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Abstract: It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet
little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical mani-
festations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme
tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological
manifestations. In other autoimmune diseases, such as Parkinson’s disease (PD) or Alzheimer’s
Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We
have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from
COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After
observing the production of these peptides in bacterial cultures, we have performed additional pro-
teomics analyses to better understand their behavior and reported the extended data from our latest
in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also
after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions
between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of
the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the
bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral
aggression can be blocked using an appropriate combination of certain drugs.

Keywords: COVID-19; toxin-like peptides; bacteriophage behavior; SARS-CoV-2; long COVID;
gut microbiome

1. Introduction

There has been a worldwide attempt to study SARS-CoV-2 virus for the past three
years. The clinical aspects of COVID-19 disease, studies of the virus, and existing knowl-
edge in the area of virology allowed many researchers to make various hypotheses on
the underlying mechanisms driving the symptoms of the acute phase and of the long
COVID; however, there is no common understanding on what causes these conditions
and their treatment modalities. The probable origin of SARS-CoV-2, the fact that it seems
to have as a close relative the bat coronavirus RATG13 [1], and that there is a divergence
between the two coronaviruses, at least in the region binding domain (RBD) site of the
virus major surface protein (spike protein) with the eukaryotic cellular region of the ACE2
receptor [2], do not seem to be enough. It seems that other unknown mechanisms could
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play a different role in the clinical picture of the neurological manifestations of the patients
affected by the acute phase of COVID-19 or by Long COVID. One of the first Chinese
studies described the neurological symptoms in a cohort of 214 patients. Of these patients,
36.4% had neurological manifestations, both of the central nervous system (CNS) and
peripheral nervous system (PNS). Symptoms reported were dizziness, headache, impaired
consciousness, acute cerebrovascular disease, ataxia, seizures, altered taste and smell, vision
problems, nerve pain, and skeletal muscle injury [3]. In addition to this finding, another
review also reports cerebral venous (sinus) thrombosis, epilepsy, meningitis, encephalitis,
meningoencephalitis, Gullain–Barrè syndrome (GBS), Miller Fisher syndrome (MFS), acute
myelitis and reversible posterior encephalopathy syndrome (PRES) [4,5]. Furthermore,
in children, even if the current literature reports a low manifestation of the severe acute
phase, it is possible to observe important neurological symptoms [6]. Regarding long
COVID conditions, Premraj et al. [7] reported a statistical analysis of 1458 articles. The
prevalence of post-COVID-19 neurological symptoms were observed: fatigue, brain fog,
memory issues, attention disorder, myalgia, anosmia, dysgeusia, and headache, while neu-
ropsychiatric conditions observed are sleep disturbances, anxiety, and depression. Some
neurological symptoms such as anosmia or dysgeusia, or others are not only present in
COVID-19 patients but are also described in other diseases like Parkinson’s (PD) [8,9]
or Alzheimer’s (AD) [10]. It is noted that one important pathway implicated in these
neurological disorders is the cholinergic system [11], and a possible role of this mechanism
has also been observed in COVID-19 patients [12–14], and some authors have observed
a decrease in Butyrylcholinesterase (BChE, BuChE), a pseudocholinesterase, implicated
in the hydrolysis of many different choline-based esters, along with Acetylcholinesterase
(AChE), in COVID-19 patients [15,16]. These authors [16] observed how the outcome of
hospitalized cases correlated with low levels of these enzymes. They also observed how
there is a correlation between these enzyme levels and the C-reactive protein (PCR) of
the patients. It should be considered that these enzymes, AChE and BChE, are known
in the literature to be important in choline reuptake and acetylcholine sequestration and
degradation. The parasympathetic system is involved in the pathology of COVID-19, and
the clinic described increasingly indicates its marked connection with the cholinergic sys-
tem [12–14]. These mechanisms are similar to those observed in the clinical of toxicological
manifestation [17,18]. Depending on the metabolites or toxicological peptides, an agonist
effect on nicotinic and muscarinic receptors or saturation of AChE and BChE enzymes
can be observed, resulting in hyperactivation of cholinergic signaling or blockade [17,18].
On the other hand, many papers show the connection between PD [19,20] or AD [20,21],
and the gut microbiome. They observed how the microbiota and the composition of the
bacterial population change in these diseases, in contrast to the healthy population. In
general, it has been noted that bacteria produce toxins [22,23], and with regard to other
coronavirus it has been observed that host cells can produce peptides able to inhibit the
binding between viral particles such as the Spike (S) protein and the infected cell’s sur-
face, and that the mechanism of action appears to interfere with its folding and prevent
entry [24,25]. At the same time, a category of compounds better defined as antimicrobial
peptides (AMPs) is known to be present in nature and to have antiviral properties [26,27].
They are usually cationic peptide molecules (in the range 10–60 amino acids) secreted to
contrast microbes (bacteria, fungi, small parasites or viruses), but examples of anionic ones,
due to abundance of aspartic and glutamic amino acids, have been reported as well [26].
AMPs can be produced by eukaryotic cells such as mammalian and insect ones (they are
called “defense oligopeptides” [27]), but also by microorganisms such as bacteria [27].
Some AMPs show specific antiviral action, such as those against human immunodeficiency
virus (HIV). Examples of collections of natural antimicrobial peptides are also available,
such as the antimicrobial peptide database 3 (APD3) [28]. AMPs with antiviral action
usually show a mechanism able to prevent viruses from binding to cells or interfering with
viral replication mechanisms [29]. Observations show that AMPs against viruses [30] can
be diversified into peptides derived from the heptad repeat 1 (HR1), heptad repeat 2 (HR2),
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or region binding domain (RBD) subunits of the spike protein [31]. These peptides can also
be derived from other AMP peptides or derived from nonstructural proteins [31].

