 11, 3515 8 of 12

Table 8. Frass chemical composition.

Control V100 V75 + B25 V50 + B50 RMSE p-Value

Moisture, % 33.18 b 41.63 a 21.28 c 42.39 a 0.31 <0.0001
Ash, % DM 12.57 b 15.13 a 8.67 c 3.11 d 0.89 <0.0001
Lipids, DM 1.77 c 2.47 c 19.98 b 39.32 a 2.41 <0.0001

Protein, % DM 16.60 b 21.72 a 15.65 b 18.98 ab 3.88 <0.0001

V100: total vegetable diet; V75 + B25: diet consisting of 75% of vegetables and 25% of butchery wastes;
V50 + B50: diet consisting in 50% of vegetables and 50% of butchery wastes; DM: dry matter; within
rows: a, b, c, d: p < 0.01; RMSE: root mean square error.

4. Discussion

To our knowledge, this is the first study in which butchery wastes have been tested as
substrate for Black Soldier fly larvae.

The inclusion of butchery wastes in the different proportions tested in our trial induced
high total larval biomass production, expressed on dry matter basis, but also a higher
mortality rate of larvae in comparison to the other groups. The best results were obtained
when butchery wastes were “diluted” with high proportion of vegetable mix, but vegetable
mix, alone, is not suitable for a good larval production. In fact, larvae on V100 diet showed,
in general, the worst growing performance (live weight at 22 days, larvae length and
thickness, growth rate) even if had a low mortality rate, high values of SRI, PR and a LY
not different from the Control and V75 + B25 groups.

A lower growth rate of BSF larvae on V100 diet could be ascribed to both a lower
protein availability and a high moisture content. Indeed, considering the protein and
moisture percentages of each substrate, the total protein available for larvae growth were:
679.6, 279.8, 543.1, and 482.4 g for control, V100, V50 + B50, and V75 + B25 groups,
respectively. Even if the moisture percentage in each substrate were within the suitable
range for BSF indicated by Cammack and Tomberlin [28], Dzepe et al. [29], testing five
substrates with increasing moisture content from 40 to 80%, observed that increasing the
substrate moisture content reduces the larval feed reduction, wet weight, development
time, body size, and body thickness. Lalander et al. [30] also reported that high levels
of moisture in the substrate reduced the biomass conversion ratio and survival rate of
the larvae. However, in our trial, the ventilation applied in the larvae-growing chamber
can alleviate the negative effects of high-moisture substrates, according to Pinotti and
Ottoboni [31].

Surprisingly, our results showed that the development time of larvae was not different
among the groups. This result is in contrast with other researches [7,8,29]. It is not easy to
explain this point, thus further insights need to clarify it, evaluating the metabolic profile
of larvae in detail.

The V75 + B25 and V100 diet (which larvae showed the second and the first lower
amount of total protein) determined a high PR value. These results agree with the findings
of Bonelli et al. [32], who showed that the midgut of H. illucens larvae can adapt to diets
with different nutrient contents, increasing proteolytic activity and decreasing α-amylase
and lipase activities when poor diets are available.

The larvae obtained from substrates containing butchery wastes showed a higher
percentage of lipids but a lower percentage of proteins than the other groups, and this was
particularly true when butchery wastes were used at the highest level. In the larvae, the
body fat represents the tissue in which nutrients such as protein, carbohydrates, and fats
were stored [33] and used for growth and metamorphosis [34]. However, a high percentage
of fat does not indicate a satisfactory accumulation of nutrients reserves [35]. In fact, the
lipid tissue of insects is composed of trophocytes, in the cytoplasm of which it is possible
to detect two types of roundish structures associated with nutrient accumulation: lipid and
protein droplets, differing in terms of size and coloring reactions [35]. The diet containing
only 25% of butchery wastes seemed to be more balanced for BSF larvae, as their lipid and
protein contents were not different from the control group.
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The V100 diet produced larvae with a protein content comparable to the control but
with a very low amount of lipids, despite a similar percentage of carbohydrates. This
might be surprising, because larvae use free sugars, abundant in the vegetable mix, to
produce triacylglycerol, accumulating it in body fat [36]. However, the V100 diet had 25.7%
more moisture than the average of the other diets, and this strongly diluted the nutrients
available for larval growth.