In our previous paper [32], we described the presence of bacterial-derived toxin-like
peptides, present in plasma and urine, and faecal matter of COVID-19 patients despite the
healthy control. The toxin-like peptides (P) observed had sequences similar to proteins
known for their toxicological effect. The toxin-like peptides (P) that had higher quantifica-
tion were those with conotoxin-like sequences (characterized by a particular amino acid
sequence of four C-C-CC disulfide bridges), phospholipases, particularly, A2, phosphodi-
esterase, zinc-metalloproteinase, bradykinin-like. We also conducted the tests during the
healing phases and found a very low expression rate. In a second work [33], we observed
how Spike protein (S-recombinant 2019-nCoV S1 + S2 ECD protein- Sigma-Merck, St. Louis,
MO, USA, cat. SAB5700592), and toxin-like peptides (P) at non-cytotoxic concentrations
differentially disrupt the expression of some neuron-, glia-, and NSC-related genes critical
during brain development.

On the other hand, in a previous paper, Petrillo et al. [34], have observed that in
addition to the increase of viral RNA and the genesis of many mutations in the same
bacterial cultures, some antibiotics tested determined an arrest of RNA replication. The
purpose of the present analysis is to evaluate, again in vitro, the change in toxin metabolism
(P-toxin-like peptides), within the same bacterial cultures, at the interval of 30 days and
using the same antibiotics as in the previous paper. In the present work, it is aimed to
integrate those data on the effect of the antibiotic on peptides (P) production in the bacterial
cultures, derivate from faecal matter of COVID-19-positive patients to oropharyngeal nasal
swab, where is present and increased SARS-CoV-2, despite to bacteria cultures derivate
from the faecal matter of healthy persons. The study involves in the first part (material and
methods and data results) the analysis of toxin-like peptides (P) production in bacterial
cultures derived from faecal matter of sick patients, for COVID-19, up to 30 days. In the
discussion, we emphasize the production of these molecules up to 30 days. The data show
a decrease in the production of toxin-like peptides (P) with the introduction of certain
antibiotics in vitro and suggest a possible role of the microbiome in perpetuating the long
COVID phase of the disease.

2. Materials and Methods

A summary of the previous experiments and associated data can be found in [32,34].
The experimental design was reported by the authors [34].

In brief:

1. Culturing samples described in Petrillo et al. [34]: samples called A are the cultures of
stool bacteria from COVID-19 patients; samples called B(A+) are the cultures of stool
bacteria from healthy people but contaminated with the supernatant from samples A;
samples called C are the cultures of bacteria collected and grown after centrifuge of
samples A and removal of the supernatant. Samples neg-B are the cultures of stool
bacteria of healthy people that are the negative control. Moreover, an increase of RNA
viral load up to day 30 of cultures in samples A and samples B(A+), and how some
antibiotics determine the decrease of viral RNA load in the cultures, was reported; in
particular see Table 1. In addition, on aliquots of these cultures, the proteomic exams
with the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)
technique and the surface-activated chemical-ionization (SACI) approach [34–39]
were performed, as just described in [32], searching the unique new molecules that we
have previously found in the plasma and urine of COVID-19 patients. The bacteria
culture controls, derived from healthy persons, were negative for the increase of RNA
viral load as previously described [34] and also for toxin-like peptides presence now
reported. All patients gave their consent in accordance with Italian legislation.

2. Mass spectrometry data acquisition at different time points (beginning of cultur-
ing, after 7, 14, 21, 30 days) by means of Cloud ion mobility mass spectrometry
(CIMS) coupled with surface-Electrospray-NIST-activated chemical ionization (SANS),
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followed by Surface Activated Chemical Ionization—Electrospray—NIST Bayesian
model search (SANIST-CIMS) against the complete ‘Uni-Prot KB set of manually re-
vised venom proteins and toxins’ [40] mixed with a subset of non-venom proteins and
toxins from UniProt KB to give statistical significance to the results for the presence of
proteins with potentially toxic effects.

3. Repetition of mass spectrometry data acquisition in the 18 aliquots derived from
sample B(A+) at day 21, where antibiotic tests were performed and consisting in
the addition of a specific molecule (each of the following: metronidazole, clin-
damycin, lincomycin, piperacillin+tazobactam, vancomycin, amoxicillin, ampicillin,
cefixime, ceftriaxone, meropenem, rifaximin, azithromycin, erythromycin, gentamicin,
ciprofloxacin, colistin, levofloxacin, and teicoplanin), for detail see Table 1, previously
described in [34].

4. Spectral counting [41] was performed in every aliquot, considering the toxin-like
peptides abundance respect the culture-negative from SARS-CoV-2 derived from
healthy patients. Spectral counting is a semiquantitative mass spectrometry approach
for defining the abundance of the molecules under study. The spectral counting
parameter was obtained using the exponentially modified protein abundance index
(emPAI) [42] approach corrected by a nonparametric normalization index.

5. In order to verify the reproducibility of our results, the whole experiment was repeated
three times independently.

Table 1. Antibiotics are used in bacterial samples. Legend for viral RNA load: + slight increase, ++
marked increase; - - - - decrease of viral RNA load 100%; - - - decrease of viral RNA load 65–85%,
- - decrease of viral RNA load 64–40%, - decrease of viral RNA load 39–25%. Legend for toxin
aspect: + Slightly present, ++ moderately present, +++ very present. For more info, see Figure 3 of
Petrillo et al. [34].

Drugs Viral RNA Load Toxins Aspect

Rifaximin Decrease - Not present
Azithromycin Decrease - - - - Present +
Erythromycin Increase + Present ++
Metronidazole Decrease - - - - Present ++
Clindamycin Not change Present +++
Lincomycin Increase + Present +++

Piperacillin + tazobactam Decrease – Present +
Vancomycin Decrease - - - - Present +
Amoxicillin Decrease - - - - Present +
Ampicillin Decrease - - Present +
Cefixime Decrease - - - Present +

Ceftriaxone Decrease - - Present +
Meropenem Decrease - Present ++
Gentamicin Decrease - Present ++