The average ash content in larvae was higher than in the rearing substrate, and this
suggests that larvae accumulate minerals in their body. Indeed, the rate of accumulation
was different, according to the used substrate. When a high amount of vegetable mix
was included in the diet, as happened in V75 + B25 and V100 groups, the larvae showed
1.38 and 1.30 more ashes than the correspondent diets, respectively. On the contrary, with
control and V50 + B50 diets, the rate of ash increase was 1.97 and 2.48, respectively. A
possible explanation could be that, in the vegetable mix, some minerals could be complexed
with phytates, which reduces the mineral availability for digestion. The effect of phytate
on insect growth and development is still poorly investigated [37], but it can reduce
the availability of essential minerals and proteins [38]. In addition, phytate in plants
plays a defensive role against phytophagous insects, as shown by Green et al. [39], who
demonstrated a positive correlation between the presence of phytic acid in the diet and the
mortality of three Lepidoptera species. The control diet, consisting of a broiler standard
feed, contained wheat and thus an amount of phytate. However, as a commercial diet, it
contains a further supplementation of calcium, available phosphorous, and other minerals
that may have been easily available for BSF larvae.

Additionally, the protein content in larvae was higher than in the correspondent
substrates, ranging from 1.95 of the control diet to 2.51 of the V75 + B25 diet, according to
Pinotti and Ottoboni [31]. In our trial, substrates containing the highest CP and moisture
percentage (control and V100) allowed to obtain BSF larvae with the highest CP level,
according to Meneguz et al. [7].

The evaluation of lipid oxidation is a useful method to measure the integrity of BSF
larvae [40]. MDA is one of the most important aldehydes produced during the secondary
lipid oxidation of polyunsaturated fatty acids and is considered the major marker for lipid
oxidation. Based on the standard values, the BSF larvae of all the tested groups can be
considered not rancid (<1.5 mg MDA/kg) [41].

The increased production of CD indicates a major lipid oxidation in the control and
V50 + B50 groups [42]. However, the measurement of CD could be interfered with by
compounds absorbing in the same region, such as the presence of conjugated double bonds
in the original fatty acids [43] or the presence of carotenoids [44].

Concerning the oxidative status of larvae, the lower level of d-ROMs in the hemolymph
showed that the use of vegetable waste, at different levels, in the diet of Hermetia illucens
larvae led to a significant reduction in ROS production. Conversely, the BAP did not show
differences among groups, thus suggesting that the vegetable diets did not increase the
antioxidant barrier, but some other mechanisms were involved.

In general, oxidative stress can be defined as a disturbance in the balance between
the production of reactive oxygen species and antioxidant defenses [45]. In insects, ROS
are involved in the regulation of various mechanisms and intercellular signaling and
act as bactericidal agents. They can also induce cellular senescence, apoptosis, and cell
growth regulatory pathways and are involved in immunity; also, in response to nutrient
stress, cells enter autophagy, which can lead to adaptation or death [46]. ROS activation
is suspected to serve as a primary mechanism inhibiting development of the pathogen in
situ [47]. Since ROS generation in the invertebrate systems may be due to many causes,
further studies are needed to explore the mechanisms by which vegetable waste can act
as a ROS limiting factor in Hermetia illucens diet. However, the higher level of ROS in
the control group is not accompanied by a high mortality rate, whereas the latter was
higher in the V50 + B50 and V75 + B25 groups. The percentage of survived larvae was, in
general, satisfactory, considering that Nguyen et al. [48] found a survival rate of 77% on
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BSF larvae growing on vegetable wastes. Some authors attributed the low survival rates
to the intraspecific competition between individuals for the feed source [49,50] and to the
type of substrate [51]. Unfortunately, we cannot be able to evaluate at what stage of larval
development the recorded mortalities occurred: this could be very interesting to determine
for how long the larvae can be fed with a specific diet.

5. Conclusions

The use of butchery wastes as growing substrate for BSF larvae can be suitable, but
they must be well combined with other ingredients to balance the high lipid a low protein
contents. Vegetable wastes can be appropriate candidates to counteract the negative
effects of butchery wastes. The use of vegetable wastes reduces the level of ROS in insect
hemolymph, suggesting a positive effect of larvae welfare. However, the diet composed
exclusively of vegetable wastes seems to be not indicated for black soldier fly growth as
less larval biomass was obtained. Further analyses are in progress at our laboratories to
assess the fatty acid, amino acid, and mineral profile of substrates, larvae, and frass.
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