Ciprofloxacin Decrease - - Present ++
Colistin Increase + Present ++

Teicoplanin Decrease - - Present +
Levofloxacin Increase ++ Present ++

3. New Data Results

There was equivalence of toxin-like peptides (P) amounts in samples A and samples
B(A+), after 7 and 14 days of culturing (where SARS-CoV-2 was expected to be present)
but also in samples C, where SARS-CoV-2 was expected to be removed by the centrifu-
gation step. The concentration of toxin-like peptides of neg B samples, derived from
faecal matter samples of healthy individuals, remains silent at zero values over 30 days
of culture, as shown in Figure 1 Panel M. Toxin-like peptides (P) concentrations values of
the experimental repetitions at 7, 14, 21, and 30 days, in the cultures, are represented in
Figure 1, Panel G–I, decreased after the addition of some antibiotics (Figure 1–Panel L). In
Figure 1 Panel I, it is possible to observe that by culturing bacteria from the faecal samples
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in which SARS-CoV-2 was removed by a centrifugation step (samples C), comparing it to
faecal bacterial cultures in which SARS-CoV-2 was still present (Figure 1 Panel G,H), the
semiquantitative concentration spectral counting, calculated in absolute e-value [43], of
toxin-like peptides produced by the bacteria remained identical over 30 days to those ones
of samples A (Figure 1 Panel G) and samples B(A+) (Figure 1 Panel H). Toxin-like peptides
production was influenced by the addition of antibiotics (Figure 1 Panel L). The second
integrated finding now is how this toxicological event can be blocked more effectively
in vitro with some antibiotics (amoxicillin and rifaximin) than others (Table 1, Figure 1
Panel L and N). This production, in absence of antibiotics, does not end quickly with the
removal of the viral pathogen, instead, it continues with a slow decrease over 30 days
(Figure 1 Panel M).
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Figure 1. Toxin-like peptides data analysis. Panel (A–F): most commonly found toxin-like pep-
tides (P). Panels (G–I,L,M) the increase of toxin-like peptides over time and the use of antibiotics.
(Panels A–F): charge ratio mass spectra of the toxins-like peptides produced in faecal bacterial culture
with SARS-CoV-2. Uniprot annotation ID. (Panel A): P0DPT2, alfa conotoxin-like peptides; (Panel B):
Q698K8, zinc metalloproteinase/disintegrin; (Panel C): Q9PW56, Bradykinin- potentiating and C-type
natriuretic peptides; (Panel D): Q58L90, venom prothrombin activator omicarin-C; (Panel E): basic
phospholipase A2 BFBA; (Panel F): Q9W7J9, short neurotoxin 4. (Panels G–I,L): Spectral counting
toxin-like peptides value to LC-SACI-CIMS technique. The values of the experimental repetitions
at 7, 14, 21, and 30 days are represented by the box plots. The value of toxicological production in
samples C (Panel I) is similar to those in samples A (Panel G) and B (Panel H), also in the absence of
viral SARS-CoV-2 load. (Panel L): The amoxicillin and rifaximin stop the toxicological production
versus other antibiotics in the bacterial cultures with SARS-CoV-2. (Panel M): High Log e value,
LC-SACI-CIMS ion mobility technique, of toxin-like peptides (P) presence in samples A, B, and C and
low Log e value of toxins in neg-B samples. (Panel N): Introducing four types of different antibiotics,
there is a decrease in toxins production, more evidence for rifaximin and amoxicillin.

4. Discussion

Spectral counting is a semi-quantitative evaluation with respect to conditions of absent
or low proteins and/or peptides presence [42,43], and it is possible to assess in vitro bacteria
cultures, by increasing or decreasing protein concentration under conditions of infection.

It is arguable that these peptides are related to the bacterial Toxin/Antitoxin sys-
tem [44]. Authors in [45,46] noted how important the function of the respiratory micro-
biome is and how bacterial peptides can lead to several new mutations in the virus.

The gut microbiota act as a defense barrier and help modulate the gut immune system
and is essential for gut homeostasis. When it is altered, intestinal disease can occur [47].
An up-regulation or down-regulation of some neuronal genes on iPSC-derived 3D human
neural stem cells [33] by using our “toxin-like” peptides derived from bacteria stools sam-
ples of COVID-19 patients is also observed. It is discussed that toxins found are similar
to conotoxin-like peptides and phospholipase A2, neurotoxins or others (Figure 1 Panels
A–F), and it is possible that they can act on the acetylcholine receptors (Figure 2). The unex-
pected detection of bacterial “toxin-like” peptides that resemble conotoxin proteins was of
particular interest. The 4–5 disulfide bridges characterize conotoxins-like proteins, and the
cysteine-rich C-CC-C- motif is very similar and is thought to act like the bungarotoxins [48].
Furthermore, the α7 nicotinic receptors’ expression is localized in the glomerular layer of
the olfactory bulb (OB) [48,49] and probable interaction of our molecules with this receptor
could explain the heterogeneity in the loss and restoration of sense of smell in COVID-19
patients. Authors showed an important perspective on the correlation of nicotinic receptors
with the SARS-CoV-2 [14]. Many studies have described how snake venom peptides,
might play a role in the loss of smell and taste [50–54]. On the other hand, the toxin-like
Phospholipase A2 (PLA2) is also important. PLA2 has been studied for many years; its
best-known mechanism of action is on the arachidonic acid inflammatory pathway which
increases thromboembolic events [55], with the activating agent thromboxane and from
this point of view, it is possible to link to the coagulation disorder found in COVID-19
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patients. The data suggested that the toxin-like peptides (P) found might act, because of
their heterogeneity and similarity to others already known in nature, on the cholinergic
system. Nicotinic and muscarinic receptor subtypes are present in the central nervous
system (CNS) on both neurons and glial cells, and they play a crucial role in acetylcholine
(ACh)-mediated signalling [56–58]. Alterations of this signalling can affect motor control,
memory and temperature regulation (hyperthermia that is difficult to control), synapse
functions and plasticity, such as auto hetero receptors [57–59]. The same is in the peripheral
nervous system, where muscle receptors appear to be extensively involved in several
processes, such as smooth muscle contraction, glandular secretion, and heart rate regula-
tion [56–58]. The observations that toxin-like peptides production was influenced by the
addition of antibiotics and that this production does not end with the removal of the viral
pathogen are compatible with a model where bacteria are the main producers of these
peptides as reaction to SARS-CoV-2 (Figures 1 and 2) which in turn acts for them as an
environmental stressor, throughout its bacteriophage-like behavior [58] (Figure 2). Authors
in [59] observed that germ-free mice that received microbiome samples from patients with
post-COVID-19 syndrome were more susceptible to increased pulmonary problems with
Klebsiella pneumoniae strain infections and developed cognitive deficits.
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bacteria, activation of toxin production, release of toxin-like proteins into circulation, activation of
gut-brain axis, receptor saturation. Image obtained with BioRender.com (28 November 2022).

The whole bacterial community needs time to recover from SARS-CoV-2. Probably
these peptides are components of a Toxin/Antitoxin bacterial system [26]. The antibiotic
rifaximin (rifampicin group) inhibitor bacterial DNA-dependent RNA polymerases and it
has antiviral action [60]. It may interact directly with intestinal epithelial barrier cells [61].
Rifaximin and amoxicillin can act on the class of gram-positive and gram-negative bacteria
producing peptides [62–64]. In the bacteriophage mechanism of the virus infection observed
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by previously [34,58], the presence of toxins produced by bacteria continuously after viral
aggression can be blocked using an appropriate combination of antibiotics in vitro models.

For the benefit of public health, we must consider that the immuno-compromised
elderly population has poor beneficial and immunomodulatory gut microbiota [65], in
contrast to a healthy individual with a microbiota represented by 93% Firmicutes and
Bacteroidetes [66]. In addition, with aging, facultatively anaerobic bacteria and Gram-
negative bacteria, are observed to change in the mucosa due to changes in the living
environment, possible malnutrition, and drug intake [66]. This implies an increased
susceptibility of the elderly population to viral diseases that have a possible mechanism
of microbiota involvement. Considering that bacteria are able, under stressful conditions,
such as the presence of a new viral pathogen, to produce oligopeptides or substances that
may interfere with the intruder as a likely defense mechanism, suggests more studies
aimed at evaluating both the use of probiotics [66] but also oral intake attenuated virus
vaccine solutions, probably in order to anticipate the encounter between the virus and the
microbiota [59]. However, how the viral pathogen and bacteria may interact or interfere
with the host’s various immune and neurobiological mechanisms remains to be elucidated.

5. Conclusions

The gut and lung microbiomes appear to play well-defined roles in the mechanisms of
viral invasion [67]. The gut microbiota and bacteria could have a key role in virus invasion,
and many studies have put evidence of RNA findings in feces [68]. Microbiota diver-
gence is related to socioeconomic background and may correlate with COVID-19 disease
severity [69]. In patients with COVID-19 disease, antibiotics are used to treat secondary
infections [70,71]. However, overuse of antibiotics is correlated with a reduction in human
microbiota beneficial to the host immune system, such as Eubacterium Rectale, Faecalibac-
terium Prausnitzii, Ruminococcus Obeum, Dorea Formicigenerans, and the Lachnospiraceae
Family [69].

The in vitro evaluation, in bacterial cultures in presence of SARS-CoV-2, of the action
of some antibiotics on toxicological aspects needs future investigation and suggests that
modulation of the microbiota probably through the use of probiotics. As we reported in
the conclusions of our previous work, inducing microbiota resistance against SARS-COV-2
is an option to be considered, probably on a par with what Dr. Sabin did with polio by
administering an attenuated oral vaccine over several sessions, it could now be considered
as a preventive alternative having to act on both surface immunity and bacteria as we
reported [58].

It is not yet possible to define whether we are dealing with a bacterial toxin/antitoxin
system or whether it is a mechanism peculiar to the interaction between SARS-CoV-2
and the host microbiota and repeating the same process with other viral RNA pathogens
might help to assess the differences or similarities, but certainly, it can be emphasized how
important surface immunity is and how much more there is to investigate.

It was hypothesized that this finding in the bacterial dysbiosis argument might suggest
some mechanism in continuing long COVID symptoms related to bacterial dysbiosis and
their toxicological product should be further investigated.
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